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Abstract For investigating the relationship between ther-

mal properties and biodegradability of poly (3-hydroxybu-

tyrate-co-3-hydroxyvalerate) (PHBV), several films of

PHBV containing different polyhydroxyvalerate (HV)

fractions were subjected to degradation in different condi-

tions for up to 49 days. Differential scanning calorimetry

(DSC), thermogravimetry (TG), specimen weight loss and

scanning electron microscopy (SEM) were performed to

characterize the thermal properties and enzymatic biode-

gradability of PHBV. The experimental results suggest that

the degradation rates of PHBV films increase with decreas-

ing crystallinity; the degradability of PHBV occurring from

the surface is very significant under enzymatic hydrolysis;

the crystallinity of PHBV decreased with the increase of HV

fraction in PHBV; and no decrease in molecular weight was

observed in the partially-degraded polymer.
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Introduction

Plastics have been widely utilized in almost every manu-

facturing industry. It is estimated that nearly 150 million

tons of plastics are produced very year [1], and several

million tons of plastics are discarded into the biosphere. This

poses a threat to biotic and abiotic components of the

environment [2]. In spite of the increasing efforts to

decrease accumulation of wastes and recycle them, more

and more damage is done on the environment. As an alter-

native to chemical-based, non-biodegradable plastics, more

and more attentions are paid to the environmentally-friendly

biodegradable plastics, which can help overcome some

pollution problems and reduce petroleum dependency.

Polyhydroxyalkanoates (PHAS), the polymers synthe-

sized by microorganisms using renewable resources as

carbon feedstocks, are currently widely recognized among

biodegradable polymers, which have numerous useful

properties and a wide range of application [3–5]. Poly-

hydroxybutyrate (PHB), one type of PHA polymer, is

probably the most extensively studied biodegradable ther-

moplastic polymer. However, practical application of PHB

has often been limited by its narrow processing window

and brittleness [6–8]. Careful control of the fermentation

conditions and the feeding of carbon source used has led to

the synthesis of a variety of PHA copolymers, including

poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), with

improved physical properties. PHBV is commercially

available and has physical and mechanical properties that

are comparable to the conventional thermoplastics such as
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poly(L-lactic acid) (PLA) [9] and poly(butylene succinate)

[10]. Before their applications can be widespread, com-

prehensive studies on the biodegradability and degradation

mechanisms of these polymers are necessary. Up to now,

there has been lots of research on the degradation of PHAs

or PHA blended with other materials in a marine envi-

ronment [11, 12], tropical mangrove ecosystem [13], soil

environment [14–17], enzyme solution [18–20], and

microbial environment [21–23]. Different degradation

behaviors of PHAs were found in different degradation

processes, even for a same polymer. It has been reported

that the molecular weight of polyhydroxybutyrate (PHB)

chains decreased during marine degradation [12] and

enzymatic degradation [18]. However, its molecular weight

was seen not to decrease in another enzymatic degradation

study [24]. This may result from the differences in the

environment and mechanism of degradation.

There are several factors that contribute to the enzymatic

degradation rate of PHBV. In general, the biodegradability

of PHAs is influenced not only by the chemical structure,

but also by the physical and thermal properties. The

chemical structure, surface condition of the polymer, and

their related physical properties such as: crystallinity,

crystal structures, molecular orientation, melting tempera-

ture (Tm), and glass transition temperature (Tg) are known to

have crucial effects on the PHAs biodegradation of poly-

esters. Hence, much attention should be given to investigate

the relationship between crystallinity and biodegradation

rate of PHA copolyesters. However, very few investigations

of the thermal properties and biodegradability of PHBV of

various HV fractions have been reported to date.

The aim of this study was to investigate the relationship

between the biodegradation behavior and thermal properties

of PHBV specimens. The thermal properties of PHBV

specimens were measured by various characterization

techniques, such as differential scanning calorimetry (DSC)

and thermogravimetry (TG). The biodegradability of PHBV

films was investigated during incubation in different media,

and the surface topography of films was analyzed at dif-

ferent times during degradation using scanning electron

microscopy (SEM). Weight loss and average molecular

weight were also monitored to characterize the extent of

degradation.

Experimental Section

Materials and PHBV Films

PHBV (containing 3-hydroxyvalerate monomer (HV)

fractions of 4.6, 9.5, and 20.7%, respectively) polymers

were produced by cultures of Ralstonia eutropha fed with

glucose and valerate as carbon sources. PHBV films were

prepared by solvent casting in chloroform. The solution of

PHBV (0.02 g/ml) was cast on petri plates, and the solvent

was allowed to evaporate in a controlled air stream for

12 h. Polymer was kept at room temperature for[2 weeks

to reach equilibrium of crystallinity. The final thickness of

PHBV film specimens were approximately 0.2 mm.

Specimens of 2 cm2 dimensions were cut from the PHBV

films.

Analysis Methods

Thermal properties of PHBV were analyzed by DSC (TA

instruments, Model 2910) and TG (Model Q50). Speci-

mens weighing approximately 3 mg were used for the

DSC study. Heating and cooling rates were maintained at

10 �C/min during the DSC runs. Specimens were heated

from -30 to 200 �C for 3 min. Melting temperature (Tm),

melting enthalpy (DHm), crystallization temperature (TC),

crystallization enthalpy (DHC), and glass transition tem-

perature (Tg) were obtained from the thermograms. Spec-

imens weighing approximately 4 mg were used for the

thermogravimetry (TG) study. Specimens were heated

from 0 to 400 �C at a rate of 10 �C/min during the TG runs

in order to test the temperature of thermal degradation.

In the lipase degradation analysis, PHBV specimens of

similar shape and specific area were placed into pure PBS

(phosphate buffered saline, pH = 7.3) and PBS containing

1 g/L lipase (LEVEKING, Shenzhen, China, enzyme

activity: 10 KLU/g) at 37 �C. Degradation studies were

carried out on 7-well plates with same volume per well,

which contained three PHBV specimens, each with dif-

ferent HV content. The PBS containing lipase was changed

every 2 days to avoid changes in lipase concentration due

to possible evaporation of water during degradation.

Weight loss measurements were performed every 7 days.

For this procedure, specimens were removed, washed with

distilled water 3 times, followed by drying in vacuo to a

constant weight before analysis.

The dried specimens were also used for other sub-

sequent analyses. Specimens were dissolved in chloroform,

and the intrinsic viscosity of the solution was measured at

30 �C using an Ubbelohde type capillary viscometer.

Weight average molecular weight was calculated according

to the Mark-Houwink equation [25].

The SEM of PHBV was obtained following gold coating

by the use of a scanning electron microscope (Hitachi

S-570). The surface topography and the porosity of the

membranes were examined using the micrographs.

All data were expressed as means ± standard deviation

(SD) for n = 5 and were verified using standard analysis of

Student’s t test.
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Results and Discussion

Thermal Properties of PHBV

The thermal properties of PHBV (containing 4.6, 9.5 and

20.7 mol% of HV monomer, respectively) were analyzed

by the DSC and TG. Figure 1 shows the DSC thermograms

of the different PHBV specimens. The vitrification point,

melting temperature, melting enthalpy, crystallization

temperature, and crystallization enthalpy of PHBV speci-

mens were summarized in Table 1. It can be seen that these

three PHBV specimens have no obvious differences in Tg

and Tm. However, their TC and DHC are very different from

each other. That is to say, the three polymers exhibited

obvious differences in crystallinity. The data in Table 1

suggests that the crystallinity of PHBV became higher with

decreasing HV content in the polymer, and the crystalline

peak became narrower with increasing HV content (Fig. 1).

The melting point of PHBV can also become lower with an

increase of HV fraction. This results in an improvement in

the ductility and flexibility of the polymer. However, in the

three samples discussed in Fig. 1 and Table 1, a change in

melting temperature is not observed.

The results of TG graph analysis are listed in Table 2. It

can be seen from Table 2 that the thermal decomposition

temperature of three PHBV specimens were in the range of

240–290 �C, and decreased with increasing HV content. The

three PHBV specimens did not start thermal decomposition

until 220 �C, which is similar to the previous report [26]. The

thermal weight loss of three PHBV specimens was higher

than 90%. The final degradation products were CO2 and H2O.

Because the melting temperature of three PHBV speci-

mens were around 170–180 �C and their thermal decom-

position temperature were above 220 �C, the processing

window becomes very wide, compared to PHB with a

narrow processing window [15]. This again suggests that

the workability could be greatly improved with increasing

HV content in PHBV polymer.

Enzymatic Degradation of PHBV

It is known from studies of biocompatibility of PHA in

mammalian tissues that non-specific lipases can aid in
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Fig. 1 DSC thermograms of different PHBV specimens

Table 1 Thermal properties of different PHBV specimens

Sample Tg (�C) Tc (�C) Tm (�C) DHc (J/g) DHm (J/g)

PHBV (4.6 mol% HV) 3.27 ± 0.81 61.47 ± 1.43 171.91 ± 1.44 23.20 ± 0.22 34.43 ± 1.14

PHBV (9.5 mol% HV) 2.73 ± 0.52 49.06 ± 1.78 171.33 ± 1.77 16.49 ± 0.41 65.83 ± 0.88

PHBV (20.7 mol% HV) 1.81 ± 0.64 73.41 ± 1.02 171.06 ± 1.13 7.13 ± 0.30 28.28 ± 1.37
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degrading PHA polymer. Thus, we attempted biodegrad-

ability studies using lipase. In the degradation studies, the

biodegradability of polymer was investigated by inserting

PHBV films into PBS medium or PBS-Lipase medium.

Fig. 2 shows the PHBV specimen weight as a function of

degradation time and provides direct evidence of PHBV

degradation in the two different media. It can be seen that

the PHBV specimens only lost about 18% of their original

weight in the pure PBS medium after 7 weeks. However, a

weight loss of about 50, 61, and 70% was observed in PBS-

Lipase medium for the PHBV containing an HV fraction of

4.6, 9.5, and 20.7 mol%, respectively. The degradation

became so severe that the PHBV specimens broke into

pieces and could not be recovered from the PBS-Lipase

medium when the degradation study was extended to

beyond 50 days. It is confirmed that the biodegradation rate

of PHBV, as indicated by the slope of the curves in Fig. 2,

increases with increasing HV content and degradation time.

In general, two types of mechanisms are possible for

polymers that are exposed to a medium that facilitates

degradation: hydrolytic and enzymatic. Both mechanisms

involve polymer chain cleavage and result in molecular

weight reduction. In order to investigate the degradation

mechanism, the molecular weights of partly degraded

PHBV specimens were measured as discussed above. No

decreases in molecular weight were observed in this study

(data not shown). This was attributed to the fact that

enzymes cannot permeate the macromolecular lattice sys-

tem of polymers, and enzymatic degradation only occurred

at the surface of polymers where erosion or weight loss can

occur. Similar results were found in previous studies [20,

24]. Enzyme molecules were able to diffuse and degraded

polymer first at the amorphous regions and finally at the

crystalline regions. Because degradation only occurred on

the polymer surface and degradation products were

removed from the surface by watery medium surrounding

the polymers, the molecular weights exhibited no change.

In Fig. 3, we present the SEM photomicrographs

showing the surface topography of the specimen of PHBV

with 20 mol%HV before, different periods during and after

degradation. It can be seen from Fig. 3a that the surface of

film was relatively smooth except for a few scratches

before degradation. However, after degradation in the PBS-

Lipase medium the surface of the specimens, as shown in

Fig. 3b, became rougher with corrosion and weight loss on

the specimen surface. The number of pits dramatically

increased and in size and depth, as the degradation process

continued. The degradation occurred not only on the

specimen surface but also diffused into the pits and

degraded the specimen totally. It can be seen that more

lipase and water molecules were able to fill the larger pits,

leading to further degradation (Fig. 3c). These results are

similar to those found in the studies conducted in previous

works [27, 28]. It has been reported that the rate of deg-

radation of PHAs was dependent on the surface area of the

polymer exposed to enzymatic hydrolysis. Enzymatic

hydrolysis of polymer began on the surface and at physical

lesions and proceeded to the inner part of the material

[27]. Similarly, the biodegradation of PHB films pro-

ceeded via surface erosion mechanisms and PHB films were

biodegraded homogeneously on the surface where the mar-

ine microbes attached, resulting in the formation of pits [28].

Conclusions

The thermal properties and biodegradability of PHBV

polymers with different monomer contents were charac-

terized using various techniques and methods includ-

ing DSC, TG, SEM, weight loss and molecular weight

measurements. The HV fraction in PHBV has a

Time (d)
0 10 20 30 40 50

%
 o

f 
in

it
ia

l w
ei

g
h

t 
re

co
ve

re
d

20

40

60

80

100

PHBV (4.6% HV) in PBS-Lipase 

PHBV (9.5% HV) in PBS-Lipase 
PHBV (20.7% HV) in PBS-Lipase 
PHBV (4.6% HV) in PBS 
PHBV (9.5% HV) in PBS 
PHBV (20.7% HV) in PBS 

Fig. 2 Weight loss profile of PHBV film in PBS and PBS-Lipase

medium

Table 2 Summary of TG graph analysis

Sample Teoi (�C) Tem (�C) Teof (�C) Wt-loss (%)

PHBV (4.6 mol% HV) 263.52 ± 1.14 288.71 ± 1.53 302.86 ± 1.89 95.68 ± 1.84

PHBV (9.5 mol% HV) 247.58 ± 1.77 273.42 ± 1.19 288.79 ± 1.36 98.43 ± 0.91

PHBV (20.7 mol% HV) 236.16 ± 1.71 240.10 ± 1.03 249.40 ± 1.61 91.97 ± 1.10

Teoi initial thermal decomposition temperature, Tem onset temperature, Teof finished thermal decomposition temperature, Wt-loss thermal

weight loss
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profound influence on the thermal properties of the poly-

mer. When the HV fraction in PHBV increased, the crys-

tallinity of the polymer decreased. As a result, both the

degradation rate and the workability of the PHBV polymer

were improved. The loss of specimen weight and rough-

ening of the surface topology as shown by the SEM pho-

tomicrographs has confirmed that PHBV was degraded

mostly at the surface, including the damaged areas, in

PBS-Lipase medium.
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