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Abstract This paper reviews the fundamental concepts

and the terminology of wetting. In particular, it focuses on

high temperature wetting phenomena of primary interest to

materials scientists. We have chosen to split this review

into two sections: one related to macroscopic (continuum)

definitions and the other to a microscopic (or atomistic)

approach, where the role of chemistry and structure of

interfaces and free surfaces on wetting phenomena are

addressed. A great deal of attention has been placed on

thermodynamics. This allows clarification of many

important features, including the state of equilibrium

between phases, the kinetics of equilibration, triple lines,

hysteresis, adsorption (segregation) and the concept of

complexions, intergranular films, prewetting, bulk phase

transitions versus ‘‘interface transitions’’, liquid versus

solid wetting, and wetting versus dewetting.

Introduction

High temperature capillarity is an important scientific and

technological field of research. The degree by which a liquid

wets a solid is an important technological parameter for pro-

cesses such as joining [1–6], solidification [7–9], and com-

posite processing [10–14]. While wetting is a measure of the

‘‘energy’’ of interfaces between bulk phases, and thus a

parameter associated with equilibrium thermodynamics, the

rate by which a liquid spreads in contact area with a solid is

equally important for technological processes [15–17]. Fun-

damentally, wetting depends on the chemical content and

atomistic structure of the bulk phases and the interface itself.

This review first attempts to identify phenomena related to

wetting between phases, and then proceeds to describe how

these phenomena may be modified by the presence of

adsorption (segregation). This includes the role of anisotropy

of crystalline materials in wetting, and the heterogeneity and

roughness of surfaces, and we clearly separate between

equilibrium (wetting) and kinetics (spreading).

While solid–liquid interfaces are often important for

materials processing, it is the solid–solid interface which

frequently determines the mechanical and functional

properties of the final material system. It is the solid–solid

interfacial energy which defines the nominal energy

required to fracture a solid at a join, ignoring irreversible

processes and deformation [18–20], and thus measuring

and decreasing solid–solid interface energy offers an

engineering approach for the optimization of mechanical

properties via fundamental interface science [21, 22]. As

such we have explicitly reviewed the concept of solid–solid

wetting, how solid–solid interfacial energy and the ther-

modynamic work of adhesion can be experimentally

measured, and how the anisotropy of crystalline materials

must be taken into account.
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Finally, we have reviewed the fundamentals of adsorp-

tion at the thermodynamic, or macroscopic, scale, and why

adsorption must be considered in the analysis of both

wetting and wetting transitions. Adsorption has also been

considered at the level of the local atomistic structure, first

with regard to excess distribution and then by using the

concept of interface complexions. It is our hope that this

review will demonstrate to the reader that fully under-

standing wetting phenomena requires the concept of com-

plexions, and that including complexions offers the

possibility to merge continuum and atomistic approaches to

interface science.

Interfaces and their energies

In what follows, the term interface is used in a generic

sense to indicate any region of a material that separates two

distinguishable bulk phases. Typically, the interface can be

treated as a thin slab in which the features which distin-

guish the two bulk phases vary from one bulk material to

another, or it can be replaced by a mathematical plane. This

general definition of the term interface naturally includes

the surface of a solid in contact with a gas phase, and the

boundary between two grains of the same phase, but with

differing orientations (a grain boundary). The term ‘sur-

face’ is reserved for the subset of interfaces between con-

densed phases and their equilibrium vapor. As is now well-

known, if at least one of the two phases separated by an

interface is crystalline, then the energy1 of that interface, c,

may be anisotropic, i.e., it may depend on the crystallo-

graphic orientation of the interface with respect to the

crystalline phase(s), and the misorientation of the abutting

phases if they are both crystalline. To simplify the pre-

sentation, we will treat wetting from the simplest case and

progress to more complex systems.

Macroscopic wetting of a liquid on a rigid solid

substrate

Wetting phenomena involve interactions among three

separated volumes, which abut three interfaces and meet at

a triple line. The Young contact angle, hY, of a wetting

phase on a rigid substrate (or wetted phase) is related to the

interfacial energies by the Young equation, written here for

a liquid wetting phase (L) on a solid substrate (S) in a vapor

phase (V):

cos hY ¼
cSV � cSL

cLV

ð1Þ

where cij are the energies of the three interfaces ij, and

i and j are the phases that coexist at equilibrium. As such,

at equilibrium hY reflects the relative interfacial energies of

the system.

This equation corresponds to the vector equilibrium

obtained by representing the energies of the three interfaces

at the triple line as interfacial tensions projected onto the

solid plane (see Fig. 1)2 [23]. It can also be derived from

the values of the interfacial energy densities. Young’s

equation will apply only if these interfacial energies are

isotropic.

At the macroscopic scale, a liquid on a flat horizontal

solid surface (or substrate) adopts a shape generally

referred to as a sessile drop (see Fig. 2a). The Young

contact angle, hY, at the solid–liquid–vapor triple line, must

Fig. 1 Young, or equilibrium, or intrinsic contact angle and inter-

facial energies

Fig. 2 Examples of a sessile drops and b capillary rise of water and

depression of mercury on a same glass surface. The contact angle for

a given three-phase system does not change with the macroscopic

shape of the solid

1 c is technically an interfacial energy density, or free energy per unit

area. It is traditional to call c the interfacial (or surface) energy, which

may be confused with the total interfacial energy
R

cdA: In the bulk of

our paper we will discuss means by which c can be changed, and if we

refer to
R

cdA we will specifically state this.

2 The surface tension may differ in value from the surface energy.

Technically, the surface tension is a tensor quantity [23].
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be measured in a plane perpendicular to both the substrate

and the triple line.

Under the influence of gravity, the shape of the drop

changes as the result of an equilibrium between competing

forces due to capillary pressure (under which the drop

would adopt the shape of a spherical cap) and hydrostatic

pressure (under which the drop would spread and flatten),

but the equilibrium contact angle hY does not change due to

the influence of gravity. The capillary length, Lc, is a

characteristic length scale for a liquid surface subject to

both pressures:

Lc ¼
ffiffiffiffiffiffiffiffiffi
cLV

Dqg

r
ð2Þ

where Dq is the difference in density between the two

fluids coexisting at the surface, and g is the acceleration

due to gravity. Drops smaller than Lc will remain spherical,

whereas larger drops will flatten.

For a given solid–liquid–vapor system, the Young

contact angle does not depend on the macroscopic shape of

the solid if the solid is smoothly curved. For example,

when the solid is in the shape of a small vertical tube, the

contact angles inside and outside the tube are identical to

that of a sessile drop of the same liquid on a planar sub-

strate of the same solid. If the contact angle is less than 90�
(greater than 90�), then the liquid on the interior of the tube

will rise (be depressed) as shown in Fig. 2b; this is the

phenomenon of capillary rise or depression. The length of

the rise is set by the contact angle on the interior of the

cylinder, by Lc, and by the difference in liquid curvature

between the inside and outside liquid surfaces (the curva-

ture difference supports the hydrostatic pressure created by

the capillary rise: see Fig. 2b). Cases for a surface which is

not smooth will be dealt with in subsequent sections.

Again, the height of the liquid in the tube results from a

balance between the capillary and hydrostatic pressures.

In addition to the contact angle, the thermodynamic

work of adhesion (Wad) is often used to compare the rel-

ative interfacial and surface energies of a particular system.

Wad is the work per unit area necessary to separate an

interface of interfacial energy cSL into two equilibrated

(i.e., including any adjustments of surface energy due to

adsorption or reconstruction) surfaces of energies cLV and

cSV:

Wad ¼ cLV þ cSVð Þ � cSL ð3Þ

It is important to differentiate between the thermodynamic

work of adhesion and the work of separation. The work of

separation is often used in fracture analysis, or in atomistic

simulations, to define the difference in energy between an

equilibrated interface and the two surfaces created

immediately after the interface has been separated (i.e.,

before the newly created surfaces have reached equilibrium).

Since the surface energy is a minimum at equilibrium, the

work of separation is larger than the work of adhesion. If all the

interfaces are isotropic, then by combining Eq. (3) with

Young’s equation (1), Wad can be expressed as a function of

the contact angle (the Young–Dupré equation):

Wad ¼ cLV 1þ cos hð Þ ð4Þ

This is a very useful relationship since it expresses Wad in

terms of two experimentally measurable quantities in

solid–liquid–vapor systems: cLV and hY.

In principle, contact angles can have any value between 0�
and 180�. Materials scientists working with inorganic mate-

rials at high temperature tend to distinguish between two types

of systems, ‘‘good wetting’’ systems where hY \ 90�, and

‘‘bad wetting’’ systems, hY [ 90�. This nomenclature is

related to the ability of a liquid to spontaneously rise within an

ideal vertical capillary tube when hY \ 90�. For an isotropic

system consisting of a droplet trapped between two flat

coplanar plates, the capillary force between the plates is only

negative (pulling the plates towards each other) when

hY \= 90�. When hY [ 90�, the capillary force can have

either sign and the plates have an equilibrium separation at

zero force (see Cannon and Carter [24, 25] for a derivation of

this phenomenon as well as a variational formulation of the

equilibrium shapes, and the boundary conditions to Euler’s

equation which must be satisfied by the Young–Dupré equa-

tion). We prefer the use of the nomenclature: ‘‘Partial wetting’’

for any contact angle between 0� and 180� (see Fig. 1).

Instead of partial wetting, scientists who deal with organic

systems use the terms ‘‘wetting’’ and ‘‘non-wetting’’ to

describe systems which display contact angles that are zero

or positive, respectively. To avoid confusion, we will use the

terminology ‘‘complete’’ or ‘‘perfect’’ wetting when the

contact angle is zero, and ‘‘non-wetting’’ when the contact

angle is 180�; thus the limiting conditions of partial wetting

are complete (or perfect) wetting and non-wetting.

The observation of a continuous layer at an interface

does not necessarily imply perfect wetting. Such observed

layers may not correspond to an equilibrium phase, but

rather to an interfacial layer which minimizes the total free

energy by local adjustment of structure, density, and/or

chemical composition. The name ‘‘complexions’’ has

recently been assigned to such layers. This is an important

issue which will be addressed in detail in sections

‘‘Microscopic scale and adsorption’’ and ‘‘Complexions’’.

Complete wetting requires that the interfacial layer be an

equilibrium bulk phase that coexists with its abutting

phases (or phase). Thus, in a given system, it is essential to

verify that a wetting phase conforms to the coexistence

conditions of the corresponding phase diagram. In addition,

the relevant phase diagram must include any species that

are present in the interfacial regions, including those

present in the vapor phase, because even at very low partial
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pressures, certain species may be adsorbed at the surfaces

and interfaces (such as oxygen at metallic and oxide sur-

faces/interfaces). See ‘‘Panel 1’’.

When the contact angle is 180�, wetting is ‘‘null’’. In

this case, it is the vapor phase that completely wets the

solid at coexistence with the liquid. Apparent contact

angles close to 180� can be obtained when the morphology

of the solid surface is specifically designed to reduce the

actual contact between the liquid phase and the entire area

of the solid surface. This ‘‘super-hygrophobic’’3 phenom-

enon [26], originally referred to as ‘‘composite wetting’’

[27] and recently renamed the ‘‘lotus effect’’, will be

described in greater detail in the next section.

Panel 1: influence of oxygen adsorption on copper

surfaces

The influence of oxygen adsorption on copper surfaces

is used here as an example of the effects of adsorption

on properties. Figure P1-1 shows the change in surface

energy of liquid copper as a function of H(PO2) where

P(O2) is the oxygen partial pressure (atm). The figure

shows the significant decrease in surface energy (by

about 40 %) that can be produced by exposure to an

environment that contains a relatively low oxygen

partial pressure.

Figure P1-2 illustrates the influence of equilibration

of a solid copper crystal in two different oxygen partial

pressures. The micrographs on the left shows a crystal

equilibrated at 1253 K in an oxygen partial pressure of

10-18 atm. Under these conditions oxygen adsorption is

negligible, and the copper crystal displays an equilib-

rium crystal shape (ECS) that is essentially identical to

that of pure copper at this temperature [28]. This ECS

consists of small {111} and {100} facets, with all

possible surface orientations present, so that the facets

merge smoothly into the curved portions of the ECS.

The photomicrograph on the right corresponds to

equilibration at 1253 K in an oxygen partial pressure of

10-12 atm. Here, the ECS also displays {111} and

{100} facets, but in contrast to the picture on the left,

some surface orientations are missing. As a result, the

facets have sharp edges, and are therefore more easily

identified.

There have been relatively few reports on the changes

in the ECS by adsorption effects. However, there is one

study where the ECS of Pb has been investigated as a

function of temperature for two different bulk compo-

sitions of ternary Pb–Bi–Ni alloys [29].

Wetting on heterogeneous substrates

An actual solid surface is often macroscopically rough and

spotted with chemical heterogeneities. This is one of the

main, and often forgotten, origins of scatter in contact

angle data. When a wetting experiment is performed with a

liquid drop of a size that is much larger than the surface

defects of the substrate, the measured macroscopic contact

angle depends not only on the wetting of the liquid on these

defects but also on the path followed by the triple line of

the drop prior to the contact angle measurement [30].

Understanding the factors that control the position of the

triple line on an imperfect substrate is important. Indeed,

micro-patterning of surfaces with geometric and/or chem-

ical features can be used to produce contact angles that

cannot be inferred from the Young equation. This may be

Fig. P1-1 Variation of the surface energy of liquid copper with

oxygen partial pressure at 1373 K [150]

Fig. P1-2 Micrographs of copper crystals equilibrated at 1253 K

(0.9 Tm) in H2/H2O mixtures corresponding to oxygen partial

pressures of either 10-18 atm (a), or 10-12 atm (b)

3 The reader will more often find in the literature use of the term

‘hydrophobic’ (or ‘hydrophilic’) rather than hygrophobic (or hygro-

philic). Hydrophobic (or hydrophilic) necessarily deals with very

specific case of wetting of a surface by water whereas the terms

hygrophobic or hygrophilic refer to general liquids. The reader is

referred to the recent publication by Marmur for applications of

terminology in wetting [26].
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referred to as ‘‘apparent wetting’’. In the following, expla-

nations are provided through some simple examples.

Wetting on rough surfaces

The wetting of a drop on rough surfaces with simple geom-

etries has been addressed theoretically by Huh and Mason

[31]. A randomly rough substrate resembles a landscape of

hills and valleys on which the contact angle corresponds

locally to the intrinsic (or Young) contact angle of the sur-

face, hY. The deviation of the local tilt angle of the substrate

from the average plane of the solid surface is defined as d.

Figure 3 shows a schematic of a 2D saw-tooth roughness

where the slopes are ?d and -d (d[ 0). On this simple

model of 2D roughness the macroscopic contact angle,

measured at the intersection of the macroscopic shape of the

2D drop by the average plane of the substrate, can take on any

value between the minimum and the maximum local angles

of hY - d and hY ? d, respectively. These extreme angles

can be achieved by moving the triple line of the drop inwards

or outwards, and are referred to as the minimum receding and

the maximum advancing contact angles. The difference

between these two angles defines the maximum wetting

hysteresis, which is equal to 2d.

Within the range of hysteresis, there is one value of

contact angle which corresponds to a minimum in the total

interfacial energy of a sessile drop on a microscopically

rough substrate; it is known as the Wenzel contact angle

[32]. It takes into account the increase in the areas of the

solid/liquid interface due to the roughness. If (1 ? K) is the

ratio of the actual to the geometric solid/liquid interface,

the Wenzel equilibrium contact angle, hW, is written as

follows:

cos hw ¼ ð1þ KÞ cSV � cSL

cLV

¼ ð1þ KÞ cos hY ð5Þ

Since K is positive, the Wenzel angle is always larger than

the Young contact angle. The lower limit of defect sizes

that must be included in K is still unknown. This can be an

issue in the case of fractal roughness, where K tends

towards infinity.

Figure 3 presents a sketch of the total interfacial energy

curve as a function of the macroscopic contact angle to

illustrate wetting hysteresis, and the possible sticking of the

triple line in several metastable states. It is inspired by

calculations performed for a meniscus on a vertical saw-

tooth plate [33], in which the total interfacial energy is

taken to be the sum of three terms; i.e., the energy of each

interface multiplied by its area. Within a certain range of

macroscopic contact angles there are local minima which

are separated by energy barriers. The absolute minimum of

the curve corresponds to the Wenzel contact angle. Mac-

roscopic contact angles smaller than hW, corresponding to

local minima, can be reached by receding the triple line,

and conversely, angles larger than hW can be reached by

advancing the triple line. The smallest macroscopic contact

angle corresponding to a minimum is the minimum

receding contact angle (hY - d). Conversely, the largest

macroscopic advancing contact angle is (hY ? d). Their

difference defines the width of the wetting hysteresis.

Wetting on chemically heterogeneous surfaces

A similar type of equilibrium macroscopic contact angle

can be defined for a solid with a randomly heterogeneous

surface. Consider a surface consisting of two different

solids, 1 and 2, with contact angles hY1 and hY2 and area

fractions f and 1 - f, respectively. Unlike the case of

roughness, we only consider one type of defect (of solid 2) on

which the contact angle is either smaller or larger than that of

Fig. 3 Wetting on a saw-tooth rough surface. F = cLVALV ?

cSVASV ? cSLASL and the minimum is at hW: the first minimum on

the left of the minimum is at hY - d and the last one, on the right is at

hY ? d. The diagram can also be used for the case of heterogeneous

surfaces. Then, the Wenzel angle becomes the Cassie angle, but the

minimum receding angle (maximum advancing angle) becomes the

Cassie angle if the Young contact angle of the chemical defects is

higher (lower) than the one on the clean surface
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the clean surface (solid 1). Then, the Cassie equilibrium

contact angle, hC, is given by the following relation [34]:

cos hC ¼ f cos hY1 þ ð1� f Þ cos hY2 ð6Þ

As in the case of rough surfaces, wetting hysteresis also

occurs on chemically heterogeneous surfaces. However, in

the case of a binary flat surface, the wetting hysteresis does

not range across the Cassie contact angle, but rather shifts

either between the Cassie angle and a higher contact angle or

between a lower contact angle and the Cassie angle. This is

because better wetted defects do not cause the advancing

triple line to stick and thus do not affect the apparent contact

angle, whereas they do cause the receding triple line to stick,

thereby inducing smaller contact angles, and vice versa [35].

Other comments on wetting on heterogeneous surfaces

A liquid drop with a triple line that advances or recedes on a

surface with disconnected holes, into which the liquid

cannot penetrate (hygrophobic wetting [26]), behaves as if

it was on a binary surface with one phase having a 180�
contact angle. In that case, the Cassie contact angle is

related to the surface fraction of holes through Eq. (6), and

the triple line can only stick upon advancing. Consequently,

on this kind of surface, the wetting hysteresis always ranges

between the Cassie contact angle and higher contact angles

[36]. For a very high surface fraction of holes the wetting

becomes ‘‘superhygrophobic’’. Both the advancing and

Cassie contact angles approach 180�, and wetting hysteresis

disappears. This is the origin of the ‘‘lotus effect’’.

When sessile drop measurements are performed, the

macroscopic contact angle must be extracted from the

overall shape of the drop truncated by the substrate plane.

The Wenzel and Cassie contact angles are difficult to

measure because the respective absolute minima of the

total interfacial energy are surrounded by the highest

energy barriers, as shown in the sketch of Fig. 3 [33]. Thus,

the measured macroscopic contact angles rarely correspond

to hY, hW, or hC, but rather to some arbitrary angle

somewhere within the range of wetting hysteresis. The

values measured for the macroscopic contact angles

depend strongly on the location of the triple line, which

itself depends on local pinning. The location of the triple

line is related to the way in which the liquid drop is formed

on the substrate. As an example, Fig. 4 shows the strong

effect of micron-sized heterogeneities on the shape of the

triple line of a solidified tin droplet; it is pinned on silicon

squares, that are better wetted than the silica matrix sur-

face, which produces the wandering of the triple line.

Many other phenomena, such as anisotropic wetting/

spreading of the drop and its motion, can take place on

patterned substrates when the size of the surface pattern is

of the order of the drop size [37]. Control of surface fea-

tures also allows control of drop and triple line shapes [38].

The literature on these topics is enormous, especially in the

field of room-temperature wetting.

In this section, phenomena that can lead to metastable

wetting states, i.e., triple line positions, have been described.

It should be emphasized that the measured contact angle will

depend on the metastable state in which the triple line is

trapped. Different states can be reached depending on the

kinetics of the triple line, which have not been addressed

specifically in this paper. However, the reader should be

warned that the correct interpretation of a measured contact

angle requires a thorough characterization of both the drop

and the solid substrate on which the wetting experiment is

performed, and on the manner in which the triple line has

reached its location on the substrate.

Contact angles near triple lines: interaction

between interfaces

In the vicinity of the triple line, the distance between

interfaces becomes very small, which can lead to interac-

tions between them. These interactions occur because of

the finite thickness of interfaces (as described in later

sections), and can in turn produce local distortions of the

liquid surface, which may be displaced either towards or

away from the solid/liquid or the solid/vapor interfaces, as

depicted in Fig. 5. These distortions can produce excess

energies of the order of 10-9 J/m if assigned to the triple

line (see for example [39, 40]). As a result of these dis-

tortions, a contact angle defined by the equilibrium of the

macroscopic interfacial energies should never be measured

Fig. 4 Secondary electron micrograph of the triple line of a solidified

droplet of tin attached to silicon squares organized on a silica surface.

The edge of the silicon squares is 50 lm (3D triple line). The inset

shows a lower magnification micrograph where the silicon squares are

white, the silica surface is dark, and the edge of the drop with its

wandering triple line is light gray
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too close to the triple line. As mentioned before, the best

approach for measuring a macroscopic contact angle is to

fit the shape of the liquid surface with a relevant function

and truncate that shape by the substrate plane.

Wetting on unconstrained isotropic substrates

Wetting on a deformable substrate such as a liquid, shown

schematically in Fig. 6 is characterized by a dihedral angle,

/, within the lenticular cap of the partially wetting phase.

In the case of a three-phase, liquid 1 (L1)–liquid 2 (L2)–

vapor (V) system in which all surface energies are isotro-

pic, the dihedral angle is related to the interfacial energies

by the Neumann relationship:

cL1V

sin b
¼ cL1L2

sin a
¼ cL2V

sin /
ð7Þ

The equilibrium shape of the confined phase

corresponds to the minimum of the total interfacial

energy which is the sum of the energy of each interface

multiplied by its area. In order for the total interfacial

energy to be minimized, the interfaces between L1 and L2

and the L1 surface, which confine the L1 drop, adopt the

shape of spherical caps. The schematic in Fig. 6 is valid in

the absence of buoyancy, and for isotropic interfaces; with

buoyancy the L2V interface will be curved. When the L2V

interface is flat, the values of surface and interface energy-

weighted curvatures on the two sides of the L1 lens must be

equal: cL1V/RL1V = cL1L2/RL1L2 For the case illustrated in

Fig. 6, it should be emphasized that the ‘‘apparent contact

angle’’ above the level of the flat surface of the substrate is

not related to the interfacial energies by Young’s equation

(1).

An isotropic particle embedded in an internal interface

will also adopt a lenticular shape, and the wetting may be

characterized by the dihedral angle, /, of the particle at the

triple junction. A dihedral angle may also be used to

describe the equilibrium angle at the groove that forms at

the intersection of a grain boundary (or two-phase bound-

ary) with another interface (see Fig. 7). The dihedral angle

shown in Fig. 7a relates the energies of the interfaces on

each side of the groove, c1 and c2, to the boundary energy,

c12, as expressed by the Neumann equation (Eq. 7). This

condition may also be expressed as a vector equilibrium

resolved in the horizontal and vertical directions:

c1 cos /1 þ c2 cos /2 ¼ c12

c1 sin /1 ¼ c2 sin /2

/1 þ /2 ¼ /

ð8Þ

It is more usual to find the dihedral angle at a grain

boundary defined by Eq. (9), with the restriction of a

symmetrically shaped groove (where ci1 = ci2 = ci) (see

Fig. 7b, c).

cos
/
2
¼ c12

2ci

ð9Þ

Note that the shapes of the surfaces around the groove

are kinetic shapes [41] but the angle at the groove is an

equilibrium angle.

Fig. 5 Sketch of the deviation of the liquid surface at the triple line

of a sessile drop under the influence of attractive interactions between

two surfaces on the apparent (hAtt) contact angle, versus the influence

of repulsive surface interactions leading to an apparent contact angle

(hRep) approaching 90�

Fig. 6 Wetting on a deformable surface and the resulting lenticular-

shaped drop with dihedral angle /

Fig. 7 Wetting and grooves at internal interfaces: a general case,

b and c classical sketches for a symmetrical grain boundary groove

equilibrated under two different mechanisms of solid diffusion

[41, 79]
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Wetting and anisotropic interfaces

The assumption of interfacial energy isotropy is only valid

for the interfaces of fluids and amorphous solids, whereas

interfaces that involve crystalline solids (or liquid crystals)

are anisotropic. Interface anisotropy issues are addressed in

two subsections. The first one will describe the wetting of a

crystal on a flat substrate, and the second one, the wetting

of an unconstrained anisotropic substrate.

Equilibrium crystal shape

First, it is useful to introduce the concept of the ECS, or

Wulff shape, of a crystal equilibrated in a vapor phase (see

Fig. 8). The ECS can be obtained from a polar plot of the

orientation dependence of surface energy (c=n̂), the so-

called c-plot, by means of the Wulff construction [42]

(where n̂ is a unit vector normal to the surface). The ECS is

convex and conveniently centered on a point referred to as

the Wulff point. It may display facets (atomically flat sur-

faces of given orientations) and curved surfaces (atomically

rough orientations). Facets occur at orientations that corre-

spond to cusps on the c-plot. The deeper the cusp, the lower

the surface energy of this orientation, and the larger the

corresponding facet on the ECS. All the orientations which

exist on the ECS are stable. All orientations will be stable for

the case of an ECS with facets, when facets and curved parts

connect tangentially (see Fig. 8b). If a discontinuous (sharp)

connection appears on the ECS, some orientations will be

missing and thus unstable (see Fig. 8c) [43]. For example,

for a face-centered cubic (fcc) crystal with an ECS in the

shape of a cubo-octahedron, consisting of the {111} and

{100} facets, these will be the only two stable orientations.

The unstable orientations have a virtual energy, which

cannot be measured experimentally. Such orientations

decompose into micro-facets of the adjacent stable orien-

tations present on the ECS (Fig. 8c). Their effective energy

can be extracted from the ECS as suggested by Herring [44]:

c ¼ 1

a0

X

i

ciai ð10Þ

where a0 is the area of the unstable plane, i represents the

stable facet types, and ai and ci are the ith facet area and

surface energy, respectively (see Fig. 8d).

Solid-state wetting

Until this point we have dealt primarily with the concepts

involved for wetting of a liquid in contact with a solid.

These issues are important for a fundamental understand-

ing of solid–liquid interfaces, and critical for engineering

methods which depend on solid–liquid interfaces, such as

solidification, soldering, and brazing. However, solid–solid

interfaces are equally important for numerous technologi-

cal applications as well as for fundamental studies. One

fundamental goal of solid-state wetting analysis is to extract

the interfacial energy between two solids. This important

fundamental parameter can be used in the Young–Dupré

equation (Eq. 4) to obtain the thermodynamic work of

Fig. 8 Equilibrium shapes and faceting: a 2D c-plot and equilibrium

shape of a crystal; b two 2D equilibrium shapes, the left one with all

the orientations and the right one with missing orientations where the

shape has singularities; c 3D equilibrium shape of an fcc crystal with

only three types of stable orientations ({111}, {100}, and {110});

d break-up of an unstable facet into two facets with energy c1 and c2.

On the right of c, two AFM micrographs show microfacetting of

unstable orientations between two stable facets or three stable facets
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adhesion for solid–solid interfaces, which defines the lower

limit of the fracture energy of an interface (ignoring dissi-

pative processes) [45].

Why contact angles of solid crystals on a substrate

should not be used?

Given the approach of Young described previously, the

natural tendency of the experimentalist is to simply measure

the apparent contact angle of an equilibrated crystal on a flat

solid substrate, as is done in the sessile drop experiment.

Unfortunately this approach is overly simplistic, and ignores

the influence of the anisotropic crystal shape on the apparent

contact angle. This problem is demonstrated via the simple

schematic in Fig. 9a, which shows a crystal equilibrated in

contact with a flat and rigid substrate, and the apparent

contact angle h. As will be discussed later in section

‘‘Microscopic scale and adsorption’’, adsorption at interfaces

can modify the interfacial energy. Let us suppose a hypo-

thetical case where an additional component is added to the

system of Fig. 9a, such that it adsorbs only to the interface

between the substrate and the crystal (i.e., not to the free

surface of the particle or the substrate) and decreases its

energy. As a result, the total surface/interface areas are

optimized in order to minimize the total surface/interfacial

energies, and the relative interface area in Fig. 9b is

increased versus Fig. 9a, for a crystal of the same volume.

However, due to the equilibrium shape of the crystal, the

facets have not changed and neither has the apparent contact

angle. Thus a measure of solid-state wetting via apparent

contact angles is obviously an erroneous approach.

Winterbottom analysis

An approach to deal with experimental measurement of solid–

solid interfacial energies was developed by Winterbottom

[46]. This approach is based on a geometrical analysis of the

Wulff shape of a crystal equilibrated on a flat solid substrate of

a dissimilar material, under conditions of constant tempera-

ture, volume and chemical potentials. The Winterbottom

construction is described in detail in ‘‘Panel 2’’.

Panel 2: Winterbottom analysis

The Winterbottom construction generates the equilib-

rium shape of a crystal—with fixed volume—that is

attached to a flat substrate. The traditional description of

the Winterbottom construction is that the center of Wulff

shape is displaced in the direction of the substrate by a

distance given by the difference of the crystal-substrate

interfacial energy minus the substrate-vapor surface

energy. However, the derivation of this construction is

questionable [46], and cannot apply to the general case

where the Wulff shape does not have a unique center,

such as crystal for which the point group lacks an

inversion center [47].

Figure P2-1 justifies and generalizes the Winterbot-

tom construction. The Wulff construction of the isolated

crystal in equilibrium with a vapor is illustrated in

Fig. P2-1, for a c-plot in which ccvðn̂Þn̂ is drawn in red.

The thin black lines are drawn for discrete values of

interface orientation and are perpendicular to the gamma

vectors for each orientation. Suppose that the substrate is

isotropic and constrained to be flat. To this c-plot, an

Fig. 9 Schematic drawing of a single crystal equilibrated in contact with

a flat solid substrate. The apparent contact angle h in a remains the same

in b where the interface energy has been reduced due to segregation

(indicated by the red line at the interface) (Color figure online)
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additional surface energy must be superposed that rep-

resents the interfacial energy due a crystal/substrate

interface oriented ccsða ¼ p=2Þðn̂ ¼ ð0; 1ÞÞ minus the

surface energy of the vapor/substrate interface oriented in

the opposite direction: csvða ¼ �p=2Þ ðn̂ ¼ ð0;�1ÞÞ. In

the case of isotropic interfacial energy for the crystal/

substrate and substrate/vapor interfaces this reduces to a

c-interfacial vector with magnitude ccs - cvs. This inter-

facial vector is illustrated in green in Fig. P2-1. Perform-

ing the Wulff construction on superposed surface energies

yields the equilibrium shape of the crystal attached to the

substrate. When ccs � cvs � ccv [ 0, i.e., the interfacial

vector lies exterior to the crystal/vapor Wulff shape, the

crystal/vapor Wulff shape separates from the substrate, and

the vapor phase intrudes between the two solids. The

transition to complete wetting occurs when ccv þ ccs �
cvs\0 i.e., when the ‘‘interfacial vector’’ touches the top of

the crystal/vapor Wulff shape. In this state, the surface will

be composed of any facets in the Wulff shape that are

adjacent to the top point of the crystal/vapor Wulff shape;

the only constraint is that the combinations of these facets

produce an average orientation that is normal to the inter-

face. However, this transition to complete wetting is more

subtle: consider the range of interfacial vectors which give

the same ‘‘shape’’ (e.g., in Fig. P2-1, those with magnitude

greater than the top right point on the hexagon and less than

the highest point on the hexagon). These will all produce

the same morphology. However, at complete wetting, a

continuous facetted film that entirely covers the substrate is

formed, with microfacets of the same orientations as those

present before complete wetting prevails. Thus, the transi-

tion to complete wetting can be directly observed.

Before generalizing this construction below, it is

useful to point out a property of the Wulff construction.

The crystal/vapor Wulff shape (illustrated in Fig. P2-1

as a hexagon) has an infinite set of c-plots that produce

this exact same shape. That is, any other c-plot which is

exterior to the one illustrated above, but has cusps

which coincide with the particular c-plot, will produce

the same Wulff shape. When the border of the c-plot is

composed of circles (spheres in 3D) they are tangent to

the origin. These are the circles from the Frank con-

struction which is equivalent to the Wulff construction

[48]. This minimal set of c corresponds to a convex-

ification in polar (spherical in 3D) coordinates [49]. The

following construction depends on the following prop-

erty: each point on the convex set (i.e., circles) has a

surface energy that is the same as the linear combina-

tion of neighboring facets which produce the same

average orientation represented by that orientation on

the set (i.e., the point at the circle at a particular angle

from the origin).

It is straightforward to generalize this method of

utilizing the Wulff construction to produce a Winter-

bottom shape for the case where each surface and the

interface are anisotropic. This construction is illustrated

in Fig. P2-2. In this case, the vapor/substrate surface

energy is obtained from the substrate’s average macro-

scopic normal. As illustrated in the left-hand portion of

Fig. P2-2, the vertical normal is composed of two facets

which do not have a vertical orientation, but combined

in such a way that the average normal is the same as the

substrate’s. The morphology of the uncovered vapor/

substrate is illustrated as a jagged surface; the effective

surface energy of this morphology is independent of the

scale of the facet lengths (these are varifolds); therefore

an infinitesimal amount of mass transport will give rise

to such microfaceting. Because the characteristic length

scale can be arbitrarily small, the development of such

morphologies produces finite reductions in effective

surface energy and takes place in arbitrarily short times,

even if diffusion is slow.

A crystal/substrate interface energy is produced in an

analogous fashion but with its normal obtained from the

downward vertical direction (illustrated in blue in the

right-hand portion of Fig. P2-2). Similarly, the mor-

phology of the crystal/substrate interface derives from

the corresponding orientation of the crystal/substrate

Wulff shape. The interfacial vector is now represented

by the sum of the two (oppositely oriented) vapor/

substrate and crystal/substrate effective interfacial

energy. As above, the Wulff construction predicts that

the distance (in units of c) of the Wulff shape to the

average substrate position is given by the interfacial

vector. The construction above is the generalization to

the lens construction on a flat isotropic substrate; in the

generalized construction the flat interfaces are replaced

with those that have zero-weighted mean curvature

Fig. P2-1 Winterbottom construction on a flat substrate

5690 J Mater Sci (2013) 48:5681–5717

123



[50]. The generalization to the case where the substrate

is deformable is treated below.

The construction for a deformable crystal/substrate

interface is given in Fig. P2-3 as the transition from a

jagged interface (with the same average normal as the

substrate’s) (on the left) to the deformed equilibrium

interface composed of two consecutive facets of the

Wulff shape (on the right) with the same crystal vol-

ume; this is a generalization of the double lens con-

struction that balances both the vertical and horizontal

components of the surface tensions at the triple line,

and produces two circular (or spherical) caps, such that

the product of the surface tension times the curvature of

the cap is the same as the lens’ opposite interfaces. In

the general faceted case, the only requirement is that the

weighted mean curvature be the same on each interface

of the crystal. The weighted mean curvature is the rate

of interfacial energy increase with respect to addition of

volume (heuristically, oðcAÞ=oV). The equivalence of

weighted mean curvature guarantees that there is no

change in total energy if material from one facet is

transported to another, which is a necessary condition

for equilibrium.

The interfacial energy can be determined by measuring

two characteristic lengths in the Wulff shape of the crystal

truncated by the substrate: the distances from the Wulff

point of the crystal to the interface with the substrate (R1),

and from the Wulff point to the uppermost facet4 of the

crystal (R2), as shown schematically in Fig. 10, which

provides a basis for this method.

For the sake of simplicity, we have considered the case

of a centro-symmetric crystal with a facet parallel to the

substrate. When the effective contact angle is larger than

90� (see Fig. 10a), the Wulff point is above the interface

with the solid substrate. The measured values of R1 and R2

can then be used to determine the interfacial energy

according to:

Fig. P2-2 Winterbottom

construction in the case all

surfaces and the interface are

anisotropic (Color figure online)

Fig. P2-3 Winterbottom

construction in the case all

surfaces and the interface are

anisotropic and the interface is

‘‘deformable’’

4 Actually, any facet of the Wulff shape of the crystal can be chosen

for a measure of R2 under the condition that it is not truncated by the

substrate.
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R1

R2

¼ cSC � cSV

cCV

ð11Þ

where cSC is the substrate–crystal interfacial energy, cSV is

the surface energy of the substrate, and cCV is the surface

energy of the uppermost crystal facet [46, 51]. Note that

this equation can also be used for a particle with an iso-

tropic surface (in the shape of a spherical segment (like the

sessile drop of Fig. 1)) where the ratio of radii R1/R2 can be

replaced by the cosine of the Young contact angle. Thus,

cos-1(R1/R2) may be viewed as an effective contact angle

for faceted particles on a substrate.

Although Winterbottom’s analysis provides a relatively

simple methodology for the measurement of cSC, past

experimental limitations prevented widespread applica-

tions. Initially, the Winterbottom analysis was used only in

isolated studies [51–54]. The major limitation arises from

the demand that the examined system consist of a single

crystal particle thermodynamically equilibrated and having

a flat interface which is co-planar with the substrate surface

[55]. The requirement for equilibration (in a reasonable

time frame), in addition to the absence of grain boundaries,

limits the particle size. This poses a challenge regarding the

characterization techniques for high accuracy morpholog-

ical analysis. In addition, the macroscopic degrees of

freedom defining the relative orientation of the crystal with

the substrate should be measured, and thus the orientation

of both the crystal and the substrate should be determined.

With the introduction of dual-beam focused ion beam

(FIB) systems, it is now possible to accurately prepare

cross section samples from the center of small crystals

equilibrated on substrates [56, 57], and make accurate

measurements of solid–solid interfacial energy and orien-

tation relationships between the crystal and the substrate

[58]. Furthermore, if the cross section transmission electron

microscopy (TEM) sample is thin enough [59, 60], more

advanced TEM techniques can be used to determine the

atomistic structure and chemistry of the interface for the

same sample [61–63]. The size of the crystals must not be

too small, since clusters in the nanometer length scale may

exhibit variance of equilibrium shapes depending on the

particle size and hetero-epitaxial related interfacial stress

[64–67].

The use of Eq. (11) requires knowledge of the absolute

values of the relevant surface energies, if an absolute value

of the interface energy is the goal. Adsorption may occur to

the surfaces, resulting in changes in their chemical com-

position and lead to a decrease in the surface energies,

which can be estimated if the chemical potentials are

known (see section ‘‘Jumps in adsorption do not mean

jumps in surface energy’’). While the surface composition

can be determined by analytical TEM techniques or atom

probe tomography, measurement of the relevant surface

energies is a major obstacle, and systematic experimental

approaches are needed.

Another obstacle lies in the application of this

approach to systems in which the effective contact angle

is smaller than 90� (illustrated in Fig. 10b). In this case,

less than half of the complete Wulff shape (of an iso-

lated crystal) is visible, making determination of the

Wulff point less accurate (even impossible). Hansen

et al. [54] encountered this problem when applying

Winterbottom’s analysis to a Pd–Al2O3 interface. Their

solution was to superimpose the calculated Wulff shape

of Pd on the particle morphology in order to measure R1

and R2. Assuming this approach is valid, which neces-

sarily assumes no changes in the Wulff shape of the

experimentally characterized particle compared to the

simulated Wulff shape, then:

Fig. 10 Schematic drawing of the Winterbottom analysis for parti-

cles equilibrated on a substrate, having different effective contact

angles: a h\ 90� and b h[ 90�. The dashed polyhedron indicates

the resulting equilibrium Wulff shape and its center O (the Wulff

point). R1 and R2 are the distances from the Wulff point to the

interface with the substrate and to the uppermost particle facet,

respectively
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R1

R2

¼ � cSC � cSV

cCV

� �

ð12Þ

Wetting on unconstrained anisotropic substrates

Effects of interfacial torques on wetting equilibrium

Wetting on a rigid flat solid substrate by means of the

classical Young equation has been described above. That

configuration is simple, but it only describes equilibrium

under the constraint that the substrate remains flat. At high

temperatures, where mass transport processes can play a

role, the substrate interface will change shape so as to

allow the triple junction of three isotropic interfaces to

satisfy the Neumann equation (Eq. 7).

The Neumann equation corresponds to the isotropic

limit of the more general Herring equation of interfacial

equilibrium, which takes into account the anisotropy of

interfacial energies by including ‘‘torques’’ [44], defined as

the derivatives of interfacial energy with respect to orien-

tation. The complete equilibrium of three interfaces at a

triple junction has been given by Herring [44] as:

X3

i¼1

cit~i þ
oci

ot~i

� �

¼ 0 ð13Þ

where ci are the three interfacial energies, t~i is the vector in

the plane of the ith interface, normal to the triple line and

pointing away from it; and the torque, oci=ot~i, is a vector

perpendicular to t~i and to the triple line (see Fig. 11) [68].

If the orientation of one of the interfaces corresponds to a

cusp in the c plot, then oci=ot~i is indeterminate, but equi-

librium can still prevail as long as oci=ot~i adopts a value

that lies between the two limiting slopes on the sides of the

cusp (Fig. 11a). Thus, if in the case of a classical sessile

drop configuration, such as Fig. 1, the torques of the solid/

fluid and of the substrate/vapor interfaces correspond to

cusps, but lie between limits that can balance the pull of the

liquid surface tension perpendicular to the substrate (i.e.,

cLV sin hY) then both of these interfaces will remain flat and

coplanar. This is a case where the Young equation applies

at high temperature.

Deviations from Young and Winterbottom conditions:

double Winterbottom construction and ridging

The Young equation for drops is valid, as long as the

interface is flat, and co-planar with the surface of the

substrate. However, this condition will only be met when

the torques of the crystallographic plane parallel to the

surface of the substrate and its interface with the crystal are

significant, as explained above. If this condition is not met,

then an isotropic drop will adopt an equilibrium shape such

as that described in Fig. 6. In the case of an anisotropic

crystal on a crystalline substrate, the corresponding equi-

librium shape will be as shown in the right panel of

Fig. P2-3, where both the crystal surface and the crystal–

substrate interface may be facetted. This amounts to

applying the Winterbottom analysis to both the crystal

surface and the crystal–substrate interface [69, 70], as has

been described in ‘‘Panel 2’’, and which is generally

referred to as the double Winterbottom construction.

This effect has been specifically characterized for

particles at grain boundaries [71, 72], and numerically

modeled for particles equilibrated on a solid surface or at

grain boundaries [73, 74]. More recently, Zucker et al.

[75] have developed a simulation tool which can be used

to both model and extract relative surface and interface

energies for such complicated morphological systems.

One of the expected critical outcomes of these types of

simulations will be to determine whether the interface

deviates from planarity, at length scales relative to the

size of the particle (see the examples described in

Fig. 12).

If the torques of the solid/drop or solid/crystal and the

substrate/vapor interfaces are insufficient to balance the

vertical pull of the surface energy of the confined phase

Fig. 11 a Schematic cross-

sectional view of a triple

junction, where ni are unit

vectors in the direction oci=o t
!

i

(after Saylor and Rohrer [68]).

b Grains with isotropic surface

energies result in a rough triple

junction, while anisotropic

surface energies result in

c faceted surface planes
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(drop or crystal), and transport of matter near the triple line

is sufficiently rapid, then mass transport of the solid will

allow the local equilibrium angles required by the Neu-

mann equation (Eq. 7) to develop.

Under these conditions, a transient ridge will form at the

triple line [76, 77] of a sessile drop or a sessile crystal, as

shown in Fig. 13 for a copper droplet annealed above its

melting point on a sapphire substrate [78]. This phenom-

enon is similar to the well-known phenomenon of grain

boundary grooving, which occurs where a grain boundary

intercepts a surface or an interface [41, 79] (see Figs. 7,

11). It should be noted that the detailed shape evolution of

ridges (or of grooves at a grain boundary) depends on

kinetics [41, 79], whereas the angles are always determined

by the equilibrium equations, as local interfacial energy

equilibrium always prevails.

The relative size of the ridge and the drop radius can

have a significant effect on whether the observed macro-

scopic contact angle follows the Young equation. For rel-

atively small ridges, the departure from Young’s equation

is small; however, for relatively large ridges the apparent

contact angle can be quite different from that expected

from Young’s equation. Details on the kinetics of ridging

are given in [76]. On the other hand, the presence of ridges

can be used to determine interfacial energies [80], as in the

case of grain boundary grooving.

In spite of its importance, as indicated in the above

discussion, information on the orientation dependence of

Fig. 12 Three particle shapes

calculated for the abutment of a

a cube and a sphere attached to

a (100)-type boundary, b an

octahedron and a sphere

attached to a (111)-type

boundary, and c an octahedron

and a sphere attached to a (110)-

type grain boundary. Reprinted

with permission from [73]

Fig. 13 a Schematic drawing

of ridging at a triple junction

due to unbalanced torque terms,

and b a SEM micrograph of a

faceted ridge formed at the

triple line of an copper drop

equilibrated on a sapphire

surface (b was reproduced with

permission from [78])
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interfacial energy is available only for a limited number of

pure fcc metals and alloys and for a few simple oxides. As

a result, the torque terms in Eq. (13) have often been

neglected owing to insufficient data.

Dewetting and spreading

While the term ‘wetting’ has been used throughout this text

as the description of a thermodynamic state (e.g., reflected by

a contact angle), ‘wetting’ is sometimes incorrectly used to

describe the kinetics of spreading of a liquid across a solid.

The kinetics of spreading, which is driven by the minimi-

zation of surface and interface energy (defined by wetting), is

obviously an important technological topic. In order to pre-

vent confusion, we adopt ‘spreading’ to describe the kinetic

changes of surface and interface area, and ‘wetting’ to

describe thermodynamics (equilibrium). The term ‘‘dewett-

ing’’ has also gained general use to describe the break-up

(agglomeration) of a thin film in the liquid (or solid state) into

drops (or particles), driven by the minimization of surface

and interfacial energy in a system where the three coexisting

phases are at equilibrium. While the kinetics of dewetting

can be studied to reach important conclusions regarding

surface transport, the equilibrium state reached by the kinetic

process of dewetting offers an alternative approach to study

the equilibrium state of solid–liquid and solid–solid inter-

faces. A recent review by Thompson [81] has been dedicated

to this phenomenon. In the following we report on the main

points of dewetting relevant to this paper.

Spinoidal dewetting versus nucleation of holes

There are two main proposed mechanisms for dewetting of

thin films on solid surfaces: spinodal dewetting (which mostly

refers to the Raleigh instability) and nucleation of voids [82].

The mechanism for the Raleigh instability in liquid-state

dewetting is a wave fluctuation which grows exponentially

with thermal activation, resulting in two opposite surface

curvatures and the tendency to minimize surface area by

breaking the film up into droplets to reach equilibrium [79].

For solid-state dewetting, spinodal dewetting occurs mostly

for thin films, where the amplitude of the fluctuations is large

enough to form hills and depressions via surface diffusion.

When the depressions reach the substrate, agglomerated par-

ticles are formed, or break-up of the film occurs [83].

Recently, faceted film-edges were observed without depres-

sions [84, 85] (due to surface energy anisotropy) and con-

firmed by a model developed by Klinger et al. [86].

In polycrystalline films, solid-state dewetting takes

place either by extension of grain boundary and triple

junction grooves [87, 88] from the free surface to the

interface, or via nucleation of voids at the interface (see

Fig. 14). Following Srolovitz and Safran [82] and using the

criteria of grain boundary grooves extending from the free

surface to the interface, a polycrystalline film of thickness,

a, will rupture if:

R

a
� 3 sin3 b

2� 3 cos bþ cos3 b
ð14Þ

where R is the grain size, and b is defined in terms the grain

boundary (cGB) and surface (cSV) energies as b ¼
sin�1 cGB=cSVð Þ [82, 83, 89, 90]. This model ignores the

influence of the film–substrate interfacial energy, and if the

interfacial energy is relatively high and a mechanism exists

for nucleation of voids at the interface, then voids will first

form at the interface, and grow towards the surface [91,

92]. The details of the mechanism for void nucleation at the

interface are not clear, although void nucleation is more

likely to occur at intersections of grain boundaries with the

substrate, and any perturbations or defects at the film–

substrate interface. This is a field which requires further

study, since the data available in the literature is sparse.

Regardless of whether solid-state dewetting is via grain

boundary grooves or void growth from the interface, the final

equilibrated state is that of a single crystalline particle on a

substrate. If the initial film is thin enough, equilibrated par-

ticles will form within reasonable periods of time, and can be

used to study the ECS of the film material [61, 93], and the

interfacial energy between the film and the substrate [56, 58,

94]. The kinetics of the dewetting process have also been

used to extract surface diffusion parameters [95–97].

While fundamental studies of dewetting kinetics, and the

final equilibrium configuration are important, dewetting has

also been used as a method to pattern a surface with small

particles for applications [81, 98–100]. Examples include

catalysis [101–103], porous electrodes [104, 105], and more

recently charge storage for memory applications [106–108].

Thin film stability

The discussion above leads to the necessary, albeit some-

times worrisome conclusion, that thin solid films are not

stable. While this conclusion is trivial, it has important

technological implications given the current dependence on

thin film technology for the microelectronics industry. The

minimization of total surface and interfacial energy is the

driving force for dewetting, but the kinetics of the process

depend on interface and surface transport mechanisms, and

nucleation of the process may strongly depend on the

nature and distribution of defects at the free surface, and at

the interface between thin films and substrates. Given the

advantages of particles with a length scale which influences

their functional properties (i.e., ‘‘nano’’), the last 10 years

have seen a multitude of experiments designed to utilize
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dewetting for this purpose. However, time–temperature

experiments to probe the dewetting of continuous thin film

devices, which depends on the defect microstructure, are

lacking.

Precursor wetting foot and kinetics of spreading

A great deal of work has been done on the influence of the

triple line during spreading of a liquid on a solid, or retraction

of a liquid drop (liquid-state dewetting), and the associated

hygrodynamics [30, 109]. The fluid dynamics involved are

beyond the scope of the present work, but we would like to

clarify the context of wetting versus spreading.

It is important to clarify the concept of a precursor foot,

which is an undefined amount of the component of the

liquid drop which extends upon the substrate ahead the

main mass of the spreading drop [110] (see Fig. 15). A

precursor foot can be either a bulk liquid phase identical to

the drop phase, or an adsorption layer [111–114]. The

expansion of the former is driven by macroscopic phe-

nomena related to fluid mechanics and corresponds to the

achievement of complete wetting, while the latter is driven

by atomistic mechanisms and is related to the equilibration

of the chemistry and the structure of the bare substrate at

coexistence with the phase of the drop, and it has nothing

to do with the wetting of a phase [112, 113]. As we will see

in subsequent sections of this review, an adsorption layer is

an intrinsic part of a surface (or an interface) which is not a

bulk phase. It is a region of finite thickness at a surface (or

an interface) which contains all the gradients of composi-

tion and/or structure perpendicular to the surface which are

necessary to minimize the surface (or interfacial) energy.

Fig. 14 Schematic drawing of solid-state dewetting of a thin film on a substrate, where a–d grain boundary grooves from the free surface slowly

increase until they contact the substrate, and e–h voids at triple junctions nucleate and grow towards the free surface
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To form the adsorption layer, the constituent atoms from

the drop either diffuse across the solid surface or evaporate

and then adsorb onto the surface. In the thermodynamic

regime, the contact angle reflects the modified (lowered)

solid–vapor surface energy, while in the kinetic regime the

driving force for spreading reflects the instantaneous sur-

face energy of the substrate.

Due to the combined technological and fundamental

importance of spreading rates, a great deal of fundamental

and phenomenological research has been invested in this

topic. For ‘high’ temperature materials science, two main

regimes of spreading kinetics have been identified, for

reactive and non-reactive systems.

The classical ‘‘low-temperature’’ spreading kinetics

usually employs the hydrodynamic theory, where the

spreading kinetics depends on the dynamic contact angle

hD, and the capillary number Ca = mg/cLV (cLV is the

surface energy of the liquid, m is the velocity of the triple

junction and g is the liquid viscosity) [115]. The rate of

spreading is thus reflected by the capillary number which

contains the velocity of the triple line:

Ca ¼
h3

D � h3
� �

9 ln Lc

LS

hD� 135
�� �

ð15Þ

Ca ¼
9p
4

ln 1�cos hD

1þcos hD

� �
p� hDð Þ3�h3

h i

9 ln Lc

LS

hD� 135
�� �

ð16Þ

where h is the equilibrium contact angle, Lc is a charac-

teristic capillary length (Eq. 2), and LS corresponds to a

thickness of the meniscus immediately adjacent to the solid

wall over which the ‘no-slip’ boundary condition of clas-

sical hydrodynamics is relaxed to avoid a singularity at the

triple junction.

The molecular kinetic theory (MKT) of spreading was

developed by Blake [116]. It assumes that the atoms of the

spreading fluid replace adsorbed atoms on the surface, and

yields:

Ca ¼
2gkkT

hcLV

sinh
k2cLV

2kT
cos h� cos hDð Þ

� �	 


exp
DGw

NkT

� �

ð17Þ

where k is the average spacing between adsorption sites,

k is Boltzmann’s constant, h is Planck’s constant, DGw is

the activation free energy for wetting that derives mainly

from solid–fluid interactions, N is Avogadro’s number, and

T is temperature.

Both approaches were developed for non-reactive

spreading, and the last 10 years have seen numerous

experiments designed to probe which approach best

describes high temperature spreading of liquid metals (for a

review of the subject see [117]). From meticulous experi-

ments [115, 118] and molecular dynamics simulations

[119–121], it appears that the rate limiting mechanism for

non-reactive and dissolutive spreading kinetics is friction at

the triple junction, where order in the liquid at the solid–

liquid interface plays a key role in defining this parameter.

Order in the liquid at solid–liquid interfaces has been

theoretically analyzed [122–129] and experimentally

observed [130–135], and will be discussed below in terms

of adsorption.

Microscopic scale and adsorption

Thus far we have discussed wetting under conditions where

the compositions of the wetting and substrate phases have

not been addressed explicitly. The compositions of the two

condensed phases (and the vapor phase), and those of the

interfacial regions in particular, are important, as we shall

see, because changes in interfacial chemical compositions

may cause changes in the interfacial energies that deter-

mine wetting equilibrium (see the Young, Neumann, and

Herring wetting equilibrium equations described in sec-

tions ‘‘Macroscopic wetting of a liquid on a rigid solid

substrate’’, ‘‘Wetting on unconstrained isotropic sub-

strates’’, and ‘‘Effects of interfacial torques on wetting

equilibrium’’).

This section introduces some basic concepts on the

thermodynamics of interfaces that are useful for treating

the chemistry of interfaces, and then proceeds to couple

this formalism with a more atomistic approach. The more

general concept of complexions, which includes order

Fig. 15 Schematic drawing of a spreading drop with a a bulk

precursor foot of liquid which precedes the main body, and b an

adsorbate of atoms on the surface of the substrate which either

diffused over the surface from the bulk drop, or evaporated from the

bulk and then adsorbed to the surface from the gas phase
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parameters in addition to composition, will be addressed at

the end of this paper.

In this section of the paper, we follow the approach

developed by Gibbs [136]. In a later section, we also

introduce another formalism, due to Cahn, which is

equivalent to Gibbs’ treatment, but which is more trans-

parent when dealing with multi-component, multi-phase

systems that simultaneously contain several different

interfaces. Gibbs is not easy to read, and so it is convenient

to draw on other sources which have ‘‘translated’’ Gibbs’

work into a more modern thermodynamic language, such

as the papers by Hirth [137, 138] and by Mullins [41], and

the book by Rowlinson and Widom [139]. Parts of what is

covered in this paper on the topic of interfacial thermo-

dynamics has been excerpted from a recent review of

interfacial adsorption (or segregation) [140].

We begin by reviewing the thermodynamics of inter-

faces, using the liquid–vapor surface as an example, i.e.,

we consider a system composed of a liquid in equilibrium

with a vapor phase, separated by an interface. The energy

associated with the interface, i.e., the surface or interfacial

energy, denoted by c (units of [energy/(unit area)], typi-

cally mJ/m2), is defined as the reversible work needed to

create unit area of surface, at constant temperature (T),

volume (V) (or pressure (P)), and chemical potentials of the

components i of the system (li).

Gibbs dividing surface

The interface is not perfectly sharp and has a finite thick-

ness, i.e., there is a transition region separating the two

phases where the local density changes from that of the

liquid (referred to as phase 0) to that of the vapor (referred

to as phase 00), as shown schematically in Fig. 16. The

diffuseness illustrated here for a liquid/vapor interface is

also present at other types of interfaces, such as grain

boundaries, solid–liquid, or solid–solid interphase bound-

aries. Note that the gradient in composition, and in other

kinds of density parameters, can vary in shape and width

(see section ‘‘Complexions’’). In order to avoid having to

define the diffuseness of the interface, Gibbs defined a

mathematical plane, known as the dividing surface, with

area A, onto which he projected all the extensive thermo-

dynamic variables pertaining to the interface. To do this, he

took the value of the variable in the system containing the

interface, and subtracted the value of the variable obtained

from a hypothetical reference system consisting of the two

bulk phases, assumed to extend uniformly all the way to

this mathematical plane. An extensive variable obtained by

this subtraction process is referred to as an interfacial

excess quantity, and is identified by the superscript S. As

an example, the interfacial excess internal energy of the

system, ES, may be written as:

ES ¼ E � E0 � E00 ð18Þ

where E is the internal energy of the system (containing the

interface), E0 is the internal energy of phase 0, and E00 is the

internal energy of phase 00. This shows how the interfacial

excess quantity is just the quantity in the total system, less

the quantity in the bulk phases (hypothetically extended to

the dividing surface). It is important to note that the posi-

tion of the dividing surface is arbitrary. It can be placed at

any convenient location within the bounds of the physically

diffuse region. Some consequences of this arbitrariness are

addressed below.

Every extensive thermodynamic variable of the system

can be written in the same manner as in Eq. 18; e.g., the

number of moles of component i in the real system is

expressed as: ni = n0i ? n00i ? ns
i . The only exception is the

volume of the system, which is written:

VS ¼ V 0 � V 00 ð19Þ

i.e., Gibbs assigned no excess volume to the interface.

Panel 3: inclusion of surface energy

into the standard expression for internal energy

The internal energy of any bulk phase (say phase 0) is

conveniently considered to be a function of the exten-

sive variables entropy, S0, volume, V0 and number of

moles, n0i:

Fig. 16 Schematic of the density variation across a liquid–vapor

interface. The vertical dashed line represents the Gibbs’ dividing

surface. The solid line represents the density variation in the system

containing the interface. Horizontal dashed lines illustrate the

definition of the hypothetical reference system
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dE0 ¼ oE0

oS0

� �

V 0;n0
i

dS0 þ oE0

oV 0

� �

S0;n0
i

dV 0 þ
X

i

oE0

on0i

� �

S0;V 0;n0
i 6¼i

dn0i

ðP3ð1Þ20Þ

or

dE0 ¼ Tds0 � PdV 0 þ
X

i

l0idn0i ðP3ð2Þ21Þ

where T is the temperature, P is the pressure, and l0i is

the chemical potential of component i in phase 0. This is

the standard expression for the internal energy of a

single uniform phase containing more than one com-

ponent. Similarly, the internal energy of phase 00 is:

dE00 ¼ TdS00 � PdV 00 þ
X

i

l00i dn00i ðP3ð3Þ22Þ

For the surface (which has an area, A, but zero excess

volume) the excess internal energy is written:

dES ¼ TdSS þ cdAþ
X

i

lS
i dnS

i ðP3ð4Þ23Þ

This illustrates that in the expression for the surface

excess internal energy, the PdV term is replaced by a

term consisting of the surface energy, c, multiplied by a

change in area, dA. Since, for a system in equilibrium,

the chemical potential must be equal everywhere, we

impose the condition: l0i = l00i = ls
i . Substituting for

dE0, dE00 and dES into Eq. (18), we obtain:

dE ¼ T dS0 þ dS00 þ dSS
� �

� P dV 0 þ dV 00ð Þ þ cdA

þ
X

i

li dn0i þ dn00i dns
i

� �
ðP3ð5Þ24Þ

or

dE ¼ TdS� PdV þ cdAþ
X

i

lidni ðP3ð6Þ25Þ

This is the standard expression for the differential of

the internal energy of a system containing an interface.

All differentials in Eq. (P3(6)25) pertain to extensive

variables, so the equation can readily be integrated to

yield:

E ¼ TS� PV þ cAþ
X

i

lini ðP3ð7Þ26Þ

‘‘Panel 3’’ shows that the internal energy of a system

with an interface may be expressed as in Eqs. (P3(6)25)–

(P3(7)26). This is an important result, as it demonstrates

that in the limit of a system where the contribution of the

surface (or interfacial) energy is small with respect to the

bulk energy, the cdA term becomes negligible and the

expression reduces to the standard thermodynamic

expression for the internal energy of a bulk phase. All other

thermodynamic variables of the system containing a sur-

face can be derived from these expressions.

For example, the Helmholtz free energy is given by:

F ¼ E � TS ð27Þ

where S is the entropy, and the derivative of F (when

combined with Eq. P3(6)25) may be written:

dF ¼ dE � TdS� SdT ¼ �SdT � PdV þ cdA

þ
X

i
lidni ð28Þ

so that:

dFS ¼ �SSdT þ cdAþ
X

i
lidnS

i ð29Þ

Whereas the Helmholtz free energy is an appropriate ther-

modynamic function for a closed system (as is the Gibbs free

energy), the grand potential, X, is a form of free energy that is

suitable for open systems [139]. It is defined as:

X ¼ F �
X

i

lini ¼ �PV þ cA ð30Þ

where we have used Eq. (P3(7)26) and Eq. (27) to obtain

the second equality. Thus, the surface excess grand

potential may be expressed as:

XS ¼ X� X0 � X00 ¼ �PV þ cAþ PðV 0 þ V 00Þ ¼ cA

ð31Þ

This expression shows that the surface energy is just the

surface excess grand potential per unit area. In particular,

XS is a useful quantity, as Eq. (31) demonstrates that it is

independent of any excess quantities that depend on the

location of the dividing surface.

Gibbs adsorption equation

We now return to Eq. (P3(4)23), in which dES is expressed

only in terms of extensive variables (dSS, dA, dni
S) while

the intensive variables (T, c, li) are constant in the equil-

ibrated system. This can be integrated to obtain:

ES ¼ TSS þ cAþ
X

1

lin
S
i ð32Þ

Re-differentiating this result yields:

dES ¼ TdSS þ SsdT þ cdAþ Adcþ
X

i

lidnS
i þ

X

i

nS
i dli

ð33Þ

Subtracting Eq. (P3(4)23) from Eq. (33), we obtain:

SSdT þ Adcþ
X

i

nS
i dli ¼ 0 ð34Þ

We now define the following new quantities: sS : SS/A,

and Ci : ni
S/A. Quantities such as sS and Ci, expressed per
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unit area, are known as specific interfacial excess

quantities, e.g., sS is known as the specific interfacial

excess entropy, and Ci [mol/(unit area)] is the specific

interfacial excess number of moles of component i.

However, in order to avoid this cumbersome

nomenclature, Ci is generally referred to simply as the

adsorption of component i. With these definitions we can

rewrite Eq. (34) as:

dc ¼ �sSdT �
X

i

Cidli ð35Þ

Equation (35) is the well-known Gibbs adsorption

equation. It gives the variation of c with changes in T

and li, where the li are related to the compositions of the

bulk phases. At constant temperature, this equation

simplifies to the Gibbs adsorption isotherm. In the case

of a two-component A–B system, we can write:

dc ¼ �CAdlA � CBdlB ð36Þ

where the subscripts A and B stand for the components. By

convention, the solvent (majority component) is labeled A

and the solute (minority component) is labeled B. How-

ever, the chemical potentials of the two components are not

independent variables; they are related by the Gibbs–Du-

hem equations that can be written for each of the two bulk

phases. For example, for phase 0:

n0AdlA þ n0BdlB ¼ 0 ð37Þ

which is valid either at constant T and P, or at constant T

and V. Equation (37) can be used to eliminate one of the

chemical potentials in Eq. (36). By convention, the

chemical potential of the solvent is eliminated, and the

Gibbs isotherm is rewritten in terms of the solute:

dc
dlB

¼ CA

n0B
n0A
� CB ð38Þ

Here, dc/dlB is a measurable quantity, and therefore

cannot depend on an arbitrary choice of the dividing

surface. On the other hand, CA and CB do depend on the

position of the dividing surface. Thus, the right-hand side

of Eq. (38): CA
n0B
n0

A

� CB (i.e., this particular combination of

adsorption variables) must also be independent of the

position of the dividing surface.

In the case of interfaces between a condensed phase and

a vapor phase, the difference in density across the interface

makes it possible to select the position of the Gibbs

dividing surface so as to make one of the adsorption terms

vanish. In those cases, Eq. (38) can be simplified by

choosing the position of the dividing surface so as to make

CA = 0. Under these conditions, CB is no longer arbitrary

(since a specific choice for the position of the dividing

surface has been made) and is written CB(A) to indicate the

choice CA = 0:

dc
dlB

¼ �CBðAÞ ð39Þ

CB(A) is sometimes referred to as the relative adsorption

[141]. The value of CB(A) (or of any adsorption term) can be

either positive or negative. From Eq. (39), it can be seen that

if the relative adsorption of component B is positive (i.e.,

there is a positive excess of component B at the surface of the

condensed phase) then dc/dlB will be negative, and the

surface energy of the solid will decrease as the chemical

potential (i.e., the bulk concentration) of component B is

increased. However, the simplification shown here for the

case of interfaces between a condensed phase and a vapor

cannot generally be applied to grain boundaries, or other

interfaces between two condensed phases. Thus, in those

cases, the variation of surface energy with chemical potential

may be obtained from expressions based on the grand

potential (e.g., Eqs. 30, 31), which do not depend on the

position of the dividing surface. Some useful approximations

for the Gibbs adsorption isotherm are given in ‘‘Panel 4’’.

Panel 4: useful approximate form of the Gibbs

adsorption isotherm

The term, dlB, in Eqs. (38) or (39), can be transformed

using the definition of chemical potential in terms of

activity, a: lB = lB� ? kT ln aB, where lB� is the

chemical potential in the standard state. In the case of

ideal solutions, Raoult’s law can be applied: aB = xB,

where xB is the atom (or mole) fraction of the solute. In

dilute solutions, one may apply Henry’s law: aB = ko

xB, where ko is a constant. In either case, dlB = RT

d(ln xB). Therefore, for ideal or Henrian solutions, the

above relationships may be simplified as follows:

1

RT

dc
d ln xB

¼ CA

n0B
n0A
� CB

� �

ðP4ð1Þ40Þ

or

1

RT

dc
d ln xB

¼ �CBðAÞ ðP4ð2Þ41Þ

Thus, we can obtain the adsorption, CB(A) from the

dependence of the surface energy on bulk composition.

In principle, one can also obtain the change in surface

energy that results from the adsorption of solute. To do

this, it is necessary to integrate the Gibbs isotherm,

which requires some knowledge of the dependence of

adsorption on lB or xB. Unfortunately, Gibbsian

thermodynamics do not provide this dependence. In
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section ‘‘Microscopic scale and adsorption’’, we

describe a simple model that gives an approximate

form for the needed functional relationship. In addition,

that section provides some simple examples that

illustrate the trends expected from this formalism.

Now that adsorption has been defined, it is useful to briefly

discuss the relationship between interfacial segregation and

adsorption. This issue has been discussed previously, for

example, by Hondros and Seah [142]. Historically, the term

adsorption was first used to describe the presence of excess

components at the surface of a condensed phase, which

originated from the gas phase, as shown in Fig. 17a, b. In

contrast, the term segregation was used to describe excess

components at a surface that originated from the bulk of the

condensed phase, as shown in Fig. 17c, d. In a system at

equilibrium, consisting of a condensed phase in contact with

a gas phase, the quantity of adsorbed or segregated compo-

nent at the interface is independent of its origin (i.e., gas or

bulk condensed phases). The final equilibrium state of such a

system is illustrated in Fig. 17e. For our purposes, therefore,

at equilibrium, the terms adsorption or segregation may be

considered to be identical. However, it should be noted that

the ways in which adsorption energy and segregation energy

are defined are not identical.

Illustration of adsorption/segregation by means

of a simple model

Model framework

Many models have used the concepts of statistical ther-

modynamics to develop expressions that relate interfacial

adsorption to the bulk compositions of the adjacent phases

[140, 141, 143–147]. Here, we make use of the model of

Wynblatt and Chatain [140] for some simple illustrations.

Consider a system consisting of a two-component

crystalline phase terminated by a surface of given crystal-

lographic orientation. In general, the composition of the

near-surface region will be different from that of the bulk,

i.e., the surface will be enriched in one of the two com-

ponents due to segregation from the bulk. In order to

simplify matters, we assume that the enriched surface

region is only one atom layer thick, i.e., we assume a

‘‘monolayer model’’, as illustrated in Fig. 18 for a (100) fcc

surface. Although the model allows the enriched surface

region to have any number of enriched layers, this simpler

version will suffice for the present purposes of illustration.

The two-component crystalline bulk phase and its

associated surface monolayer are each assumed to behave

as regular solutions. In the regular solution approximation,

Fig. 17 a Initial state of a system consisting of a condensed phase with a

surface exposed to a gas environment of diatomic molecules of red

species; b state of system a after some of the gas molecules have adsorbed

onto the surface and dissociated. c Initial state of a system containing some

of the red species dissolved in the bulk; d state of system c after some of the

dissolved red species have segregated to the surface. e Equilibrium state of

the systems of figures a–d showing the gas phase, the equilibrium solution

of the red species in the bulk of the condensed phase, and the equilibrated

surface with adsorbed/segregated red species (Color figure online)

Fig. 18 Schematic of the monolayer model as applied to a two-

component system with a (100) fcc surface: yellow circles represent

atoms of the segregating species (chosen to be the solute). This

species is enriched in the topmost atom layer of the surface. Darker

circles represent the other species (Color figure online)
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the entropies of the bulk and surface solutions are taken to

be the same as that of ideal solutions. However, unlike

ideal solutions, a finite enthalpy or internal energy of

mixing is allowed in both the bulk and the surface. The

surface energy is first written as the surface excess grand

potential, by combining Eqs. (27), (30), and (31)::

cA ¼ XS ¼ FS �
X

i

lin
S
i ¼ ES � TSS �

X

i

lin
S
i ð42Þ

In order to write the various terms of Eq. (42) in the

regular solution approximation, we need to define the

following terms: xS and x are the atom fractions of the

solute (component B, assumed to be the segregating

(adsorbing) component) in the interface and the bulk,

respectively; cA and cB are the surface energies of the pure

A and B components in the binary solution (component B

taken to be the solute); and x is the regular solution

parameter for the AB solution. x is defined as: x = eAB -

(eAA ? eBB)/2, where eAB, eAA, and eBB (taken to be

negative quantities) are the energies of bonds connecting

A–B, A–A, and B–B neighboring atom pairs, respectively.

zl and zv are the numbers of in-plane bonds and half of the

out-of-plane bonds of an atom in the surface plane, such

that the total coordination number of an atom in the bulk of

the system is given by: z = zl ? 2zv. Finally, the surface

excess energy and entropy are written as:

ES ¼ Nzl

2
ðxSÞ2eBB þ 2xSð1� xSÞeAB þ ð1� xSÞ2eAA

n o

þ Nzv xSxeBB þ xSð1� xÞeAB þ xð1� xSÞeAB

� �

þð1� xÞð1� xSÞeAA

�
� N

zl

2
þ 3

2
zv

� �

x2eBB þ 2xð1� xÞeAB þ ð1� xÞ2eAA

n o
ð43aÞ

SS ¼ �NR xS ln xS þ ð1� xSÞ ln ð1� xSÞ
� �

� x ln xþ ð1� xÞ ln ð1� xÞf g ð43bÞ

where N is the number of surface atom per unit area.

By minimizing c with respect to xS [140], it is possible

to obtain the following expression for the equilibrium value

of the segregated monolayer composition, xS:

xS

1� xS
¼ x

1� x
exp�DEseg

RT
ð44Þ

where

DEseg ¼ cB � cAð Þrþ 2x zl x� xS
� �

þ zm x� 1

2

� �	 


� DEel

ð45Þ

DEel is the change in elastic strain energy experienced by a

solute atom when it segregates from the bulk to the surface,

and r is the area per mole at the (monolayer) interface.

DEel may be expressed, for example, by a relation due to

Friedel [148] as:

DEel ¼
24pKBGArBðrA � rBÞ2

3KBrB þ 4GArA

ð46Þ

where KB is the bulk modulus of the solute, GA is the shear

modulus of the solvent, and rB and rA are the atomic radii

of the pure solute and solvent atoms, respectively.

It should be noted that xS, the atom fraction of solute (B)

in the segregated monolayer, is not identical with the

Gibbsian C. The relation between these two quantities is:

CB ¼ xS � x
� �

=r ð47Þ

Such expressions were used to relate surface atom

fractions to the adsorption of the various components in

Eq. (42) in order to obtain Eqs. (44) and (45) by minimization

of c with respect to xS. Some physical characteristics of the

energy of segregation are given in ‘‘Panel 5’’.

Panel 5: contributions to the driving force

for surface segregation in the regular solution model

The model of Eqs. (44) and (45) shows that there are

three principal contributions responsible for segregation

to surfaces (or grain boundaries) in alloys. There is a

‘‘chemical’’ driving force, which consists of two terms:

one of which depends on the difference between the

surface energies of the pure components (i.e., a surface

energy driving force) and another that depends on the

regular solution constant (i.e., an interatomic interaction

driving force). The third driving force is an elastic

strain energy contribution associated with the degree of

misfit of the solute in a solid solution. Both the regular

solution constant term and the elastic strain energy term

vanish in the limit of an ideal solution (for which

x = 0, and the atoms must necessarily have nearly

identical size).

The extent of segregation depends not only on the

magnitude of the three contributions mentioned above,

but also on their signs. Negative contributions to the heat

of segregation increase the value of xS in Eq. (44),

whereas positive ones decrease xS. Since DEel (Eq. 46)

is always positive, the solute strain energy contribution

to the heat of segregation always favors solute segre-

gation. In contrast, the two chemical terms can be either

positive or negative for the solute. The surface energy of

the pure solute can either be greater or smaller than that

of the solvent, and a smaller surface energy will tend to
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promote adsorption/segregation of that component.

Similarly, a positive regular solution constant, x, will

add to the driving force for solute segregation. Thus, it is

the sign of DEseg, arising from the sum of the three

contributions, that will determine whether the solute or

the solvent will tend to segregate to the interface. Fur-

thermore, solute segregation will be strongest when all

three contributions are negative [147].

Expected trends

Figure 19a is a plot of ln(xS/1 – xS) (i.e., the logarithm of the

left-hand side of Eq. 44) versus 1/T, obtained by applying

the monolayer model to the (100) surface of a fcc solid

solution, for various values of DEseg, as defined in Eq. (45).

In the plots, the surface energies of the pure components and

the solute elastic strain energy have been kept constant, but

the regular solution parameter, x, has been changed from

positive, to zero, to negative. Consideration of Eq. (44)

shows that when x = 0, DEseg becomes independent of

surface composition. As a result, the line in Fig. 19a corre-

sponding to that condition is a straight line. For the other two

cases, with finite x, the dependence of ln(xS/1 – xS) on 1/T is

no longer a straight line, i.e., its slope varies with tempera-

ture through the dependence of xS on temperature. Further-

more, the figure shows that segregation is stronger for

positive x and weaker for negative x. Positive x corre-

sponds to solid solutions with a tendency to cluster, in which

the solute (and solvent) atoms prefer to be surrounded by

atoms of their own species. At suitable temperatures, this

tendency will lead to bulk phase separation into an A-rich

phase and a B-rich phase. This incipient tendency to phase

separation means that once some solute atoms are driven to

the surface (by the surface energy and/or elastic energy

driving forces) then it becomes energetically favorable for

more solute atoms to be present there. Conversely, for cases

where x is negative, the solution will tend to order, i.e.,

atoms of one species will prefer to be surrounded by atoms

of the other species. This tendency makes high concentra-

tions of like atoms at an interface energetically less favor-

able, thereby decreasing the strength of segregation. Also,

note that the value of ln(xS/1 – xS), in the limit of infinite

temperature (1/T = 0), is identical for all three cases. From

Eq. (44), it can be seen that as 1/T tends to 0, ln(xS/1 - xS)

approaches ln(x/1 - x); i.e., segregation tends to vanish in

the limit of high temperatures.

The monolayer model used to obtain Fig. 19a assumes

that only the outermost surface layer can change its com-

position. The validity of this approximation is examined in

Fig. 19b, which compares the results obtained from the

monolayer model with results of a multilayer model in

which all atomic layers are allowed to reach equilibrium

[140]. In order to emphasize the effect of considering

multilayers, the bulk composition was increased from

x = 0.01 in Fig. 19a to x = 0.1 in Fig. 19b. The figure

shows that the total adsorption with the more complete

model is about 50 % larger than with the monolayer model.

Integral form of the surface energy

Recall that it is not possible to relate the adsorption, C, to

the chemical potential, l, within the Gibbsian framework

of interfacial thermodynamics. This prevents integration of

the Gibbs adsorption isotherm to obtain the change in

interfacial energy resulting from adsorption. In the previ-

ous section, we have used a statistical thermodynamic

approach to obtain interfacial composition, xS, as a

Fig. 19 a Dependence of (100) surface segregation on temperature

for fcc solutions with a bulk atomic fraction of the solute component

B, x = 0.01, for the monolayer model computed by Eqs. (44)–(46).

The solute strain energy and surface energy driving forces are held

constant, but the regular solution constant, reflecting interatomic

interactions, is varied. b Comparison of surface segregation profiles

obtained by the monolayer and multilayer models, for a bulk

compositions of x = 0.1, with the same parameters as a
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function of bulk composition, x, in Eq. (44), and this

information can be employed to obtain the surface energy

for any given equilibrium state of adsorption.

In principle, it is easy to integrate the Gibbs adsorption

isotherm, but only for the case x = 0 (ideal solution) where

DEseg is independent of xS (see Eq. 45), as was shown for

example in Ref. [149]. A better approach for obtaining an

integrated form of the surface energy, which is not restricted

to cases where x = 0, is to use Eq. (42). Combining this

with expressions such as Eq. (47) to evaluate the adsorption

terms for solute and solvent, the surface energy can readily

be calculated from the surface composition information

obtained by the model. The results are displayed in Fig. 20

for the surface composition data obtained in the case of a

positive regular solution constant in Fig. 19a.

The slopes in the curves shown in Fig. 20 are related to

the adsorption (see Eq. P4(2)41). As the bulk concentration

of the solute, x, increases, at any given temperature, so does

the adsorption (by Eq. 44), hence the gradual increase in

absolute slope of the curves with increasing x. But note that

the slope of the curves approaches an asymptotic value.

This corresponds to saturation of the surface monolayer in

solute. Note also, that although the surface becomes satu-

rated in solute, the surface energy continues to decline.

This points to a common misconception. The surface

energy is not proportional to the adsorption, rather it is the

slope, dc=dlB, that is proportional to adsorption.

Finally, it is useful to cross-plot the results of Fig. 20, as

c versus T for constant bulk composition, as shown in

Fig. 21. For low-bulk concentrations of solute, the surface

energy increases with temperature but eventually reaches a

plateau value corresponding to the surface energy of the

pure solvent when CB and its derivative are so small that

there is longer any effect on the change in surface energy.

More realistically, this low-bulk concentration curve

should display a slightly negative slope above approxi-

mately 800 K, because the surface energy of pure materials

shows a small but finite decrease with increasing temper-

ature. However, the main point illustrated by Fig. 21 is the

strong temperature dependence of surface energy that can

result from segregation. This is most evident at higher bulk

concentrations of solute and results from the exponential

decrease in segregation with increasing temperature illus-

trated in Fig. 19.

Although the trends illustrated in Figs. 19, 20, and 21

are for the case of surface segregation in a solid solution,

they provide a useful qualitative picture of the effects of

segregation on the energy of all interfaces.

Effects of adsorption/segregation on wetting

Wetting systems can be quite complex, thus for the sake of

simplicity, we will consider a system consisting of two

surfaces (those belonging to the liquid phase and to the

solid substrate) and one solid/liquid interface. Both the

wetting phase and the substrate may contain impurities

and/or deliberate alloying additions, and these components

can all segregate to some or all of the interfaces (two

surfaces and one solid/liquid interface). In addition, any

interfacially active species present in the environment (gas

phase) surrounding the wetting system can also adsorb at

these interfaces (see the effect of oxygen in [150–152]).

Thus, in general, it is possible for the energies of any or all

of the interfaces relevant to a wetting system to be modified

by adsorption/segregation effects.

When adsorption is limited to a single interface, at such

chemical potential(s) of the adsorbate(s) that its energy is

decreased, the consequences on wetting are predictable on

the basis of the Gibbs adsorption isotherm. Consider, for

Fig. 20 Variation of the interfacial energy with bulk composition

(log scale), at several temperatures, for values of the parameters used

in the case x = 550 J/mol in Fig. 16. x is the atomic fraction of the

solute component B

Fig. 21 Variation of surface energy with temperature for various

values of the bulk solute concentration, cross-plotted from Fig. 17
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example, a case where (the contact angle) h\ 90�, in which

adsorption occurs exclusively at the surface of the wetting

phase and decreases its energy, cLV. This leads to a conse-

quent decrease in contact angle, or an improvement in wet-

ting. However, if h[ 90�, a decrease of the surface energy of

the wetting phase will increase the contact angle, leading to

poorer wetting. Energy decrease related to adsorption con-

fined to either of the other two interfaces (surface of the

substrate or interface between the substrate and the wetting

phase) does not produce this reversal of behavior at h = 90�.

Rather, a decrease in cSV always produces poorer wetting,

whereas a decrease in cSL always improves wetting.

When more than one of the interfaces that control

wetting behavior decreases in energy because of adsorption

(i.e., an increase of one or several Ci dli), the net effect can

act either to increase or decrease the contact angle, and

more detailed information about segregation to the various

interfaces is needed before experimentally observed trends

can properly be interpreted [153].

Wetting transitions

The existence of transitions from non-zero to zero contact

angle, i.e., wetting transitions, were first proposed by Cahn

[154] and first observed by Moldover and Cahn [155]. For

the sake of simplicity, let us first consider two fluid phases

(a0 and a00) in contact and at equilibrium with a solid

substrate (s) such that Young’s equation may be applied:

ca0a00 cos h ¼ csa00 � csa0 ð48Þ

The a0 and a00 phases are taken to be in equilibrium

below their critical point (Tc). These phases may consist of

a liquid and its vapor, or of two partially miscible liquid

phases. In either case, as Tc is approached from lower

temperatures, the difference between the a0 and a00 phases

disappears and (csa0 0 - csa0) will approach 0 as (Tc - T)1.3.

Also, as Tc is approached from below, the interfacial

energy ca0a0 0 will vanish as (Tc - T)b, where b & 0.3–0.4.

As a result, cos h will approach unity (i.e., h ? 0) at some

positive value of (Tc - T). The value of T corresponding to

h = 0 is referred to as the wetting temperature and will be

denoted as TW.

From a materials perspective, it is convenient to discuss

this type of transition in the context of a two-component

system where two liquid phases can co-exist over a range

of temperature and composition, within a miscibility gap,

as illustrated in Fig. 22a. Now consider a system consisting

of two liquid phases, a0 and a00 and their vapor, V. In

general, one of the two liquid phases (say a00) will float at

the surface of the other. At temperatures below TW, the

configuration of the floating drop is as depicted in Fig. 22b,

and displays a finite dihedral angle (h1 [ 0, h2 [ 0);

whereas at TW, h1 ? h2 = 0, with the result that a00 spreads

over the surface of a0 to form a wetting layer, as shown in

Fig. 22c.

In the case of Fig. 22b, the interfacial equilibrium

condition is given by Eq. (8) and may be written as:

Fig. 22 a Phase diagram

plotted as T versus the atom

fraction of component B, xB,

showing a liquid–liquid

miscibility gap and TW; b partial

wetting configuration of the

a0–a00—vapor system at

T \ TW; c wetting configuration

of the a0–a00—vapor system at

T C TW
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ca0V ¼ ca0a00 cosðh2Þ þ ca00V cosðh1Þ ð49Þ

whereas in Fig. 22c, equilibrium is defined by:

ca0V ¼ ca0a00 þ ca00V ð50Þ

Wetting transitions can be classified as being of first

order or critical [156]. In both cases cos(h) approaches

unity continuously as temperature is increased. However,

its derivative with respect to T can be either discontinuous

at TW (first-order wetting transition) or continuous (critical

wetting transition). A variety of adsorption phenomena can

occur in conjunction with wetting transitions, as described

in the following section.

Associated adsorption transitions

Adsorption phenomena associated with wetting transitions

have been reviewed by Schick [156] for the case of a gas

adsorbing on a solid substrate; here we discuss this type of

behavior in the context of a binary liquid system, of more

interest to the high temperature wetting community.

The adsorption behavior is summarized in Fig. 23 for

the case of a first-order wetting transition. Figure 23a

reproduces part of the phase diagram shown earlier in

Fig. 22a. In Fig. 23a, the locus of adsorption transitions or

prewetting lines associated with the wetting transition are

identified by dashed lines which lie to the left of the a0–a00

coexistence line; in addition, three paths of approach to the

coexistence line are indicated by horizontal arrows.

Figure 23b shows the adsorption of component B at the

surface of the a phase, as a function of the chemical

potential of B, lB. The vertical dashed line is drawn at l0,

the chemical potential of B at the edge of the miscibility

gap, i.e., at a0–a00 coexistence.

Consider first the trajectory corresponding to the black

arrow in Fig. 23a, along which coexistence is approached

below TW. The corresponding black curve in Fig. 23b

shows that in that case adsorption of B at the surface of a
increases up to a finite value as coexistence is reached.

Indeed, the presence of finite adsorption at coexistence is

evidence that when the a00 phase forms at the surface of a0,
it only partially wets the a00 phase.

Now consider the trajectory corresponding to the blue

arrow in Fig. 23a, which lies above TW. As this path

crosses the dashed blue prewetting line, B-adsorption at the

surface of the a phase undergoes a first-order jump, as

shown in the blue line of Fig. 23b (we recall that the sur-

face energy at this transition only changes slope as

described by the Gibbs adsorption equation (Eqs. 35, 38).

As the path continues towards the two-phase coexistence

line, the adsorption diverges, presaging the formation of

the bulk a00 phase at coexistence. When coexistence is

reached, the newly formed a00 phase completely wets the

surface of the a0 phase, since the temperature lies above

TW.

For other trajectories that cut the prewetting line,

between its lower end at TW on the edge of the miscibility

gap and its upper end at the prewetting critical point

(TCPW), the magnitude of the first-order jump in

B-adsorption gradually diminishes and eventually vanishes

at TCPW. Above TCPW, along trajectories corresponding to

the red arrow in Fig. 23a, higher order adsorption transi-

tions occur as the extension of the prewetting line (dashed

red line) is crossed, and adsorption continues to diverge in

the limit of coexistence, as shown by the red line in

Fig. 23b. Here also, complete wetting is achieved at

coexistence.

It is also useful to consider a trajectory that follows the

edge of the miscibility gap approaching TW from below. In

this case, adsorption is finite below TW, and jumps dis-

continuously to infinity at TW, in accordance with expec-

tations for a first-order transition. In all of the preceding

discussion, one should recognize that when the coexistence

line is approached from the single-phase domain, diver-

gence of the adsorption indicates the formation of the bulk

a00 wetting phase at the surface of the a0 phase, whereas

finite adsorption is the conventional adsorption/segregation

phenomenon that prevails in the absence of complete

wetting.

In addition to the types of transitions described in

Fig. 23, Pandit et al. [157] have developed a model in

which layered adsorption transitions occur when certain

relationships between adsorbate–adsorbate and adsorbate–

substrate interactions prevail. In layered transitions, the

region containing the adsorbed species increases in thick-

ness, one atomic layer at a time, by a series of either first or

higher order transitions. In contrast to Cahn’s, model, these

Fig. 23 a Part of the phase diagram shown in Fig. 22a. The dashed

blue line designates the locus of prewetting adsorption transitions,

which terminate at high temperature at the prewetting critical point

(TCPW), and the red dashed line shows the extension of the prewetting

line above TCPW. In addition, three paths of approach to the edge of

the miscibility gap are designated by arrows. b The adsorption

behavior along the three paths identified in a is shown, as a function

of the chemical potential (see text) (Color figure online)
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transitions can occur even below the wetting temperature,

as shown schematically in Fig. 24. Figure 24a shows a

portion of the phase diagram shown previously in Fig. 22a,

with dashed lines representing adsorption transitions that

occur in the single a-phase domain. Each dashed line

represents a first-order adsorption transition in a single

atomic layer. Figure 24b displays the adsorption as a

function of chemical potential (or increasing bulk compo-

sition) of the adsorbing species, B. Consider the changes in

adsorption shown by the blue curve in Fig. 24b, which

occur along the path indicated by the blue arrow in

Fig. 24a, at a temperature below TW. As xB (or lB)

increases, adsorption at the surface of the a-phase increases

monotonically until it crosses the first dashed line (termi-

nating in a critical point at Tc1). Where it crosses the

dashed line, a first-order transition in adsorption will occur

in the first atomic layer of the surface. As the chemical

potential continues to increase, the second dashed line

(terminating in a critical point at Tc2) is crossed, and this

corresponds to a first-order transition in the second surface

layer, as shown in the blue curve of Fig. 24b. In principle,

the number of layers that can undergo transitions is not

limited, but must be finite as long as the path followed lies

below TW. Also, the thickness of the layers which undergo

transition may not be limited to one atomic layer, but

depend on the range of the interatomic interactions.

Paths at temperatures above TW differ in that the number

of layers undergoing transitions is unlimited, and the total

adsorption will diverge, as was the case for the transitions

shown in Fig. 23. If the path is as indicated by the red

arrow, where all the dashed lines are crossed below their

respective critical temperatures, there will be an infinite

number of atomic layers undergoing first-order transitions

(as in the red curve shown in Fig. 24b). Conversely, along

the green path, which lies above all of the layer critical

temperatures, a series of higher order adsorption transitions

will occur in each atomic layer. Intermediate paths between

the red and green paths will display some high order and

some first-order transitions.

Thus far, we have focused on first-order wetting tran-

sitions. As mentioned earlier, wetting transitions can also

be critical. In this case, if one follows a trajectory along the

edge of the miscibility gap towards TW from lower tem-

peratures, adsorption will increase continuously and

diverge as TW is approached. In the case of critical wetting

transitions there are no associated adsorption transitions

such as the prewetting phenomena described above; iso-

thermal paths toward coexistence result either in finite

adsorption at coexistence, if T \ TW (as in the black curve

of Fig. 24b), or in continuously increasing adsorption with

divergence at coexistence, for paths that approach coexis-

tence at T [ TW.

Jumps in adsorption do not mean jumps in surface

energy

Whereas phase transitions in bulk phases at the equilibrium

transition temperature (e.g., the transition from solid to

liquid at the melting point) are universally understood to

occur when the free energies of the two phases are equal,

there is some confusion on this point where adsorption

transitions are concerned. When two bulk phases coexist in

equilibrium, the chemical potentials of each of the com-

ponents in the phases must be equal, and this is also true for

coexisting adsorption states. This is illustrated in Fig. 25,

which has been generated by means of a multi-layer model

similar to that described in section ‘‘Illustration of

adsorption/segregation by means of a simple model’’, using

parameters that give rise to a series of first-order adsorption

transitions [158].

Figure 25a is a plot of Pb adsorption versus the bulk

atom fraction of Pb, x, at the surface of a liquid Ga–Pb

alloy, at a temperature of 500 K. Here the surface of the

liquid has been modeled as the (111) surface of a fcc solid

[158]. The figure shows an adsorption transition in the first

atomic layer at the surface. This temperature is above TW

for the alloy. Although the alloy does display an infinite

number of atom layer transitions, only the first of these is

shown in the figure, as the second and subsequent layers

undergo transitions at values of x that lie between the

highest value plotted (x = 0.0079) and the phase boundary

(x0 * 0.0092) indicated on figure by an arrow. Even the

second layer transition would be difficult to display as it

occurs at x0 - x * 10-4 [158]. The solid line in Fig. 25b

gives the surface energy variation with Pb bulk atom

fraction corresponding to Fig. 25a. It clearly shows that the

surface energy at the bulk composition corresponding to

Fig. 24 a Part of the phase diagram shown in Fig. 19a. The dashed

blue lines designate the locus of adsorption transitions, each of which

terminates at high temperature at a critical point (TCi). In addition,

four paths of approach to the edge of the miscibility gap are

designated by arrows. b The adsorption behavior along the four paths

identified in a is shown, as a function of the chemical potential, as in

Fig. 20 (Color figure online)
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the transition is discontinuous, but that the values of the

surface energies that correspond to the coexisting low and

high adsorption states are identical. The dashed lines in

Fig. 25b are schematic, and illustrate the approximate

surface energies of metastable states that could exist for the

high and low adsorption states above and below the tran-

sition temperature.

What does ‘‘monolayer’’ adsorption mean?

The term monolayer adsorption/segregation is ambiguous

in many situations. Here we consider several possible cases

in order to illustrate this issue.

Consider first a case of adsorption from the gas phase

onto an elemental crystalline solid surface, as depicted

schematically in Fig. 17b. For the case of a close packed

solid surface, it might be reasonable to assume that the

number of adsorption sites in the layer above the outermost

crystal layer is equal to the number of atomic sites in the

crystalline layer. If all adsorption sites were occupied by

adsorbate atoms, then one could describe this state as one

depicting monolayer adsorption. For the sake of simplicity,

let us consider that the adsorbate species behaves as hard

spheres, and that the atomic radius of the adsorbate atoms is

larger than that of the substrate atoms. Under these condi-

tions, as the adsorption sites of the substrate surface become

progressively occupied, a saturation point will be reached

where no more adsorbate atoms can be accommodated,

leading to a state where only a fraction of the adsorption sites,

f \ 1, are filled. Conversely, for an adsorbate with an atomic

radius smaller than that of the substrate atoms, saturation

would occur for f [ 1. In both of these cases, however, the

surface could be viewed as consisting of a ‘‘monolayer’’ of

adsorbate. This is clearly ambiguous. But the situation is

actually much more complicated than discussed thus far.

What if the crystalline substrate surface consisted of some

high index plane, e.g., (321) of a fcc solid where several

(321) near-surface atomic layers lack complete coordina-

tion? Now, even the number of adsorption sites becomes

difficult to define, as the adsorption sites lie on different

atomic layers of the substrate.

In the case of segregation from the bulk, such as

depicted schematically in Fig. 17d, new complications

arise in defining the state of the system in terms of mon-

olayers. This is due to the fact that adsorption generally

occurs in several near-surface atomic layers of the sub-

strate, and that each layer consists of a mixture (solution)

of both components. Thus, when the topmost surface layer

is close to saturation, there will also be non-negligible

adsorption occurring in deeper layers. This situation was

also illustrated in Fig. 19b, which shows that even though

the uppermost atomic layer (layer 1) is essentially saturated

with the segregating component, non-negligible segrega-

tion also occurs in layers 2 and 3.

Some of the issues alluded to here can be avoided by

employing a Gibbsian definition of adsorption. Then,

adsorption is defined as the sum of the number of adsorbate

species present in the near-surface region that exceed

(positively or negatively) their number in an equivalent

region of the bulk phase, expressed per unit area of surface.

With this approach, the term ‘‘monolayer’’ adsorption

ceases to be meaningful, unless one arbitrarily defines a

certain number of adsorbate species per unit area as con-

stituting a monolayer. Even this approach suffers from the

disadvantage that the distribution of adsorbate species in

the near-surface region is not evident. Nevertheless, this

discussion should make it clear that the terminology of

monolayer adsorption/segregation is best avoided.

Fig. 25 a Plot of adsorption at the surface of a liquid Ga–Pb alloy

versus Pb bulk composition, showing an adsorption transition in the

first surface layer. b Corresponding plot of surface energy; the solid

line shows the locus of equilibrium states and displays a discontinuity

in slope at the composition of the transition, but equal surface

energies for both the high and low adsorption states; the dashed lines

indicate the metastable high and low adsorption states. The arrows

mark the value of x corresponding to the phase boundary
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Complexions

What are complexions and complexion transitions?

The discussion in the previous sections clearly shows that a

first (or higher) order transition can occur in the state of an

interface, surface, or grain boundary, with regards to

chemical excess (adsorbate). Recently, these transitions

have been shown to have a significant influence on the

properties of grain boundaries with regards to mobility

during grain growth [159]. Scanning TEM of similar grain

boundaries in the same samples suggested that the changes

in grain boundary mobility are dependent upon the state of

the grain boundaries with regards to transitions in adsorp-

tion, which were classified by Dillon et al. [160] as specific

states according to their structural width (rather than

chemical content). A structural width is a useful charac-

terization; see comments in Eq. (59).

The concept of structural (rather than chemical) changes

at a grain boundary is not new, but the recent models by

Tang et al. proposed that structural transitions could be

seen as first-order transitions, in a manner analogous to the

adsorption transitions discussed in section ‘‘Microscopic

scale and adsorption’’ [161–163]. Unfortunately these

transitions were described by some as phase transitions, or

grain boundary phase transitions, while the transitions in

adsorption or structure were clearly confined to the 2D

state of the interface. As a result, Cannon and Carter sug-

gested calling this general phenomenon ‘‘complexion’’

transitions, where a complexion is an equilibrium 2D state

of an interface [161]. It is important to differentiate

between bulk phases and complexions, since complexions

can only exist at the surface of a bulk phase or at the

interface between two bulk condensed phases, and com-

plexion transitions can occur without a transition in any of

the adjacent bulk phases.

Interestingly, structural transitions at an interface, without

any nominal change in chemistry (chemical excess) have

recently been studied during wetting experiments of liquid

Al in contact with sapphire [132, 164]. The ordered region in

the liquid adjacent to the solid is, in effect, a complexion,

where the change in order as a function of, e.g., temperature

or terminating solid facet plane, are different complexions

[165]. That this phenomenon is a complexion is inferred

from the experimental data, but cannot be directly proven.

However, recently the energy of Au–sapphire interfaces with

and without a Ca–Si-based complexion were measured, and

a significant difference in energy was experimentally asso-

ciated with the change in the interface complexion and an

increase of the chemical potentials of Si and Ca [166, 167].

An interface will have an equilibrium complexion at

given values of system potentials such as pressure, tem-

perature, and the chemical potentials of the various

chemical species. For crystalline surfaces, the equilibrium

complexion will depend on the surface orientation; for

example, in one-component systems, the surface can

undergo reconstruction, disorder, roughening or melting

[168]. In binary alloys, several surface complexions have

been observed, which differ in structure and composition

depending on the chemical potentials [169–172]. Symme-

try reconstructions at the surfaces of oxides have been

studied by Rappe and co-workers [173] who plotted the

equilibrium surface structures as a function of the poten-

tials (e.g., the partial pressure of oxygen). From this dis-

cussion it is clear that surface reconstruction is necessarily

a complexion transition.

At grain boundaries, complexions manifest themselves

as highly localized structural changes, or as abrupt changes

in the adsorption content, which display a width set by

thermodynamic equilibrium, and whose presence can lead

to changes in properties such as electrical conductivity,

adhesion, and grain boundary mobility [63, 174–179]. In

all cases, these phenomena can be treated with an identical

and rigorous classical thermodynamic foundation [163].

These formulations are not new. Gibbs recognized that

soap film transitions can be treated in the same manner as

the equilibrium of heterogeneous materials [180]; Smith

[181] provided a heuristic argument for the onset of a

premelting film of finite thickness; Cahn [154] extended

this idea to compositional changes in his diffuse interface

treatment in critical wetting theory; Schick [156] extended

this further by a careful thermodynamic treatment of the

interface environment. Abrupt surface symmetry changes,

and surface relaxation are also well known. Several phe-

nomena were described in Cahn’s [154] critical wetting

paper, including the abrupt transition of surface adsorption,

C, at the exterior surface of a single phase. The term

‘‘critical wetting’’ has been used to describe these abrupt

changes in adsorption, and this is unfortunate because these

interfacial structures and compositions are not ‘‘wetting’’

and should not be directly associated with a wetting angle.

There is a tendency to call complexion transitions ‘‘phase

transitions’’ and the finite films that constitute the com-

plexions have been called ‘‘phases.’’ This is also unfortu-

nate. Complexions are not phases as defined by Gibbs (p. 96

in Collected Works [180]) ‘‘…the thermodynamic state of

any such body without regard to its quantity or form.

…Phases (are in equilibrium) when (they) can exist toge-

ther, the dividing surfaces being plane, in an equilibrium

that does not depend on passive resistance’’. Complexions

cannot exist as a bulk phase. Their compositions and

structures do not necessarily appear on an equilibrium phase

diagram, and consideration of these structures as phases

could lead to mistaken additional degrees of freedom, and

thus misinterpretations of the Gibbs phase rule. Thus, these

collective phenomena have been called ‘‘complexions’’
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with the objective of associating them with interfaces

exclusively, and remove direct association to phases.

Complexion transitions can manifest themselves in con-

junction with discontinuous changes in material behavior.

Dillon et al. [160] have identified six different grain

boundary structures in alumina that correlate directly with

grain boundary mobility. Given the number of degrees of

freedom of the various grain boundaries in a polycrystalline

alumina, it is unlikely that the number of complexions is

limited to six. However, it may be that, at high temperatures,

a relatively small number of grain boundary structures

emerge and dominate behavior. Luo and co-workers [182]

have associated activated sintering with complexions, and it

would be expected that creep behavior, etc., will also depend

on complexions. Crystals with many atoms per unit cell such

as oxides, especially those which have tightly bound sub-

unit cell structural units, such as silica tetrahedral, are likely

candidates for disordered complexions.

Methods of treating interfaces with C components

and U phases and its connection to complexions

Cahn [23] provides a useful and rigorous method of treating

the excess quantities associated with an interface in a multi-

phase multi-component system. This section provides a trivial

extension of Cahn’s method to multiple interfaces. Recently

Frolov and Mishin [183] have used this method to include the

effect of mechanical stresses on the interfacial region.

The thermodynamic system consists of reservoirs of

each of the C independent chemical species; these reser-

voirs maintain constant chemical potentials, but their val-

ues may be varied (e.g., dli) by an experimenter. An

additional reservoir of an inert species allows the total

pressure (i.e., the sum of partial pressures) to be controlled

independently. The entire system has a thermally conduc-

tive barrier in contact with a thermal reservoir which

maintains a constant temperature. The experimenter has

C ? 2 knobs that can be adjusted independently. The

pressures within each phase must be uniform, but can take

on different values within isolated bodies according to the

value of cj for isotropic surfaces (where j is the curvature

of the interface) or weighted mean curvature jc [50] for

anisotropic surfaces; equilibrium requires that these

quantities be uniform and have the same value on all sur-

faces which bound an isolated body. The system is treated

as a restricted equilibrium wherein mass exchange across

the interfaces is slow compared to all other processes (i.e.,

grain growth is slow), and this is artificial because redis-

tribution of the species transported from the chemical

reservoirs is permitted. There are other systems which

might be considered. For example, if the system is closed

so that the number of each species is fixed, then the Gibbs

free energy would be used. Here, the grand canonical

potential, X, is used in what follows. The Gibbs free energy

function would be appropriate for nanocrystalline systems

in which behavior is determined by redistribution of the

adsorbate species between the bulk and interfacial regions.

Each phase has equilibrium densities associated with it,

each of which depends on the various fixed and uniform

potentials, the values of each phase’s densities change

according to a Gibbs–Duhem equation for each phase. The

discussion is simplified by gravimetric densities (i.e., the

number of species in a phase per unit mass, the phase

volume per unit mass, and the phase entropy per unit

mass). Volumetric densities would require the introduction

of a reference volume.

Values of each phase’s densities change according to a

Gibbs–Duhem equation for each of the U phases, yielding

U equations with C ? 2 unknowns.

vap-phase 0 ¼ �svapdT þ vvapdP�
P

n
vap
i dli 51ð Þ

liq-phase 0 ¼ �sliqdT þ vliqdP�
P

n
liq
i dli 52ð Þ

a-phase 0 ¼ �sadT þ vadP�
P

na
i dli 53ð Þ

..

. ..
.

p-phase 0 ¼ �spdT þ vpdP�
P

np
i dli 54ð Þ

These U equations with C ? 2 unknowns result in DoF

degrees of freedom (i.e., the maximum possible number of

coexistent phases: DoF = C ? 2 - U) in the Gibbs phase rule.

Each of the interfaces has a relationship between the

change in interfacial energy and its interfacial densities

(i.e., [S], [V], [Ni] where [] indicates division by a fixed

reference area).

Interface Relations: Q equations and Q additional

unknowns

LiquidjVapor: dcljv ¼ � S½ �ljvdT þ V½ �ljvdP�
P

Ni½ �ljvdli 55ð Þ
Liquidja: n̂a � dn~¼ � S½ �ljadT þ V½ �ljadP�

P
Ni½ �ljadli 56ð Þ

a 0a
x

� �
ja 0a

y

� �
: n̂0a

x j0a
y � dn~¼ � S½ �0

a
x j0a

y dT þ V½ �0
a
x j0a

y dP�
P

Ni½ �0
a
x j0a

y dli 57ð Þ

..

. ..
.

b 0b
x

� �
ja 0b

y

� �
: n̂0a

x j0
b
y � dn~¼ � S½ �0

a
x j0

b
y dT þ V½ �0

a
x j0

b
y dP�

P
Ni½ �0

a
x j0

b
y dli 58ð Þ
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The system gains no additional degrees of freedom: DoF of

the unknowns (dli, dT, dP, dc, etc.) can be solved in terms of the

remaining C ? 2 - U unknowns. The extra Q unknowns differ

in that they are internal variables: the experimenter has no means

to adjust these quantities individually, but only indirectly through

P, T, and li.

The above notation is cumbersome but necessary: n̂a is

the orientation of the crystalline a-interface with respect to

a reference frame. n~ is the Cahn–Hoffman anisotropic

capillarity vector (which reduces to n̂ac in the isotropic

case). The Cahn–Hoffman n~ is discussed elsewhere [49],

for the present purposes it suffices to recognize that n̂a � dn~

represents the change in the interfacial energy for a crys-

talline orientation n̂a. 0b
x j0a

y represents the interface

between a b-phase (with a crystallographic orientation x

with a normal n̂b) and an a-phase (with crystallographic

orientation y with a normal n̂a). Using an outward normal

convention, n̂a ¼ �n̂b, because both normals share the

same reference frame.

Each interface must be in equilibrium with its abutting

phases and examples are given above. However, because

there may be extant equilibrium phases that do not abut a

particular interface, the Gibbs–Duhem equation for that

non-abutting phase must also appear as one of the equa-

tions used for elimination. Therefore, the behavior of an

a–a grain boundary at a range of compositions where

only the a phase is in equilibrium will differ from an a–a
grain boundary when a b-phase is also at equilibrium. In

the first case, the adsorption of a species (e.g., B) will

change continuously until a complexion transition occurs,

at which point the adsorption changes discontinuously at

constant interfacial energy; upon further addition of B to

the system, a wetting transition occurs when another

phase (e.g., b) appears. In the latter case, partial or

complete wetting of the grain boundary by the b-phase is

always possible.

In addition to the Gibbs–Duhem equations for mul-

ticomponent and multiphase systems, one may choose

to use an interface equation for each interface in

Fig. 26. In this case, an adsorption isotherm equation

will appear for each interface, but each will depend on

the potentials that the experimentalist chooses to vary

independently. In other words, changing the potentials

in Fig. 26 will cause simultaneous changes on all

the interfaces in a manner that is calculated above.

These interfaces are not available to be controlled

independently.

The coupling of the interface equations at junctions,

such as triple lines, has not been included in the equations

above. If they were to be included, then they would give

geometric boundary conditions (i.e., the contact angles) for

the intersections and this discussion appears in Gibbs

(Figs. 11–13 in p. 287 of [184]). Any additional energies

such as triple line energies have not been included, but as

Gibbs states (footnote on p. 288 of Collected Works [184])

the triple junctions can be treated analogously to interfaces,

but with a line replacing a cylinder of localized inhomo-

geneity instead of a dividing surface replacing a localized

slab of inhomogeneous material.

Connection to complexions and wetting transitions

A complexion is associated with particular values of

S½ �0
a
x j0

b
y , V½ �0

a
x j0

b
y , and Ni½ �0

a
x j0

b
y . (Note that V½ �0

a
x j0

b
y has units of

a characteristic width of the interface, which can be used to

characterize a complexion transition.) A first-order com-

plexion transition would be associated with finite changes

of S½ �0
a
x j0

b
y , V½ �0

a
x j0

b
y , and Ni½ �0

a
x j0

b
y . At particular values of T, P,

and li which define the edge of the miscibility gap, an

additional phase is in equilibrium with a and b, and then

DoF (i.e., DoF = C ? 2 - U) will decrease by 1.

Each particular interface must be in equilibrium with its

abutting phases, or phase in the case of a grain boundary. It

is useful to consider several different cases that illustrate

the differences in the computation of the adsorption or

excess quantities; below we consider examples of grain

boundaries in single-phase alloys, and interphase bound-

aries in multi-component alloys.

Fig. 26 A thermodynamic system with a fixed pressure, temperature,

and chemical potentials of C independent components. The experi-

mentalist has the possibility of controlling any of these potentials, but

the number of potentials that can be varied independently and

maintain phase coexistence is determined by the Gibbs phase rule.

The figure illustrates the variety of interfaces that can be considered:

vapor/liquid, liquid/crystalline, vapor/crystalline, two-phase crystal-

line/crystalline, single-phase crystalline/crystalline, amorphous/crys-

talline, etc. This image is used to illustrate the development of the

Gibbs adsorption isotherms for the general case of many interface

types in multi-component, multiple alloy systems.

J Mater Sci (2013) 48:5681–5717 5711

123



Isotropic grain boundary (a/a), unary phase (A)

There is one equation of the Gibbs–Duhem type and one

interface equation. Eliminating dP:

dcgb ¼ na
A V½ �gb� NA½ �gb

va
A

va
A

dlA þ
sa V½ �gb� S½ �gb

va
A

va
A

dT ð59Þ

If the method of the Gibbs’ dividing surface is applied to

the case of a grain boundary, then the position of the

dividing surface is arbitrary. If that position is chosen so

that [V]gb = 0, then for the isothermal case, dcgb ¼
�½NA�gb

dlA � �Cgb
A dlA; this choice ([V]gb = 0) used by

Gibbs is natural if the interface is taken to be a

mathematical surface, however, [V]gb is perhaps the most

useful characteristic of complexion transitions and a non-

zero choice is important in their characterization. [NA]gb is

the excess number of atoms associated with the grain

boundary, this quantity is generally negative (which means

there is a depletion of atoms per unit area of grain

boundary), but can be of either sign.

Note that the elimination of the variable dP produces

an expression which specifies the necessary variation of

P, in other words changes of P are not independent of

dlAand dT. This will be the case for all eliminated

variables below.

Anisotropic grain boundary (a/a), binary alloy (A–B)

There is one equation of the Gibbs–Duhem type and one

anisotropic interface equation: the dcgb is replaced with

n̂0a
x j0a

y � dn~. This equation has additional degrees of freedom

because the adsorption or the excess entropy will depend

on the orientation of the grain boundary with respect to the

crystal.

Eliminating dP using the single Gibbs–Duhem

equation

n̂0a
x j0a

y � dn~¼ na
A V½ �gb� NA½ �gb

va
A

va
A

dlA

þ na
B V½ �gb� NB½ �gb

va
B

va
A

dlB

þ sa V½ �gb� S½ �gb
va

A

va
A

dT ð60Þ

In this case, there are two different Gibbs adsorption

isotherm terms: one for the excess of the A-species and one

for the B-species. In the example of a two-phase binary

alloy given below, the loss of one degree of freedom will

result in an equation with only one adsorption isotherm for

the species B.

The n~ n̂ð Þ are directly related with the ‘‘grain boundary

Wulff shape’’: for each n̂, the n~ n̂ð Þ is the vector which

coincides with a point on the Wulff shape having that n̂.

Thus, any point that lies on the grain boundary Wulff shape

consists of the set of n~ n̂ð Þ such that n̂ is a stable orientation

on the Wulff shape. In the trivial case that the Wulff shape

is a circle: n~ n̂ð Þ ¼ cgbn̂.

Liquid–vapor (l|v), binary alloy (A–B)

There are two equations of the Gibbs–Duhem type with

C = 2 (one for each phase), and one of the interface type.

These two equations are used to solve for the changes in

potentials that maintain equilibrium: Eliminating dP and

dlA from the two Gibbs–Duhem relations, and inserting

these into the expression for dcljv:

The term multiplying dlB is the right-hand side of the

traditional form of the Gibbs’ adsorption isotherm. In the

dcljv ¼
NB½ �ljv n

vap
A vliq � n

liq
A vvap

� �
� NA½ �ljv n

vap
B vliq � n

liq
B vvap

� �
þ V½ �ljv n

vap
B n

liq
A � n

vap
A n

liq
B

� �

n
vap
A vliq � n

liq
A vvap

dlB

�
S½ �ljv n

vap
A vliq � n

liq
A vvap

� �
� NA½ �ljv svapvliq � vvapsliq

� �
þ V½ �ljv svapn

liq
A � n

vap
A sliq

� �

n
vap
A vliq � n

liq
A vvap

dT

¼

Det

NB½ �ljv NA½ �ljv V½ �ljv

n
vap
B n

vap
A vvap

n
liq
B n

liq
A vliq

0

B
@

1

C
A

Det
n

vap
A vvap

n
liq
A vliq

 ! dlB �

Det

S½ �ljv NA½ �ljv V½ �ljv

svap n
vap
A vvap

sliq n
liq
A vliq

0

B
@

1

C
A

Det
n

vap
A vvap

n
liq
A vliq

 ! dT

ð61Þ
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notation defined in Eq. (39), and in Equation 514 of Gibbs’

‘‘Equilibrium of Heterogeneous Substances’’ [184], this

becomes dcljv ¼ �CBðAÞdlB in the case that dT = 0 (the

adsorption isotherm); in this form, the equations are

derived by locating the dividing surface such that

[NA]l|v = [VA]l|v = 0. The equations derived above by

elimination of variables do not depend on this particular

choice of location, but it can be seen that this reduces to the

�CBðAÞ form when NA½ �ljv and V½ �ljv are set to zero:

CBðAÞ ¼
NB½ �ljv n

liq
A vvap � n

vap
A vliq

� �

n
liq
A vvap � n

vap
A vliq

¼ NB½ �ljv ð62Þ

a-Crystal/b-crystal, ternary alloy (A–B–C)

There are two Gibbs–Duhem equations (one for each of the

a and b phase)—each of which have three components—

and an anisotropic interface equation with orientation and

misorientation dependence.

Above, we have eliminated dP and dlA in each case.

The choice of eliminated variables is arbitrary and the

results will be identical for any choice. However, it is

convenient to eliminate variables such that the ones that

remain are those which the experimentalist may wish to

change. For example, suppose that we change dlA, dP, and

dT independently and allow the dlB and dlC to change so

as to maintain equilibrium between the two phases. In this

case, we would eliminate dlB and dlC from the Gibbs–

Duhem equations and obtain:

n̂0a
x j0

b
y � dn~¼

Det

NA½ �0
a
x j0

b
y NB½ �0

a
x j0

b
y NC½ �0

a
x j0

b
y

na
A na

B n
b
B

n
b
A na

C n
b
C

0

B
B
@

1

C
C
A

Det
na

B n
b
B

na
C n

b
C

 ! dlA

�

Det

S½ �0
a
x j0

b
y NB½ �0

a
x j0

b
y NC½ �0

a
x j0

b
y

sa na
B n

b
B

sb na
C n

b
C

0

B
B
@

1

C
C
A

Det
na

B n
b
B

na
C n

b
C

 ! dT

þ

Det

V½ �0
a
x j0

b
y NB½ �0

a
x j0

b
y NC½ �0

a
x j0

b
y

va na
B n

b
B

vb na
C n

b
C

0

B
B
@

1

C
C
A

Det
na

B n
b
B

na
C n

b
C

 ! dP

ð63Þ

General case: Cahn’s determinants

In the sequence of examples given above, the coefficients

which multiply the differential quantities become more

lengthy as the system becomes more general. However, the

form of the last example where the coefficients are written

as a ratio of determinants indicates the possibility of a

generalization to any case. The ratios are the determinants

derived by Cahn using Cramer’s rule.

Panel 6: nomenclature

Adsorbate A component which belongs to an adsorption layer

(often used when the species which are in this

adsorption layer come from the vapor phase)

Adsorption Positive or negative excess (atoms or moles) of a

component, per unit area of interface, in a system

with an interface in comparison with a system

consisting just of the abutting bulk phases

Bad/poor

wetting

Traditionally used to describe a contact angle

greater than 90�
Capillary

length

The length defined by the balance of capillary and

hydrostatic pressures

Complete

wetting

A zero contact or dihedral angle of a phase at an

interface

Complexions Equilibrium 2D state at an interface, characterized

by an interfacial excess of chemical components

and/or structural order parameters, at prescribed

chemical potentials

Critical point

wetting

A term introduced by Cahn [127] to describe a

transition from partial wetting to complete wetting

as a bulk critical point is approached. For example,

when two liquids coexist within a miscibility gap

with an external third phase like a gas or a solid

wall, and are heated towards the critical point, both

the difference between their interfacial energies

with the third phase, as well as the energy of the

liquid–liquid interface separating them, vanish.

Since the difference between the interfacial

energies of the two liquids with the third phase

vanishes faster than the liquid–liquid interfacial

energy, complete wetting of one of the two liquid

in contact with the third phase on the other liquid

arises before the bulk critical point is reached

Dewetting The kinetic process through which a phase (in the

form of a film) breaks up or agglomerates into

droplets (or particles in the solid state) because

wetting is not complete and/or the film is too thin

Diffuse

interface

Cahn’s description of an interface between two

phases of a miscibility gap which are at

equilibrium; the gradients of ‘‘intensive

interfacial parameters’’ are spread along a weak

gradient [185]

Disjoining

pressure

The pressure that must be applied to two interfaces to

maintain a given separation distance
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Dry versus moist

interface

A ‘‘dry’’ interface has been used to describe

an interface with no chemical excess

(which probably never exists). A ‘‘moist’’

interface has been used to describe an

interface with a finite amount of

adsorbate (a specific complexion)

Frank-van der Merwe A mode of thin film growth (layer-by-

layer); this is not complete wetting

because there is no equilibrium between

the film and the substrate

GB-disordering Transition from an ordered to a disordered

state of a complexion at a grain boundary

Good wetting Traditionally used to describe a contact

angle less than 90�
Interface/surface phase An incorrect terminology used in the past to

address complexions. Phases can certainly

form at interfaces or surfaces, but these

are necessarily 3D phases which must

appear on the phase diagram of the

corresponding system, and are not

complexions

Interface/surface

reconstruction

A structural change of the interfacial region,

leading to a new 2D unit cell. The thickness

of the cell may not be limited to a single

monolayer. An example is the 7 9 7

reconstruction on the (111) surface of Si

Intergranular Films

(IGFs)

Interfacial regions of constant thickness (at

fixed chemical potentials) between two

grains of the same phase with a defined

misorientation, or between two grains of

different phases. Due to the typical

1–2 nm thickness of some IGFs at grain

boundaries in ceramics, IGFs were

originally referred to as ‘‘phases’’ or

wetting films, although they have now

been clearly shown to be complexions.

Equivalent terms used in the literature

include equilibrium films, equilibrium

amorphous films (although complexions

are not necessarily amorphous),

multilayer adsorbates, and wetting films,

although adsorbed layers are clearly not

wetting films

Interface layering/

layering transition

First (or higher) order adsorption transitions

from one layer to the next; the thickness

of layers depends on the range of

interaction (one atom thick for metals,

several ions thick in iono-covalent

materials)

Liquid-like GB A premelted grain boundary

Nano-wetting An unfortunate and inappropriate use of

jargon to describe adsorption

Partial wetting A wetting state characterized by a contact

angle above zero and less than 180�
Perfect wetting Same as complete wetting

Premelting An interfacial state transition from an

ordered state to a state which displays

static and dynamic disorder, as in a liquid,

but below the bulk melting point. This

means that diffusion rates within this

region are similar to those in a liquid

Premelting-like Same as premelting

Prewetting A first-order complexion transition at an

interface; for example transition in

adsorption or interfacial order parameter

Prewetting film This term is used in the literature to describe

an interfacial state (complexion), where

complete wetting by a new phase is

preceded by a film with a composition very

close to that of the new phase as

coexistence is approached. The new phase

will form when coexistence is reached

Pseudo-partial

wetting

This term occasionally appears in the

literature to describe a partial wetting

situation of a drop where an adsorption

layer of undetermined thickness of the

components of the drop, spreads ahead of

the triple line on the solid substrate

Quasi-liquid film Same as premelted film

Surficial film This is the surface equivalent of an

intergranular film. It has most often been

used to describe an adsorption film (a

complexion) at a surface. In some cases this

has also been used to describe a film of a

wetting phase at a surface

Segregation In the realm of thermodynamics and

equilibrium, this is equivalent to adsorption.

However, it is also unfortunately used by

many to indicate the diffusion of species

towards an interface driven by equilibration

processes. ‘‘Enrichment’’ is probably a

better term for this situation

Spreading The kinetics of triple line displacement of a

liquid on a substrate in the presence of a

fluid phase

Stranski–Krastanov A mode of thin film growth (islands on top of

an adsorption layer); this is not a wetting

state because there is no equilibrium

between the film and the substrate.

Submonolayer

adsorbate

An amount of excess which, if projected onto

one atomic plane and assumed to occupy

specific lattice sites, occupies less than a

complete monolayer of lattice sites

Surface/interface

freezing

Ordering transition of a liquid surface state

from static and dynamic disorder to ordered

Surface/interface

melting

Same as premelting

Volmer–Weber A mode of thin film growth (islands); this is not

a partial wetting state because there is no

equilibrium between the film and the substrate

Wetting (transition)

temperature

Temperature at which a transition occurs from

partial to complete wetting. Since any

interfacial energy varies continuously as a

function of any intensive variable like

temperature or chemical potential, the contact

angle goes to zero continuously, while the

transition can be critical or first order

Work of adhesion The reversible thermodynamic work to create

two surfaces of two different phases at

equilibrium, from an equilibrated interface

between the two phases
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Summary

High temperature capillarity is an important scientific and

technological field of research, which covers both ther-

modynamics (wetting) and kinetics (spreading). In writing

this review, we have first attempted to identify phenomena

related to wetting, and then proceeded to describe how

these phenomena may be modified by the presence of

adsorption. We have also emphasized that the simple

measure of a contact (or dihedral) angle is not sufficient to

understand wetting, and that the anisotropy of crystalline

materials can play an important role in the minimization of

interface and surface energy. Furthermore, we have sum-

marized the strong influence that chemical heterogeneity

and roughness of surfaces can have on both wetting and

spreading, since they impact the motion of the triple line.

We have also reviewed wetting between two solid

phases, since while solid–liquid interfaces are often

important for materials processing, it is the solid–solid

interface which most often determines the properties of the

final material system. Solid–solid interfacial energy can be

experimentally measured, and allows determination of the

important value of the thermodynamic work of adhesion;

but once again the anisotropy of crystalline materials must

be taken into account.

Finally, we have reviewed the fundamentals of adsorp-

tion at the thermodynamic, or macroscopic, scale, and how

adsorption may play a decisive role in both wetting and

wetting transitions. Adsorption has also been considered at

the level of the local atomic structure, first with regard to

excess distribution and then by using the concept of

interface complexions. It is our hope that this review will

convince the reader that wetting phenomena cannot be

addressed without considering complexions and/or com-

plexion transitions, and this important concept provides a

bridge to future work aimed at merging continuum and

atomistic approaches to interface science.
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