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Abstract With its millisecond temporal resolution, Mag-

netoencephalography (MEG) is well suited for real-time

monitoring of brain activity. Real-time feedback allows the

adaption of the experiment to the subject’s reaction and in-

creases time efficiency by shortening acquisition and off-line

analysis. Two formidable challenges exist in real-time ana-

lysis: the low signal-to-noise ratio (SNR) and the limited

time available for computations. Since the low SNR reduces

the number of distinguishable sources, we propose an ap-

proach which downsizes the source space based on a cortical

atlas and allows to discern the sources in the presence of

noise. Each cortical region is represented by a small set of

dipoles, which is obtained by a clustering algorithm. Using

this approach, we adapted dynamic statistical parametric

mapping for real-time source localization. In terms of point

spread and crosstalk between regions the proposed clustering

technique performs better than selecting spatially evenly

distributed dipoles. We conducted real-time source local-

ization on MEG data from an auditory experiment. The re-

sults demonstrate that the proposed real-time method

localizes sources reliably in the superior temporal gyrus. We

conclude that real-time source estimation based on MEG is a

feasible, useful addition to the standard on-line processing

methods, and enables feedback based on neural activity

during the measurements.
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Source localization � Minimum-norm estimates �
K-means clustering � Brain atlas

Introduction

Magnetoencephalography (MEG) is a noninvasive tech-

nique to investigate neural activity with a high temporal

resolution (Hamalainen et al. 1993). Source estimation

methods, such as minimum-norm estimation (MNE), can

be applied to map the sensor space measures to sources in

the brain. Recently, methodological advances have made

real-time MEG source estimation possible (Sudre et al.

2011). This approach can be used to better understand brain

function, to identify mental states (Jones et al. 2010;

Ziegler et al. 2010), and to create more effective brain-

computer interface (BCI) systems (Soekadar et al. 2011;

Besserve et al. 2011). Monitoring the activity at the source

level enables, for example, the adaption of the experiment

(feedback), real-time adjustment of neuro implants, and

real-time monitoring of drug effects Michel et al. (1995).

Two major challenges in real-time source localization

are the low signal-to-noise ratio (SNR) of single-trial as
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well as moving-average measurements and the limited time

available for computations. Chowdhury et al. (2013) re-

cently published a data-driven method for parceling the

cortical surface based on a pre-source localization, which

determines seed points to create parcels for each mea-

surement setup. This set of functionally homogeneous ac-

tive areas results in a smaller gain matrix and as a result the

inverse problem becomes better conditioned.

In this work, we present a novel model-driven clustering

method for real-time source localization to handle the low SNR

and to reduce thecomputationalcost.Ourmethod isbased on two

assumptions. First, it is assumed that the neural activity is spa-

tially smooth and can be organized into cortical parcels

(Chowdhury et al. 2013; Dinh et al. 2012). This spatial

smoothness justifies that a whole region can be activated in the

same quantity as a region’s representative dipole. Second, it is

assumed that a low SNR reduces the number of distinguishable

sources (Supek and Aine 1993; Tarkiainen et al. 2003). These

assumptions lead to different possibilities to obtain a reduced

inverse operator. Based on the comparison of these approaches,

we propose to cluster the dense gain matrix (Dinh et al. 2012)

based on a cortical atlas (Destrieux et al. 2010) into a reduced

matrix which maps neural activity to parcellated cortical regions.

To realize complex real-time processing chains requires a

highly generic and scalable software framework. For this

purpose we utilize our in-house real-time acquisition and

processing solution MNE-X, which is designed for the ac-

quisition and processing of real-time data streams from

multiple sensors. MNE-X is part of our EEG/MEG data

processing software MNE-CPP which we made recently

available (Dinh et al. 2013) under an open source license.

The software package can be downloaded at: https://github.

com/mne-tools/mne-cpp 1

Methods

Gain Matrix Reduction

The relationship of MEG signals and their sources is

y ¼ Gqþ �; ð1Þ

where the vector y contains the signals measured at the

sensors, G is the gain matrix, q contains the amplitudes of

dipole sources, and � is the noise. The column vector triplet

of G mapping the dipole triplet at the rth (cortical) site to

the sensors will be denoted by gr. In our approach, the

dipoles were approximately evenly distributed on the white

matter surface.

Many source estimates can be expressed as the solution

of the minimization problem

q̂ ¼ arg min
q

y� Gqk k þ f ðqÞð Þ; ð2Þ

where the first term expresses a (weighted) norm of the dif-

ferences between the measured signals and those predicted

by the model while f ðqÞ incorporates the a priori assump-

tions. One popular solution is the minimum-norm estimate

(MNE) (Hamalainen and Ilmoniemi 1994). In this approach,

f(q) is the squared L2-norm of the currents, weighted by a

regularization parameter k2, and the solution is obtained by

multiplying the data with the linear inverse operator:

q̂ ¼ My; ð3Þ

where

M ¼ GT GGT þ k2C
� ��1

: ð4Þ

In the above, C is the noise covariance matrix and k2 is the

regularization parameter adjusting the relative weight of

the two terms in Eq. 2.

One way to set the regularization parameter is to relate it

to the SNR of the whitened data. This approach is de-

scribed in detail by Lin et al. (2006).

MNE is fast to compute, it is thus potentially useful for

real-time source localization. The main goal of this work

was to improve the capability of MNE to handle low SNRs

and to further accelerate the computation for real-time

source localization.

To achieve these goals, we represent regional cortical

activity by a small number of dipoles. We thus preserved

dipoles which could still be distinguished in the presence of

low SNRs. At the same time, we reduced the computational

complexity. To justify the reduction, it had to be assumed

that neural activity is spatially smooth and can be organized

into parcels, representing anatomical units, which in many

cases have a functional meaning. It was further assumed that

nearby dipoles produce very similar MEG signal patterns.

We considered four methods to reduce the gain matrix.

The most obvious method was a selection of a smaller set of

spatially evenly distributed dipoles, which reduces the

computational effort and improves the condition of the in-

verse problem at the same time. We compared this selection

method to three different clustering methods, which are

based on clustering either a high-resolution gain matrix G or

directly the inverse operator M. To our knowledge, the

clustering approach has not been used in real-time source

localization before.

Clustering Methods

By reducing the gain matrix through clustering, we aimed

at the region-wise calculation of the most representative

1 At this point we want to emphasis that everybody is very welcome

to contribute to and to participate of the further development of this

package.

772 Brain Topogr (2015) 28:771–784

123

https://github.com/mne-tools/mne-cpp
https://github.com/mne-tools/mne-cpp


dipoles instead of the arbitrary selection of dipoles which

are not ensured to be representative. In order to preserve

the spatial and anatomical relations when clustering the

gain matrix, an anatomical brain atlas was used to divide

the brain into several anatomical units, which often have a

functional meaning, see Fig. 1.

We employed three different clustering methods: (I) a

clustering based on the gain matrix G, (II) a combined

clustering based on G and the inverse operator M, and (III)

a clustering directly based on the inverse operator M.

Method I

According to the atlas, the gain matrix G can be divided

into a set of s sub-gain matrices:

G ¼ fG1; . . .;Gsg: ð5Þ

Dipoles belonging to these region-related subsets Gi were

clustered into ki clusters using the k-means algorithm

(Lloyd 1982).

Prior to clustering, we whitened the gain matrix with the

spatial noise covariance matrix C estimated from the

baselines of evoked response data:

eG ¼ C�1=2G: ð6Þ

The whitening takes into account different units of measure

(planar gradiometers vs. magnetometers in the Elekta

Neuromag� VectorView
TM

) and different noise levels in the

channels. After whitening, the gain vectors were clustered

region by region:

KðfGiÞ ¼
X
neGi

=ki

r¼1

min
j21...ki

egr � lj
�� ��

p
ðp ¼ 1; 2Þ: ð7Þ

The aim of k-means KðfGiÞ was to calculate the centroid lj,
which was assumed to be a representative dipole of a

cluster, which consists of nGi
dipoles belonging to one or a

part of one region. The L1-norm p ¼ 1ð Þ and the L2-norm

p ¼ 2ð Þ were used and compared as two separate distance

measures within the k-means algorithm. All k-means

cluster indices forming separate dipole centroids can be

concatenated to one cluster operator DeG , which clusters the

original gain matrix G at once:

G� ¼ GDeG ð8Þ

and the corresponding inverse operator is:

MD ¼ DT

eG
GTðGDeGD

T

eG
GT þ k2CÞ�1: ð9Þ

In the following, we refer to this method as IL1 and IL2,

depending on the norm employed in clustering, see Table 1.

The number of clusters ki for each region depends on the

number of dipoles nGi
in each region. It is determined by:

ki ¼ min k 2 Zjki ¼ dnGi

z
e

� �
; ð10Þ

where the cluster size z represents a reduction constant. It

specifies the number of dipoles clustered to one centroid.

The optimal constant z is calculated with the help of the

condition number j of the clustered gain matrix G�ðzÞ
(Sect. 3.1):

jðG�ðzÞÞ ¼ rmaxðG�ðzÞÞ
rminðG�ðzÞÞ

����

����; ð11Þ

where rmax and rmin refer to the maximal or minimal sin-

gular value of the clustered gain matrix G�, respectively. A

lower condition number j represents better conditioned

data. Different cluster sizes z and k-means distance mea-

sures yield different condition numbers j.

The optimal reduction constant z corresponds to the

minimal condition number:

zopt ¼ arg min
z2Z

ðjðG�ðzÞÞÞ: ð12Þ

Method II

In this approach, we applied the cluster indices DeG (Eq. 6)

of Method I to M, thus effectively clustering the source

estimate values based on the full gain matrix:

DT

eG
M ¼ DT

eG
GTðGGT þ k2CÞ�1: ð13Þ

This left the inner term of Eq. 9 untouched:

GDeGD
T

eG
GT : ð14Þ

In analogy with method I, this method is referred to as IIL1

and IIL2 depending on whether the L1- or L2-norm is used

in clustering, see Table 1.

Fig. 1 The Destrieux’s brain atlas (Destrieux et al. 2010), which

divides the cortex into 74 anatomical, often related to functional, units

in each hemisphere
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Method III

In this method the clustering was based on the source

waveforms, i.e., the unclustered inverse operator M, in-

stead of the gain matrix G and we thus obtained the inverse

operator

DT
MTM ¼ DT

MTG
TðGGT þ k2CÞ�1: ð15Þ

In consequence the source space was taken as ground truth,

no matter how sensitive the sensors were to a particular

dipole location.

Method IV

In method IV (the selection method), the reduced gain

matrix G� was created by selecting a subset of equally

distributed dipoles of the original gain matrix G. The se-

lected dipoles then acted as representations of the anato-

mical units each of them belongs to (Fig. 1). This helped to

interpret the result even though the source space was highly

decimated. Furthermore the result was comparable to the

clustering method described in the previous paragraph. In

the following, we refer to the selection method by IV, see

Table 1.

Comparison

The different methods were evaluated by comparing point

spread and crosstalk computed from the resolution matrix

R ¼ MG: ð16Þ

The point spread is a measure on how focal the source

estimation is, i.e., how strong neighbored sources are ac-

tivated together with the actual active source. On the other

hand, the crosstalk is a measure for the activation across

the whole source space including non-neighbored sources.

The columns of R describe the point spread across re-

gions when a given source in the dense source grid is ac-

tive. The relative average point spread w was calculated by

combining all values belonging to one region, i.e., source

activities of one region, divided by the activities of all

regions:

w ¼ 1 � 1

cardð8j 2 mkÞ

P

o2mk

P

j2mk
Roj

P

j2mk

P

o2mk
Roj þ

P

o 62mk
Roj

 ! : ð17Þ

Table 1 Overview of different inverse operators evaluated

Description Complexity

L1 based K-Means

IL1 M based on G� Oðn�m2Þ
IIL1 Cluster M, derive

cluster indeces of eG
Oðnm2 þ nmn�Þ

IIIL1 Cluster M Oðnm2 þ nmn� þ
Ps

i¼1 n
mkiþ1
Gi

log nGi
Þ

L2 based K-Means

IL2 K-means is based on

L2- instead of L1-

norm.
IIL2

IIIL2

No Clustering

IV The number of

selected dipoles is

the same as the

number of centroids

in methods I–III

Oðn�m2Þ

An estimation for the real-time computational burden is given by the

complexity

n� number of cluster dipoles, n number of dipoles, m number of MEG

sensors, ki number of clusters of region i, nGi
number of dipoles of

region i

Fig. 2 Acquisition chain: Data

were collected with

mne_rt_server directly from the

medical or emulated medical

device. Multiple clients, e.g.,

MNE-X, can be connected to

the real-time server
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The current region is referred to as mk. A lower value w
refers to a decreased point spread and is therefore better.

The relative crosstalk v, caused by the activity of one

region towards all other vertices can be found among the

rows of R. Within one row, the vertices belonging to one

cluster mk are put into relation to all vertices.

v ¼ a
aþ b

a ¼ 1

cardð 8j 62 mkÞ
X

j62mk
R2
kj

b ¼ 1

cardð8j 2 mkÞ
X

j2mk
R2
kj

ð18Þ

A lower relative crosstalk has to be preferred.

The Real-Time Processing Chain

The real-time processing chain was realized with two ap-

plications of the MNE-CPP software package Dinh et al.

(2013), see Sect. 1 and Fig. 2.

The first application is mne_rt_server, with a plug-in

based architecture to realize several different medical de-

vice connectors. This application converts the measured

data to a standardized real-time fiff data stream. Fiff is the

file format used by Elekta Neuromag� to store acquired

data. The mne_rt_server fiff data stream can be accessed

over a TCP/IP connection.

The second application is MNE-X, written in Qt C??

(Digia Plc 1991–2014), to acquire and process the data. It

provides the functionality to control the MEG acquisition,

to record the acquired data, and to process them in real-

time. It has a generic plug-in architecture which can easily

be extended. The real-time source localization is realized

as an algorithm plug-in, see Fig. 3.

For real-time localization of evoked responses we em-

ployed a moving average of Ne responses. We assumed that

the fraction of time occupied by the evoked response is

small enough so that we could use the raw data directly to

estimate the noise covariance matrix C.

A new noise covariance matrix C was calculated every

nC samples and the inverse operator was updated

accordingly.

We also computed a noise-normalized estimate (dy-

namic statistical parametric mapping—dSPM) (Dale et al.

2000) to reduce the location bias of the estimates and to

decrease the dependency of the point-spread function on

the source location.

Data Acquisition

As described in Sect. 2.2 mne_rt_server provides several

plug-ins, including the Elekta Neuromag� MEG Vec-

torView
TM

system plug-in and the MEG system emulator

plug-in. Since there is no difference in the processing

pipeline between having an actual subject inside the MEG

room or using a previously recorded raw file as a subject

emulation, we used the emulation plug-in to evaluate the

developed algorithm and to find the optimal adjustments.

The emulation configuration, mne_rt_server together with

the emulation plug-in run on the Neuromag acquisition

workstation, allows the emulation of the study as it would

be carried out in real-time. The emulated data had a sam-

pling frequency of 1250 Hz.

Data of five subjects of the MIND multi-site MEG study

(Weisend et al. 2007; Ou et al. 2007) using two different

auditory recordings for each subject were used to evaluate

the four reduction methods. In the auditory task of this

study, three pure tones of different frequencies (500, 2000,

and 4000 Hz) were presented to obtain a tonotopic map.

The tones were randomly presented with an average inter-

stimulus interval of 1157 � 891 ms. The stimuli were de-

livered to the subject’s ear canal using sound transducers

connected with plastic tubing to ergonomically designed

earplugs. An attenuator was used to adjust the intensity of

the tones. The hearing thresholds were determined indi-

vidually for each subject before the session. The figures in

the following sections were created using one data set of

this study.

Subsequently, we conducted a measurement with the

Elekta Neuromag� MEG system plug-in to confirm the

real-time performance.

Wehner et al. (2008) described the influence of head

movement of children in MEG on source localization. They

used an Elekta Neuromag� MEG VectorView
TM

system as

well. It turned out that source localization is relatively robust

to head movement. It appeared that the frontal cortex is most

prone to localization errors, with a worst case mean error of

12 mm. Localizations within the auditory cortex are more

robust towards head movement. Therefore, we did not include

motion correction in the data processing.

The anatomical model was based on individual MRI

data collected with a Siemens Magnetom� Avanto 1:5 T

Fig. 3 The source localization processing chain; (a) acquired data

stream; independent averaging (b1) or single-trial (b2) and covariance

C estimation (b3); (c) Source localization which estimates sources q̂

using the averaged data yave and the continuously updated inverse

operator M.

Brain Topogr (2015) 28:771–784 775

123



MR scanner. Four different sequences were acquired: two

MPRAGE sequences with a receiver band width of 240 and

650, and two FLASH sequences with a flip angle of 5 and

30 �. The two MPRAGE sequences were used to recon-

struct the motion corrected anatomical structures including

the brain atlas which was performed with FreeSurfer

(Fischl 2012). The volume conductor modeling was done

with the MNE suite (Gramfort et al. 2013) using the

FLASH sequences creating a three layer (outer skin; outer

skull; inner skull) boundary element model. The gain ma-

trix was calculated for approximately 7500 uniformly dis-

tributed dipoles on the white matter surface.

Evaluation

We determined the best performing selection / clustering

method by comparing point spread and crosstalk (Eqs. 17,

18). These two measures were analyzed using nonpara-

metric statistics, since the underlying distribution was not

known. Friedman’s (1937) test was used to determine

whether the distribution underlying the crosstalk and point

spread results are significantly different. In a next step the

Wilcoxon–Mann–Whitney test (Wilcoxon 1945; Mann and

Whitney 1947) was applied to unveil significant differ-

ences between each single method. To counteract the

multiple comparison problem we employed the Bonferroni

correction, which reduces the test threshold pt given by the

significance level p by the number of pairwise comparisons

nc:

pt ¼
p

nc
: ð19Þ

We took the condition as a measure for the robustness of

the inverse problem towards noisy data, i.e., the inverse

problem using a better conditioned gain matrix (Eq. 11) is

less influenced by low SNRs (Eichardt et al. 2012). The

optimal cluster size was found by evaluating the condition

of different sized gain matrices, see Eq. 11. Moreover, the

condition was taken as a figure of merit to reveal whether

the L1- or L2-norm performs better in clustering. The in-

fluence of clustering on the distribution of the dipole sen-

sitivity was analyzed subsequently. The cluster centers of

G� were mapped to the location of the most similar dipole

of the original gain matrix G to obtain their coordinates.

We also evaluated the source localization precision of the

method with the lowest point spread and crosstalk. A

dipole fit based on the MIND data (see Sect. 2.3) was

calculated as reference localization. The dipole fit was

applied to the baseline (�100 to 0 ms pre-stimulus inter-

val) corrected, 1–40 Hz band-pass filtered, averaged data,

which contained all available trials of the left auditory

evoked 500 Hz stimulus fields. The dipole fitting was

performed in the Elekta Neuromag� Xfit software.

The localized ipsi- and contralateral dipoles were map-

ped to their closest corresponding Destrieux’s brain region,

see Fig. 1, which were taken as reference regions. In the

next step, we calculated MNE employing the reduced gain

matrix G� and Ne ¼ 1; 2; 4; 10; and 20. Each localization

was repeated 31 times using different random selections of

trials. The smallest distance between the reference dipole

and the most active localized region was taken as local-

ization error, i.e., the root-mean-square error was calcu-

lated between the reference dipole and the vertex of the

respective region which was closest to the reference dipole.

The most active region was determined based on the source

activity of a single time point (0:12 s) or the average of the

source samples between 0.116–0.124, 0.113–0.127 ms or

0.11–0.13 ms. The average of source samples was calcu-

lated to smooth the estimated source activity, which was

highly transient caused by noise. The error measure was

determined for each hemisphere.

Finally, we verified the real-time performance using the

Elekta Neuromag� MEG VectorView
TM

system. The

overall fixed delay tD, caused by the processing chain was

calculated based on the buffer sizes nbuf and the given

sampling rate fs:

tD ¼ nbuf

2
=fs: ð20Þ

Results

Gain Matrix Reduction

Crosstalk and point spread (Eq. 16) were computed to

determine the best selection / cluster method among those

listed in Table 1. The results for a fixed number of ap-

proximately 416 centroids (z ¼ 20, see cluster size inves-

tigation, next paragraph) over all subject recordings are

shown in Figs. 4 and 7, representing histograms of the

respective parameter in vertical direction. Friedman’s test

on the crosstalk medians (Fig. 5) of each recording showed

with p ¼ 1:3495 � 10�6 a significant difference among the

methods given a significance level of p ¼ 0:05. The

method-wise comparison of the crosstalk medians using the

Wilcoxon-Mann-Whitney test and the Bonferroni correc-

tion showed that the medians of the selection method (IV)

and the original dense gain matrix were significantly dif-

ferent to the other methods’ medians (Table 2). The se-

lection method (IV) and the original dense gain matrix had

the highest crosstalk across all subjects whereas the cluster

based reduction methods (I–III) had similar low crosstalk

values (Fig. 4).

In accordance with the crosstalk analysis we firstly

analyzed the point spread (Fig. 6) with Friedman’s test

776 Brain Topogr (2015) 28:771–784
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which revealed a significant difference of p ¼ 5:7442 �
10�9 between the method’s point spread median distribu-

tions given a significance level of p ¼ 0:05. In the next step

we also calculated the method-wise median comparison

using the Wilcoxon-Mann-Whitney test in connection with

a Bonferroni correction. The results showed that clustering

the inverse operator (method IIIL1
) and the original dense

gain matrix were significantly different across all subjects,

see Table 3. The original dense gain matrix showed the

highest point spread followed by method IIIL1
whereas the

other methods performed similarly well (Fig. 7).

Since the methods IL1
and IL2

had the lowest computa-

tional costs, see Table 1, an improvement in crosstalk of

about 10% compared to method (IV), see Fig. 4, and the
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Fig. 5 Distribution of methods’

crosstalk medians over all

subjects and measurements

Table 2 Method-wise

Wilcoxon–Mann–Whitney test

on the crosstalk given a p ¼
0:05 significance level

IL1
IIL1

IIIL1
IL2

IIL2
IIIL2

IV Original

IL1
1.0 0.4727 0.1212 0.0890 0.2123 0.2413 0.0002 0.0002

IIL1
1.0 0.3447 0.0376 0.0539 0.0890 0.0002 0.0002

IIIL1
1.0 0.0140 0.0257 0.0376 0.0002 0.0002

IL2
1.0 0.7913 0.5708 0.0002 0.0002

IIL2
1.0 0.7913 0.0002 0.0002

IIIL2
1.0 0.0002 0.0002

IV 1.0 0.8501

Original 1.0

The Bonferroni correction reduces the test threshold by nc ¼ 28, which in consequence rejects the null

hypothesis of equal medians for values smaller than pt ¼ 0:0018—italic: equal medians; bold: different

medians. It can be seen that the selection method and original full gain matrix are significantly different to

the proposed cluster methods. Whereas the crosstalk of the selection method (IV) and the original full gain

matrix are the same

Brain Topogr (2015) 28:771–784 777

123



point spread of method IL1
was as good as others, we de-

cided to choose method IL1
as the best performing method.

In the above we used a cluster size which resulted in a

reduced gain matrix containing approximately 416 dipoles.

In the following, we show how we determined the optimal

number of clusters. The best cluster size z was determined

using the condition number j (Eq. 11) as a figure of merit.

Figure 8 illustrates that the condition number has at the

beginning a large descent with increasing cluster sizes.

This changes at a certain point back into a small increase
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Fig. 6 Distribution of method’s

point spread medians over all

subjects and measurements

Table 3 Method-wise

Wilcoxon-Mann-Whitney test

on the point spread given a p ¼
0:05 significance level

IL1
IIL1

IIIL1
IL2

IIL2
IIIL2

IV Original

IL1
1.0 0.2413 0.0003 0.5205 0.4727 0.0539 0.1041 0.0002

IIL1
1.0 0.0004 0.3075 0.2413 0.1620 0.3447 0.0002

IIIL1
1.0 0.0003 0.0003 0.0008 0.0091 0.0002

IL2
1.0 0.5205 0.0376 0.0539 0.0002

IIL2
1.0 0.0312 0.0890 0.0002

IIIL2
1.0 0.7337 0.0002

IV 1.0 0.0002

Original 1.0

We applied the same Bonferroni correction as in the test on the crosstalk, which as a result also rejects the

null hypothesis of equal medians for values smaller than pt ¼ 0:0018—italic: equal medians; bold: different

medians. It can be seen that method IIIL1
and the original gain matrix have significantly different point

spreads compared to the other proposed cluster methods
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with larger cluster sizes. We empirically chose a cluster

size z of 20, which seemed to be a good trade-off between a

low condition number and a small clustered gain matrix for

an accelerated computation. This value reduced our gain

matrix G containing approximately 7500 dipoles to a gain

matrix G� containing approximately 416 dipoles.

Figure 9 visualizes the singular values of the full gain

matrix G and the clustered gain matrices G� using the L1-

and the L2-norm. The k-means clustering with the L1-norm

resulted in an improved condition whereas it decreased

with the L2-norm. The L1-norm clustered gain matrix G�

had fewer dipoles revealing a stronger separation from

each other compared to the original gain matrix G.

The mapping of the cluster centers of G� to the closest

dipole of the original gain matrix G allowed to obtain their

coordinates. The distribution of these dipoles is illustrated
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107Fig. 8 Cluster size z and

corresponding condition number

j. The smallest, meaning the

optimal, condition number can

be found for a cluster size

containing about 11 dipoles.

The applied k-means clustering

uses a L1-norm distance

measure
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Fig. 9 Singular values of the full gain matrix G and the clustered

(L1 & L2) gain matrices G�. The singular values were used to

determine the condition of the gain matrices

Fig. 10 Cluster dipoles (large dots) mapped to the closest dipole of

the original gain matrix (small dots; only shown for the precentral

gyrus). Mapped centroids of the precentral gyrus are colored

differently, referring to the original dipoles (small dots) forming

one centroid. (Color codes do not correspond to the atlas of Fig. 1)

Fig. 11 Topographic plot for a Elekta Neuromag� MEG Vec-

torView
TM

sensor configuration of the reference auditory evoked field.

Data were baseline corrected and band-pass filtered
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in Fig. 10. It can be seen that the distribution almost uni-

formly covers the whole brain. The average values of the

sensitivities in the original gain matrix G were �0:29 �
30:59muT=Am for the gradiometers and �0:04 �
44:67 lT=Am2 for the magnetometers. The mapping of the

centroids of G� caused a deviation of �0:06 �
5:97 lT=Am for the gradiometers and �0:05 �
5:26 lT=Am2 for the magnetometers. Since this difference

is relatively high, the centroids were used to construct G�

instead of the closest dipoles of G.

Noise Covariance Estimation

The noise covariance matrix was estimated in real-time and

was used to calculate a new inverse operator M, which was

therefore adapted to the present noise. The ergodicity was

taken as description to determine the number of samples for a

valid estimation of the noise covariance matrix.

The target ergodicity value change of less than 5% was

reached when an interval of 4 s was used. Within our mea-

surements we applied a sampling frequency of 1250 Hz,

which resulted in a new covariance matrix estimation every

5000 samples. The data segments did not overlap.

Source Localization

First, the reference localization data were created by av-

eraging all available 99 left ear auditory stimulus responses

of one exemplary subject, which were subsequently base-

line corrected and band-pass filtered, as described in

Sect. 2.4. The reference data is shown in a topographical

layout in Fig. 11.

A dipole fit for each hemisphere was calculated as reference

localization, see Sect. 2.4. The results are shown in Fig. 12.

The reference dipoles were then mapped to the closest

atlas region in both hemispheres. The obtained reference

regions refer to the superior temporal sulcus for the ipsi

and anterior transverse temporal gyrus (of Heschl) for the

contra lateral hemisphere.

Method IL1
, using MNE (see Table 1), was now com-

puted in the clustered source space. The localization error

between reference and localized region was calculated as

described in Sect. 2.4. The results are shown in Fig. 13.

The results for a sample-wise reconstruction were low-

est for localizations based on 10–20 averages. For the

following analysis we decided to consider averages in-

cluding 10 epochs, which allowed to have a good trade-off

between the aim to monitor changes in the activity and the

necessary noise reduction for a higher localization preci-

sion. One localization result based on the average of 10

randomly selected epochs from the example data set is

shown in Fig. 14, which shows the waveforms of the

sources over time as well as the mapped source activity at

the N100 of the left auditory stimulus.

Finally, we verified the real-time delays with the Elekta

Neuromag� VectorView 306
TM

MEG device. We were able

Fig. 12 The dipole fit, which was used as reference source localization. The dipole fit was created with the Elekta Neuromag� Xfit source

localization toolbox. T - post stimulus time; r - location in the head coordinate system; gof - goodness-of-fit
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Fig. 13 This Figure shows the localization error between reference

and localized most active region. The most active region for each

hemisphere was determined based on the source activity of one time

point (0.12 s) or the average of source samples within an interval

(0.116–0.124 s; 0.113–0.127 s; or 0.11–0.13 s).

Fig. 14 N100 dSPM localization result of a left auditory stimulus using 10 averages. The upper part visualizes the cluster activation of all

clusters over time. The corresponding topography on the white matter surface for the time point 12 s after the stimulus is shown at the bottom
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to verify that localization results of the MNE can be pro-

vided in real-time. Sampling rates up to 1250 Hz and a

clustered gain matrix mapping 416 regions to 306 MEG

sensors were handled by the processing chain. The internal

sample buffer of the MEG device had a minimal size of at

least 28 samples. That led to an average delay of 11:2 ms

given a sampling rate of 1250 Hz. The computation of

MNE for all samples within a 10 ms window took only

3.36 � 0.97 ms and was, therefore, faster than the delay of

the MEG system, which allowed to follow the data stream

in real-time. This caused an overall average delay of ap-

proximately 15 ms, when the inverse calculation was di-

rectly applied to the real-time data stream.

Discussion

Real-time source localization involves two major chal-

lenges: low SNR and the limited time available for the

computations. We addressed both issues by reducing the

gain matrix. The computational cost was thus reduced and

at the same time sources were easier to distinguish in the

presence of noise, i.e., the inverse problem was better

conditioned, and the crosstalk as well as the point spread

were reduced.

We compared seven different reduction methods, see

Table 1, and the original dense gain matrix. The results in

Sect. 3.1 show that all gain matrix clustering methods led

to a significant reduced crosstalk compared to selecting a

fewer amount of dipoles or the original dense gain matrix.

The point spread was reduced compared to method IIIL1

and the original dense gain matrix. In contrast to simple

selection, the proposed clustering approach IL1
ensures that

the reduced sampling of the source space is spatially and

anatomically representative for the respective region.

Method IL1
reduces the gain matrix by calculating rep-

resentative dipoles per parcellation, increasing the ability

to distinguish regions even in the presence of a low SNR,

which is indicated by the better condition (Fig. 8). This

method had the lowest computational cost, showed a sig-

nificant improved crosstalk compared to the selection

method (IV) and the point spread performed similarly.

Thus it was selected for the further examinations. The in-

verse calculation was applied to a reduced number of

dipoles at the same time and could therefore be performed

with ordinary workstations in real-time.

However, both real-time challenges were met at the

cost of the resolution in space and sensitivity. First, only

regions could be localized. Second, the k-means algo-

rithm reduced the spread between the dipoles of the

clustered gain matrix G�, increasing the condition j of

the clustered gain matrix G� and therewith the ill-

posedness of the inverse problem. This effect was even

more prominent when the L2-norm was applied, whereas

the L1-norm helped to preserve a stronger separation

between the cluster centers.

The number of centroids per region was determined by the

cluster size and was also evaluated. A large cluster size is

favorable in terms of computation cost, but on the other hand

possibly averages out dipole diversity. We determined the

size by evaluating the condition for different cluster sizes

(Fig. 8) from a full gain matrix with approximately 7500

dipoles. Also, taking into account the calculation speed, a

cluster size containing 20 dipoles was favored.

The presented method showed a high localization pre-

cision when applied to raw data streams. Auditory re-

sponses on the cortex were localized with small error using

averages of only four trials. The activation was correctly

localized at and around the superior temporal gyrus. The

comparison to a dipole reference localization was suc-

cessful and showed good performance.

Since Wehner et al. (2008) found that source local-

ization is relatively robust towards movement of the

head, we did not apply a head movement correction in

the real-time processing chain. However, an increase of

the localization accuracy can be expected when head

movement correction is applied. We are currently de-

veloping strategies of head movement corrections in the

related BabyMEG project (Papadelis et al. 2013), which

we will apply in future.

The results showed that the clustering performs well

using the k-means algorithm. However, we are aware of the

limits of k-means, i.e., dependency of the initialization,

number of clusters must be known and the convex nature of

the clusters. In future work, we will investigate further

clustering algorithms, e.g., density-based spatial clustering

of applications with noise (DBSCAN).

Babadi et al. (2014) recently proposed a clustering

technique which uses the most significant eigenmodes of

pre-computed Voronoi regions. In comparison to that, we

used an anatomical brain atlas instead of Voronoi regions

which allows to keep an anatomical, often related to a

functional, representation of the cortex and provides an

easily interpretable result for our real-time monitor.

Furthermore, by calculating clusters using k-means we

were able to cluster a free orientated gain matrix and

were still able to calculate a reduced gain matrix.

Another gain matrix clustering method was introduced by

Chowdhury et al. (2013), which determines the clusters

on a pre-localization basis and is therefore data driven.

Here we propose a model-driven clustering which is

based on the electromagnetic characteristics of the gain

matrix. This allows us to conduct real-time localization

without knowing the source estimates in advance.
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Conclusion

We demonstrated that the selected real-time source local-

ization approach can correctly locate sources of stimulus-

locked activity in real-time. We showed that the source lo-

calization results can be calculated almost in real-time with

an average delay of approximately 16 ms up to a sampling

frequency of 1250 Hz for 306-channel MEG data. We an-

ticipate that the presented approach is suitable for several

scenarios, e.g., the visualization and monitoring of ongoing

activity to give a real-time feedback, to refine the localiza-

tion within the most active regions followed by a subsequent

high-resolution source localization, and to increase the ac-

curacy of BCIs based on regional brain activity estimates.
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