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Abstract High-dimensional Gaussian filtering is a popu-
lar technique in image processing, geometry processing and
computer graphics for smoothing data while preserving im-
portant features. For instance, the bilateral filter, cross bi-
lateral filter and non-local means filter fall under the broad
umbrella of high-dimensional Gaussian filters. Recent algo-
rithmic advances therein have demonstrated that by relying
on a sampled representation of the underlying space, one
can obtain speed-ups of orders of magnitude over the naïve
approach. The simplest such sampled representation is a lat-
tice, and it has been used successfully in the bilateral grid
and the permutohedral lattice algorithms. In this paper, we
analyze these lattice-based algorithms, developing a general
theory of lattice-based high-dimensional Gaussian filtering.
We consider the set of criteria for an optimal lattice for fil-
tering, as it offers a good tradeoff of quality for computa-
tional efficiency, and evaluate the existing lattices under the
criteria. In particular, we give a rigorous exposition of the
properties of the permutohedral lattice and argue that it is
the optimal lattice for Gaussian filtering. Lastly, we explore
further uses of the permutohedral-lattice-based Gaussian fil-
tering framework, showing that it can be easily adapted to
perform mean shift filtering and yield improvement over the
traditional approach based on a Cartesian grid.
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1 Introduction

High-dimensional Gaussian filtering smooths a low-dim-
ensional dataset embedded within a high-dimensional met-
ric space, using a Gaussian kernel. Its usefulness arises from
the elevation into the higher-dimensional space, which al-
lows one to express an otherwise non-linear filter as a linear
operation. Examples include some very popular non-linear
filters, such as the bilateral filter, cross bilateral filter, and
non-local means filter. Outside of image processing, this op-
eration is also known as a Gauss transform.

The bilateral filter is an averaging filter that blurs images
while preserving strong edges. When expressed in its orig-
inal non-linear form, it is slow to compute. As such, there
have been many attempts to accelerate the bilateral filter and
its relatives, beginning with Durand and Dorsey [16]. The
most helpful observation has been that by embedding the
image in a higher dimensional space, the filter can be ex-
pressed as a linear operation, as noted by Paris and Durand
[30].

The subsequent challenge then is to determine how to
represent the data in this high-dimensional space. One in-
tuitive approach is to use a lattice to sample the space,
as a lattice has a predictable, repetitive structure that fa-
cilitates indexing. This approach was taken by Chen et al.
[9] and Adams et al. [2]. These represent the state of the
art in fast high-dimensional Gaussian filtering. Other ap-
proaches do exist, however; for example, Adams et al. [1]
represents the space with a KD-tree. Tree-based approaches,
such as FGT [20] or dual tree [46], are used in the context
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of numerical simulation or machine learning. Note that all
these Gaussian-filtering methods can be combined with a
dimensionality-reduction techniques that project into a low-
dimensional space, such as random Fourier features [36] or
principal component analysis, for tasks like learning kernels
or analyzing large image patches.

Lattices have been studied extensively in the field of both
pure and applied mathematics, and have appeared in com-
puter graphics as well. The aim of this paper is to rigorously
analyze the use of a lattice as the underlying data structure
for high dimensional Gaussian filtering, using the two exist-
ing examples by Chen et al. [9] and Adams et al. [2] as case
studies and drawing from the existing body of mathematics
literature.

Overview This article is an extension of the work of
Adams, Baek, and Davis [2], which introduced the permu-
tohedral lattice algorithm for Gaussian filtering and show-
cased its applications. In contrast to the previous work, this
article focuses on the mathematical theory underlying the
technique, rather than its applications.

The rest of this article is organized as follows: Sect. 2
details the existing literature on the bilateral filter, introduc-
ing some common formulations thereof. In Sect. 3, we for-
mulate a general lattice-based Gaussian filtering framework,
noting connections to the splines literature. In Sect. 4, we
define the permutohedral lattice and illustrate its most use-
ful properties. In Sect. 5, the aforementioned framework is
applied to the permutohedral lattice, and we provide a full
description of the algorithm for that lattice. In Sect. 6, we
analyze the accuracy of our algorithm by comparing it to a
true Gaussian filter. In Sect. 7, we consider other possible
lattices and argue that the permutohedral lattice is optimal
under a reasonable set of criteria, for the purpose of maxi-
mizing computational efficiency. Lastly, in Sect. 8, we fur-
ther demonstrate the utility of the permutohedral lattice by
implementing mean shift filtering using the lattice.

2 Related Work

There has been a wealth of literature on the bilateral filter
since its inception, covering its theoretical foundations, ap-
plications, extensions, and accelerations. In this section we
discuss the existing body of research on the bilateral filter,
and make the connection to high-dimensional Gaussian fil-
tering. We also briefly address the study of lattices in gen-
eral, and the study of the permutohedral lattice in particular.

2.1 Bilateral Filter and Its Relatives

The bilateral filter first appeared in the works of Aurich and
Weule [4], Smith and Brady [43], and was named by Tomasi

and Manduchi [44]. To calculate the filtered value of a given
pixel, it computes a weighted average of nearby pixels with
weights that depend not only on their distance to the pixel in
question (as with any convolution with a radially symmetric
kernel, e.g. a Gaussian), but also on the difference in the
pixel values. That is, given an input image I , the value of
the output image I ′ at pixel location x is given as follows:

I ′(x) = 1

Wx

∑

y

I (y) · N(y − x;σs)

· N(I (y) − I (x);σr

)
, (2.1)

where Wx =∑y N(y − x;σs) · N(I (y) − I (x);σr) is a nor-
malization factor. Here N(·;σ) denotes a Gaussian kernel
with standard deviation σ . While a Gaussian kernel is not
mandatory, it has been a dominant choice; the pillbox func-
tion has also been used ([52] and [47]). By taking into ac-
count the difference in pixel values, the bilateral filter pre-
vents neighboring pixels that are substantially different from
influencing one another, thereby respecting strong edges.

The cross bilateral filter, also called the joint bilateral fil-
ter, is a variation of the bilateral filter that filters an input
image I in a manner that respects edges in another reference
image J . It was introduced by Eisemann and Durand [17],
Petschnigg et al. [35], Kopf et al. [24], and is formulated as
follows:

I ′(x) = 1

Wx

∑

y

I (y) · N(y − x;σs)

· N(J (y) − J (x);σr

)
, (2.2)

where Wx =∑y N(y−x;σs) ·N(J (y)−J (x);σr) this time.
Contrast Eq. (2.2) with Eq. (2.1) and note the difference in
the argument to the Gaussian. Smoothing I with respect to
another source, namely J , allows not only fusing informa-
tion from two images, as in the case of the flash-no-flash
photography [17, 35], but also filtering a dataset with respect
to a distinct source of different resolution, like an image and
a depth map [15, 51]. Note that in this second case the sam-
ple J (y) must be prefiltered to match the sampling rate of I ,
whereas the sample J (x) is taken at J ’s native resolution.

The non-local means filter by Buades et al. [8] redefines
the distance between the two pixel values as the distance be-
tween the two image patches centered at the two pixels. The
consequence is that pixels with similar local neighborhoods
are averaged together, which is an effective way to denoise.

For a more comprehensive exposition on the history of
the bilateral filter and applications, see [32].

2.2 Bilateral Filtering as Gaussian Filtering

The bilateral filter in its original form (Eq. (2.1)) is non-
linear. However, the bilateral filter can be reformulated as
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a linear convolution with a Gaussian kernel in a higher-
dimensional Euclidean space, as noted by Paris and Durand
[30] and Adams et al. [1]. Let us briefly review this for-
mulation. This so-called Gaussian filter operates on N data
points, each of which has a position pi , and a value vi . The
value vectors are then averaged with respect to the distance
between the position vectors, using a standard Gaussian ker-
nel in the space of position vectors:

v′
i =

N∑

j=1

e− 1
2 |pi−pj |2 vj . (2.3)

This equation as a generic mathematical operator is known
as a Gauss transform. Accurate evaluation of Gauss trans-
form has been studied by Yang et al. [50].

It is straightforward to express the grayscale bilateral fil-
ter using Eq. (2.3): for each pixel, define pi = (xi, yi, ci)

where xi, yi are the pixel location and ci is its grayscale in-
tensity; define vi = (ci,1). Note that we haved added a ho-
mogeneous coordinate to the value vector. Then, applying
Eq. (2.3), one obtains

v′
i =
(

N∑

j=1

e− 1
2 ((xi−xj )2+(yi−yj )2+(ci−cj )2)cj ,

N∑

j=1

e− 1
2 ((xi−xj )2+(yi−yj )2+(ci−cj )2)

)
. (2.4)

The final pixel value is obtained by removing the homoge-
neous coordinate, i.e. dividing the first coordinate by the sec-
ond. Note that the parameters σs and σr from Eq. (2.1) are
absent. They can be accounted for by scaling the position
vectors appropriately prior to filtering; for instance,

∀i, pi ←− θpi

would effectively decrease the blur size by a factor of θ .
Extending this framework onto color bilateral filter is

trivial; simply replace ci with the (ri , gi, bi) triple repre-
senting the color of pixel i. For the cross bilateral filter, the
color values in the position vector should be drawn from the
reference image; for the non-local means filter, the position
vector should be replaced by a patch descriptor [1].

2.3 Accelerating High-Dimensional Gaussian Filtering

Several authors have exploited the fact that the bilateral fil-
ter can be expressed as a linear convolution in order to ac-
celerate its evaluation; rather than treating the input image
as a point set, or a discrete collection of pixels, it can be
seen as a continuous signal that has been sampled at the lo-
cations of the position vectors. Paris and Durand [30] vox-
elized (discretized) the space of position vectors to represent

this signal, which is perhaps the most intuitive approach. Be-
cause the Gaussian kernel is separable along the dimensions
of the position vector, the convolution can be performed very
quickly. However, while linear in the size of the input, this
approach scales exponentially with the dimensionality of the
position vector. Adams et al. [1] represented the space of po-
sition vectors sparsely using a KD-tree with nodes placed
at the location of the input samples, obtaining a runtime
that grows linearly with the dimensionality and loglinearly
with the input size. Sparsity is crucial in this acceleration
scheme, as the image describes a low-dimensional manifold
inside the higher-dimensional space and therefore is neces-
sarily sparse. The authors noted, however, that KD-tree con-
struction and querying is difficult to parallelize efficiently.
Adams et al. [2] relied on a different lattice, called the per-
mutohedral lattice, to sample the high-dimensional space,
and obtained considerable speed-up over the previous work
that used a Cartesian grid for higher-dimensional cases.

2.4 Lattices and the Permutohedral Lattice

Lattices are of general interest to mathematicians as they
are the machinery one uses to tile or represent an arbitrary-
dimensional Euclidean space. One example is the familiar
Cartesian grid Z

d , consisting of all d-dimensional points of
integer coordinates.

The covering problem, as defined by Rogers [37], is con-
cerned with placement of unit spheres in an Euclidean space
so that every point in the space belongs to at least one unit
sphere. A proof is given by Kershner [22] that the hexagonal
lattice generates the least dense covering in two-dimensional
Euclidean space. In higher dimensions, the optimal cover-
ing is not known, but much literature exists on the optimal
lattice covering, as the algebraic properties of lattices avail
themselves of more mathematical machinery. In particular,
the permutohedral lattice is provably the most efficient lat-
tice up to dimension 5 [5, 13, 39], and the most efficient
known lattice up to dimension 22 [12].

The permutohedral lattice is denoted in mathematics as
A∗

d and belongs to the family of integral lattices. While any
lattice can be used to represent high-dimensional data, A∗

d

has received much attention because of its low covering den-
sity. Petersen and Middleton [34] noted the relationship be-
tween covering density and efficient sampling of functions
that have isotropic support in the Fourier domain. In other
words, since sampling a band-limited function effectively
tiles the space with its support, a lattice with low covering
density would require fewer samples to avoid aliasing. In
this context, a low covering density would indicate an effi-
cient tradeoff between faithfulness and computational cost;
for a fixed level of faithfulness, low covering density leads
to lower resource consumption; conversely, for a fixed re-
source budget, low covering density leads to a more accurate
representation of the data.
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The two- and three-dimensional analogues of A∗
d are the

hexagonal lattice and the body-centered cubic lattice (BCC),
which are well known. A∗

d is affinely equivalent to the Kuhn
triangulation [25], which partitions a unit cube into tetrahe-
dra. Sampling and reconstructions on the BCC lattice have
been studied previously by Entezari et al. [18, 19]. In the
computer graphics community, A∗

d has been used by Perlin
[33] for generating high-dimensional procedural noise, and
by Kim [23] for interpolating high-dimensional splines.

2.5 Contributions

The main contributions of this article are as follows:

– We present a formulation of high-dimensional Gaussian
filtering with respect to an arbitrary lattice. This gen-
eral formulation is consistent with the existing algorithms
based on either the Cartesian grid or the permutohedral
lattice.

– We give a thorough treatment of the permutohedral lattice
and its properties in the context of filtering, and establish
connections to the splines literature.

– Using the general formulation stated above, we develop
a set of criteria for determining the optimal lattice with
which to perform Gaussian filtering. Moreover, we ar-
gue with mathematical justification that the permutohe-
dral lattice is the optimal lattice.

– We give a numerical analysis of the Cartesian grid and the
permutohedral lattice on how closely they approximate
the true Gaussian kernel.

– We extend mean shift filtering onto the permutohedral lat-
tice by minimally altering our framework.

3 Lattice-Based Filtering

We propose a general formulation of high-dimensional
Gaussian filtering in which an arbitrary lattice L is used
to represent the underlying space, building upon the scheme
of Paris and Durand [32] that operates on a Cartesian grid.
In the terminology of Adams et al. [1], this scheme is com-
prised of three stages named splatting, blurring and slicing.
In the splatting stage, the signal contained in the input data
is resampled onto the vertices of the given lattice; in the
blurring stage, the lattice undergoes linear convolution in
order to simulate a Gaussian blur; in the slicing stage, the
blurred signal represented in the lattice is resampled at the
original sample locations, producing the output. In essence,
the entire algorithm is a blurring operation flanked by two
resampling operations. The purpose of the resampling oper-
ations is to modify the representation of the signal in a way
that can accommodate fast blurring.

The overall process of high-dimensional Gaussian filter-
ing is summarized in Fig. 1. The following sections describe
each of the stages in detail.

Fig. 1 High-dimensional Gaussian filtering is a blurring operation
flanked by two resampling operations. The signal to be filtered is re-
sampled onto a lattice at the splatting stage, is then blurred, and then is
sliced out at the appropriate location to yield the output

Table 1 Common notation used in the paper

d The dimensionality of position vectors.

m The dimensionality of value vectors.

I the function I : R
d → R

m to be filtered.

I ′ the resulting function after I is filtered.

x A vector of dimensionality d + 1, unless specified other-
wise: {x0, x1, . . . , xd }.

1 The d + 1-dimensional vector {1,1, . . . ,1}.
Hd The d-dimensional hyperplane {x | x · 1 = 0} ⊂ R

d+1.

A∗
d The permutohedral lattice of dimensionality d, lying in-

side Hd .

T (·) The projection mapping R
d+1 onto Hd along the vector 1.

(See Proposition 4.3.)

N(x; θ) Multi-variate Gaussian of covariance matrix θI , evaluated
at x.

uk The k-th standard basis vector, indexed from zero, i.e.
u0 = {1,0,0, . . . ,0}.

3.1 Preliminaries

Table 1 summarizes the notations used throughout the pa-
per. Other standard mathematical notations, such as R and
Z apply as well.

We now review the basic definitions that will be useful in
the subsequent sections. Our first definition is, not surpris-
ingly, the standard definition of a lattice:

Definition 3.1 A lattice L is a discrete additive subgroup of
a Euclidean space.

An additive subgroup of a Euclidean space is closed un-
der addition and subtraction, and contains the origin. Hence,
one can alternatively characterize a lattice as all linear com-
binations of a set of vectors called the frame (akin to the
basis of a vector space) with integer weights. For example,
the Cartesian grid Z

d corresponds to the frame consisting of
standard d-dimensional basis vectors u0,u1, . . . ,ud−1.

The fact that a lattice is an additive group immediately
gives rise to many useful properties, including translational
symmetry; the local structure of a lattice around each lattice
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Fig. 2 Voronoi and Delaunay tessellations of some two-dimensional
lattices. Top: the Voronoi cells of Z

2 and A∗
2 are shown, along with lat-

tice points. The two lattices have equal density. Bottom: the Delaunay
cells induced by the Voronoi cells above. All cells of Z

2 are squares,
whereas A∗

2 has hexagonal Voronoi cells and triangular Delaunay cells

point is invariant. This ensures the simplicity of any algo-
rithm operating on the lattice, since each lattice point can be
treated uniformly.

The traditional way to study the local structure of any
discrete point set is to examine its Voronoi cells under the
Euclidean norm:

Definition 3.2 Let x be a point in a lattice L ⊂ R
d . Then the

Voronoi cell of x is the set of points in R
d nearer to x than

to any other lattice point, i.e.

{
y ∈ R

d
∣∣ ∀x′ ∈ L, ‖x − y‖2 ≤ ‖x′ − y‖2}.

It is clear that the Voronoi cells of a lattice are uniform and
related to one another by translation. They also tessellate the
underlying space R

d , since any point in R
d can be associ-

ated with a lattice point nearest to it. A polytope that gives
rise to a face-to-face tessellation of the Euclidean space by
translation is called a parallelohedron. Thus, the Voronoi
cell of a lattice is a parallelohedron. (We will revisit this
point later in Sect. 7.)

Definition 3.3 A Delaunay cell of a lattice is the convex
hull of all lattice points whose Voronoi cells share a common
vertex.

The Delaunay cells are the dual of the Voronoi cells, and
yield a natural notion of “nearby” lattice points for an arbi-
trary point in space. They also tessellate the space, but they
need not be uniform. Figure 2 demonstrates the Voronoi and
Delaunay cells for a pair of two-dimensional lattices.

Note that R
d in the above definitions can be replaced with

any set isometric to R
d . For instance, Hd , as defined in Ta-

ble 1, is a d-dimensional hyperplane in R
d+1 and is there-

fore isometric to R
d . Any discrete additive subgroup of Hd

is a lattice, and its Voronoi and Delaunay cells reside in Hd .
This is the case with the definition of the permutohedral lat-
tice, as we shall see shortly in Sect. 4. We refer the readers
to Conway and Sloane [12] for a more extensive treatment
of lattices and their uses.

3.2 Splatting

In high-dimensional Gaussian filtering, the input is a set
of d-dimensional vectors {p1, . . . ,pN } with associated m-
dimensional vectors {v1, . . . ,vN }. We call the former posi-
tion vectors, and the latter value vectors. The aim is to com-
pute the weighted sum of the value vectors at each position
vector, for which the weight decays as a Gaussian of the dis-
tance in the position vector space, as shown in Eq. (2.3). In
the signal-processing approach of Paris and Durand [30], it
is presumed that the input represents sampling of a latent
signal I : R

d −→ R
m:

I (p1) = v1,

...

I (pN) = vN,

where N is the total number of input points. In typical
image-processing tasks, N is the number of pixels.

The first step in high-dimensional Gaussian filtering is to
splat, or embed, this input signal onto the lattice L. For each
known sample of the input signal, its value is accumulated
at one or more spatially nearby lattice points belonging to L.
This process essentially resamples the input signal at the lat-
tice points.

In case only one vertex in L is chosen, the process is
equivalent to quantization, or nearest-neighbor interpola-
tion. Alternatively, choosing multiple points with nonneg-
ative weights that sum to 1 improves accuracy. For instance,
one of the most common interpolation scheme on Z

d in
computer graphics is the use of the standard multi-linear
weights, as done by Paris and Durand [30]. For other lattices,
one could splat the sample onto the vertices of the Delaunay
cell containing it. An example is shown in Fig. 3.

While there are many ways to assign weights for resam-
pling, corresponding to different basis functions, the ideal
scheme should balance computational cost with faithful rep-
resentation of the embedded signal. For instance, one could
precisely band-limit a signal that is to be represented on Z

d

using sinc weights, but the support of a sinc function is un-
bounded, making this particular suggestion impractical.

3.3 Blurring

At the conclusion of the splatting stage, the input signal is
now represented by the discrete samples at the vertices of
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Fig. 3 The splatting process on Z
2 and A∗

2. The Delaunay tessellations
are shown in dotted guidelines. Top: a sample point is rounded to the
nearest lattice point. Bottom: a sample point is spread onto the vertices
of the Delaunay cell containing it, using bilinear coordinates for Z

2

and barycentric coordinates for A∗
2

Fig. 4 The blurring process on Z
2 and A∗

2. The Delaunay tessellations
are shown in the dotted guidelines. The arrows mark the vertices that
share at least one Delaunay cell with the central vertex, which define
a notion of the set of neighbors. The value associated with the central
vertex should propagate to these neighbors with decaying weights

the lattice L. In the blurring stage, the value stored at each
location is blurred with those at nearby locations in L, with
weights that decay as the Gaussian of their L2-distance. For
an arbitrary lattice, we consider as neighbors all vertices that
share at least one Delaunay cell with the given vertex, as in
Fig. 4. Having a larger support will achieve a more accurate
convolution, but will be computationally expensive.

Note that, in case of Z
d , its separable nature enables us

to blur each dimension successively, requiring access only
to neighbors along each axis. For example, one can propa-
gate the value in the center vertex of the Fig. 4 onto eight
neighbors via only two axis-aligned blurs. Lattices that per-
mit separable blurs will have computational complexity that
scales more gracefully with dimension than those that do
not.

3.4 Slicing

Slicing is the process of resampling from the lattice structure
and is exactly analogous to splatting: each sample of the out-
put signal is reconstructed from nearby positions, often with
the same set of weights as in splatting. In certain applica-
tions such as super-resolution and upsampling [15, 24, 51],

the data structure may be sampled at locations other than the
original position vectors.

4 The permutohedral lattice

The permutohedral lattice has found applications in many
fields ranging from crystallography to communication. It
arises ubiquitously in nature; the commonly found hexag-
onal grid and the body-centered cubic lattice, seen in Fig. 2,
are its two- and three-dimensional analogues, respectively.
We give definitions of the permutohedral lattice and derive
its structural properties.

4.1 Definition

The permutohedral lattice is the dual of the root lattice Ad .
Both Ad and the permutohedral lattice are typically embed-
ded in Hd ⊂ R

d+1 for ease of manipulation. Recall that Hd

is the hyperplane consisting of points whose coordinates
sum to zero. See Kim [23] for the non-standard represen-
tation within R

d instead.

Definition 4.1 The root lattice Ad is

{
x = (x0, . . . , xd) ∈ Z

d+1
∣∣ x · 1 = 0

}
.

In other words, Ad = Z
d+1 ∩ Hd . Clearly, Ad ⊂ Hd .

Definition 4.2 [12] The permutohedral lattice, denoted by
A∗

d , is the dual (or reciprocal) lattice of Ad inside Hd :

A∗
d := {x ∈ Hd | ∀y ∈ Ad, x · y ∈ Z}. (4.1)

For example, A2 is spanned by the following vectors

(1,1,−2), (1,−2,1),

and in turn, A∗
2 is spanned by ( 1

3 , 1
3 ,− 2

3 ) and ( 1
3 ,− 2

3 , 1
3 ). It

is easy to verify that these two vectors indeed have integral
dot products with vertices of A2.

We shall now state two equivalent definitions of A∗
d uni-

formly scaled by d + 1. The scale factor ensures that all co-
ordinates will be integers. These new definitions better elu-
cidate the properties of the lattice.

Proposition 4.3 The following two definitions of A∗
d are

equivalent to (4.1) scaled up by d + 1:

A∗
d := {T (x)

∣∣ x ∈ (d + 1)Zd+1}, (4.2)

where T is the projection of R
d+1 onto Hd , namely

T : x �→ x −
(

x · 1
1 · 1

)
1.
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A∗
d :=

d⋃

k=0

{x ∈ Hd | x is a remainder-k point}, (4.3)

where we call x ∈ Hd a remainder-k point for some k ∈
{0, . . . , d} iff all coordinates are congruent to k modulo
d + 1.

Recall that 1 is a d + 1-dimensional vector whose compo-
nents are all 1’s.

Proof (4.2)⊆(4.3): Let x ∈ (d +1)Zd+1. Then we can write
x = (d + 1)y for some y ∈ Z

d+1. This yields,

T (x) = (d + 1)y − (d + 1)(y · 1)

d + 1
1

= (d + 1)y − (y · 1)1.

We see that each component of T (x) is an integer and has a
consistent remainder modulo d + 1, namely −(y · 1).

(4.3)⊆(4.1): Let x be a remainder-k point for some k ∈
{0, . . . , d}. Then we can write x = (d + 1)y + k1 for some
y ∈ Z

d+1. To show that x/(d + 1) is in the dual of Ad , note
that for all z ∈ Ad ,

x
d + 1

· z =
(

y + k

d + 1
1
)

· z

= y · z ∈ Z, since z · 1 = 0.

(4.1)⊆(4.2): Let x/(d + 1) be in the dual lattice of Ad .
Note that for all i �= j , the vector ui − uj belongs to Ad ,
because (ui − uj ) · 1 = 0. Hence,

x
d + 1

· (ui − uj ) = xi − xj

d + 1
∈ Z.

This implies that all pairs of coordinates xi, xj differ by
multiples of d + 1. Writing xi = (d + 1)yi + k for some
yi ∈ Z, k ∈ R, we see that x is the projection of (d + 1)y
obtained by subtracting a multiple of (1, . . . ,1). Because
x ∈ Hd , this projection is precisely T . �

According to Proposition 4.3, the simplest way to char-
acterize A∗

d is to project Z
d+1 along the long diagonal vec-

tor 1, with a scalar factor of d + 1 to keep the coordinates
in integers, as seen in Fig. 5. From now on, we will assume
the scaled version of A∗

d , i.e. (4.2) or (4.3), rather than the
original (4.1).

4.2 Structural Properties

As with other lattices, A∗
d induces a tessellation of Hd with

its Voronoi cells. In this section, we study the Voronoi and
Delaunay cells of A∗

d , as their properties are essential to
the high-dimensional Gaussian filtering framework we es-
tablished in Sect. 3.

Fig. 5 Construction of A∗
d in case d = 2. Left: a Cartesian grid. The

xy-plane is shown in red, along with the unit cube in blue. Right: the
same figure in orthographic projection, seen along the vector 1. Note
that many of the points line up, indicating that they will project to the
same point on Hd . The set of projected points form A∗

d , after scaling
(Color figure online)

Fig. 6 Left: the Voronoi cell of A∗
3 (a permutohedron in R

3), which
is also the uniform truncated octahedron. Right: the Delaunay cell of
A∗

3, which is an isosceles tetrahedron. The red sides are longer than the
blue sides (Color figure online)

The Voronoi cells of A∗
d are polytopes called permutohe-

dra because they are obtained by permuting the coordinates
of any single vertex. The name of these polytopes also lends
itself to this lattice.

Proposition 4.4 [12] The Voronoi cell of the origin in A∗
d is

a permutohedron with

{
ρ

(
d

2
,
d

2
− 1, . . . ,

−d

2
+ 1,

−d

2

) ∣∣∣∣ ρ ∈ Sd+1

}
,

as its vertices, where Sd+1 is the symmetric group acting on
d + 1 elements, i.e. the set of all permutations.

The permutohedra in the first three dimensions are a line
segment, a hexagon (Fig. 2) and a uniform truncated octahe-
dron (Fig. 6), respectively.

Theorem 4.5 The Delaunay cells of A∗
d are d-simplices,

and are related via permutation and translation to the
canonical simplex whose vertices are the following:

(0,0, . . . ,0,0,0),

(1,1, . . . ,1,1,−d),

...
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(k, . . . , k︸ ︷︷ ︸
d+1−k

, k − (d + 1), . . . , k − (d + 1)︸ ︷︷ ︸
k

),

...

(d,−1, . . . ,−1,−1,−1).

Proof Because of the translational symmetry in A∗
d , it suf-

fices to characterize only the Delaunay cells containing the
origin. Let x be the vertex shared by a set of Voronoi cells,
one of which is the Voronoi cell of the origin. By Proposi-
tion 4.4, x is some permutation of ( d

2 , . . . , −d
2 ). Without loss

of generality, let us assume x = ( d
2 , . . . ,− d

2 ).
Since x is a vertex of a Voronoi cell, the Delaunay cell

containing it consists of the lattice points closest to x. By
Proposition 4.3, lattice points in A∗

d are remainder-k points,
having the form y = (d + 1)z + k1 where z ∈ Z

d+1.
We may attempt to minimize the distance between x and

y by choosing z carefully. Assuming k fixed,

argminz‖y − x‖2

= argminz

∑∣∣(d + 1)zi + k − xi

∣∣2

= argminz

∑
(d + 1)2z2

i + 2(d + 1)zi(k − xi)

= argminz

∑
(d + 1)2z2

i − 2(d + 1)zixi

+
∑

2(d + 1)zik

= argminz

∑
(d + 1)2z2

i − 2(d + 1)zixi

+ 2k
[
(d + 1)z · 1

]

= argminz

∑
(d + 1)2z2

i − 2(d + 1)zixi (4.4)

= argminz

∥∥(d + 1)z − (d/2, . . . ,−d/2)
∥∥2

= (0, . . . ,0︸ ︷︷ ︸
d+1−k

,−1, . . . ,−1︸ ︷︷ ︸
k

). (4.5)

Note that (4.4) follows directly from the observation that
(d +1)z ·1 = (y−k1) ·1 = −k(d +1), which is independent
of z.

Substituting (4.5) back into y = (d + 1)z + k1, we obtain
y = (k, . . . , k, k − (d + 1) . . . , k − (d + 1)), showing that
there is a unique nearest lattice point of remainder k. Next,
we can check in a straightforward manner that the near-
est remainder-k points for all k are all equidistant from x.
Hence, varying k over {0, . . . , d} yields the canonical sim-
plex as stated above.

If x is some permutation ρ of ( d
2 , . . . , −d

2 ), the above
derivation commutes fully with ρ, yielding a simplex that
is related to the canonical simplex via ρ. �

Corollary 4.6 Each Delaunay cell contains exactly one lat-
tice point of remainder k, for each k ∈ {0, . . . , d}.

Proof By construction, the canonical simplex contains ex-
actly one lattice point of remainder k. Because other sim-
plices are obtained by permuting the components of its ver-
tices and translating them, the same holds. �

In fact, we can significantly strengthen Corollary 4.6:

Corollary 4.7 For every x ∈ Hd , the Delaunay cell contain-
ing it is the set of the closest remainder-k point for each
k ∈ {0, . . . , d}.

Corollary 4.7 is of main interest to us because it suggests a
computationally efficient way of calculating the vertices of
the Delaunay cell containing an arbitrarily specified point.

To demonstrate this corollary, we first show a lemma
characterizing points near an arbitrary lattice point:

Lemma 4.8 (The Range Lemma) Let x ∈ Hd , and let y ∈
A∗

d be a remainder-k point. Then, y is the closest remainder-
k point to x iff

max
i

(xi − yi) − min
i

(xi − yi) ≤ d + 1.

Proof Because of translational symmetry, it suffices to
prove the claim for y = (0, . . . ,0). By inspection, all vertices
of the canonical simplex obey the following inequalities:

x0 ≥ x1 ≥ x2 ≥ · · · ≥ xd, and x0 − xd ≤ d + 1. (4.6)

Since any point in the simplex is a convex combination of
the vertices, the above inequality must also hold for any
point inside. In particular, for any of the d + 1 inequali-
ties in (4.6), all but one vertex of the canonical simplex sat-
isfy it with equality. Since a linear inequality is a (d − 1)-
dimensional hyperplane, which is completely determined
by d points, it must be that the face formed by the d ver-
tices corresponds to the hyperplane. Therefore, the region
bounded by the faces (i.e. the simplex) corresponds exactly
to the set of points satisfying (4.6).

Hence, for any x in the canonical simplex, maxi xi −
mini xi = x0 − xd ≤ d + 1. Likewise, for any simplex that is
a permutation of the canonical simplex, we have xj − xk ≤
d + 1 for some j, k where xj = maxi xi and xk = mini xi . �

Corollary 4.7 then follows: if x is in the canonical sim-
plex, we can easily check that the vertices given in Theo-
rem 4.5 satisfy the premise of the Range Lemma. Therefore,
they must be the closest remainder-k points to x as desired.
The expression maxi (xi −yi)−mini (xi −yi) is invariant un-
der permutation of the components or translation of x and y,
so the argument applies to other simplices in A∗

d .

Lemma 4.9 [12] Given x ∈ Hd , the closest remainder-0
points in A∗

d can be found with the following procedure:
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1. Define y = {y0, . . . , yd} where yi is given by rounding xi

to the nearest multiple of d + 1.

2. Compute the difference � = x − y, and h =
∑d

i=0 yi

d+1 .
3. If h < 0, add d + 1 to each yj where �j is one of the

|h|-largest differences. If h > 0, subtract d + 1 from each
yj where �j is one of the h-smallest differences.

Proof Note that the set of remainder-0 points in A∗
d is equiv-

alent to Ad scaled up by d +1. Conway and Sloane [12] give
an analogous algorithm for finding the nearest lattice point
in Ad with proof. �

Theorem 4.10 Given x ∈ Hd , the Delaunay cell containing
it can be found by the following procedure in O(d2) time:

1. Find the nearest remainder-0 point y.
2. Compute the differential � = x − y.
3. Find the permutation ρ that sorts � in decreasing order.
4. For each k, the nearest remainder-k point is given by

ρ−1(ck) + y where ck is the remainder-k point in the
canonical simplex.

Proof The theorem follows directly from Lemma 4.9 and
Theorem 4.5. In essence, the theorem identifies the trans-
form that maps x into the interior of the canonical simplex,
and then applies the inverse transform to the vertices of the
canonical simplex in order to retrieve the Delaunay cell.
As for runtime, each of the four steps run in O(d), O(d),
O(d logd) and O(d2), respectively, so the overall time com-
plexity is O(d2). See Fig. 7 for a visualization of the theo-
rem. �

In summary, we have explored the structure of the permu-
tohedral lattice in terms of its Voronoi and Delaunay cells,
along with useful results on how to quickly locate nearby
lattice points or verify them.

We end the section by briefly discussing the volumes of
the Voronoi and Delaunay cells, as they will be necessarily
in the subsequent sections:

Proposition 4.11 The volume of a permutohedron is given
by (d +1)d−1/2. The volume of the canonical simplex is (d +
1)d−1/2/d!.

Proof By inspection, A∗
d is spanned by any d of the per-

mutations of (1,1, . . . ,−d). The volume of the parallelop-
iped constructed by a basis is given by the square root of
its Gram determinant, which can be easily computed to be
(d + 1)d−1/2. The volume of the permutohedron must equal
this number, because both the parallelopiped and the permu-
tohedron tessellate the space with equal density, namely the
density of the lattice points in space. Lastly, a simple count-
ing argument shows that there are d! equally-sized simplices
for every permutohedron. �

Fig. 7 Visualization of H2. Each vertex of the lattice is marked with its
remainder. Note that each of the Delaunay cells bordering the origin is
uniquely specified by the ordering of the three coordinates, and that the
complex formed by the union of these cells tessellate the space. Hence,
the Delaunay cell containing any point can be uniquely identified by
the complex that contains it, and the ordering of the coordinates relative
to the remainder-0 point in the center

5 Algorithms

Now we proceed to describe in full how to perform Gaus-
sian filtering using the permutohedral lattice A∗

d . Each of
splatting, blurring, slicing steps is discussed in detail, with
pseudocode given when applicable.

5.1 Splatting

Splatting a point involves computing its neighbors in A∗
d ,

namely the vertices of the Delaunay cell containing it,
and accumulating the value at the vertices with appropri-
ate weights. For simplices, the most common interpolation
scheme is that of barycentric coordinates. Barycentric co-
ordinates for x inside the canonical simplex {c0, . . . , cd} is
given by the barycentric coordinate function de Boor [6]:

b :=
[

c0 · · · cd

1 · · ·1

]−1 [
x
1

]
.

Note that because in our definitions c0, . . . , cd reside in the
d + 1-dimensional coordinate system, it is necessary to re-
move a row from the linear system above to achieve linear
independence.

Lemma 5.1 Denote by ck the remainder-k vertex of the
canonical simplex. Let x be an arbitrary point in the canon-
ical simplex, and let b be its barycentric coordinates in the



220 J Math Imaging Vis (2013) 46:211–237

simplex. Then,

bk =
{

xd−k−xd+1−k

d+1 , k �= 0,

1 − x0−xd

d+1 , k = 0.

Proof It suffices to show that the given weights do yield x.
Let y = [c0 · · · cd ]b. Then,

yj =
d∑

k=0

bk · (ck)j

=
[

d−j∑

k=0

bkk

]
+
[

d∑

k=d−j+1

bk

(
k − (d + 1)

)
]

=
[

d∑

k=0

bkk

]
−
[
(d + 1)

d∑

k=d−j+1

bk

]

=
[(

xd−1 − xd

d + 1

)
+ 2

(
xd−2 − xd−1

d + 1

)
+ · · ·

+ d

(
x0 − x1

d + 1

)]
−
[
(d + 1)

d∑

k=d−j+1

bk

]

= −xd − xd−1 − · · · − x1 + dx0

d + 1
− (x0 − xj )

= −xd − xd−1 − · · · − x1 − x0

d + 1
+ xj

= xj as desired.

Lastly, b0, . . . , bd sum to 1 by construction. �

Lemma 5.1 easily generalizes to arbitrary points in Hd

by utilizing the fact that other simplices are given by permu-
tation and translation of the canonical simplex.

Proposition 5.2 Let x be an arbitrary point in Hd , and let
y be the closest remainder-0 point. Also, let ρ ∈ Sd+1 be
the permutation that sorts the components of � = x − y in
decreasing order. Then, the barycentric coordinates for x is
given by b where

bk =
{

ρ(�)d−k−ρ(�)d+1−k

d+1 , k �= 0,

1 − ρ(�)0−ρ(�)d
d+1 , k = 0.

Proof The claim follows from Lemma 5.1 and Theo-
rem 4.10. �

Hence the barycentric coordinates of a point in Hd can be
computed in O(d logd), and if ρ and y are already available,
in O(d).

The splatting step is complete once every sample from
the input signal has been splatted. Algorithm 1 summarizes

the process. Note that at each lattice point, nearby samples
from the input are accumulated with weights that depend on
the offset vector �. So the splatting process is a convolu-
tion with a kernel in Hd (followed by sampling at the lattice
points).

Algorithm 1 The splatting algorithm. Given the input signal
I : X → R

m, where X is the discrete subset of Hd , it embeds
the signal in A∗

d and returns the result

Require: I : X → R
m.

V (y) ← 0, ∀y ∈ A∗
d

for all x ∈ X do
y ← the closest remainder-0 point to x (Lemma 4.9)
� ← x − y
ρ ← the permutation that sorts � in decreasing order
for k = 0 to d do

vk ← the closest remainder-k point (Lemma 4.10)
bk ← the barycentric coordinate (Proposition 5.2)
V (y) ← V (y) + bkI (x)

end for
end for
return V : A∗

d → R
m

Proposition 5.3 The splatting process is equivalent to con-
volution with the following kernel Ks : Hd → R:

Ks : x �→ 1 − maxi xi − mini xi

d + 1
.

Proof It suffices to examine the values accumulated at the
origin, because of the translational symmetry of the lattice.
For each Delaunay cell containing the origin, which is ob-
tained by permuting the coordinates of the canonical sim-
plex, the weight associated to the origin is 1 − ρ(x)0−ρ(x)d

d+1 ,
where ρ sorts x in decreasing order. (See Proposition 5.2.)
Hence Ks(x) = 1 − maxi xi−mini xi

d+1 as desired. �

This kernel is known in the splines literature as an in-
stance of a linear box spline, obtained by projecting a higher-
dimensional hypercube onto a subspace (de Boor et al. [7]),
in this case Hd . Its direction matrix Ξ is the operator T .
Entezari et al. [18] previously derived this kernel for d = 3.

Proposition 5.4 Let T : R
d+1 → Hd be the projection onto

Hd as before. Then

Ks(x) = 1

(d + 1)3/2
λ
({

y ∈ [0, d + 1]d+1
∣∣ T (y) = x

})
,

where λ is the 1-dimensional Lebesgue measure, i.e. the
length of the set that projects onto x. Equivalently, Ks is the
density of a uniform cube [0, d + 1]d+1 after it is flattened
onto Hd along 1, up to a multiplicative factor.
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Fig. 8 A plot of the
3-dimensional cube [0,3]3,
along with points in 3Z

3. The
plot is oriented such that
(1,1,1) is normal to the plane
of the figure. Note that the
flattening of the cube along
(1,1,1) yields the union of six
simplices, which equals the
support for Ks for d = 2

Proof The set {y ∈ [0, d + 1]d+1 | T (y) = x} is the set of
vectors that project onto x via T . Because T removes the
component of a vector parallel to 1, the set should contain
elements of the form y = x + q · 1 for some q ∈ R. Since
y ∈ [0, d + 1]d+1 as well, it must be that 0 ≤ xi + q ≤ d + 1
for all i. Equivalently, we have

−min
i

xi ≤ q ≤ d + 1 − max
i

xi . (5.1)

The set of y satisfying the above inequalities is a linear
segment parallel to 1, so its measure is given by its pro-
jected length along any of standard axis multipled by ‖1‖ =√

d + 1. Its projected length is simply the extent of q , which
is d + 1 − (maxi xi − mini xi) according to (5.1). Therefore,

1

(d + 1)3/2
λ
({

y ∈ [0, d + 1]d+1
∣∣ T (y) = x

})

= 1

(d + 1)3/2

√
d + 1

(
d + 1 − (max

i
xi − min

i
xi

))

= 1 − maxi xi − mini xi

d + 1

= Ks(x) by Proposition 5.3,

as desired. �

See Fig. 8 for illustration of Proposition 5.4. This “un-
flattened” representation facilitates numerical analysis of the
splatting kernel, as seen below.

Corollary 5.5
∫

Hd

Ks(x)dx = (d + 1)d− 1
2 .

Proof We can “unproject” Ks back into a cube with uniform
density, and the total mass would remain constant. It follows
from Proposition 5.4 that the total mass is (d + 1)−3/2 ×
Vol([0, d + 1]d+1) = (d + 1)d− 1

2 . �

Proposition 5.6 The variance, or the second moment, of Ks

as a distribution is d(d + 1)2/12.

Proof By definition,

Var(Ks) =
∫
Hd

‖x‖2Ks(x)dx
∫
Hd

Ks(x)dx
.

The denominator is given by Corollary 5.5. For the numer-
ator, the sum of ‖x‖2 over Hd weighted by the density of
Ks is equivalent to an unweighted sum of ‖T (y)‖2 over
[0, d + 1]d+1. Hence,

Var(Ks)

=
∫
[0,d+1]d+1 ‖T (y)‖2 1

(d+1)3/2 dy

(d + 1)d−1/2

= 1

(d + 1)d+1

∫

[0,d+1]d+1

∥∥T (y)
∥∥2

dy

= 1

(d + 1)d+1

∫

[0,d+1]d+1

∥∥∥∥y −
∑

yi

d + 1
1

∥∥∥∥
2

dy

= 1

(d + 1)d+1
·
∫

[0,d+1]d+1

∑
y2
i

+ (
∑

yi)
2

d + 1
− 2(

∑
yi)

2

d + 1
dy

= 1

(d + 1)d+1

∫

[0,d+1]d+1

d
∑

y2
i

d + 1
−
∑

i �=j yiyj

d + 1
dy

= 1

(d + 1)d+1

∑

i

∫ d+1

0
(d + 1)d

d · y2
i

d + 1
dyi

− 1

(d + 1)d+1

∑

i �=j

∫∫ d+1

0
(d + 1)d−1 yiyj

d + 1
dyidyj

= d(d + 1)2/3 − d(d + 1)2/4

= d(d + 1)2/12

as desired. �

5.2 Blurring

A standard Gaussian blur in a d-dimensional space is sep-
arable into d Gaussian blurs along each of the d indepen-
dent axes. The advantage of using Z

d as the lattice is that
the choice of the d axes is straightforward, and that each of
the d directional blurs is simple: for all x ∈ R

d , x can be
blurred with points of the form x ± uk . Meanwhile, it has
been observed that box splines on the body-centered cubic
lattice A∗

3 can be expressed using four projected axes of the
4D hypercube [19]. We generalize this observation below.
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To this end, we use the fact that A∗
d is obtained by ap-

plying the projection T on (d + 1)Zd+1 ∈ R
d+1. The orig-

inal space is spanned by the vectors in the set {(d + 1)uk}.
Because T is linear, we can equivalently state that A∗

d is
spanned by their unit-length projections wk :

wk := T (uk)

‖T (uk)‖ = (d + 1)uk − 1√
d(d + 1)

= 1√
d(d + 1)

(−1, . . . ,−1︸ ︷︷ ︸
k

, d,−1, . . . ,−1︸ ︷︷ ︸
d−k

). (5.2)

Note that {wk} is therefore a frame of A∗
d . Hence, {wk} rep-

resents a natural choice of d + 1 axes along which to blur a
signal represented in A∗

d .
Of course, {wk} is not linearly independent, since its car-

dinality exceeds the rank of the space. Nevertheless, d + 1
directional blurs along these axes compose to form a stan-
dard multi-variate Gaussian blur in Hd , as shown in the fol-
lowing proposition.

Proposition 5.7 Define Gk to be the operator that performs
Gaussian blur along wk with variance θ :

Gk(f ) : x �→
∫

R

f (x − t · wk)N(t; θ)dt,

where f : Hd → R. Then, G = G0 ◦ · · · ◦ Gd performs the
standard multi-variate Gaussian blur in Hd with variance
θ d+1

d
.

Proof Composing G0, . . . , Gk yields

G(f ) : x �→
∫

Rd+1
f
(

x −
∑

tk · wk

)
N(t; θ)dt.

Then,

G(f )(x)

=
∫

Rd+1
f
(

x −
∑

tk · wk

)
N(t; θ)dt

Decompose t into s + q · 1
‖1‖ ,

where s ∈ Hd and q ∈ R

=
∫

R

∫

Hd

f

(
x −

∑(
sk + q

‖1‖
)

· wk

)
N(t; θ)dt

=
∫

R

∫

Hd

f
(

x −
∑

sk · wk

)
N(s; θ)N(q; θ)dsdq

as wk ∈ Hd so
∑ q

‖1‖wk = 0,

=
∫

Hd

f
(

x −
∑

sk · wk

)
N(s; θ)ds

=
∫

Hd

f

(
x − α

∑
sk ·
(

uk − 1
d + 1

))
N(s; θ)ds

where α =
√

d + 1

d
, via Eq. (5.2)

=
∫

Hd

f

(
x − αs + α

∑
sk · 1

d + 1

)
N(s; θ)ds

=
∫

Hd

f (x − αs)N(s; θ)ds, since
∑

sk = 0,

=
∫

Hd

f (x − z)N
(

z
α

; θ
)

1

αd
dz, letting z = αs,

=
∫

Hd

f (x − z)N
(
z;α2θ

)
dz.

It is clear that G(f ) must be a Gaussian with variance
θα2 = θ d+1

d
as claimed. �

Proposition 5.7 demonstrates that a Gaussian blur can be
performed on Hd in a “separable” fashion. To adapt this
approach onto A∗

d , simply define Kk
b : Hd → R as the dis-

cretization of Gk :

Kk
b : x �→

Q∑

q=−Q

N

(
x; θ d + 1

d

)
· δ(x − q · t),

where t = (−1, . . . ,−1︸ ︷︷ ︸
k

, d,−1, . . . ,−1). Note that Kk
b is

nonzero only at lattice points along the projection of the k-th
standard axis. See Algorithm 2 for the exact description of
the steps.

Algorithm 2 The blurring algorithm. Data stored in the per-
mutohedral lattice in the form V : A∗

d → R
m is blurred with

variance θ and stored in W : A∗
d → R

m. In practice, the do-
main of V and W is restricted to a finite subset of A∗

d

Require: V : A∗
d → R

m

Require: Q ∈ N

Require: θ ∈ R+
for k = 0 to d do

t ← (1, . . . ,1︸ ︷︷ ︸
k

,−d,1, . . . ,1︸ ︷︷ ︸
d−k

)

for all x ∈ A∗
d do

W(x) ←∑Q
q=−Q V (x + q · t) · N(q · t; θd/(d + 1))

end for
V ← W

end for
return I : X → R

m

It is important to realize that the composition of K0
b , . . . ,

Kd
b does not equal Kb , a true Gaussian blur, if it is per-

formed on a lattice instead of a continuous space. This is
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Algorithm 3 The slicing algorithm. Given data stored in the
permutohedral lattice in the form W : A∗

d → R
m, the output

I ′ : X ⊂ Hd → R
m is reconstructed

Require: W : A∗
d → R

m.
I ′(x) ← 0, ∀x ∈ X

for all x ∈ X do
y ← the closest remainder-0 point (Lemma 4.9)
� ← x − y
ρ ← the permutation sorting � in decreasing order
for k = 0 to d do

vk ← the closest remainder-k point (Lemma 4.10)
bk ← the barycentric coordinate (Proposition 5.2)
I ′(x) ← I ′(x) + bkW(y)

end for
end for
return I ′ : X → R

m

the discretization error inherent to any discrete spatial data
structures such as lattices. K0

b ◦ · · · ◦ Kd
b is akin to approx-

imating a multi-variate Gaussian kernel by sampling it at
points in A∗

d , up to some discretization error.
In practice, one can use a simpler and more compact set

of weights for the directional blur, e.g. for every lattice point
x ∈ A∗

d ,

W(x) ← V (x − t)
4

+ V (x)

2
+ V (x + t)

4
. (5.3)

Equation (5.3) amounts to setting Q = 1 and θ = ln
√

2
(d+1)2

in Algorithm 2. If a different standard deviation is desired,
the input signal may be scaled appropriately instead, as dis-
cussed in Sect. 2.2. We used the weights in Eq. (5.3) in the
implementation presented in [2], which facilitated computa-
tion and proved to be sufficiently close to a Gaussian ker-
nel in practice. The exact implication of these simplified
weights are explored in Sect. 6.

5.3 Slicing

The output signal can be reconstructed from the permuto-
hedral lattice by sampling from nearby vertices, as in splat-
ting. The splatting algorithm, given in Algorithm 1, can be
adapted with very little change, as shown in Algorithm 3.
The slicing process is again equivalent to a convolution with
resampling kernel Ks .

Note that for all x ∈ X, the closest remainder-0 point
y and the permutation ρ were previously computed in the
splatting algorithm. By storing these results during the splat-
ting step, we can reduce the runtime of the slicing step.

5.4 Summary

All three steps—splatting, blurring, slicing—are linear in
the input, so their composition can be described as a

Fig. 9 Summary of Gaussian filtering with A∗
d . The input signal I re-

sides in R
d , and is reparametrized into Hd via an appropriate rotation,

yielding a map I ′ : Hd → R
m. Each component of I ′ is then convolved

with Ks in the splatting step, is sampled at positions in A∗
d , is con-

volved with K0
b , . . . ,Kd

b and Ks in the blurring step and the slicing
step, respectively, and rotated back into R

d to yield an output signal
I ′′ : R

d → R
m

spatially-varying convolution, or alternatively, a chain of
convolutions demarcated by sampling as shown in Fig. 9.
The relevant kernels for d = 2 are visualized in Fig. 10.
While the kernels have fixed variance, one can effectively
simulate other values of variance by scaling the input sig-
nal appropriately before feeding it into the pipeline. Note
that the block diagram in Fig. 9 is applicable to the general
framework discussed in Sect. 3 based on any lattice, pro-
vided that Ks,Kb are replaced with lattice-specific kernels.

5.5 Note on Performance

We implemented the high-dimensional Gaussian filtering al-
gorithm on the permutohedral lattice [2]. This implementa-
tion differed from the analogous algorithm based on a Carte-
sian grid by Paris and Durand [30], in that the vertices of the
lattice were stored sparsely using a hash table. Because the
dominant use case of high-dimensional Gaussian filtering is
to operate on a lower-dimensional signal, a dense data struc-
ture like a multi-dimensional array is prohibitively expen-
sive at high dimensionality. Theorems 5.8 and 5.9 demon-
strate the runtime and storage requirements of our algorithm.

Theorem 5.8 Let N be the size of the input. The Gaus-
sian filtering algorithm on A∗

d has a worst-case runtime of
O(d3N).

Proof Because each input position vector is splatted onto
d + 1 vertices in A∗

d , there can be at most (d + 1)N ver-
tices with nonzero value. The splatting and slicing stage
(Algorithm 1) involve identifying the nearest remainder-0
point to each input and sorting its differential, which require
O(d logdN). The blurring stage consists of O(d) separa-
ble blurs in a sparse lattice. Each separable blur requires
looking up the neighboring vertices, which costs O(d) to
compute and O(d) to look up. Hence the total cost of the
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Fig. 10 Visualization of convolution kernels for each step (d = 2).
Top: the splatting or slicing kernel Ks . Middle (3): the three blur ker-
nels K0

b ,K1
b ,K2

b . Bottom: the overall kernel for x = 0

blurring stage is O(d3N), which dominates the rest of the
algorithm. �

While the worst-case runtime is O(d3N), for most fil-
tering tasks, the number of unique lattice points created in
the splatting process is O(N), rather than O(dN), as ob-
served by Adams et al. [2]. This leads to an overall runtime
of O(d2N).

Theorem 5.9 The Gaussian filtering algorithm on A∗
d has

storage requirement of O(dN).

Proof Recall from the proof of Theorem 5.8 that there are
O(dN) vertices of A∗

d that are created during the splatting
stage. The näive approach is to store all the vertices in the
hash table, keyed by their coordinates. Since each coordinate
is of size O(d), this would incur a total storage of O(d2N).

However, each vertex can be uniquely identified by the
index of the input position vector used to create it, along
with its remainder. Hence, this pair of information can func-
tion as the key in the hash table for the vertex. Each key is
of size O(1), adding up to O(dN) over all points.

Using the shortened key raises one possible concern: we
have avoided storing the full coordinates of the vertices,
but they are required for the common hash-table operations,
such as collision checking. To solve this, for each input point
x, we store the nearest remainder-0 point y and the permu-
tation ρ that sorts � = x − y. These values are computed
in the splatting stage (see Algorithm 1) and incur O(dN)

total memory. By Theorem 4.10, this allows us to compute
any remainder-k point in the Delaunay cell of x in O(d). Be-
cause any operation that involves the explicit coordinate will
be O(d) at least, performing O(d) computations to calculate
the explicit coordinate does not increase the asymptotic cost
of such operations. �

An empirical study of the runtime and storage require-
ment of the permutohedral lattice, in comparison to the
Cartesian grid and other Gaussian filtering algorithms are
given in [2].

6 Kernel Analysis

The framework developed in Sect. 3 and the lattice-specific
algorithm in Sect. 5 are meant to be fast approximations of
a true high-dimensional Gaussian filter. Ideally, the net ef-
fect of such a filter should closely resemble that of a true
Gaussian. In this section, we test this hypothesis by compar-
ing with true Gaussian the effective kernels that arise from
applying the framework to Z

d and A∗
d .

Formally, let I be a d-dimensional signal I : R
d → R

m,
and let I ′ be the resulting signal when we apply our Gaus-
sian filtering algorithm (based on A∗

d ). Note that any lin-
ear framework can be modeled with a spatially varying con-
volution kernel. Hence, there exists some family of kernels
{Kx : Hd → R}x such that

I ′(x) =
∫

Hd

Kx(y − x)I (y)dy.

Analogously, let Zx be the kernel at x applicable when we
apply the same algorithm based on the Cartesian grid Z

d .
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For convenience, we presume that the blur kernel in each
dimension is [ 1

4
1
2

1
4 ], as in Eq. (5.3).

Proposition 6.1

Zx(y − x) =
d∏

i=1

∑

p,q∈Z

Bp(xi)Bq(yi)b(p − q),

where

b : x �→

⎧
⎪⎪⎨

⎪⎪⎩

1
2 , x = 0,

1
4 , x = ±1,

0, otherwise.

Bp : x �→ max(1 − |p − x|,0).

Proof The input signal at y is splatted onto each lattice
point q with multi-linear weight

∏d
i=1 Bqi

(yi), which is
then blurred onto every other lattice point p with weight∏d

i=1 b(pi − qi). Then the output at x is reconstructed by
summing over each lattice point p with weight

∏d
i=1Bpi

(xi).
The claim in the proposition then follows once we rewrite
the sum of product terms as the product of sums. �

Proposition 6.2

Kx(y − x) =
∑

p,q∈A∗
d

Bp(x)Bq(y)b(p − q),

where Bp(x) is the barycentric weight assigned to point p
for the interpolation of x, and b(·) is the appropriate blur-
ring kernel given by convolving K0

b , . . . ,Kd
b .

Proof The proof is fully analogous to that of Proposi-
tion 6.1. �

6.1 Kernel Distance

One metric for evaluating the fidelity of our filtering algo-
rithm is the squared L2-norm between Kx (or Zx) and an
isotropic Gaussian kernel, where the Gaussian kernel has the
same total variance as Kx (or Zx). This measure is the con-
tinuous equivalent of the Frobenius norm for matrices, and
bounds the relative error on arbitrary input signals. As the
kernels are spatially varying, i.e. they depend on x, the L2-
norm should be power-averaged over all possible x. It should
also be normalized by the power of the Gaussian kernel. We
can consider this to be the inverse of the “signal-to-noise
ratio” (SNR) where Kx is the observed signal and the Gaus-
sian is the ground truth. Recall that SNR is conventionally
defined as,

Power of the signal

Power of the noise = observation − signal
.

Our definition is fully analogous, and is formalized below:

Definition 6.3 Given a family of kernels fx : R
d → R

parametrized by x ∈ R
d that approximates a Gaussian blur,

its signal-to-noise ratio (SNR) is

η :=
∫

Rd N(y; θ)2dy

Ex[
∫

Rd (fx(y − x) − N(y − x; θ))2dy] ,

where θ is the expected variance of fx over all x. Also, it is
assumed that fx is normalized to sum to 1 over R

d .

Lemma 6.4 The expected variance of Zx where x is chosen
randomly in R

d is 5d/6. The expected variance of Kx where
x is chosen randomly in Hd is 2d(d + 1)2/3.

Proof For Z
d , the multi-linear splatting and slicing are sim-

ply the d-dimensional tent functions with variance d/6. The
blurring stage has variance

d ·
[

1

4
(−1)2 + 1

2
(0)2 + 1

4

(
12)
]

= d

2
.

Hence the total variance is (d/6) · 2 + (d/2) = 5d/6.
For A∗

d , Proposition 5.6 tells us that the variance of the
splatting and slicing step is d(d +1)2/12 each. The variance
of the blurring step is,

(d + 1) ·
[

1

4

(−√d(d + 1)
)2 + 1

2
(0)2 + 1

4

(√
d(d + 1)

)2
]
,

which equals d(d + 1)2/2. Together, the total expected vari-
ance is 2d(d + 1)2/3. The term expected variance is used
because the actual variance of a particular kernel Zx or Kx

depend on x, but the additive nature of the variances of each
step is clear from the proofs of Propositions 6.1 and 6.2. �

Note that the expected variance is the sum of variance
over all dimensions, so it should be divided by d to yield the
variance of a comparable isotropic multi-variate Gaussian.

The remaining steps for the calculation of SNR for Zx

and Kx are given in Sects. A.2 and A.3, respectively.

6.2 SNR Comparison

In the Appendix, we derive a closed form of the SNR for Zx;
for Kx, a recipe for numerically estimating the SNR is pro-
vided. The SNRs for the two kernels are plotted in Fig. 11.
The SNRs of the two lattices are comparable, with Kx out-
performing Zx at low dimensionality and Zx outperforming
Kx at higher dimensionality. This is explained by the fact
that a sample in Z

d is splatted to exponentially many lattice
points as d increases, whereas in A∗

d it is splatted only to
few points (d + 1). We also compare the SNR with that of
true Gaussian kernels that are truncated after certain num-
bers of standard deviations. Both Zx and Kx are reasonably
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good approximations of the true Gaussian kernel, compared
to truncated Gaussians.

Table 2 shows the difference in the SNR and the com-
putational cost of the two kernels. Note that the reduction
in computational cost required for filtering using Kx clearly
outpaces the SNR loss, which grows very slowly with the
dimensionality. This observation is especially significant in
light of the fact that the existing implementation of bilateral
filtering based on the Cartesian grid becomes prohibitively
expensive past d = 5 [1, 2].

Fig. 11 The signal-to-noise ratio of the kernels Kx and Zx for
d = 1, . . . ,10, along with truncated Gaussian kernels. Note that Kx
exhibits SNR that is similar to that of Zx, despite touching only poly-
nomially-many vertices; Zx touches exponentially many vertices. Be-
cause of this difference, the SNR for Kx suffers slightly more when d

grows high

6.3 Filtering Comparison

We have thus far established theoretically that Kx reason-
ably emulates a true Gaussian kernel, albeit not quite as
well as Zx , at a fraction of the computational cost. To con-
firm this claim empirically, we processed the datasets in
Figs. 12, 13, 14 and 15, considering the runtime of the filters
and the fidelity of the results. Table 3 shows the performance
benchmarks of the two lattices on these two datasets. As ex-
pected, the permutohedral lattice offers speed-up of 1–2 or-
ders of magnitude over the Cartesian lattice, at the cost of
lower SNR. The only exception occurs with the dataset with
the lowest dimensionality (d = 3), at which the little gain in
runtime complexity is dwarfed by the overhead of comput-
ing vertices. Both lattices generally outperform a naïve im-

Table 2 Relative performance and SNR of Kx compared to that of Zx.
The cost is measured by the number of lattice points accessed through
the splat-blur-slice pipeline (“footprint”), and reported in two columns.
The first column assumes that each splat creates the maximum number
of new lattice points; the second assumes that the total number of new
lattice points created is equal to the number of the input points, which
is empirically true in a number of applications

dim. Change in
SNR (dB)

Change in cost

1 +4.11 +40.0 % +28.6 %

2 +2.20 −3.6 % 0.0 %

3 +0.95 −38.9 % −26.1 %

4 +0.00 −63.1 % −48.8 %

5 −0.73 −78.4 % −66.7 %

6 −1.30 −87.6 % −79.4 %

7 −1.81 −93.0 % −87.8 %

8 −2.08 −96.1 % −93.0 %

9 −2.59 −97.9 % −96.1 %

10 −2.90 −98.8 % −97.8 %

Fig. 12 Bilateral filtering (d = 5) result on an 800 × 532 image
“Mountain.” The two rows correspond to a spatial kernel of size 5 and
15 pixels, respectively. For the color dimensions, a standard deviation

of 0.1 is used. Note that both the Cartesian grid and the permutohedral
lattice approximate the ground truth well, removing fine textures while
preserving hard edges
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Fig. 13 Bilateral filtering (d = 5) result on a 1600×1200 image “Animals.” We used spatial standard deviation of 15, and color standard deviation
of 0.1

Fig. 14 Bilateral filtering (d = 3) result on a 512 × 512 “Barbara.” We used spatial standard deviation of 10, and color standard deviation of 0.08

Fig. 15 Non-local means denoising (d = 10) result on a 256 × 256
noisy image “Cameraman.” For each pixel, its neighboring 13 × 13
patch is distilled into an 8-dimensional descriptor using PCA. The

spatial dimensions are appended to the descriptor, forming a 10-
dimensional position vector. The standard deviation for the spatial di-
mensions is 15

plementation, although at high dimensionality the Cartesian
lattice breaks down from the exponential runtime. Do note
that a naïve implementation can only process unstructured
data.

We caution that a strictly controlled comparison between
the Cartesian grid and the permutohedral lattice algorithm
is difficult, as there are many confounding variables, e.g. the
choice of reconstruction filter for each lattice, computational
complexity, prior on the input, et cetera. The readers should
keep in mind that the benchmark in Table 3 was conducted
for a particular choice of filters (Zx and Kx ). A related study
was done by Mirzargar and Entezari [27], showing that the
reconstruction error on A∗

3 is less than that on Z
3 or A3,

for first- and second-order Voronoi splines. Following this,
we conjecture that it should be possible to design a filter
on A∗

d that has equal asymptotic time complexity as on Z
d

and better SNR for Gaussian filtering. However, it remains
unclear if subexponential time complexity is possible for a
Gaussian filtering algorithm that generalizes across both A∗

d

and Z
d . (The Voronoi spline is general, but is exponential;

Kx is subexponential as intended, but only exists on A∗
d .)

7 Lattice Optimality

Both the Cartesian grid Z
d and the permutohedral lattice A∗

d

have been used in the literature as the underlying data struc-
ture for high-dimensional Gaussian filtering. The choice of
Z

d was the most intuitive one; that of A∗
d was motivated

by its low covering density [12]. However, many other lat-
tices exist, and it is certainly possible to fashion a filter-
ing algorithm based on any lattice following the framework
laid out in Sect. 3. To explore this possibility further, we
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Table 3 Gaussian filtering performance, for examples shown in
Figs. 12 and 15. The runtime includes file I/O. As expected, bilat-
eral filtering is considerably faster on the permutohedral lattice, with
increasing gains at high dimensionality. While the RMSE is larger as
well, its magnitude for d = 5 is comparable to the quantization error

for 8-bit images. Furthermore, the output images demonstrate that the
perceptual difference is nonexistent for either d = 5 or d = 10. For ref-
erence, we include the runtime of an “almost naïve” implementation
that brute-forces the answer with a filter truncated at ±2σ

Dataset Dim. Spatial Gaussian Runtime (s) RMSE Image SNR (dB)

Cartesian A∗
5 Naïve Cartesian A∗

5 Cartesian A∗
5

“Mountain” d = 5 σ = 5 10.18 1.16 6.93 0.556 0.695 26.61 25.65

σ = 10 3.09 0.65 26.24 0.547 0.622 26.68 26.13

σ = 15 1.70 0.54 58.12 0.546 0.623 26.69 26.12

σ = 20 1.24 0.49 102.02 0.543 0.628 26.72 26.09

“Animals” d = 5 σ = 15 8.88 3.58 311.83 0.649 0.777 25.94 25.16

“Barbara” d = 3 σ = 10 0.10 0.14 11.61 0.839 1.03 24.83 23.94

Dataset Dim. Spatial Gaussian Runtime (s) RMSE Image SNR (dB)

Cartesian A∗
10 Naïve Cartesian A∗

10 Cartesian A∗
10

“Cameraman” d = 10 σ = 15 255.7 2.87 12.81 0.748 2.260 25.33 20.52

begin by listing properties of a lattice that is desirable for
high-dimensional Gaussian filtering, given our algorithmic
framework, and investigate whether known lattices satisfy
these criteria.

7.1 Criteria for the Ideal Lattice

The framework in the previous section guides the designa-
tion of appropriate criteria for selecting the ideal lattice for
high-dimensional Gaussian filtering. In forming the crite-
ria, we concern ourselves with numerical accuracy, compu-
tational efficiency and generality, and also draw from the
properties of Z

d and A∗
d that have proven useful.

Generality There should exist an analogous construction
of the lattice for each dimensionality d . For instance, a spe-
cialized construction for a particular dimensionality alone
has limited utility. Existing applications span a wide range
of dimensionality, ranging from two-dimensional cases (e.g.
Gaussian blur of an image) to dimensionalities well over 16,
such as non-local means filtering of a video [1].

Isotropy The distribution of the points in space should be
as even and isotropic as possible. This requirement ensures
that the kernels will sufficiently resemble a true Gaussian.
A useful measure of isotropy is the covering density de-
scribed in Sect. 2.4, or the packing density, which refers to
the portion of space covered when equal spheres are placed
at each lattice point so that no spheres overlap [12]. Efficient
covering or packing property also indicates that the underly-
ing space can be represented with a small number of points.

Fast Splat and Slice Given x ∈ R
d , one must be able to

quickly and systematically locate nearby lattice points, i.e.
find the Delaunay cell containing x. The number of vertices
in the Delaunay cell should scale slowly with d . In general,
the number of vertices is bounded below by d + 1, since any
d-dimensional polytope must have at least d + 1 vertices.

Fast Blur Given an arbitrary lattice point, one must be able
to quickly and systematically locate nearby lattice points
with which to blur, and be able to propagate information ef-
ficiently. Several issues affect the performance, such as the
number of nearby lattice points to sample and the separabil-
ity of the blur.

7.2 Identifying the Ideal Lattice

The classification of all possible lattices in an arbitrary di-
mensionality is an open research problem in mathematics,
and is beyond the scope of this paper. However, it does hap-
pen that a large class of well-studied lattices can be con-
structed from a rather simple set of lattices called root lat-
tices.

Definition 7.1 A root system is a set of nonzero vectors sat-
isfying the following conditions:

1. For every x in the root system, the only scalar multiples
of x in the root system is ±x.

2. It is closed under reflection; that is, for every x,y in the
root system, the reflection of x over y is also in the root
system.

3. For every x,y, the projection of x onto y is an integral
multiple of y/2.
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Table 4 Classification of indecomposable root lattices in finite dimen-
sions. The dual lattices are also given for ones that generalize across
dimensions, and are denoted by an additional asterisk. The right-hand
column gives the number of vertices in the Delaunay cells; some lat-
tices may have more than one type of Delaunay cells that occur. Note
that A∗

d is the only family of root lattices that generalizes across d , tes-
sellates the space with a uniform Delaunay cell, and features a small
number of vertices in each cell

Lattice # of vertices in Delaunay cell

Ad

(
d+1

k

)
for k ∈ {1, . . . , d}

A∗
d d + 1

Bd = B∗
d = Z

d 2d

Dd 2d or 2d−1 + 1

D∗
d 4�d/2�

E6 27

E7 8 or 56

E8 9 or 16

F4 8

G2 3

A root lattice is a lattice generated from using a root system
as the frame.

Theorem 7.2 [49] Let L be an integral lattice, meaning that
∀x,y ∈ L, x · y ∈ Z. Then, all sublattices of L generated by
vectors of norm 1 and 2 are direct sums of root lattices.

Integral lattices are of interest to crystallographers be-
cause the generating vectors in their frames will be inte-
grally dependent [41]. For instance, all 14 significant lattices
in 3D crystallograpy, called the Bravais lattices, are integral
lattices and can be decomposed into root lattices and their
duals up to affine transform. Moreover, Theorem 7.2 holds
true for all unimodular lattices, as they can be generated by
a frame of vectors of norm 1 and 2 [12].

Therefore, root systems generate the most common lat-
tices and more. Theorem 7.2 does leave out non-integral lat-
tices, but we will further defend this shortly. Fortunately, in-
decomposable root systems in finite dimensions have been
fully enumerated:

Theorem 7.3 [40, 42] There exists exactly the following in-
decomposable root systems:

Ad, Bd, Dd, E6, E7, E8, F4 and G2.

Note that Bd is the Cartesian lattice Z
d .

Theorems 7.2 and 7.3 together imply that in our explo-
ration of alternate lattices, we may safely restrict our search
to these irreducible root lattices and their duals, and this
would adequately cover the most studied lattices.

The Voronoi and Delaunay cells of irreducible root lat-
tices are enumerated by Mood and Patera [28]. Those of the

dual lattices can be found without much difficulty. Table 4
lists the root lattices along with their duals, and the number
of vertices in each of their Delaunay cells. This number must
be small in order to support fast splatting and slicing, and the
lattice should generalize across dimensions. As shown, only
A∗

d , the permutohedral lattice, meets these criteria. In fact,
A∗

d achieves the lower bound for the number of vertices pos-
sible for any d-dimensional Delaunay cell.

Let us further remark on this criterion: ideally, the De-
launay cell is a simplex, in order to minimize the number
of vertices. This condition is equivalent to requiring that
the Voronoi cell of the lattice is a primitive parallelohedron,
which we discussed in Sect. 3:

Definition 7.4 A primitive parallelohedron is a parallelohe-
dron for which the Delaunay cells of the induced tiling are
simplices.

Theorem 7.5 [14, 38, 45] Any primitive parallelohedron is
affinely equivalent to the Voronoi cell of some integral lat-
tice.

Theorem 7.5 justifies our concentration on integral lattice
and the use of Theorem 7.2.

Revisiting the criteria in Sect. 7.1, we note that A∗
d is the

only generalizable lattice that admits the lower bound for
the number of vertices in a Delaunay cell. Moreover, A∗

d

exhibits the most efficient known covering for lattices up to
d = 22, satisfying the criterion on isotropy. A∗

d also provides
fast blurring, as it allows for a separable Gaussian kernel
similar to that for Z

d (Sect. 5.2).
In summary, the permutohedral lattice A∗

d is the only root
lattice or the dual of a root lattice that meets the criteria
spelled out in Sect. 7.1. It is computationally efficient (fast
splatting, blurring and slicing), exhibits isotropic distribu-
tion, and generalizes across dimensions. While this does not
completely rule out integral lattices not covered by Theo-
rem 7.2 from being superior, it does strongly suggest the
optimality of A∗

d .

8 Mean Shift Filtering

In addition to Gaussian filtering, another natural application
of the permutohedral lattice is mean shift filtering. We show
that we can easily adapt the splatting, blurring and slicing
process described in the context of Gaussian filtering to cre-
ate a mean shift filter.

In mean shift filtering, each point is assigned a color
based on the value of its nearest mode in feature space. Co-
maniciu and Meer [11] and Cheng [10] evaluate the proper-
ties of mean shift, showing that for images it is equivalent to
an ascent toward the modes of the probability density func-
tion computed in the joint color-spatial domain. We build
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upon the work of Paris and Durand [31] in which they use
a grid to improve the efficiency of density estimation and
mode finding, and utilize the permutohedral lattice to accel-
erate the mean shift filtering.

Note that while Gaussian filtering is useful in tasks
like de-noising, mean shift filtering is useful in creating
piecewise-constant images similar to those in [48]. These
cartoon-like images can be used for segmentation, abstrac-
tion, or decomposition. While the grids used in [29, 31] re-
stricted the dimensionality of the descriptor space, using the
permutohedral lattice, we can efficiently scale mean shift fil-
tering to descriptors with higher dimensionality.

The same principles of steepest ascent toward modes
also enable mean shift to be applied to clustering. Instead
of replacing pixel colors, one could group pixels initially
by their proximity to modes. In the case of images, one
could then efficiently calculate a hierarchical segmentation
by successively merging different clusters based on a simi-
larity threshold, following the method of Paris and Durand
[31] and similar to Grundmann et al. [21] and Arbelaez [3].
A complete discussion and evaluation of hierarchical image
segmentation is outside the scope of this work, although we
demonstrate the usefulness of the permutohedral lattice as a
first stage in a hierarchical clustering algorithm.

The mean shift filtering algorithm can be decomposed
into three major parts: density estimation, mode extraction,
and cluster assignment. We detail each part below in the con-
text of mean-shift filtering of images using the permutohe-
dral lattice.

8.1 Density Estimation

The first two steps of the Gaussian filtering algorithm, splat-
ting and blurring, also serve as an efficient means for den-
sity estimation of the underlying descriptor distribution in
feature space.

In the splatting stage, for each sample of the input sig-
nal, its value is accumulated at one or more spatially prox-
imate lattice points. We maintain the same formulation as
discussed above, where the splatting kernel Ks can be de-
scribed as a tent function. After splatting, the homogeneous
weights available at each lattice point represent a coarse es-
timate of the underlying density function. We then refine
this density estimate in the blur stage, where we perform
a discrete approximation of a Gaussian blur in each dimen-
sion of the lattice. After splatting and blurring, the weights
at each lattice point now approximate a density estimate
D : A∗

d → R+ with

D : x �→
∑

i

N
(
x − pi;

√
7d(d + 1)2/12

)
,

representing the density estimate at x. The standard devia-
tion follows easily from the proof of Lemma 6.4.

8.2 Cluster Assignment

After the splatting and blurring stages, each node in the lat-
tice now contains a density estimate in the value of its homo-
geneous coordinate. As discussed by Paris [29], nodes that
are local maxima in our density estimate contain the val-
ues that we wish to propagate to neighboring non-maximal
nodes.

As described in Algorithm 4, we perform an iterative
mode-finding process where each node in the lattice con-
siders both itself and its neighbors. Here neighbors of a lat-
tice point x are defined to be the vertices connected to x in
the Delaunay triangulation of A∗

d ; these are the same ver-
tices with which x is averaged in the blurring stage. In The-
orem 8.1 we show that the number of iterations of this algo-
rithm grows logarithmically with the number of vertices in
the lattice.

Theorem 8.1 The mean-shift filtering algorithm in Algo-
rithm 4 has time complexity O(d2N + N logN) for N ver-
tices in d dimensions.

Proof The algorithm described has two steps. In the first
step, all local maxima are identified and marked as done,
and all other points are assigned its nearest neighbor with the

Algorithm 4 The cluster assignment algorithm. Given an
initial density estimate D(x) at each lattice point x, it assigns
each lattice point to a nearby lattice point whose density
estimate is the local maxima. This mapping is denoted by
M : A∗

d → A∗
d below. An auxiliary boolean function done

tracks whether M(x) is correct
Require: D : A∗

d → R+.
(Step 1):
for all x ∈ A∗

d do
if D(x) ≥ density of neighbors of x then

done(x) ← true
M(x) ← x

else
done(x) ← false
M(x) ← y, where y is the neighbor of x with the
highest value of D.

end if
end for
(Step 2):
while ∃x ∈ A∗

d where done(x) = false do
for all x ∈ A∗

d where done(x) = false do
M(x) ← M(M(x))

done(x) = done(M(x))

end for
end while
return M : A∗

d → A∗
d .
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Fig. 16 Progression of the cluster assignment algorithm. The leftmost image is the input image. Each image to the right is the result of 1, 2, 3, 4,
5 and 6 iterations of mode finding on the lattice, respectively. For this image, cluster assignment converges after the 6th iteration

largest density. The cost of this step is O(d2N) for N lattice
points in d dimensions, as each lattice point must perform
an O(d) hash-table lookup on each of its d neighbors.

The second step consists of a number of iterations in
which the mode estimate is updated. To bound the number of
iterations, first fix a vertex x, and let {x0 = x,x1,x2, . . . ,xk}
be the sequence of neighboring vertices of increasing den-
sity, such that M(xj ) = xj+1 for all 1 ≤ j < k after the first
loop is concluded. xk is a local maximum. Clearly, the length
of such a sequence is bounded by the number of total ver-
tices.

In each iteration, the mapping M is updated, such that x0

is now assigned a vertex further down in this chain. A simple
recursive argument tells us that after l iterations, M(x0) is at
least x2l , depending on evaluation order. Hence, M(x) must
hold the value xk within a logarithmic number of iterations.
The value of “done” propagates downward at the same time
in a similar fashion; after l iterations, all the vertices within
at least 2l hops from the local maximum will be marked as
being done.

Therefore, the number of iterations of the while loop is
logarithmic in the number of vertices, whereas the inner loop
is linear. In this second stage there is no use of the positions
of the lattice nodes, and so the complexity does not depend
on d . Overall, the runtime of this algorithm is O(d2N +
N logN). �

We can visualize the output as the mode estimate M is
being updated, by replacing each pixel x with the color of
M(x). (See Sect. 8.3 for details.) Figure 16 illustrates this
progression of value assignment, for 1, 2, 3, 4, 5, and 6 it-
erations, respectively, where convergence is reached at it-
eration 6. For most natural images, we find that this process
converges within 4 to 6 iterations, as the number of iterations
is bounded by the log of the number of lattice points within
the largest cluster, and clusters tend to be small relative to
the image. d2 is typically much larger than the number of
iterations, and so in practice the runtime is dominated by the
first stage of Algorithm 4 and by the earlier blurring stage,
which both take O(d2N) time.

8.3 Pixel Color Assignment

We slightly alter the original slicing stage discussed in
Sect. 5.3 in the context of Gaussian filtering to complete our
mean-shift filter.

Algorithm 5 The modified slicing algorithm. Given the data
stored in the lattice, along with density and mode assign-
ment, the output I ′ : X ⊂ Hd → R

m is reconstructed
Require: D : A∗

d → R+.
Require: W : A∗

d → R
m (from Algorithm 2).

Require: M : A∗
d → A∗

d (from Algorithm 4).
for all x ∈ X do

Identify the simplex {x0, . . . ,xd} enclosing x.
j ← maxiD(xi )

I ′(p) ← W(M(xj )) to p
end for
return I ′ : X → R

m.

As in slicing, the output can be constructed from the per-
mutohedral lattice by sampling from nearby lattice points.
We assign each pixel to have the value of the mode of the
nearest lattice point to the pixel. The nearest lattice point
to each pixel can be easily identified and stored during the
splatting stage; it is the one with the largest barycentric
weight. This assignment leads to a consistent segmentation
in which pixels assigned to the same mode adopt the same
color. Algorithm 5 formalizes this description.

8.4 Discussion

As with the Gaussian filter, all three steps are linear in the
input size or linear in the number of lattice vertices, which
is bounded by the input size in non-degenerate cases. The
additional step of propagating local extrema in density has
the same complexity as the blurring step, so it does not in-
crease the total runtime of the algorithm. Therefore, the time
complexity of our mean-shift filtering algorithm is O(d2N).
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Fig. 17 Stability of the mean-shift filters with various constraints. The
first filter is constrained only by (x, y,Luminance) position vectors,
while the second has five-dimensional (x,y, r,g,b) position vectors.
We show the original input, followed by the output from the (x,y,L)

and (x,y, r,g,b) filters respectively. In the comparison, we see that
areas of similar luminance but not similar chorminance values may be
grouped together in the (x,y,L) filter, where the five-dimensional filter
better preserves the oringal input object

Fig. 18 Example output of mean shift filters in (x,y, r,g,b) applied
to images from the Berkeley database [26]

To control the variance of the Gaussian blur, again one
may scale the input signal appropriately before feeding it
into the pipeline.

Using our lattice, we can efficiently scale the dimension-
ality of the descriptor used to filter, as discussed by Adams
et al. [2] and [1]. This efficiency of scaling in terms of both
storage and runtime complexity enables a higher level of ac-
curacy in filtering without being limited in dimensionality
or using aggressive descriptor compression (e.g. using PCA
to reduce the descriptor to a small number of dimensions).
In Fig. 17 we compare the results from a three-dimensional
filter constrained by pixel position and luminance value, and
a five-dimensional filter with pixel position and r, g, b con-
straints. For both filters, the spatial standard deviation was
set at 5 pixels, and the color standard deviation was set at
0.03, where L, r, g, and, b ∈ [0,1]. Figure 18 contains ad-
ditional filtering results using (x,y, r,g,b) descriptors. All
images in Figs. 16, 17, and 18 are from the Berkeley seg-
mentation data set [26].

The algorithm described above is straightforward to im-
plement within our existing filtering framework, only re-
quiring an extra pointer and boolean value per lattice node

Table 5 Mean-shift filtering performance for the permutohedral lat-
tice and the Cartesian grid. The input dataset “Animals” (also used in
Fig. 13, 1600 × 1200) is shown in the top left corner. The output is
shown in the top right corner. A color standard deviation of 0.1 was
used in both algorithms. In both algorithms, the splatting step accounts
for the largest fraction of the runtime (roughly 60 %), followed by the
labeling step. The permutohedral-lattice-based algorithm converged af-
ter 4 iterations of mode-finding

Dim. Spatial Gaussian Runtime (s)

Cartesian A∗
5

d = 5 σ = 15 18.58 6.30

to perform the iterative updates in Algorithm 4. It there-
fore has the same space complexity as the Gaussian fil-
ter: O(dN). We empirically compare the runtime of our
permutohedral-lattice-based mean shift algorithm against
that of the Cartesian-lattice-based analogue by Paris and Du-
rand [31], in Table 5.

9 Conclusions

We have presented a framework for performing high-
dimensional Gaussian filtering on a lattice, along with a
particular implementation thereof using the permutohedral
lattice. We further provide a justification on the choice of
the permutohedral lattice both theoretically and empirically;
on one hand the study of root lattices points strongly to-
wards the complexity-theoretic optimality of the permuto-
hedral lattice, and on the other hand the calculation of the
expected deviation from the true Gaussian kernel assures
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us of the fidelity of our filtering algorithm, and the filter-
ing results confirm our claims. Lastly, we showed that the
high-dimensional Gaussian filtering framework can easily
be modified or extended to achieve other interesting effects,
such as the mean-shift filtering, and hope that it will inspire
more clever uses of this lattice-based framework.
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Appendix

A.1 Useful Lemmas

This section outlines a number of useful lemmas required
for computing the SNR terms for Kx and Zx . Most of them
concern the permutohedral lattice—more machinery is re-
quired for the derivations on A∗

d . They are included here so
that Sect. A.2 and A.3 can remain succinct and parallel.

Lemma A.1 The power of a d-dimensional Gaussian ker-
nel with covariance θI is (4πθ)−d/2.

Proof

∫

Rd

N(y; θ)2dy =
[∫ ∞

−∞
N(y; θ)2dy

]d

=
[∫ ∞

−∞
exp(−y2/(2θ))2

2πθ
dy

]d

=
[∫ ∞

−∞
exp(−y2/(2 · θ

2 ))
√

2π θ
2

√
4πθ

dy

]d

=
[

1√
4πθ

∫ ∞

−∞
N(y; θ/2)dy

]d

= (4πθ)−d/2,

as desired. �

Lemma A.2 Let S be a d-dimensional simplex defined by
vertices s0, . . . , sd, and let B0(x),B1(x), . . . ,Bd(x) be the
barycentric coordinates of x for the vertices in the given or-
der. Then, ∀k, j ∈ {0, . . . , d},
∫

S Bk(x)Bj (x)dx∫
S dx

=
⎧
⎨

⎩

2
(d+1)(d+2)

, k = j,

1
(d+1)(d+2)

, k �= j.

Proof Let P be the face defined by all vertices except sk.
Then S is a pyramid with base P and apex sk. Let h be
the height of the altitude and let y be the foot of the alti-
tude. Consider slicing S along a hyperplane parallel to P

that contains (1 − t) · sk + t · y, for some t ∈ [0,1]. The slice
will be similar to P with a scale factor of t , and by definition
of barycentric coordinates, Bk(·) will evaluate to a constant,
namely 1 − t , across the whole slice. Therefore,

∫

S
Bk(x)2dx =

∫ 1

0

∫

(1−t)sk+tP

(1 − t)2dx(h · dt)

=
∫ 1

0
(1 − t)2

[∫

tP

dx
]
(h · dt)

=
∫ 1

0
(1 − t)2td−1Vol(P)h · dt

= Vol(P ) · h ·
∫ 1

0
(1 − t)2td−1dt

= Vol(P ) · h · 2

d(d + 1)(d + 2)
. (A.1)

Note that the same integral without the weight term (1 − t)2

will simply yield the volume of S :

∫ 1

0

∫

tP

dx(h · dt) = Vol(P ) · h ·
∫ 1

0
td−1dt

= Vol(P ) · h · 1

d
. (A.2)

Dividing (A.1) by (A.2) yields the first of the two cases.
When k �= j , we consider applying the same decomposition
to P : let P ′ be the face of P spanned by all vertices of S
except sk and sj. Then P is again a pyramid with base P ′
and height h′, and y′ the foot of the altitude. Each slice of
P parallel to P ′ cutting the altitude at (1 − r) · sj + r · y′ is
again a copy of P ′ scaled by r , and the barycentric weight
Bj (·) is uniformly 1 − r . Therefore,

∫

S
Bk(x)Bj (x)dx

=
∫ 1

0

∫ 1

0
(1 − t) · t (1 − r)

· (Vol(P ′)td−1rd−2)(h′ · dr)(h · dt)

= hh′ Vol(P ′)
∫ 1

0
td − td+1dt

∫ 1

0
rd−2 − rd−1dr

= hh′ Vol(P ′) 1

(d + 1)(d + 2)(d − 1)d
. (A.3)

Without the barycentric weights,
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∫

S
dx =

∫ 1

0

∫ 1

0

(
Vol(P ′)td−1rd−2)(h′ · dr)(h · dt)

= hh′ Vol(P ′)
∫ 1

0
td−1dt

∫ 1

0
rd−2dr

= hh′ Vol(P ′) 1

d(d − 1)
. (A.4)

Dividing (A.3) by (A.4) yields the second of the two cases,
as desired. �

Lemma A.3 Let x,y ∈ A∗
d . Then the number of Delaunay

cells containing both x and y is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(d + 1 − k)!k!, if x − y is some permutation of the
remainder-k vertex of the canonical
simplex,

0, otherwise.

Proof Since every Delaunay cell is given by permuting the
coordinates of the canonical simplex and translating the ver-
tices, if x − y cannot be written as a permutation of a vertex
of the canonical simplex, then they must not belong to any
common Delaunay cell. So we can assume that x − y is a
permutation of some vertex of the canonical simplex.

Without loss of generality, let y = 0. Then any sim-
plex containing y has a corresponding permutation in Sd+1.
Among those, the number of simplices also containing x is
the number of permutations that sends the remainder-k ver-
tex of the canonical simplex to x.

Because components of x have two possible values,
namely k and k − (d + 1), and the number of these two val-
ues are d + 1 − k and k respectively, the number of possible
permutations is (d + 1 − k)!k!. �

The next pair of lemmas illustrate how to integrate ar-
bitrary functions over the canonical simplex with particular
weighting schemes.

Lemma A.4 Let X be the union of Delaunay cells contain-
ing the origin in A∗

d , and let f : X → R be a function. Then,

∫

X

f (x) · Ks(x)dx

= 1

(d + 1)3/2

∫

[0,1]d+1
f
(
T
(
(d + 1)x

))
dx.

Proof This is a direct consequence of Proposition 5.4.
In short, weighted sampling corresponding to Ks can be
achieved by uniformly sampling in the unit cube and pro-
jecting the sample onto Hd . �

Lemma A.5 Let f : A∗
d → R be a function on A∗

d . Let b :
A∗

d → R and the vectors wk be as in Sect. 5.2. Then,

∑

q∈A∗
d

f (q)b(q)

=
∑

t∈{−1,0,1}d+1

f

(∑

k

tk · wk

)∏

k

1

21+|tk | .

Proof The blur kernel b(x) is given by the convolution of
K0

b , . . . ,Kd
b . Therefore, it is the accumulation of the weights

corresponding to offsets in the d + 1 axes that sum to x. The
weight equals 1

2 if the offset tk in a given axis is zero, and 1
4

if it is tk = ±1. Hence we can write it succinctly as 1
21+|tk | .

The claim follows. �

A.2 Evaluation of SNR for Z
d

The kernel Zx repeats periodically because of the transla-
tional symmetry of Z

d . In order to evaluate the expected
value of an expression involving Zx, it suffices to consider
x ∈ [0,1]d . In other words,

η =
∫

Rd N(y;5/6)2dy
∫
[0,1]d

∫
Rd (Zx(y − x) − N(y − x;5/6))2 dydx

.

Expanding the quadratic term in the integrand, we obtain
η = (A.6)

(A.5)+(A.6)−2(A.7) , containing the following three expres-
sions:
∫

[0,1]d

∫

Rd

Zx(y − x)2dydx, (A.5)

∫

Rd

N(y;5/6)2dy, (A.6)

∫

[0,1]d

∫

Rd

Zx(y − x)N(y − x;5/6)dydx. (A.7)

First of all, Lemma A.1 tells us that (A.6) is (10π/3)−d/2.
(A.5) is similarly separable:

∫

[0,1]d

∫

Rd

Zx(y − x)2dydx

=
∫

[0,1]d

∫

Rd

[
d∏

i=1

∑

p,q∈Z

Bp(xi)Bq(yi)b(p − q)

]2

dydx

=
[∫

[0,1]

∫

R

[ ∑

p,q∈Z

Bp(x)Bq(y)b(p − q)

]2

dydx

]d

=
[∫

[0,1]

∫

R

∑

p,p′,q,q ′∈Z

Bp(x)Bp′(x)Bq(y)Bq ′(y)

× b(p − q)b(p′ − q ′)dydx

]d
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=
[ ∑

p,p′,q,q ′∈Z

b(p − q)b(p′ − q ′)

×
∫

R

Bq(y)Bq ′(y)dy

∫

[0,1]
Bp(x)Bp′(x)dx

]d

.

Note that Bp(x) and Bp′(x) are both nonzero only if
p = p′ or |p − p′| = 1. In the former case, the integral of
Bp(x)Bp′(x) with respect to x over R is 2/3; in the lat-
ter case, 1/6. Similarly, Bq(y) and Bq ′(y) are both nonzero
over y ∈ [0,1] iff q, q ′ = 0 or 1. Setting q = q ′ yields 1/3
for the value of the integral, and q �= q ′ yields 1/6. Summing
over all possible values of p′, q, q ′ with nonzero summands,
we obtain that (A.5) equals

[∑

p∈Z

b(p)2

2
+ 4b(p)b(p − 1)

9
+ b(p)b(p − 2)

18

]d

=
[

29

96

]d

.

The cross term (A.7) remains. We can similarly expand
the expression and collect terms into the product of sums,
and exploit the fact that only few values of p,q yield
nonzero summands. Unfortunately, because of the Gaussian
term, there is no succinct analytic expression.

(A.7) =
∫

[0,1]d

∫

Rd

Zx(y − x)N(y − x;5/6)dydx

=
∫ 1

0

∫

Rd

d∏

i=1

∑

p,q∈Z

Bp(xi)Bq(yi)

× b(p − q)N(yi − xi;5/6)dydx

=
[ ∑

p,q∈Z

∫ 1

0

∫

R

Bp(x)Bq(y)

× b(p − q)N(y − x;5/6)dydx

]d

=
[ ∑

q∈{−1,0,1,2}

∫ 1

0

∫

R

{
(1 − x)b(q) + xb(q − 1)

}

× Bq(y)N(y − x;5/6)dydx

]d

� 0.30456.

Corollary A.6 The SNR term for Z
d is

η =
√

3/(10π)
d

(29/96)d + √
3/(10π)

d − 2 · 0.30456d
.

A.3 Evaluation of SNR for A∗
d

The error analysis for A∗
d is analogous to that of Z

d , with a
few subtle changes. First, Kx does not sum to 1 over its do-
main and should be normalized first before being compared
to a Gaussian.

Lemma A.7
∫

Hd

Kx(y − x)dy = (d + 1)d−1/2.

Proof

∫

Hd

Kx(y − x)dy

=
∫

Hd

∑

p,q∈A∗
d

Bp(x)Bq(y)b(p − q)dy

by Proposition 6.1,

=
∑

p,q∈A∗
d

Bp(x)

[∫

Hd

Bq(y)dy
]
b(p − q)

=
∑

p,q∈A∗
d

Bp(x)(d + 1)d−1/2b(p − q)

by Corollary 5.5,

=
∑

p∈A∗
d

Bp(x)(d + 1)d−1/2 since
∑

q∈A∗
d

b(p − q) = 1,

= (d + 1)d−1/2.

The last line follows as the sum of splatting weights for x
over all lattice points is also 1. �

Since Kx is translation-invariant (for translations by a lat-
tice point) and symmetric with respect to permutation of the
axes, it suffices to iterate x over the canonical simplex C∗,
in order to compute the expected value of the L2 distance.
Recall from Proposition 4.11 that the volume of C∗ is given
by (d + 1)d−1/2/d!. Therefore,

η = (d + 1)d−1/2/d! ∫
Hd

N(y;2(d + 1)2/3)2dy
∫
C∗
∫
Hd

[ Kx(y−x)

(d+1)d−1/2 − N(y − x;2(d + 1)2/3)]2dydx
.

η can be written as (A.9)
(A.8)+(A.9)−2(A.10) , where the compo-

nents are as follows:

d!
(d + 1)3d−3/2

∫

C∗

∫

Hd

Kx(y − x)2dydx, (A.8)

∫

Hd

N
(
y;2(d + 1)2/3

)2
dy, (A.9)
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d!
(d + 1)2d−1

∫

C∗

∫

Hd

Kx(y − x)

× N
(
y − x;2(d + 1)2/3

)
dydx. (A.10)

By Lemma A.1, (A.9) equals (
8(d+1)2π

3 )−d/2.
Let us compute (A.8) without the constant term. The in-

tegrand may be expanded as follows:
∫

C∗

∫

Hd

Kx(y − x)2dydx

=
∫

C∗

∫

Hd

[ ∑

p,q∈A∗
d

Bp(x)Bq(y)b(p − q)

]2

dydx

=
∫

C∗

∫

Hd

∑

p1,p2,
q1,q2∈A∗

d

Bp1(x)Bp2(x)Bq1(y)Bq2(y)

× b(p1 − q1)b(p2 − q2)dydx

=
∑

...

b(q1)b(q2)

[∫

C∗
Bp1(x)Bp2(x)dx

]

×
[∫

Hd

Bp1−q1(y)Bp2−q2(y)dy
]
dydx,

via change of variable qi ← pi − qi.

Our expression is a weighted sum in which the weights are
b(q1)b(q2). By Lemma A.5, it is equivalent to

∑

p1∈C∗
p2∈C∗

∑

t∈{−1,0,1}d+1

s∈{−1,0,1}d+1

[· · · ][· · · ]
∏

k

1

21+|tk |
1

21+|sk | , (A.11)

where q1 =∑ tk · wk and q2 =∑ sk · wk.
Note that the first bracketed term is effectively given by

Lemma A.2. The second term is similar, but the integral is
over Hd , so we must additively consider each simplex whose
vertex contains both p1 − q1 and p2 − q2. The number of
such simplices is given by Lemma A.3.

(A.11) is more attractive than its original form because its
summands are now simple numerical quantities. There is no
succinct analytic expression for the sum, but its numerical
computation is straightforward. The number of summands
is (d + 1)2 · 32(d+1).

That leaves us with (A.10). Once again, the integral is
expanded and manipulated:
∫

C∗

∫

Hd

Kx(y − x)N(y − x;2(d + 1)2/3)dydx

=
∑

p,q∈A∗
d

∫

C∗

∫

Hd

Bp(x)Bq(y)

× b(p − q)N(y − x; . . .)dydx

Using Lemma A.5, we obtain

∑

p∈C∗

∑

t∈{−1,0,1}d+1

∫

C∗

∫

Hd

Bp(x)Bp+q(y)

×
∏

k

1

21+|tk | N(y − x; . . .)dydx,

where q =∑ tk · wk. By symmetry, we can swap out C∗
with the union of Delaunay cells containing the origin. Then
we have an integral weighted by Bp(x) and Bp+q(y), which
can be computed by Monte-Carlo sampling the (d + 1)-
dimensional unit cube, by Lemma A.4.

In summary, we iterate over t ∈ {−1,0,1}d+1 and p ∈
C∗, and for each pair of vectors, sample x and y via
Lemma A.4, and evaluate the Gaussian of y−x, weighted by∏

k
1

21+|tk | . Multiplying the result by an appropriate constant
yields (A.11).
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