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Abstract Dense copepod aggregations form in Massachusetts Bay and provide an important
resource for right whales. We re-examine the processes which might account for the high
concentrations, investigating both horizontally convergent flow, which can increase the den-
sity of depth-keeping organisms, and social behavior. We argue that the two act in concert:
social behavior creates small dense patches (on the scale of a few sensing radii); physical
stirring brings them together so that they merge into aggregations with larger scales; it also
moves them into areas of physical convergence which retain the increasingly large patch.
But the turbulence can also break this apart, suggesting that the overall high density in the
convergence zone will not be uniform but will instead be composed of multiple transient
patches (which are still much larger than the sensing scale).

Keywords Biological-physical aggregation · Social behavior · Horizontally convergent
flow · Plumes

1 Introduction

Aggregation of prey in the ocean plays a vital role in food web ecology. Some predators may
not be able to survive without prey aggregation. For example, sea lions, killer whales, and
sea birds feed on schools of herring [20,22], blue whales feed on swarms of krill [25], and
basking sharks, cod, haddock, and right and sei whales feed on highly concentrated patches
of copepods [26–28]. The processes that aggregate prey therefore play an important part in
fisheries management and species conservation.
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Fluid flow in the ocean is effectively incompressible, and so true water-following particles
will never aggregate. However prey in the ocean may differ from a true Lagrangian particle by
swimming, and this may result in the formation of patches. As an example, the role of conver-
gent fronts in aggregating zooplankton has been the focus of several different studies [10,13,
15,19]. While the details of each investigation differ, the main message is consistent between
them: as neutrally buoyant or actively swimming organisms are swept towards a convergent
front, the concentration of organisms will increase at the front as the flow sinks and the organ-
isms are left behind (either by actively swimming or being constrained to a depth surface).

In the Gulf of Maine (GOM), in particular, aggregations of copepods play an important
role in the ecosystem. These aggregations are a food source for many species, including
the endangered right whales (Eubalena glacialis), which return to the southwestern GOM
every spring to forage. Past experiments have suggested that the interaction of biological
and physical processes may create these dense aggregations. The South Channel Ocean
Productivity Experiment (“SCOPEX”, [28]) noted that the location of the densest patches
occurred within a general area of high copepod abundance, which appeared to coincide with
the salinity front on the eastern edge of the Channel. From net-tows, the densest patches were
found to range in size from 100–1,000 m across, while the vertical extent of these patches
is in the range of 1–10 m [3,28]. Observations of peak density within a patch are in the
range of 103–104 copepods/m3 ([4,28]), which is one to three orders-of-magnitude larger
than typical values measured in the GOM in spring-time [2,28]. The temporal persistence
of the patches is somewhere between hours and days; however, what determines this time
scale is unknown (M. Baumgartner, pers. comm.). Since SCOPEX, the leading hypothesis
to explain high concentrations of copepods found in patches in the southwestern GOM has
been that advection by circulation and coupled physical-biological mechanisms were likely
to be aggregating copepods. The SCOPEX team ruled out in situ growth and social behavior
as likely causes for the observed high-concentration patches in the southwestern GOM. The
physical side, however, was not ruled out, and in fact some evidence for a coupled physical-
biological aggregating mechanism was observed [10,13].

We will re-assess the physical aggregation mechanisms and argue that the time-dependent
development, both downstream and in association with eddies, makes the physical conver-
gence much less likely to increase the concentration to the levels observed (Sect. 2). At the
same time, social mechanisms may give large densities, but are not likely to create patches
on the scales of kilometers (Sect. 3). Therefore, we propose a multi-stage process for the
development of large, high-density aggregations (Sect. 4): (a) social behavior leads to high-
density but small-scale patches; (b) turbulent flow brings patches in contact where they can
stick together; (c) weak convergence accumulates the patches and they coagulate into larger
regions of elevated concentration which, because of the social behavior, are able to resist (to
some degree) being sheared apart.

2 Concentration of Depth-Keeping Organisms by Fluid Flow

We begin by reviewing the role of directed vertical swimming which allows us to treat the
concentration as governed by a two dimensional (horizontal) flow which is divergent or
convergent. We discuss briefly examples of steady flows analogous to those used in previ-
ous treatments (e.g. [9,13]), before moving to time-dependent flows and to more realistic
simulations relevant to the flows in the GOM.

The three-dimensional flow in the ocean is effectively incompressible so that the concen-
tration of passive tracers will not be increased by advection. But copepods, like many ocean
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organisms, can swim vertically much more rapidly than the fluid moves. To derive density
equations with this included, we shall deal with two descriptions, one based on the density
(number per unit volume) of organisms b(x, z, t) and one on the positions of individuals
Xi (t), Zi (t). Vectors will be used for horizontal coordinates and velocities; the vertical terms
will be written explicitly.

If we treat the organism positions stochastically, and their movements are independent, the
probability of being in a small volume around some point P(x, z, t)dV satisfies an advection-
diffusion equation like that for density. This relies on the mean free path being short compared
to scales over which the fluid velocities or swimming properties vary significantly; that may
not strictly be true (e.g., the organisms could be executing Lèvy flights) but, given our lack
of knowledge about the swimming behavior, it seems to be a reasonable starting point.
Therefore, we shall begin by examining the density equation.

The concentration b(x, z, t) of organisms satisfies

∂

∂t
b + ∇i (Ui b − Ki j∇ j b) = 0

where the three component velocity Ui and the diffusivity Ki j include both fluid motions
and swimming. If we integrate this equation over a small volume around a local maximum,
the diffusive fluxes will be negative, while those from the fluid flow will be zero (since it is
non-divergent in 3D). The only term, then, that can increase the concentration is convergence
of the swimming velocity.

We want to take advantage of the fact that, for zooplankton, vertical swimming can be
significant compared to fluid velocities and length scales, whereas horizontal movements
are dominated by the flow. Previous papers have applied this idea, (e.g. [5,6,9,13,19]) but
have focused more on analytical x–z flows whereas we are interested in flows with complex
horizontal structure. As Appendix 1 shows, if the vertical swimming and its random variability
overcome the fluid motions and cause clustering around the preferred depth, the biomass
density can be represented as b̃(x, t)F(z) where

∂

∂t
b̃ + ∇ · (ũb̃ − K̃∇b̃) = 0, ũ =

∫
dz Fu, K̃ =

∫
dz F K

and F(z) has been normalized by
∫

dz F = 1, making b̃ the column-integrated biomass. But
the horizontal velocity ũ is not non-divergent; indeed

∇ · ũ = ∇ ·
∫

Fu =
∫

F∇ · u = −
∫

F
∂w

∂z
≡ −s

where the “stretching”s will determine whether the flows are causing increases in concen-
tration (s > 0) or decreases (s < 0).

The resulting equations look the same as those obtained by assuming the organisms occupy
a 2D surface and compensate completely for the vertical motions (corresponding to a delta
function for F(z)); however, the advecting velocities and stretching are smoothed versions
over the depth range occupied by the copepods. We shall drop the tildes and analyze

∂

∂t
b + ∇ · (ub − K∇b) = 0 (1a)

or

∂

∂t
b + u · ∇b − ∇ · K∇b = sb, s = −∇ · u (1b)
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We can also decompose the velocity into a rotational and divergent part

u = uψ − ∇φ, uψ = ẑ × ∇ψ
The uψ will not cause increases in density. When we include social movement, we will add
functionals of b to φ or K , but assume that this part of the motion does not have a rotational
component. Most of the results in the next section, therefore, will be easy to rephrase for the
case with behavior.

2.1 Steady State Patches

If the flow is steady (which could involve a Galilean reference frame shift), the patches will
also be steady if the flux

F = ub − K∇b

is non-divergent; i.e., F is the curl of some vector field F = −∇ × [ẑχ(x)] = ẑ × ∇χ . Since
the divergence of the flux creates the enhancement of patch density, we can understand the
dynamics of patch formation below by neglecting, for the moment, χ and uψ and looking at
the solution of

−b∇φ − K∇b = 0 or ∇ ln b = − 1

K
∇φ

which, in the constant K case, yields

b = b0 exp(−φ/K ) (2a)

Concentrations peak at the minimum points of φ where the convergence is largest, but are
less pronounced when the diffusivity is high. If contours of K are parallel to those of φ, we
can find a similar solution

b = b0 exp

(
−

∫
dφ

1

K (φ)

)
(2b)

which has much the same character. In the following examples, we shall use constant K for
simplicity.

The forms (2) show that the solutions depend on one non-dimensional parameter, the
Péclet number P = U L/K , which measures the strength of advection by the divergent flow
(U ∼ |δφ|/L) to diffusion. We shall continue to write the equations in dimensional form,
but illustrate results in non-dimensional form by choosing U = 1, L = 1, and K = 1/P .

When the flow is independent of one direction (e.g. y or θ for a circularly symmetric
case—see Appendix 2), b can also be one-dimensional if the boundary conditions allow it.
In that case, the component of the flux in the direction of variation must be constant (zero for
the circular geometry because of conditions at r = 0). Table 1 and Fig. 1 describe the three
basic cases for rectilinear flows. More details are in the appendix; here we simply note that
the commonly used profiles with flows extending far from the front (pure strain and localized
convergence) have steady states with a finite total population and concentrations which decay
rapidly away from the center of the convergence. In contrast, when the flow decays away from
the front, the far-field concentration is non-zero but b still has a peak with amplitude eP higher
than the background at the front. In the other cases, the peak concentration depends on the
total population, which really means the size of the area from which the copepods in the front
are drawn. As an example, if we have localized convergence acting on copepods distributed
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Table 1 Flows and densities

Description Flow/density Potential

1. Pure strain u = −U x/L φ = 1
2 (x/L)2

b = b0 exp
(
− 1

2 P (x/L)2
)

2. Localized conv. u = U0 − U tanh(x/L) φ = −U0x + U L ln[cosh(x/L)]
b = b0 exp(P0x/L)sechP (x/L)

3. Localized u u = −(x/L) exp
(
− 1

2 (x/L)2
)

φ = −U L exp
(
− 1

2 (x/L)2
)

b = b0 exp

(
Pe− 1

2 (x/L)2
)

uniformly over an width L init , the final peak value will be about binit(L init/L)
√

P/2π . Given
time and a large reservoir, the density can increase dramatically.

These large concentrations seem to justify the previous arguments that the physical con-
vergence dominates. However, they do not take into account the possibility of advective losses
(e.g., sideways), the time-dependence of the convergent flow, or turbulence on the frontal
scale which can transport the organisms away from the front.

2.2 Physical Effects in Mass Bay

In this section, we will discuss models of one of the potentially significant flows causing
concentration increases in the Great South Channel. Lateral convergence may be found at
density fronts such as those at the nose of a buoyant plume. In the spring in the GOM, buoyant
plumes form as a result of increased river discharge, and are often observed to propagate down
the coast [12]. Woods [29] analyzed lateral convergence in a realistic numerical model of
the GOM circulation and noted a period of enhanced convergence associated with buoyant
plume events (see Fig. 2). The stretching ∂w

∂z corresponds to increasing the concentration by
a factor of 2 per day, but is clearly unsteady. In addition, the plume has a two-dimensional
structure, extending from the coast to order 5 km offshore, and there are flows relative to the
moving plume within the freshwater (c.f., [16]). Thus, organisms can be carried away from
the front, rather than continue to accumulate.

Although there is large convergence at the plume front (Fig. 2), the x–y structure indeed
ends up limiting the enhancement of the density. In Appendix 4, we present a number of sim-
ple examples which illustrate different aspects of the dynamics; here, we consider a curved
front such as that shown in Fig. 3, where there is convergence at the front as it moves through
still fluid (which is pushed down underneath it, leaving the copepods in the surface layer) as
well as some front-relative circulation that redistributes them within the plume. The front in
this model is steadily advancing (from left to right in Fig. 3, with the velocity arrows shown
in the reference frame moving with the plume) at a speed c, and the front-relative circulation
is given by

ψ =
{

u0 y [y + tanh(2x)] y < − tanh(2x)

cy x > 0 or y > − tanh(2x)

Since the major “convergence” here is the plume running into still water, the maximum possi-
ble number of organisms in the front depends on the area swept out by the plume; this increases
linearly with t . The buildup will continue until the input is balanced by advective losses. In the
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Fig. 1 Solutions for pure strain (blue), localized convergence with symmetric inflow in the far field (green),
localized convergence with stronger inflow on the left (U0/U = P0/P = 0.5, red), and localized velocity
field (cyan). P = 3 is deliberately small to show the structure, and the densities have been normalized to have
average value 1. For reference, the maximum is 20 times the background for the localized velocity case (and
2.2 × 104 when P = 10). Velocity fields are shown below (Color figure online)

case u0 > 0, the relative flow converges at the nose but diverges out along the front. In contrast,
when u0 < 0, the flow relative to the nose pushes the offshore organisms in towards the corner,
enhancing the concentration until diffusion and advective losses along the wall can balance the
incoming flux. Since the patch is more confined, the concentrations tend to be higher. When
there is no relative flow in the plume (u0 = 0), the influx is only lost to a lengthening diffusive
plume in the quiescent region behind the nose, and the amplitude grows roughly as t1/2.

We can estimate the maximum concentration by noting that the flux F tends towards
a constant. If |u| decreases monotonically along a trajectory, but does not become zero,
the maximum will be reached in the outflow region bmax = binuin/uout. If u decreases
to zero and then increases again, the flux will be carried by diffusion through this low
velocity region of width 	 so that F ∼ −K (bmax − bout)/	 = uinbin = uoutbout giving
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Fig. 2 FVCOM simulations showing enhanced convergence at the outer edge of a buoyant plume (low
salinity water) passing Cape Cod. Upper panel shows the section. The lower panels show the salinity (left)
and stretching ∂w

∂z (right) as functions of distance along the track and time increasing from bottom to top over
about 2 weeks. A plume of freshwater crosses the section beginning on May 29. For the week following the
start of the event, convergence can be found just offshore of the plume (near 25 km from shore). See Woods
[29] for details

bmax/bin = (uin/uout)+ (uin	/K ), which grows only linearly with the Péclet number. This
picture—the organisms pile up as the flow velocity drops until the diffusive flux is able to
carry them across into the outflow—is reasonable for u0 �= 0. When there is no plume-
relative flow inside (u0 = 0), the density builds up at the front, with diffusion spreading the
organisms into the plume. The diffusive tail decays over a scale 	 = √

K t and has order bmax	

organisms; equating this to the number swept up by the movement, uinbint gives bmax ∼ t1/2.
The quantitative difference between the experiments with front-relative flow and the 1D

model in Sect. 2.1 (and previous models such as [10] or [14]) is significant: when the organ-
isms can be swept away by the plume-relative flow, the amplitude will not build up nearly as
much.

As the complexity of the model increases towards that of reality, different behavior with
time of the maximum b is observed. Woods [29] examined the concentration using several
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Fig. 3 a Examples of the density of a depth-keeping organism in a front moving from left to right at speed
0.1 with the flow behind the front moving towards or away at a front-relative speed ±0.05. K = 8 × 10−4.
The plots are in the reference frame of the nose of the front, so the arrows show motion relative to the front.
The color scale is b with the background value being 1. b Maximum concentration for different values of the
inflow along the wall, u0 = −0.05, 0,−0.1, 0.05, 0.1 (in order from the top for t = 50). One non-dimensional
time unit would correspond to about 0.25 d (Color figure online)

dynamical models of buoyant plume (ROMS and a 2.5 layer model); these gave amplification
factors over 5 days of order 4 compared to the model above which gives order 10–20;
however, the front model with fixed structure above (the “plow”, as in a snowplow with
material swept into a pile which eventually escapes around the sides) can be adjusted to give
a similar amplification (Fig. 4). This difference probably can be attributed to more complex
circulations, especially near the nose, but also to the fact that the plume slows down and
therefore gathers up fewer and fewer organisms in a given amount of time.

A slowing plume is a simple form of time-dependence, one for which it seems clear
that the growth rate will decrease as the convergence is reduced. However there are many
other sources of variability in the GOM which may also make the physics less able to create
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Fig. 4 Comparison of the simple 2D model (labeled “2d plow”) to dynamical models of idealized plumes.
The parameters are c = 0.14 m/s, width 5.2 km, K = 106 m2/s, u0 = −0.3c. The width of the nose (in the
tanh function) is the same as the plume width. The red curve shows the 2.5 layer model, and the center green
curve show the mean concentration of a set of depth-keeping particles in the ROMS simulation. The outer
green curves show one standard deviation (Color figure online)

and maintain dense patches. Equation (1) has some obvious time scales: convergence L/U ,
diffusive L2/K , and, for flows extending far from the front, similar scales involving the size
of the region from which the organisms can be gathered. But there are more subtle time scales
as well: that for shear dispersion along streamlines ψ and for chaotic mixing, both of which
may again limit increases in b. Solutions which continue to grow (e.g. the t1/2 case above) as
organisms are continually brought into the convergent region may not be very relevant to the
ocean: we cannot expect the flows to remain steady over many diffusion time-scales. Instead,
the large convergences are associated with eddies and transient events such as intrusion of
freshwater plumes along the coast in the spring as the river runoff peaks. As an example, [29]
examined the expected enhancement of b following simulated trajectories: from

D

Dt
ln b = s

the growth would be

ln

[
b(t)

b(0)

]
=

∫ t

0
s

where the integral is taken along a Lagrangian trajectory. In an Eulerian frame, the conver-
gence can be quite large: that predicted by a full Gulf of Maine model reaches a factor of 7
per day but varies significantly from point to point (c.f. southern part of GOM in Fig. 5). But
fluid parcels (and copepod patches) do not generally stay for long periods in one of these
regions of convergence (such as that north of Cape Cod which shows high positive values of
s = ∂

∂zw), and s also has significant temporal variability. Figure 5 shows that the integrated
value of s following fluid parcels at 10m, which gives the change in ln b. It can be quite
large for a few simulated drifters (a growth by a factor of order e5 = 150, but, in most cases,
it gives at best a modest increase (order 2–5). Nor is there a consistent pattern suggesting
large increases for points ending up in the Great South Channel. Finally, we note that vertical

123



674 G. R. Flierl, N. W. Woods

−70.5 −70 −69.5 −69 −68.5 −68
41

41.2

41.4

41.6

41.8

42

42.2

42.4

42.6

42.8

43
05−May−2011 22:58:07

∫ d
w

/d
z 

dt
 (

5 
da

ys
) 

−10

−8

−6

−4

−2

0

2

4

6

8

10

0 10 20 30 40 50 60
−8

−6

−4

−2

0

2

4

6

8

time (days)

∫ d
w

/d
z 

dt

Convergence following depth−keeping particles

a

b

Fig. 5 a Distribution of the de-tided stretching (
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0
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∂z ) values in the FVCOM model [7]. b Value of the

integral of the stretching along several trajectories which pass through or close to the Great South Channel

velocities in hydrostatic models are often noisy (as indicated by the large variation from cell
to cell in Fig. 5); the detailed high resolution frontal models (Fig. 4) have smoother w’s and
do not give very large numbers.

These results indicate that the analytical model predictions of large enhancements [order
exp(P)] rely heavily on the horizontal convergence being stable and persisting for long
enough to gather copepods from large distances and concentrate them in a small area. But
consideration of the time-dependence indicates these concentrations would take far longer
to build up than is reasonable given the levels of variability in the currents. Experiments
with two-dimensional (in the horizontal) flows, with plumes having realistic dynamics, and
with the GOM FVCOM model also suggest that the 1D calculations overestimate the likely
concentrations: fluid parcels do not stay in regions of strong convergence for long enough
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times. As we shall see, stirring by eddies (which can be thought of as greatly reducing P)
also limits the concentration.

3 Social Behavior

The results above suggest that we should consider factors beyond the physics: the convergence
in realistic plume models is not large enough to magnify the concentration by several orders
of magnitude; the vertical velocities in the full GOM model are spatially and temporally quite
variable, so that only a few trajectories show strong amplification. We now turn to examining
how social behavior might contribute, and, especially, how it can combine with the fluid flow.
Social behavior can lead to patchiness either by directed swimming where organisms move
towards others or, more passively, by a reduction in the random swimming. As [11] point
out, both of these appear as convergent motions either ub[b] = −∇φb[b] or −∇Kb[b] where
the brackets indicate the biological swimming or diffusion are functionals of the density b,
meaning in this case that the value at a point x will depend on the density in a neighborhood
of x (see explicit examples below). The size of this neighborhood is order of the sensing
distance; however, we hope (and will see) that the patches can be considerably larger. If φb

or Kb is low where the density is high, organisms will converge into that region, leading
to further density increases. The two cases—called “social taxis” and “social kinesis”—are
similar in this respect but differ because the spatial/temporal variations of Kb in the latter
affect not only the convergence but also the diffusive spreading.

Desirable features of the social grouping model we shall consider include:

– Spontaneous break-out of patchiness. Not surprisingly, this tends to occur at the sensing
scale.

– Shear resistant. Patches should be maintained under reasonable shear or strain in the fluid
flow.

– Sticky. If two patches are brought near enough by the eddies or other motions, they should
coalesce to form a larger patch which can hold together.

– Potential for large-scale, stable patches. If patches begin to coagulate, but then break down
again, dense aggregations on a scale much bigger than the sensing scale are unlikely.

The combination of these features seems to be critical for the development of large-scale,
dense aggregations like those seen in the Great South Channel. Social aggregation can cause a
uniform region to develop lots of small patches, but, even though the density on the centimeter
scale might be very high, the average over larger scales is not altered since the patch is drawing
from the local neighborhood. Physical convergence acts on these just as on independent
particles, so that the smoothed concentration will grow as in the previous section, but does
not get very high. On the other hand, horizontal turbulence (mostly in the ψ term) can bring
patches into contact (c.f., the work on encounter rates in turbulence such as [24]). If they
merge into a larger patch which is still able to resist being torn apart by shear so that the
organisms do not depart as the water moves away, the smoothed density will increase with each
coagulation. But if these large patches are unstable to formation of small aggregations within
themselves, they will break up again and become vulnerable to being dispersed by the flow.

3.1 A Social Aggregation Model

We now describe a model for movement which will prove to have the characteristics above
and which seems to make some biological sense. Taxis, rather than kinesis, will be used both
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because it makes analysis more straightforward but also the resulting patches are generally
more robust. We represent the movement as random accelerations balanced by relaxation
back to a preferred swimming velocity which depends on the flow and the distribution of
neighbors. For the nth organism,

dX(n) = V(n)dt

dV(n) = −r(V(n) − u − ub)dt + dW (3)

with dW a random increment (different for each organism) satisfying 〈dW〉 = 0 and
〈dWi dW j 〉 = 2Kbr2 dt δi j with subscripts indicating vector components. Here ub is the
preferred swimming velocity (a functional of b), and Kb is the biological diffusivity asso-
ciated with the random component of the swimming. In the absence of fluid flow and a
preferred velocity, the individuals all move independently, their velocity variance stabilizes,
〈Vi Vj 〉 → r Kb δi j , and the mean square displacement grows with time 〈Xi X j 〉 → 2Kbt δi j

exactly as produced by diffusion with diffusivity Kb (thus the choice of normalization for
the random increment).

As mentioned, we take Kb to be a constant which includes the effects of fluid turbulence at
the scale of the copepod (or Brownian motion for smaller creatures) and random swimming
which can be a sizable contribution. The social behavior is manifested in ub. The social taxis
model assumes that the organisms can perceive a rough measure of local density and which
directions have higher or lower density—the density gradient.1

For simplicity, we use the continuous form, but can recover the discrete form by replacing

b →
∑

δ
(

x − X(n)
)

in the formulae. The local density estimate is a weighted function of the distance to others

β(x) =
∫∫

dx′w(x − x′)b(x′) (4)

with the weight function w having compact support and integral one so that a uniform b will
give β = b. The gradient is

∇β =
∫∫

dx′ ∇w(x − x′)b(x′) =
∫∫

dx′w(x − x′)∇′b(x′)

which indeed gives an estimate of the direction of increase of b.
We will use a weighting function which depends only on distance r = |x − x′| with a

range a

w(r) = 3

πa2

(
1 − r2/a2)2

and zero for r > a. The gradient is

∇β =
∫∫

dx′w′(|x − x′|) x − x′

|x − x′|b(′x ′) =
∫∫

dx′w2(|x − x′|)(x′ − x)b(x′) (5)

with

w2(r) = 12

πa4 (1 − r2/a2)

1 Social behavior models, especially when observations in the natural habitat are minimal, are necessarily
speculative. Copepods clearly exhibit directed swimming in response to pheromones (c.f. [30] and other
articles in that volume) as well as hydromechanical and perhaps visual cues. Food distribution might also be
a factor.
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The preferred swimming velocity ub = −∇φb will be in the direction of higher neighbor
density but at a speed which decreases as the local density increases so that they do not
continue to pack rapidly into the center. We use

φb = −Ua
β

β0 + β
, ub = U

aβ0∇β
(β0 + β)2

with U and β0 constants. We can choose the units for b such that the half-saturation constant
β0 = 1; in the rest of the paper, then, b will be the ratio of the density (or number density)
to the density at half-saturation.

φb = −Ua
β

1 + β
, ub = U

a∇β
(1 + β)2

(6)

In an individual-based model, the integrals in equations (4, 5, 6) become sums, and the
velocities and positions are advanced using (3). Experiments with this approach indicate that
the continuum model is a good representation; we will remark on some differences below.

3.2 Stability of Uniform States

From the equations for the density (in the absence of flow)

∂

∂t
b = ∇ · (b∇φb + Kb∇b)

deviations b′ from a uniform state b will satisfy

∂

∂t
b′ = ∇ · (b∇φ′

b + Kb∇b′)

with

φ′
b = −Ua

β ′

(1 + b)2
, β ′ =

∫∫
dx′w(|x − x′|)b′(x′)

since β in the uniform state is just b. For perturbations of the form b′ = A(t) exp(ık · x), we
have

φ′
b = −�(|k|)A(t) exp(ık · x), �(|k|) = Ua

(1 + b)2

∫∫
dx′w(|x′|) exp(ık · x)

and

∂

∂t
A = |k|2(b�(|k|)− Kb)A

The transform of the weighting function decays for large |k|, so that diffusion will dominate at
short scales; instability can only occur if b�(0) > Kb. Evaluating the integral at wavenumber
0 gives

�(0) = Ua

(1 + b)2

so that we require

Ua
b

(1 + b)2
> Kb or P

b

(1 + b)2
> 1
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Fig. 6 Critical values of b at different Péclet numbers on a linear or log scale. The uniform state is unstable
above the curve. The dotted line shows P = 20, used in many of the simulations

with P = Ua/Kb the Péclet number for the organism’s taxis velocity. This will have a
solution for a finite range of b as long as P > 4 (Fig. 6). The Péclet number here can be
thought of as ratio of the directed to random swimming velocity times the ratio of the sensing
distance to the mean free path for the random movements; unlike P for the fluid motion, this
one is not likely to be very large.

Finite amplitude:
The growth of perturbations and the formation of patches is illustrated in Fig. 7; the

patches equilibrate fairly quickly, and then mergers take place over a much longer time. All
simulations are in a doubly-periodic domain. The merger process in the continuum model
can be viewed as follows: a patch has a long, but exponentially weak, tail which produces
a small attractive velocity on neighboring patches. Merger also occurs with the individual-
based model, but it is more rapid because the stochastic motion leads to wandering of the
patches.
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Fig. 7 Densities b(x, y)with Péclet number Ua/Kb = 20. Mergers can be seen in progress at t = 10, 30, 130.
Note also the decrease in the number of patches and the increase in size from t = 10 to t = 500
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Fig. 8 Steady states versus N = ∫∫
b. a Maximum density. b Patch area with dotted line showing a linear

relationship N/30. The Péclet number is 20

Patch sizes: In the previous experiment, as mergers take place, the maximum value of
b does not increase by much; instead the area grows. For social behavior and constant Kb,
we still have that steady states (first without flow) satisfy

b = b0 exp(−φb/Kb) = b0 exp

(
P

β

1 + β

)

We can find steady states by iterating: from a guess of b with N = ∫∫
b, we calculate β and

then compute b̂ = exp(P β/[1 + β]). The factor b0 is then chosen as N/
∫∫

b̂. This gives a
new estimate of b, and we can repeat until it converges. A finite domain size is required, so
that N can be finite even with b∞ > 0. The domain size does not seem to have much effect
until the average b approaches the stability boundary. For example, N = 3 converges in a
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Fig. 9 Densities b(x, y) with
Péclet number Ua/Kb = 20 at
t = 250. The upper panel shows
the case without shear; the lower
has u = 0.1 sin(2πy/W ) with
the domain width W = 12.8 (the
range of the weighting function is
one)
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6.4 × 6.4 area but not in 12.8 × 12.8; on the other hand N = 100 looks identical over a two
orders of magnitude increase in the area.

We have verified these by time-marching, starting with all the organisms within a circle
of small enough radius such that the density is above the high cutoff of the unstable range.
The patch remains circular, and the amplitude reaches the value in Fig. 8. When we add
a random field over the domain, the big patch still forms up into a steady profile with the
same amplitude, while the outer region is filled with small patches like those in Fig. 7. These
experiments show that this social dynamics is consistent with having large, stable patches.

Shear: As a simple test of whether “stickiness” and shear resistance are indeed displayed
by this model, we simply add a steady shear flow u = Us sin(k0 y) to the biological velocity ub.
We compare the states starting with the same random initial conditions (uniform distribution
on 0 to 1) with Us = 0.1 compared to the scale U = 1 for φb. The shear has indeed led
to coagulation and many fewer and larger patches. As Fig. 9 suggests, however, the patches
can break up again; watching the development shows that the patches centered at slightly
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different y values move towards each other, merge into an elliptical structure but then this
rotates in the shear, the ends are drawn apart, they separate, and then form back into smaller,
more circular patches as they move away from each other.

4 Combined Effects in More Complex Flows

Unlike the purely physical problems where φ can become large and positive so that
exp(−φ/K ) can decay towards zero, the social model has φb always negative so that in
a steady state b ≥ b0 > 0. Indeed, if b becomes constant, b∞, in the far field

b∞ = b0 exp

(
P

b∞
1 + b∞

)

If b∞ is very small, this yields b0 = b∞/(1 + P b∞) allowing us to relate the unknown
coefficient b0 to the far field value or vice-versa. An important conclusion is that the patch
does not cut off with zero concentration outside. Indeed, even though the sensing radius is
finite, ub can be shown to decay exponentially away from the patch without cutting off. Thus,
different patches indeed can interact by their far fields which have gradients that can attract
other patches, albeit exponentially small ones. The far field also affects the response to strain.

A pure strain field φ = 1
2 S(y2 − x2), in the passive case, led to growth as an initial

disturbance compressed in along the y axis and then decay as it leaked out along the x axis.
When we add this to the biological φb and try to iterate to a steady state, we find that the
solution for small enough S appears to converge, but then the difference between successive
iterations begins to grow again, and the patch separates into two blobs heading in opposite
directions in x (or breaks symmetry into one blob moving either right or left).

In essence, the social attraction is not able to entirely prevent the losses along the axis of
extension. The exponential tails will extend into a region where the outward flow from the
physics overwhelms the weak, inward, far-field flows from φb. The leakage is slow, since b
is exponentially small in the wings of the patch; therefore, temporal changes in the flow field
may again play a significant role.

4.1 Stirring

Ocean flows are variable in both space and time, and, as we have suggested, the combina-
tion may inhibit buildup by purely physical processes. To explore the implications of more
turbulent flows, we have used a simple stirring process defined by a streamfunction

ψ = Us

k
√

7

[
cos

(
kx + θx1

3

)
cos

(
ky + θy1

3

)

+ cos(2kx + θx2) cos(3ky + θy2)+ cos(3kx + θx3) cos(2ky + θy3)

]
(7)

where k = 2π/W and the variables θx j and θy j undergo independent random walks with
δθ = 0.02 for a time step of 2−9. The normalization makes Us the r.m.s. velocity for the
eddies.

Figure 10 compares the decay of the variance in b for an initial patch with amplitude b = 1
for

√
x2 + y2 < 3 and zero outside under pure diffusion and under the stirring. The shears

in the velocity quickly stretch the patch into filaments which then diffuse rapidly because of
their small scales; as evident in Fig. 10.
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Fig. 10 Decay of the variance for the stirring case (lower) and the purely diffusive case (upper). Plots at
t = 5 and t = 25 of the distributions of b normalized by the maximum values listed in the titles
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When we add social behavior, we find the individual patches will again encounter each
other and aggregate, as in the steady shear case, though they can be broken back up by the
shears.

4.2 Stirring and Convergence

To model the joint effects of stirring and convergence, we want to use a physically motivated
relationship betweenψ andφ. For ocean eddies and jets, Coriolis forces are usually dominant,
and the vertical velocities are weak. The vertical vorticity ζ = ∂v

∂x − ∂u
∂y = ∇2ψ then

approximately satisfies

(
∂

∂t
+ u · ∇

)
ln(ζ + f ) = s

Combining this with the non-diffusive form of the b equation implies that b/(ζ + f ) is
conserved following the horizontal flow. Usually |ζ | is smaller than 1

2 f so that even a swing
from a strong anticyclone to a cyclone would involve a stretching that would only amplify
b by a factor order 3. This argument, though over-simplified, indicates the importance of
considering the dynamics of the flow, not just the kinematics.

When the streamlines and vorticity field are nearly aligned, we can use

∂

∂t
ζ = ∂

∂t
∇2ψ 
 f ∇2φ

with bottom Ekman friction [21], ∂
∂t ζ = −σζ so that φ = −(σ/ f )ψ . For organisms living in

the bottom boundary layer, the proportionality constant is + 1
2 : in essence, the bottom stress,

which opposes the flow above the bottom boundary layer, is balanced by the Coriolis force
acting on the inward or outward flow. The convergence (under a cyclone) produces upwelling
out of the boundary layer; in the fluid above, there is a corresponding, but weaker by the ratio
of the depth to the boundary layer thickness, divergent (cyclone) or convergent (anticyclone)
flow with φ proportional to −ψ . Note that irrotational flows like ψ = −U0 y will not have
upwelling or an associated φ.

We show two examples combining the various elements we have discussed: physical
convergence, social behavior, and stirring. The first case has a localized, steady anticyclonic
circulation and a uniform flow added to the time-dependent stirring (Eq. 7).

ψtot = ψstir + U0 L0 exp

(
−1

2
|x|2/L2

)
− 0.2U0 y

We set the potential to −αψ (except for the uniform flow term). In Fig. 11, we show an
example where the proposed mechanism seems to work especially well. The social behavior
creates small, but high density patches, the stirring brings these into the region with consistent
convergence where they merge to form a large patch. The patch occasionally loses bits at the
edge but 80–90 percent of the organisms remain in it.

However, even this system has a large number of parameters, and the behavior is indeed
sensitive to their values. We have chosen the time and length scales based on swimming
velocity U and the perception radius a. The remaining parameters in this experiment are the
biological diffusion K = 0.05 (P = 20), the strength of the steady anticyclone U0 = 0.15,
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Fig. 11 Fraction of organisms in r < 5 and snapshots at various times. The contour lines are the streamfunction
with negative values in magenta (Color figure online)
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Fig. 12 Fraction in the central region for various stirring flow strengths. Lower plots show the state at t =
2,500 for Us = 0 and Us = 0.3; compare to the last plot in Fig. 11

and of the stirring Us = 0.15. The ratio of α = φ/(−ψ) is 0.1, and the various length scales
are L = √

10 and 1/k = 4.1.
If the stirring is increased relative to the stationary flow, the large patch experiences more

strain and cannot stay together. Blobs are lost to outside of the convergence region and others
are re-entrained (Fig. 12).

As a second example we consider a front with

v = U0 sech2(y/3), φp = −0.3 U0 sech2(y/3)

but with no convergence associated with the stirring part of flow (Eq. 7). The results are
very similar (Fig. 13): without social behavior, we have a broad area of convergence with an
amplification factor of about 9; with grouping, the amplitude is about 34, with a finer filament
meandering around the center of the front and occasionally breaking up.
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Fig. 13 Fraction of population in jet region with and without social behavior. The lower panels show b at
t = 10, 1000 with the U = 0 case on the left and U = 1 on the right
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5 Discussion

The experiments presented here and in [29] indicate that indeed the physics by itself will not
compress material by several orders of magnitude—the turbulence we’ve invoked to bring
tracer from a large area through the convergent region will, for passive tracers, also be effec-
tive at stirring it back out. If we think of turbulence as enhanced diffusivity, the exp(−φ/K )
form suggests it would lead to low densities, consistent with the way stirring acts in our simu-
lations. Attraction of individuals (and on the larger scale, of groups) can provide a means for
resisting this spreading. Our model for the social behavior has the property that the maximum
concentration is not sensitive to the size of the patch; even though a large aggregation may be
torn apart by shears, the pieces still have high density and can remain in the same geographic
area. Indeed, the kilometer scale patches may, in fact, be heterogeneous with local very high
density aggregations within an overall elevated level.

The theory and simulations support the idea that both physics and social behavior play a
role in the observed large aggregations of copepods. The small patches from social behavior
can indeed be brought in contact by eddies and merge to form larger aggregations. Localized
convergence, with inward flow which vanishes far from the center, can accumulate the patches
in an area, with turbulence bring ones from outside of the convergent region close enough
that they can then be entrained into the large aggregation. On the other hand, the stirring
does disrupt the large patches, breaking them apart if they hit a temporary stagnation point
or peeling off small blobs. These calculations suggest we might expect to find regions with
larger patches and more of them, but that this state may not be long-lived and may still remain
heterogeneous, especially around the edges.

Although our model has a range of scales, it cannot go from the perhaps centimeter scales
of the sensing distance to the kilometer scales which patches seem to cover. We suspect that
some form of renormalization may succeed here: perhaps, the figures can be reinterpreted as
the density of smaller groups rather than of individuals. Although the coagulation of groups
is quantitatively different from group formation, it clearly happens (though more slowly as
they get larger). In the individual-based model, the coagulation is more rapid, but groups
can spontaneously split; however, this seems to be less of an issue as they get larger. At
each stage—going from individuals, to groups, to groups-of-groups, up to kilometer scale
patches—the process is going to depend on the strength of the turbulent flows at that scale
and on the magnitude of the frontal (or other) convergence. And the postulate that the total
number over the area which could feed into a convergent zone is not increasing implies
that we must ascribe the high densities to aggregations which are narrow compared to the
convergence zone. In the frontal experiment, that indeed occurred and was driven by the
social behavior.

Given the importance of copepod aggregations for whale feeding, we would certainly
like to understand and predict them better; data on both spatial and temporal structure of
the density and of the flow fields would be tremendously helpful. The theoretical/ numerical
approach also has a number of issues which are as yet unresolved: the actual behavior which
can lead to patchiness, the range of scales involved, and the structure of the stretching field
(and suitable de-tiding).

Appendix 1: Vertical Swimming

For organisms swimming vertically at a speed ws(z, t) with random variations producing a
“diffusion” Ks(z, t) (presuming both have significant variation only in z), the density satisfies
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∂

∂t
b + ∇ · (ub − K∇b)+ ∂

∂z

(
[w + ws]b − [Ks + Kv] ∂

∂z
b

)
= 0

(with u and ∇ being horizontal and w, Kv being the physical vertical motion and mix-
ing, respectively). We assume that the vertical swimming is strong and convergent at some
preferred depth (including the surface or bottom). The lowest order dynamics (neglecting
time-variation of the swimming) is

∂

∂z

(
wsb − Ks

∂

∂z
b

)

 0

Then b will take the form b̃(x, t)F(z) with

∂

∂z
ln F = ws/Ks

(like Eq. 2 but in the vertical). If the swimming propels the organisms up or down towards
a particular depth and is rapid, the vertical scale of F , Kv/ws , will be small, and F will be
sharply peaked around the preferred depth (by analogy to Fig. 1). Using the b̃F solution to
iterate on the original equation gives

∂

∂z

(
wsb − Ks

∂

∂z
b

)
= −F(z)

[
∂

∂t
b̃ + ∇ · (ub̃ − K∇b̃)

]
− b̃

∂

∂z

(
wF − Ks

∂

∂z
F

)

Since we are interested in the net biomass, we shall normalize F by taking
∫

dz F = 1 and
integrate the equation above. There is no flux through the boundaries andw vanishes as well.
We arrive at the equation for ∂

∂t b̃ in the text with divergent horizontal flows ũ and associated
stretching.2

Appendix 2: Circular and Non-Symmetric Geometries

When the streamfunction, potential, and boundary conditions are all independent of θ , we
again have

b = b0 exp(−φ/K )

We can solve the same problems, just replacing x by r and limiting the domain to be r ≥ 0.
We argue in Sect. 4.2 that φ ∼ ψ so that an isolated eddy can be expected to have localized
radial velocities as well. In this case, the far field can have a finite background value, and the
steady state solution has a central amplitude order exp(P) larger. But, as Appendix 3 shows,
this buildup happens in two stages: first, the patch gets denser by drawing in the organisms
out to where the velocity peaks and depleting the annulus where convergence occurs. Then
the peak value changes more slowly, on a time scale L2/K , because of diffusion into the
depleted area and then into the center until the convergence and diffusion balance (Table 2).

If the symmetry is broken, the flux F0 will no longer be zero. The steady solution now has

ub − K
∂

∂x
b = F0

so that

b = bs − bs

∫ x

x0

F0

K bs

2 When the swimming is time-dependent but the time for forming a layer remains short, we would just end
up integrating F(z, t)u, introducing additional time-dependence in ũ.
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Table 2 Radial flow

Description Flow Density

1. Pure strain u = −Ur/L b = b0 exp
(
− 1

2 P (r/L)2
)

2. Localized convergence u = −U0 tanh(r/L) b = b0sechP (r/L)

3. Localized u u = −U (r/L) exp
(
− 1

2 (r/L)2
)

b = b0 exp

(
Pe− 1

2 (r/L)2
)

where bs is the homogeneous solution, with amplitude chosen to match the condition at x0.
The flux F0 is chosen to match the right boundary condition.

The solution (Eqs. 2a, 2b) will also apply to other steady flow cases. When contours of φ,
K , and ψ are parallel, the form

∇ ln(b) = − 1

K (φ)
∇φ

gives a flux

F = uψb − b∇φ − K∇b = uψb

The divergence of the flux is

∇ · F = ∇ · (uψb) = uψ · ∇b = − b

K
uψ · ∇φ

which vanishes under the stated assumptions.
In the circular geometry, the rotational flux will have a contribution if the boundary or

initial conditions vary with angle. For example, if b is not constant on some closed φ contour,
the solution above cannot hold. The strong flow case seems most relevant: when the rotational
flow is large compared to the convergent flow, the density will homogenize along streamlines
by shear dispersion and then slowly diffuse and converge across them. This argument is based
on the Prandtl-Batchelor theorem [1]. The lowest order solution to

∂

∂t
b + uψ∇b = ∇ · (b∇φ + K∇b)

is just

(ẑ × ∇ψ) · ∇b = 0

which implies b = b(ψ, t). Integrating the equation over the area enclosed by two streamlines
gives

∂

∂t

∫∫
b =

∮
ψ0+dψ

n̂ · (b∇φ + K∇b)−
∮
ψ0

n̂ · (b∇φ + K∇b)

If we use the approximation that b = b(ψ, t) and take dψ to be small, this becomes

∂

∂t
b

∮
ψ0

|∇ψ |−1 = ∂

∂ψ

{
b

∮
ψ0

1

|∇ψ |∇ψ · ∇φ +
[∮

ψ

K |∇ψ |
]
∂b

∂ψ

}

(c.f., [23]). This 1D advection-diffusion equation has much the same character as the cases
discussed previously; the exception would be if there is a stagnation point in uψ which
corresponds to a singularity in the time for transiting the contour – which is the coefficient of
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Fig. 14 a The homogenization process for Péclet number 10 and ψ = 1.67φ. t = 0, 1, 2, 5. b Later times.
t = 10, 25, 50, 100. The boundary conditions are maintained at the value shown in the first frame; this
asymmetry remains at later times, but only in regions near the boundary
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∂
∂t b. The assumption of rapid movement along streamlines compared to the diffusion or cross
streamline flow clearly breaks down there, but, as [8] argued, it does not make a significant
difference. We still expect to find b will tend towards

b = b0 exp

(
−

∫ ψ

dψ [U (ψ)/K(ψ)]
)

but with the divergent flow and effective diffusivity suitably weighted by the along-streamline
velocity

U = −
∮
ψ0

1

|∇ψ |∇ψ · ∇φ, K =
∮
ψ

K |∇ψ |

Figure 14 shows this process with a Gaussianψ , starting from a checkerboard pattern, which
then becomes spirals and converges into the middle. The maximum amplitude at the last time
shown is still only 5.6 times the boundary value; it will climb to order e10.

Appendix 3: Time-Dependent Problems

Even in the case with symmetric boundary conditions, the localized flow problem has several
different time scales (Fig. 15). Initially, the patch gets denser by drawing from the surrounding
annulus where the velocity peaks and it compresses into the center. This occurs with a time
scale of order L2/φ0; then the peak value changes more slowly because of diffusion in or out
of the boundary on a time scale L2/K . The distribution finally stabilizes at

b = b∞ exp

(
−

∫ ∞

r
dr

u

K

)

as shown in Fig. 15.
The solutions with non-zero inflow in the far field can only settle to a steady solution if

the population initially extend over a finite area: if b is non-zero as x or r → ±∞, the flows
will continue to import organisms into the system. In the pure strain case, beginning with
uniform b is not very physical: it leads to simple exponential growth with time everywhere
b = b(0) exp(Ut/L). The localized front case is more interesting because the far-field
population remains constant. For the special case when the Péclet number is equal to 2,
U0 = 0, and the population is uniform at t = 0, there is a simple analytic solution to the
time-dependent problem:

b = b(0)+ b(0)
Ut

L
sech2(x/L)

The second term is just the steady-state solution but with amplitude growing linearly in time
as new organisms are brought in from further and further away. To reach amplitudes 100
times the background b(0), the flow has to be sustained and far-reaching enought to bring
organisms from a distance 100 times the front width. Indeed, if we ignore diffusion entirely,
the solution is just

b = b(0)
cosh(x/L)etU/L√

sinh2(x/L)e2tU/L + 1

At the origin, this grows exponentially, but a short distance away, the concentration asymp-
totes to | coth(x/L)| which is only 1.3 for x = L or 4 for x = 1

4 L . from the expression for
the ratio

R = b(x, t)/b(x,∞) = sinh(x/L)etU/L√
sinh2(x/L)e2tU/L + 1
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Fig. 15 a The initial condition and the density at t = L/U as functions of r/L , showing the depletion of the
annular region. (P = 10 for this plot; b(0, 70) = 97.3. b The growth of the maximum for various boundary
values. Time is non-dimensionalized by L/U and P = 3. The initial value of b is one. c The evolution of b
versus tU/L and r/L . Contours are at b = 0.75, 0.8, . . . , 0.95, 1, 2, . . . , 18
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it is clear that the time to approach large amplitudes (meaning small values of x) behaves like
−L/U ln(sinh[x/L]) ∼ (L/U ) ln R and increases significantly. In the presence of diffusion,
we see growth at x (away from zero) by advection like that above until ub is nearly constant
and then a slower phase where diffusion is spreading the central peak.

Frontal models of accumulation often have localized convergence but velocities extending
far from the front (e.g., [10] have a − tanh(x) flow); these models argue that the accumulation
will be modest if the front has localized velocities or lasts for times which are not tremendously
long compared to L/|∇φ|.

Appendix 4: Advective Losses

To understand advective losses, consider the movement relative to the plume: the organisms
approach the front, but are left in the surface as the denser water goes under the plume (really
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Fig. 16 Density b(x) for a = 0.25 and the associated velocity. The lower figure shows the peak value as a
function of P
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Fig. 17 Changes in concentration for a pure strain field with A = 1, B = −0.1, K = 0.01 with initial values
α = β = 0.01

the plume riding over relatively still water). But they can diffuse through the front to be
picked up by the plume-relative flow inside or be swept along the front. In a 1D model, we
can think of this as a localized convergence but with different velocities on each side. For u =
U0 − U tanh(x/L) with U0 > U , the concentration transitions smoothly and monotonically
from its upstream value b(−∞) to the downstream value b(∞) = b(−∞)(U0+U )/(U0−U )
which gives the same flux ub − K ∂

∂x b = u(−∞)b(−∞). The amplification is independent
of P . If we use a slightly more complex velocity which drops to zero at the front, but picks
up on the other side

u/U = 1 − a − a tanh(x)− 1 + √
1 − 2a − a

2
sech2(x)

the concentration far downstream is still enhanced by u(−∞)/u(∞) = 1/(1 − 2a), but the
temporary blockage caused by slow diffusion across the front gives a local peak; however
the amplitude increases only roughly linearly in P rather than exponentially (Fig. 16).

In two dimensions, advective losses can be even more significant. Consider a strain field
like that which may occur near the intersection of the nose with the wall. Relative to the
moving plume, the velocity would look like

u = (−Ax,−By)

where either coefficient could be negative or zero. The potential is

φ = 1

2
Ax2 + 1

2
By2

and we will only reach an appropriate steady state [exp(−φ/K )] if both A and B are positive.
We shall look for Gaussian solutions

b = b0(t) exp

(
−1

2
α(t)x2 − 1

2
β(t)y2

)

123



696 G. R. Flierl, N. W. Woods

y

x

b

0

1

2

3

4

5

-2 -1 0 1 2

2

4

6

8

10

12

14

16

18

0

5

10

15

20

0 20 40 60 80 100
tU/L

Max(b)

Fig. 18 Final density b(x, y) for B = −0.1, P = 10 with b(2.5, y, t) = exp(− 1
2 y2). The lower figure shows

the peak value versus time

This leads to three equations

∂

∂t
α = 2α(A − Kα)

∂

∂t
β = 2β(B − Kβ)

∂

∂t
b0 = [A − αK + B − βK ]b0

The equations for α and β are the logistic equations; if B is positive, β will initially grow
exponentially and then asymptote to A/K . But if B < 0, then β decays to zero and the
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width in that direction becomes infinite. Combining the three equations shows that b0/
√
αβ

is constant. Thus, if both scales limit to finite values, b0 will also. If either A or B is negative,
the patch cannot resist the divergence in that direction and the amplitude will decay to zero.
However, when that coefficient is small, we can have substantial amplification and then a
slow decay (Fig. 17).

Even if the “upstream” population is maintained in a band near the coast (i.e., the front
is moving into a region with some background concentration), the peak concentration levels
off in much the same way as in the 1D problem (Fig. 18). This example shows that advective
losses can be an important limiter on the density enhancement associated with convergence.
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