
Auton Robot (2014) 36:31–49
DOI 10.1007/s10514-013-9371-y

Model-based autonomous system for performing dexterous,
human-level manipulation tasks

Nicolas Hudson · Jeremy Ma · Paul Hebert · Abhinandan Jain · Max Bajracharya ·
Thomas Allen · Rangoli Sharan · Matanya Horowitz · Calvin Kuo ·
Thomas Howard · Larry Matthies · Paul Backes · Joel Burdick

Received: 1 March 2013 / Accepted: 11 October 2013 / Published online: 28 November 2013
© Springer Science+Business Media New York 2013

Abstract This article presents a model based approach to
autonomous dexterous manipulation, developed as part of
the DARPA Autonomous Robotic Manipulation Software
(ARM-S) program. Performing human-level manipulation
tasks is achieved through a novel combination of perception
in uncertain environments, precise tool use, forceful dual-
arm planning and control, persistent environmental tracking,
and task level verification. Deliberate interaction with the
environment is incorporated into planning and control strate-
gies, which, when coupled with world estimation, allows for
refinement of models and precise manipulation. The system
takes advantage of sensory feedback immediately with little
open-loop execution, attempting true autonomous reasoning
and multi-step sequencing that adapts in the face of chang-
ing and uncertain environments. A tire change scenario uti-
lizing human tools, discussed throughout the article, is used

Electronic supplementary material The online version of this
article (doi:10.1007/s10514-013-9371-y) contains supplementary
material, which is available to authorized users.

N. Hudson (B) · J. Ma · P. Hebert · A. Jain · M. Bajracharya ·
C. Kuo · T. Howard · L. Matthies · P. Backes
Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena 91109-8099, CA, USA
e-mail: nhudson@jpl.nasa.gov

T. Allen · R. Sharan · M. Horowitz · J. Burdick
California Institute of Technology, 1200 E California Blvd,
Pasadena 91125, CA, USA
e-mail: jwb@robotics.caltech.edu

Present Address:
C. Kuo
Stanford University, Stanford, CA, USA

Present Address:
T. Howard
Massachusetts Institute of Technology, Cambridge, MA, USA

to described the system approach. A second scenario of cut-
ting a wire is also presented, and is used to illustrate system
component reuse and generality.

Keywords Autonomous · Manipulation · Estimation ·
Dual arm · Tool use · Task sequencing

1 Introduction

Autonomous robotic manipulation in uncertain environments
is poised to become a beneficial technology in manufactur-
ing, in-home care, and in projecting human-like capabilities
into hazardous situations or environments. The presented
work is part of the DARPA Autonomous Robotic Manip-
ulation Software (ARM-S) program which emphasizes the
completion of complicated tasks with only high level human
guidance or supervision while adapting to dynamic unstruc-
tured environments.

The ARM-S program currently consists of three teams,
each developing autonomy software on a local copy of the
ARM robot (Fig. 1). Each team delivers software to DARPA
for evaluation on the remote robot. This independent test-
ing finds the breaking point of each algorithm, and enforces
robustness to environmental factors such as lighting, room
and floor background, and differences between the test and
development robot.

The end-to-end system described in this paper is an exten-
sion of our DARPA ARM Phase 1 system (Hudson et al.
2012). This Phase 1 work focused on short independent tasks,
which are discussed briefly here. The important conclusion
of this work was that ARM teams were able to produce a gen-
eral manipulation system capable of high reliability (>90 %)

for short tasks (Table 1).
This article describes the ongoing Phase 2 manipulation

system capable of executing sequences of single and dual

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78071723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10514-013-9371-y


32 Auton Robot (2014) 36:31–49

Fig. 1 The DARPA ARM robot used in the program. The sensing
head consists of a Point Grey Research Bumblebee2 color stereo cam-
era, PrimeSense ASUS Xtion-Pro depth camera, Prosilica Gig-E color
camera and two microphones on a 4-DOF neck. The arms are Bar-
rett Technology 7-DOF WAM arms with a 6-DOF force sensor at each
wrist. The Barrett BH8-280 hands have a strain gauge in each finger,
and tactile sensing pads on the palm and distal finger surfaces

Table 1 DARPA ARM-S Phase 1 test results

Team Successes
(of 72)

Grasping
(of 48)

Manipulation
(of 24)

Average
time (s)

JPL 67 47 20 75.4

B 67 47 20 80.6

C 64 46 18 77.5

D 58 47 11 125.7

E 58 41 17 170

F 49 42 7 151.8

arm tasks. However, the developed system has evolved from
the demands, assumptions and procedures involved in Phase
1 testing.

In Phase 1, six teams were given a one-arm version of
the ARM robot shown in Fig. 1, and tasked with performing
tests focused on grasping, placing, and short manipulation
sequences. The tests and the perturbations created by the
DARPA test team forced each development team to create a
system capable of executing robust behaviors. Grasping tasks
were considered successful if the robot could pick an object
clear off the table, and then place it at a specific target loca-
tion. The evaluated grasping objects included: a ball, shovel,
maglite, floodlight, radio, pelican case, rocks, screwdrivers,
and hammers. Some of these objects had exact prior models,
and had been previously seen by the robot and development

team, but novel rocks, screwdrivers and hammers were tested
with no previous observations. For these later objects only a
canonical geometric model was given to give context to the
autonomy system. The manipulation tasks were: turn on a
flashlight, staple paper, hang up a phone, open a door, unlock
a door with a key, and drill a block of wood at a specific target
location. These results, a list of teams and a disussion of the
ARM program is discussed in Hackett et al. (2013) by the
DARPA test team.

In both Phase 1 and 2, all manipulation tasks (specifically
manipulated tools) had exact prior models, and the developed
autonomy system required prior labeling of feature points
(triggers etc.). For all tasks, Creating effective closed loop
behaviors was critical as the system has low open loop accu-
racy, with the end-to-end error between a location in the cam-
era frame and manipulator end-effector position on the order
of 5 cm.

The Jet Propulsion Laboratory (JPL), the University of
Southern California (USC) (Pastor et al. 2011; Kalakrishnan
et al. 2013), and the National Robotics Engineering Center
(NREC) (Bagnell et al. 2012) teams have continued manip-
ulation development in Phase 2 of the ARM program. All
teams have demonstrated various strengths in their respec-
tive approaches.

The Phase 2 work described in this paper includes dual
handed manipulation, and complicated interdependent task
sequences. The following Sects. 1.1 and 1.2 describe these
tasks, and are used to give an overview of system compo-
nents.

The fundamental approach we have developed for autono-
mous manipulation relies on modeling the environment, aug-
menting apriori geometric object data with semantic labels,
and associating libraries of behaviors with each object. While
most objects can be ‘grasped’, robotic understanding of when
to pull a drill’s trigger requires additional and novel modeling
of the world. We choose to make this model explicit. By con-
ditioning on prior models, we interact with the environment,
and refine object properties or poses, after deliberate contact
is made (Hebert 2013). Understanding the uncertainty asso-
ciated with an object allows rationalization over when or how
to contact the object (Hebert et al. 2013).

1.1 Wheel change scenario

A wheel change-out task will be used to illustrate the techni-
cal advancements presented in this paper and is referenced in
the sections which follow. Generic task steps include finding
and assembling a battery operated impact driver, removing
lug nuts from the wheel using the impact driver, removing
the wheel from the axle, and replacing the wheel. The lug
nuts must then be grasped, replaced and tightened with the
impact driver.

123



Auton Robot (2014) 36:31–49 33

Apart from containing difficult individual steps, this task
sequence couples individual behaviors. For example, the ini-
tial grasp of the impact driver will affect the kinematic fea-
sibility of lug nut removal.

With each task plan, the sequence initiates by visually
scanning the world to detect, classify and to provide initial
pose estimates of objects on the table that is positioned in
front of the robot (Sect. 3.1).

The high level task directive is split into specific individ-
ual behaviors. A task level planner deliberates over all steps
ensuring feasibility with the detected object poses (Sect. 3.5).
The task planner then calls behaviors and monitors their com-
pletion.

The task level planner utilizes a manipulation planner
(Sect. 3.3.2) which generates a manipulation set (Sect. 3.3.1)
encoding possible behaviors and admissible arm positions
from which these behaviors can be executed, given cur-
rent object poses. For example, the manipulation planner
will verify if the current impact driver pose allows a spe-
cific tool_use_grasp behavior, or if the driver must be relo-
cated using a power_grasp behavior. Subsequent motions are
between the current arm state and a point in the manipulation
set is accomplished using the arm planner (Sect. 3.3.3).

Specification and execution of manipulation behaviors are
governed by the manipulation controller (Sect. 3.4). Control
behaviors are sequences of control actions defined as a set of
task frame feedback controllers and end-conditions. These
controllers allow delicate contact to be made with objects
and exploration of their surfaces using feedback control.

As soon as contact with an object is made, the extra
kinesthetic information is integrated by the world estimator
(Sect. 3.2). Even before contact, visual servoing (Sect. 3.2.2)
is utilized.

After the impact driver has been suitably grasped, it is used
to remove each nut. Again the visual servoing, force control,
and estimation of object positions are utilized to achieve high
precision localization of the driver over the nut. Each nut is
then unscrewed using the impact driver and placed on the
table by positioning the nut socket vertically over the table.
The impact driver is released and the wheel is bi-manually
grasped. A dual-arm coordinated plan is generated to remove
the wheel off the hub and to place it on the table (Sect. 3.3.3).
A second visual scan of the scene is conducted to localize
a second wheel, the hub and the unscrewed nuts. The wheel
is again bi-manually grasped and a similar plan is generated
to place the wheel over the hub. Force control is utilized to
slide the wheel onto the hub. The nuts are then replaced and
tightened.

1.2 Wire cut scenario

A wire-cutting task was also performed by the system and
will be discussed in depth in the results and discussion sec-

tions of this paper (Sects. 4, 5) to provide further evaluation
with experimental results of the overall system as a whole.

As a brief overview, the general task involved removing
a burlap sack from the table to reveal a hidden junction box
with a green wire running through it. A toolbag, placed also
on the table, was then repositioned and unzipped to allow
the robot to search the bag for the appropriate tool (a pair of
trimmers). The tool was removed from the bag, re-positioned
and re-grasped to properly cut the green wire. Overall success
was achieved if the wire was cut.

Much like the wheel change-out task, our system was able
to complete this wire-cutting task through the use of task
plans to call individual behaviors that utilize manipulation
planners to eventually perform each subtask.

2 Related work

There are currently several integrated manipulation platforms
with autonomous end-to-end capabilities. These include
HERB (Srinivasa et al. 2010) which uses a generalized
approach to tracking movable objects (GATMO) (Gallagher
et al. 2009). Grasping is performed using force closure and
caging grasps, and manipulation of these objects are executed
open-loop. The STAIR project (Quigley et al. 2007) uses
a pan-tilt-zoom camera to obtain high resolution images of
environmental objects for image feature detection. A learned
classifier selects a nominal grasp location and optical prox-
imity sensors are used to localize the grasper further before a
grasp is executed open-loop. El-E (Jain and Kemp 2010) sim-
ilarly does not use a physical model of its graspable objects,
and also eschews the use of an environment map. A desired
object is illuminated by a laser pointer before being visually
segmented and then grasped with a parallel jaw gripper.

More recently, the (Knepper et al. 2010) investigate
“focusing planning” in which high level tasks such as naviga-
tion are solved and begun before a complete solution is calcu-
lated. Solutions at different scales of a problem are stored for
later use. Grasps are pre-computed for given objects and then
culled at execution due to potential collisions, while objects
are identified using SIFT-features from camera data.

Xue et al. (2012) use a time-of-flight camera to gather
depth information which is segmented into known and
unknown components of the environment, which are con-
sidered as obstacles. Grasping is done using sampling and
simulated collision checking, with impedance control used
to serve ice-cream at a trade fair.

Willow Garage has successfully completed a number of
tasks, including door opening, inserting a plug into a socket
(Bohren 2011), towel folding (Maitin-Shepard et al. 2010),
and even cooking pancakes (Beetz et al. 2011). The first three
required algorithms specific to detection of objects. The lat-
ter task also involved reasoning about probable locations for
required objects, which were then manipulated through sim-

123



34 Auton Robot (2014) 36:31–49

ple pick and place operations. The spatula was regrasped
when a generalized distance to known good grasps was suf-
ficiently low, then treated as an end effector. Further local-
ization was performed by pressing the spatula against the
pan. In this task, and others that used the Willow Garage
PR2, feedback from tactile sensors were used to react to per-
ceived poor grasps (Chitta et al. 2012), resetting the grasp
planning if the grasp was poorer than expected. The division
of more sophisticated tasks for the PR2 are handled through
a hierarchical state machine SMACH (Bohren 2011) that are
constructed a-priori.

These previous works are similar in that each uses the
sense-plan-act paradigm wherein each component is per-
formed in sequence with a return to sense only in the case of
failure at a particular stage. The difficulty is that additional
information that could be gathered during the execution of
an act cannot be incorporated and is ignored. Furthermore,
the necessity of interactive manipulation to further localize
objects beyond visual sensor accuracy has only been recog-
nized by these works in an ad-hoc way specific to individ-
ual tasks. For tasks that require finer manipulation (e.g. key
insertion), such localizing motions may be necessary.

3 Technical approach

The following section will describe the technical approach
of this paper. Figure 2 illustrates the system architecture, the
main software modules/processes, the flow of data between
the modules, and provides a guide to the following technical
subsections.

3.1 Perception

Perception for the DARPA ARM robotic manipulator is com-
prised of segmentation, classification, and localization (6-

Fig. 2 The ARM-S system architecture. Each block represents a sepa-
rate software module/process and each arrow indicates the flow of data
between each module. The block number corresponds to a section in
this paper

DOF pose) of objects in the environment by using all the
available visual sensors on the robot. At the beginning of
any manipulation task, the perception subsystem performs
an initial scene extraction to identify objects of interest in the
world. This process begins by populating a voxel map which
is then followed by segmentation and clustering processes
that generate bounding boxes around objects and obstacles. A
combination of iterative-closest-point (ICP) fitting of known
3D CAD models and contour matching is applied to spe-
cific task objects to attain a more accurate 6-DOF pose.
Once the world is populated with known objects and obsta-
cles, the perception subsystem continues to update its voxel
map throughout the task and provides additional support
for tracking and re-detection of objects and features when
needed.

3.1.1 Mapping

The 3D voxel mapping and segmentation framework descri-
bed in Bajracharya et al. (2013) and tested on a dynamic
platform as described in Ma et al. (2012) is used in our frame-
work. All points from the stereo camera and depth camera
(Fig. 3a) are projected into the robot frame and associated
voxels store calculated statistics: point averages, red-green-
blue color averages, surface normals based on neighboring
voxel information, and point variances (Fig. 3b). The accu-
mulated map (Fig. 3c) is then segmented into regions of simi-
lar statistics, i.e. normal edges and faces, and optionally color
(Fig. 3d). Bounding boxes are assigned to the extracted seg-
ments (Fig. 3e) and a subsequent clustering process groups
overlapping segments into larger bounding boxes which are
then later used for finer pose fitting.

3.1.2 Object detection

Because the DARPA ARM program is designed such that
developed software is shipped and tested at a remote site,
our developed object detection algorithms have to be robust
to environmental change, particularly lighting. As such, our
approach relies more heavily on geometric-based features
and properties of objects rather than appearance-based fea-
tures, though both are used.

3D CAD models of task objects are provided for all manip-
ulation tasks in the DARPA ARM program which we use
to our advantage to improve the overall 6-DOF pose esti-
mate of task objects in the scene. An iterative-closest-point
(ICP) algorithm is used in most cases to fit point clouds
of segmented regions in the world to the provided mod-
els of known objects (Fig. 3f). As is often the case with
ICP algorithms, incorrect 6-DOF pose solutions can occur
at local minima and may result in poorly determined poses.
To circumvent this issue, we seed the ICP algorithm with
a best estimate of the object’s pose from the world estima-

123



Auton Robot (2014) 36:31–49 35

Fig. 3 A scan sequence of the environment prior to a manipulation task
consists of the following steps: a point cloud data is collected from the
depth camera and stereo camera at various neck angles, b a wireframe of
the 3D-voxel map is used to accumulate statistics from point cloud data,
c the smoothed 3D map includes average point locations, RGB/intensity,
surface normals, and 3D variance, d segmentation is applied to the

3D map to group regions with similar statistics (i.e. normal vectors),
e principal component analysis is applied to segmented regions to form
statistically accurate bounding boxes, f segmented bounding boxes are
clustered together and point fitting of model data is applied to determine
accurate 6-DOF pose of task objects

Fig. 4 a The rectified left stereo image of the wheel. b The resultant
binary image from a Canny edge detection. The predicted model loca-
tion from the world estimator is shown in red, and the contour fitted
result against the detected edges is shown in green

tor if available (as described in Sect. 3.2); otherwise vari-
ous different initial poses of the task object are used and
the solution with the lowest score is chosen. Additionally,
to ensure an even distribution of data points from segmented
objects, we limit and store only 3 data points per voxel cell in
the map.

For some task objects, 3D data may not exist or is unre-
liable due to specular surfaces or rounded edges on some
objects. In these cases we apply a contour matching object
detector that matches contours of a reprojected model of the
object against current edge lines detected in the scene via a
simple Canny edge detector (see Fig. 4). Priority is given to
ICP-fitting for object detection, unless the threshold of nec-

essary 3D points is not met, in which case we resort to using
contour fitting.

3.1.3 Object tracking

In many test scenarios, visual feedback and tracking is uti-
lized to achieve high precision requirements (Sect. 3.2.2).
This requires in-step communications between the per-
ception and world estimator subsystems to detect objects,
or features of objects, and use those measurements to
update the object’s estimated pose at a relatively high
rate.

Most task objects have distinguishing features that make
the tracking process more robust. In the wheel changing task,
the impact driver tool tip is marked red which allows for
reliable detection of the tip. For tracking of this object fea-
ture (and similarly for others), we create a region of inter-
est (ROI) in the camera image centered about an expected
location provided by the world estimator (Fig. 5a). The ROI
image is then thresholded on a pixel color (e.g. red pix-
els) and clustered into segments with the largest segment
selected to give the x, y, z position of the tip (Fig. 5b).
To get the orientation of the tip (an essential step to cor-
rectly place the tip onto the lug nut), we perform a single
ICP process against a simplified model of the impact driver
tip (a half cylinder, representing the observable portion of
the red tip). To ensure a good fit, we only perform the last

123



36 Auton Robot (2014) 36:31–49

Fig. 5 a The ROI image of the impact driver tip. b The resultant binary
image thresholded on red, with the largest red segment being the actual
tip as indicated in red

ICP fitting when enough 3D points have been extracted from
the previous step and return a failed status otherwise. The
final detected tip is sent to the world estimator where addi-
tional filtering uses the tip pose to update the entire impact
driver pose.

3.2 World estimation

A robust autonomous system must deal with uncertainty. An
estimation framework providing continuous state informa-
tion for closed-loop feedback is especially critical for suc-
cessful precise manipulation. More importantly, in sequences
of tasks composed of multiple steps, estimation is used in
part for determining when key events have successfully com-
pleted. In particular, a world estimator continually maintains
the state of the world W which includes the state of all objects
{O}, and the state of the robot, R. The state of the objects
includes a linkage list L that describes current geometric con-
straints between objects. Furthermore, the state of the robot
includes a grasp state G = {Gl ,Gr } that describes which
object each manipulator is grasping.

3.2.1 Kalman filter framework

Our approach to estimation is entirely model-based. Recent
work (Hebert et al. 2013) is incorporated for estimating coor-
dinated bi-manual manipulation. An unscented Kalman filter
(UKF) is implemented that continuously estimates both the
robot state and the state of the object being manipulated,
X = {X R , X O}. The robot state is composed of both the
manipulator and neck joint bias, X R = {θ, φ}. In the single
arm case, the object state X O , represents the object frame
(FO) relative to the end effector frame (FP ) and consists
of the full 6-DOF pose (position and axis/angle) represented
by the homogeneous transform G P O (as shown in Fig. 6).
However, in the dual arm case (Gl = Gr = O), an additional
estimate of the object state, now relative to the opposite end
effector, is included. As a result, a constrained UKF is imple-
mented to ensure that the estimates of the object state in the
bi-manually grasped case are consistent.

Fig. 6 Robot, object state and relevant frames

Measurements are naturally broken down into two kinds.
The first kind is used to estimate the internal robot state while
the second kind is used to estimate the object state. Estimat-
ing the robot state can be done in one of two ways. The first
utilizes a multi-cue approach that combines shape, silhou-
ette and appearance measurements from multiple modalities
(Hebert et al. 2012). The second uses fiducuials placed on
the manipulator and a visual detector provides 6 DOF mea-
surements. Multiple fiducial measurements are then fused
in the UKF. Figure 7 shows two detected fiducials and the
estimated robot arm overlaid. These two approaches provides
visual measurements in the visual frame (FV ) and allows the
filter to infer the biases in the joints of both the manipulator
and neck.

Measurements used to estimate the object state may
include kinesthetic and tactile measurements (which provide
a point of contact measurement on the object surface) and
force-torque measurements (which provide torques caused

Fig. 7 Two fiducials detected shown in red and the overlaid estimated
robot location

123



Auton Robot (2014) 36:31–49 37

by the object’s mass) (Hebert et al. 2011). Visual object mea-
surements may include 3D features, such as SIFT or SURF
or more generally 3D surface point clouds. In the case of the
wheel change-out, the visual pose measurement of the red-
drill tip is included into the measurement from which the
object pose is inferred from the UKF.

3.2.2 Visual servoing

In some instances, vision-aided positioning of the robot end
effector or the object is needed to successfully complete
a task. The end effector visual-servoing behavior uses the
fused robot state (i.e. joint biases) to compute a end effec-
tor correction used in grasping scenarios. Similarly, from the
fused visual, kinesthetic, and tactile object measurements,
an object-to-goal correction may be computed and used for
manipulation scenarios such as the nut removal using the
impact driver. These corrections are continuously estimated
and used by the system, specifically the controller. In addi-
tion, the estimated in-hand object pose is used to compute
expected joint torques and inverse dynamics controllers.

3.3 Motion planning

The motion planning system is composed of three compo-
nents: an arm planner, a manipulation set generator, and a
manipulation planner. The arm planner synthesizes collision
free trajectories between two specified arm positions. The
manipulation set is a collection of poses, either of the hand
relative to an object (i.e. grasps), or poses of one object rel-
ative to another. The manipulation planner acts as an inter-
mediary between the controller behaviors, which typically
involve contact, and the arm planner, which requires colli-
sion free configurations.

3.3.1 Manipulation sets

A manipulation set is a set of relative poses associated with a
specific controller behavior, a primary object and an optional
secondary object. For example, the manipulation set for the
behavior power grasp and the object impact driver is a set of
poses of the hand relative to the impact driver. This manipula-
tion set also stores the four parameters that specify the finger
positions. For the behavior attach and the objects wheel and
hub, the manipulation set is a set of the four poses the wheel
takes when mounted on the hub (assuming a fixed hub, there
are four possible configurations with which the wheel can be
attached). Because CAD models of the objects are available,
manipulation sets are generated offline. Some manipulation
sets are generated manually, using a GUI to visualize the rel-
ative positions of the objects or hand. Others, such as power
grasps are generated automatically, as described below.

Generation of power grasps involves producing a large
number of potential starting poses, simulating the controller
behavior (moving until the hand touches the object, then clos-
ing the fingers), and then evaluating each resulting grasp to
produce a much smaller number of high scoring grasps. The
starting poses are generated by placing the palm of the had
against a randomly selected triangular element of the object
model. A random rotation around the hand’s z-axis and a
random value of the finger spread between 0◦ and 90◦ are
used as an initial pose. This pose is then backed away from
the object by a fixed amount and checked for collisions. If
this configuration is collision free, a grasp is generated by
simulating pressing the hand into the object and closing the
fingers, as described below.

The hand is moved towards the object in small incre-
ments, with the fingers in an open position, until contact is
detected, and penetration of the hand into the object reaches
a threshold, usually 1 mm. Then each finger is closed in
small increments until contact is detected. For each con-
tact, a position and a normal are calculated. Each grasp is
then given a score based on these contacts, and the best 128
grasps are saved. The set is also pruned by hand to improve
performance.

3.3.2 Manipulation planner

The manipulation planner acts as an intermediary between
the arm planner, which only plans collision free paths, and
the controller behaviors, which typically involve contact. The
manipulation planner considers the position of objects in the
world, the manipulation set, and the expected behavior of the
controller to return a set of pre-manipulation poses. These
poses are starting points for the controller behavior, and are
collision free, to satisfy the arm planner’s requirements.

A behavior is specified by an action type, a primary object,
and an optional secondary object. For example, a grasp
behavior is specified with a grasp type (e.g. power grasp)
and an object (e.g. impact driver). Mounting the wheel on
the hub is specified with the attach action, with wheel as
the primary object, and hub as the secondary object. (Note
that the manipulation planner only considers a single action.
For example, the fact that the nuts must be removed before
removing the wheel is not considered by the manipulation
planner; this is done by the task level planner.)

Each controller behavior has an associated expected
motion and a set of potential motions. The expected motion
is the predicted nominal motion executed absent uncer-
tainty when executing a given behavior. Potential motions
are motions that are likely to be executed while running, and
are updated based on the outcome of previous behavior exe-
cutions. For example, the expected motion for a power grasp
is a 5 cm move in the hand’s +z-axis and one of the potential
motions is a 10 cm move in the hand’s +z-axis.

123



38 Auton Robot (2014) 36:31–49

The pre-manipulation pose is computed to be the pose of
the hand(s) such that the expected motion of the controller
ends in the desired position. For example, the task of placing
the wheel on the hub involves the controller behavior attach,
the primary object wheel, and the secondary object hub. The
expected behavior is a 5 cm move in the frame of the +x-axis
of the primary object. To find the set of pre-manipulation
poses, the manipulation planner starts from the pose of the
hub. Each element of the manipulation set gives the posi-
tion of the wheel relative to the hub, allowing calculation of
the desired pose of the wheel. The inverse of the behavior’s
expected motion is applied, giving the pre-manipulation pose
of the wheel.

For each element of the manipulation set, the pre-
manipulation pose is calculated. Each of these is checked
to ensure that valid inverse kinematics exist, it is collision
free, that both the expected motion and all potential motions
can be executed from this position, and any other constraints
associated with the behavior are satisfied. Any that do not
meet these criteria are eliminated. The redundant degree
of freedom (shoulder yaw) is chosen to maximize the dis-
tance from joint stops. Remaining poses are ranked based
on manipulability and score of the corresponding element
of the manipulation set. The manipulability metric rewards
large distances to joint stops at both the start and end of the
expected motion, as well as small changes in angles during
the expected motion, thus penalizing configuration changes
during the expected motion. This ranked set is passed to the
arm planner.

3.3.3 Arm planner

The output of the manipulation planner is a ranked set of hand
poses (and corresponding joint angles) for all given behav-
iors, which the arm planner uses as goal states to generate a
collision free trajectory. A best first policy is used and returns
the first feasible trajectory.

We have transitioned to a Rapidly-exploring Random Tree
(RRT) Connect planner for for the ARM-S Phase 2 work. In
Phase 1, we planned using searches in a parametric represen-
tation of the velocity space of both the arm and neck angles,
at the cost of additional computational complexity (Hudson
et al. 2012; Howard et al. 2008). The new planner runs faster
and more easily handles constrained motions by sampling in
the joint space of the two arms, but post-process smoothing
of the motion is required.

The single arm motion planner is a standard RRT plan-
ner in the 7-DOF joint space, based on Kuffner and LaValle
(2000). Smooth paths are produced with a post-processing
step, which performs a greedy search for collision free paths
between nodes in the original path, and eliminates the unnec-
essary nodes. The robot and objects in the environment are
represented as collections of primitive shapes, which are used

for fast collision checking using standard techniques. Objects
are grown a small fixed amount to account for sensing and
execution uncertainty.

The RRT-based planner can only operate in collision-free
conditions; however, when performing manipulation tasks,
the robot’s arms will many times appear to be or actu-
ally be in collision with objects in the environment. Con-
sequently, a pre-processing step is performed to decollide
the arm from the environment. The planner performs a ran-
dom search of small perturbations to the arm with increas-
ing amounts of perturbation until a collision-free position
is achieved. If the motion required is too large, it fails.
While not guaranteed to find the shortest path motion, or
a motion in the proper direction to achieve the desired goal,
we observed this fast and simple technique to be effective.
This is likely because with small errors, the smallest per-
turbation motion is generally the correct one. If localization
errors of the hand relative to the object are too large, a path
that moves the arm through the object it is manipulating could
result.

In order to efficiently plan kinematically constrained dual
arm tasks (such as holding an object with both hands), a sin-
gle RRT is used for one dominant arm, but admissible nodes
are restricted to those feasible by both arms. For each new
node selected, the hand pose of the dominant hand is used
to compute the hand pose of the non-dominant hand through
their initial rigid transform. The inverse kinematics for the
non-dominant hand is then used to test the feasibility of the
pose. While this approach could lead to infeasible plans since
there is no guarantee that the entire motion is feasible (due
to approaching joint limits, which would require a configu-
ration change), we found that for motions in relatively open
environments, the approach was effective.

When a straight line in joint space is not impeded by obsta-
cles, generation and smoothing of paths each took approxi-
mately 5 ms when limited to one core of a 2.4 GHz proces-
sor. Circumnavigating a large obstacle in the middle of the
workspace took on the order of 200 ms to generate the path,
and 50 ms to smooth it. Because the cost of computing the
IK and additional collision checking is relatively small, the
time to plan a dual arm task is comparable to the single arm
case.

3.4 Control

The control system can be decomposed into several com-
plementary components. First behaviors are specified in a
hierarchical set of task frame controllers. These task frame
controllers produce a smooth end-effector desired motion,
which is then inverted into smooth joint space desired tra-
jectories. Inverse dynamics, which include grasped objects
and desired control forces, are used to provide feed-forward
torques to the joint level controllers, which are combined

123



Auton Robot (2014) 36:31–49 39

with low-gain PD joint feedback around the desired position
trajectories. System models and online state estimation are
used in each control component.

3.4.1 Task frame behaviors

The capabilities of the robotic manipulator system are
encoded as a set of behaviors. These behaviors are defined in
task (e.g. end effector) frames, and are thus specified inde-
pendently of arm configuration. Here we define a behav-
ior as a hybrid automaton which is composed of a set
of discrete states or actions. Each action is a guarded
motion, composed of a set of parametrized controllers, which
describe the dynamics of the system while the action is
being executed, and a set of end-conditions which dic-
tate when an action is complete or when an error has
occurred.

For example, a contact-grasp behavior, used when grasp-
ing the tire, is composed of several discrete actions. First the
arm tracks the free-space trajectory bringing the hand into
proximity with the tire. All free-space motions end in a con-
straint offset from the object, so inadvertent contact is not
made. During this motion a set of safety guards will abort
the action with any excessive sensed force at the arm joints
or at the wrist force sensor. Successful completion of this
motion is defined as the task-frame moving to within a small
specified distance of the planned constraint. After a success-
ful initial motion, a second action which combines visual
servoing and a motion toward the object is initiated. Given
that the hand is now near the object, the visual tracking (end-
effector error with respect to the object pose) is used as a
control input. Contact with the object is achieved by spec-
ifying a task frame velocity input towards the object grasp
point. After contact occurs, subsequent actions control the
contact force, finger closure and finger strain control.

Efficient creation and specification of controllers is achi-
eved through the decomposition of the system into a set of
hierarchical control frames (Fig. 8). The composition of con-

Fig. 8 Dual Arm Control Network: Controllers can be specified for
each finger, object and wrist. These controllers are specified indepen-
dently, with the wrist inheriting motion from connected controllers

trollers in each control frame and merging controllers from
different frames is done using the Generalized Compliant
Motion (GCM) framework (Backes 1994).

The GCM framework is used to specify and merge con-
trol objectives. GCM is a task space controller which enables
abstracted task definitions independent of system dynamics.
In essence, GCM trades off control objectives by model-
ing each as a second order system. This creates a system
of spring-like responses centered at each control set-point,
which ‘pull’ on the end effector. All manipulation actions
for the ARM project are comprised of only five control
primitives: force control, visual servoing, Cartesian tracking,
dithering, and inheritance. The output of GCM specifies the
desired end-effector pose trajectory based on sensory feed-
back.

The following equations represent the GCM modification
of the task frame motion of a single arm at the wrist. Here
G∗∗(k) is a homogeneous transform at discrete time-step k:

G R P (k) = Gdrive
R P (k)G Pm G inh(k)Gm(k)G−1

Pm (1)

Gm(k) = Gm(k − 1)ΔGm(k) (2)

ΔGm(k) = ΔG F (k)ΔGV (k)ΔG D(k)ΔGC (k), (3)

where G R P is the current transform from the robot FR frame
to the end-effector palm frame FP , Gdrive

R P (k) is the drive
transform (or the open loop motion from any plan), G Pm

is a quasi-static transform from the palm to a merge frame
Fm , and Gm(k) is the combined motion of any task frame
feedback controllers in the merge frame. The merge frame
can be any frame which is static (for the current behavior)
with respect to the palm frame. Typically this is set to identity
as the palm frame provides an intuitive place to consider
motions of the arm.

G inh(k) is an inherited motion (or a projection of motion)
from any child controller in the network. (i.e. a wrist con-
troller may inherit motion from a finger or object controller).
This is very useful for coordinating arm motion. For instance,
in dual handed manipulation of the wheel, feedback con-
trollers are specified in the object frame, forces are resolved
in the object frame, and the produced motion is repeated by
each arm through inheritance. Note however that the internal
forces (i.e. in a move-squeeze decomposition) are accom-
plished by specifying motion in the wrist controller and not
the object controller. Also in dual handed motion, desired
control forces are computed through optimal load balancing
(Sect. 3.6).

The total feedback driven motion in the task frame Gm(k)

is the integrated output of all task frame controllers. These
controllers consist of force feedback, ΔG F , visual servoing,
ΔGV (which closes the loop around the error from the kine-
matic wrist position to the wrist position seen the camera
fame), dither motions, ΔG D (used to inject 1–10 Hz motion
into the end-effector, much like a human wiggling a key into a

123



40 Auton Robot (2014) 36:31–49

lock), and Cartesian motion, ΔGC (k) (which force the wrist
towards a desired set-point or location on an object). The
individual controllers, such as the force controllers, close the
loop around respective error in a second order PD controller:

ΔG F (k) = K p(e(k)) + Kd((e(k) − e(k − 1)) (4)

e(k) = Fm(k) − Fd(k), (5)

where K p and Kd are proportional and derivative gains, and
in the case of a force controller, Fm(k) is the measured force
and Fd(k) is the desired force.

Note that the visual servoing controller and Cartesian
motion controller are significantly simplified from traditional
methods due to persistent estimation (Sect. 3.2) and system
modeling. As all errors are realized in SO(3), tracking is now
simply updating the desired position of the manipulator.

Action reuse is also maximized in this framework. There
are no specialized behaviors for moving into contact for
an object, or visual servoing with an object in hand. The
same controller specification (and even the end conditions)
are reused for freespace motions into contact, either with
one hand independently or holding an object with one or
two hands. The frame in which the controller is run will
need to be specified (palm, wrist, object). Recorded sensor
forces are projected into the correct frame using the sys-
tem models and are used for feedback (5) and end condition
monitoring.

3.4.2 Inverse kinematics and redundancy resolution

Arm redundancy during control is only considered in inverse
kinematics calculations from the task frame to the joint space.
In general, motions generated from feedback and tracking
are feasible because they are checked in Manipulation Plan-
ning (Sect. 3.3.2). Each control behavior contains a history
of expected resultant motion, as well as potential motions
(due to object uncertainty). If kinematic infeasibility results
during a behavior run, the task frame motion at which this
infeasibility occurred is added to the potential motion set.
Rerunning the Manipulation Planner would now account for
this possibility of motion. Arm redundant degrees of free-
dom (θi , in Fig. 8 are searched over during each control step
to minimize a cost function balancing total joint motion and
distance from joint limits. Searches are limited to 100 evalu-
ations of inverse kinematics at each step to maintain a fixed
control loop execution time.

3.4.3 Joint space control

The task frame motion x = G R P (k) is converted to joint
space motions (q̈, q̇, q) through inverse kinematics. A com-
bination of low-gain joint level PD feedback and feed-
forward inverse dynamics are used to produce joint torques:

τ = Ma,o(q)q̈ + Ca,o(q)q̇ + ga(q) + go (q, O) + J T Fd

+ Kd(q̇d − q̇) + K p(qd − q) ,

(6)

where Ma,o and Ca,o are the mass and gyroscopic terms from
the world model which include both the arm a and grasped
object o properties. The gravitational terms from the arm
ga(q) is a learned torque map provided by Barrett Tech-
nologies, while object terms go (q, O) are computed from
the world model for grasped object ‘O’. Desired task frame
control forces Fd are also added to the feed-forward terms
using the manipulator Jacobian (J ). Use of low PD feed-
back gain terms (K p, Kd) and inverse dynamics terms was
adopted over the high gain PD feedback used in Phase 1
(Hudson et al. 2012) after demonstration by and discussion
with the USC team (Pastor et al. 2011; Kalakrishnan et al.
2013).

Compensation of mass from objects such as the impact
driver or wheel consist of a significant fraction of arm output
torque, so accurate estimation of object location in the grasp,
and mass properties is required for precision system tracking.
Our approach uses less offline learning of arm properties
than Kalakrishnan et al. (2013), but more online estimation
of object parameters and location (Hebert 2013).

3.5 Task level planning

The dexterous manipulation tasks in DARPA ARM-S pro-
gram require tasks to be executed in a particular order for
successful completion. The task level planner maintains com-
munication with other components of the system such as the
estimator, planner and control.

The task level planner maintains the state of the physical
world W est as estimated by sensors, and a kinematic model
of the world W model. Both W est and W model are of type W ,
introduced in Sec. 3.2. W est is kept updated using the esti-
mator at all times. W model is used to predict or simulate the
changes in the world even before the robot starts execution.

The task planner additionally maintains a library of atomic
tasks T atom = {T atom

1 , T atom
2 , . . . } which correspond to sin-

gle behaviors that some component (including itself) of
the system can carry out. Each component when asked to
execute an atomic task (behavior), may in turn carry out
a sequence of actions, which the task level planner does
not track. The task level planner concerns itself with the
overall success or failure of such tasks. Some examples of
tasks are ESTIMATE_WORLD_STATE (estimation), GEN-
ERATE_ MANIPULATION_SET (planner), PLAN_ARM_
TO_POSE (planner) and MOVE_USING_PLAN (control).
These atomic tasks can take arguments αatom

i such as the
object on which the action must be performed, or the current
world state. An atomic task with an instantiated argument
can be thought of as a map

123



Auton Robot (2014) 36:31–49 41

T atom
i

(
.|αatom

i

) : W → W.

The application of these atomic tasks can be on W est or
W model. In the former case, the tasks are carried out by the
actuators and sensors, in the presence of noise and imperfec-
tions. However, in the latter case, application of a task implies
simulating the expected change in the world state assuming
perfect observation and control.

Atomic tasks that involve kinematic changes correspond
to executing control behaviors (Sec. 3.4). When such tasks
are simulated, W model is propagated using the same expected
motion that the controller uses to complete the correspond-
ing behavior. Recall that the inverse of this expected motion
is used by the manipulation planner to generate the starting
pose in the first place. This makes the simulation consis-
tent with idealized execution by the controller. The resulting
W model kinematically satisfies the end-conditions for the con-
trol behavior. Changes in grasp state G and linkage list L are
also updated by appropriately translating the end-conditions
of the control behavior. Thus, simulated grasping of an object
correctly updates G with the object grasped, while a parts
assembly behavior correctly updates L in W model.

The library also contains some basic sequences (seq.)
of atomic tasks, called compound tasks, T comp = {T comp

1 ,

T comp
2 , . . . }, where T comp

k are finite sequences of elements
of T atom . The parameters for each atomic task are stacked
or sequentially generated to make the argument for the
sequence. A common compound task is given by Seq. 1.

Seq. 1 A common compound task
EXECUTE_BEH_SEQ(grasp_type, Oprimar y , Osecondar y)

1: (Estimator) w = ESTIMATE_WORLD_STATE
2: (Planner) M = GENERATE_MANIPULATION_SET(w,

grasp_type, Oprimar y , Osecondar y)
3: (Task Planner) if M = ∅, return Failure, exit
4: repeat
5: (Task Planner) pick new mi ∈ M
6: (Planner) p = PLAN_ARM_TO_POSE(w, mi )
7: (Task Planner) if p is not valid, goto step 11
8: (Control) MOVE_ARM_USING_PLAN(p)
9: (Control) MOVE_FOR_BEHAVIOR(grasp_type)
10: return Success, exit
11: until M is exhaustively sampled.
12: return Failure, exit

In the ARM-S program, manipulation tasks are specified
as an ordered list of T comp

j . This list is internally translated
to a directional graph where each node represents an atomic
task. Note that there is no need to restrict ourselves to two
levels of encoding task hierarchy. We can make compound
tasks from other completely defined compound tasks as well.

Fig. 9 Abstracted digraph for removing nuts with impact driver,
Example 2. Two alternate routes exist with remanipulation preferred
less

3.5.1 Remanipulation

On many occasions, due to kinematic constraints of the robot,
there may be no feasible plans to accomplish a behavior.
For example, for EXECUTE_BEH_SEQ(“tool_use_grasp”,
IMPACT, Ø) the grasp planner may find no feasible solu-
tions in the current pose of the impact driver (IMAPCT) on
the table. To solve this we equip the task sequence to option-
ally execute a subsequence for remanipulating the impact
driver on the table so that subsequently a tool use grasp is
feasible.

Adding alternative optional subsequences involves allow-
ing the nodes of the task sequence digraph to have multiple
children and parent nodes and can be represented as in Fig. 9.
Whenever there are multiple children to a node, then the child
nodes are ordered by preference.

3.5.2 Kinematically dependent tasks

In many situations, some (compound) tasks in the sequence
are kinematically dependent on each other. For the tool use
example, this can arise in multiple ways.

Example 1 In this case, we are able to pick up the impact
driver with a hand pose that is amenable to tool use (press
trigger). However, after we have picked the impact driver off
the table with a certain pose, the RRT planner may fail to find
a path to orient the impact driver over the nut that we want to
remove from a fixture. This happens usually when the initial
plan for picking up the impact driver is near the physical joint
limit of the wrist, even though other wrist solutions may exist.

Example 2 This example is in the need for re-manipulation
of the impact driver in order that the next task (tool use grasp)
is feasible.

Kinematically dependent tasks are usually linked by
manipulation sets. They are therefore solved by linking them
together inside nested iterative tasks and exhaustively search-
ing until a feasible solution is found for all tasks in the linked
subset. The task sequence for solving Example 1 is shown in
Seq. 2.

123



42 Auton Robot (2014) 36:31–49

Seq. 2 Task sequence for Example 1
EXECUTE_LINKED_SEQ(“tool_use_grasp”, IMPACT, Ø)

1: (Estimator) w1 = ESTIMATE_WORLD_STATE
2: (Planner) M1 = GENERATE_MANIPULATION_SET(w1,

“tool_use_grasp”, IMPACT, Ø)
3: (Task Planner) if M1 = ∅, return Failure, exit
4: repeat
5: (Task Planner) pick new m1,i ∈ M1
6: (Planner) p1 = PLAN_ARM_TO_POSE(w1, m1,i )
7: (Task Planner) if p1 is not valid, goto step 21
8: (Control) MOVE_ARM_USING_PLAN(p1)
9: (Control) MOVE_FOR_BEHAVIOR(tool_use_grasp)
10: (Estimator) w2 = ESTIMATE_WORLD_STATE
11: (Planner) M2 = GENERATE_MANIPULATION_SET(w2,

“remove_nut”, IMPACT, NUT)
12: (Task Planner) if M2 = ∅, goto step 21
13: repeat
14: (Task Planner) pick new m2, j ∈ M2
15: (Planner) p2 = PLAN_ARM_TO_POSE(w2, m2, j )
16: (Task Planner) if p2 is not valid, goto step 20
17: (Control) MOVE_ARM_USING_PLAN(p2)
18: (Control) MOVE_FOR_BEHAVIOR(“remove_nut”)
19: return Success, exit
20: until M2 is exhaustively sampled.
21: until M1 is exhaustively sampled.
22: return Failure, exit

Similarly, the sequence for Example 2, in which we must
re-manipulate before executing the sequence from Exam-
ple 1 consists of searching over four manipulation sets, cor-
responding respectively to:

1. EXECUTE_BEH_SEQ(“power_grasp”, IMPACT, Ø)
2. EXECUTE_BEH_SEQ(“place”, IMPACT, TABLE)

3. EXECUTE_BEH_SEQ(“tool_use_grasp”, IMPACT, Ø)
4. EXECUTE_BEH_SEQ(“remove_nut”, IMPACT, NUT)

Figure 9 showed an abstracted digraph of the task level
plan for this example. Images of the robot resorting to rema-
nipulation are shown in Fig. 10. All four compound tasks are
kinematically linked.

3.5.3 Kinematic verification based execution

Once the task sequence directed graph is populated from the
task specification, a kinematics-only verification of the entire
sequence is carried out. First a sensor based estimate of the
world is made and is used to initialize W model . In our current
implementation, we use depth-first traversal of the sequence.
This preferentially chooses highly ranked child nodes first
so that we are likely to find the most user preferred sequence
for execution. As each node, n is encountered its effect is
simulated on the output of the parent node corresponding to
its initial condition, W model(parent (n)). Planning tasks can
produce additional quantities such as the manipulation set M
or a plan p, which can be considered to augment the world
state. Each node can flag success in which case a new world
state, W model(n) is generated and search proceeds or failure
in which case we backtrack until a parent with unexplored
child or an unfinished iteration task is encountered.The ver-
ification ends either in success (a node with no children is
reached with no failure) or fails if exhaustive search produces
no successful path.

Once the task sequence execution starts, it is natural to
observe discrepancy between W est and W model from the

Fig. 10 Execution for Example 2, Fig. 9. a Initial world state. b Initial
scan used to populate W model . Kinematic verification reveals that the
robot cannot grasp the impact driver for tool use in this configuration
(the Pref. 1 path). c Robot picks up impact driver using power grasp

(Pref. 2 path). d Impact driver is placed in a location which will allow
feasible behavior for next step. e Robot is able to pick up impact driver
with a tool use grasp. f Robot is able to plan to correct position for nut
removal

123



Auton Robot (2014) 36:31–49 43

kinematic verification at any node. In our current implemen-
tation, we assume that this discrepancy is not large enough to
change the remanipulation decisions that have already been
been made in the verification step. However, if kinematically
linked tasks are encountered we recompute manipulation sets
and the associated RRT plans, since they are more sensitive
to the actual world state.

3.6 Modeling

The mechanical, geometric, kinematic, dynamics, sensor and
actuator characteristics of the robot fundamentally effect the
operation of the robot and its interactions with the task envi-
ronment. Our ARM-S model-based autonomy modules use
a foundational modeling layer to generate information and
required data. While relying extensively on embedded mod-
els, we do not have the unrealistic expectation that the mod-
els be perfect, but instead that they help reduce the demands
on the autonomy software. A-priori knowledge and online
estimators are used to continuously update and improve the
model data to reduce uncertainty and handle changes during
task execution.

The ARM-S embedding modeling layer is an adaptation of
the RoboDarts embedded modeling architecture (Jain 2013)
for robotics applications. RoboDarts in turn is built upon
the fast DARTS computational dynamics software (Dynam-
ics and Real-Time Simulation (DARTS) Lab 2013) for artic-
ulated linkages based on the spatial operator algebra (SOA)
mathematical framework and algorithms (Jain 2010). While
a significant application of the DARTS software has been for
the closed-loop simulator development for space and robotic
platforms, RoboDarts is tailored to embedded use for the fast
computation of the broad variety of model-based informa-
tion needed by the autonomy modules. Furthermore, SOA’s
structure-based algorithms are able to adapt to handle run-
time changes to the robot, its tasks and the environment.

A generic frames layer in RoboDarts supports arbitrary
queries for relative poses between the links, sensors, task
objects, feature frames, etc. in the system. Lazy evaluation
and caching is used for efficiency to compute transforms
only on demand, and to avoid recomputing unchanged val-
ues. The frames layer automatically handles system topology
changes from run-time body attachments and detachments,
and the addition and deletion of bodies. The frames layer also
supports forward kinematics functions for the robot arms,
neck, hands and the dependency of various poses on the joint
coordinates. These layers are used by all modules for com-
puting needed pose transforms as well as for driving the 3D
visualization graphics. Additionally specialized inverse kine-
matics code for the WAM arms (generated using the Open-
Rave IKFast module Diankov and Kuffner (2008)) is used to
compute the complete set of joint angle solutions for any end-
effector pose. The inverse kinematics is used for motion plan-

ning, as well as for redundancy management during real-time
control. Jacobians and manipulability measures are available
for all linkages in the system. These are used for planning and
motion control, as well as for projecting end-effector forces
into joint torques.

A collision detection module (built upon the Bullet col-
lision detection library Coumans et al. (2013)) supports the
checking of collisions between bodies. This is used by the
motion planner to generate collision free paths as well as by
the grasp planner to generate grasp sets. This module allows
one to select the coarseness of the collision shape geome-
tries, to selectively hide objects, as well as to add padding
to the shapes. The selective collision filtering feature allows
users to disable collision checking between specific pairs
of bodies (eg. connected bodies) as needed. Collision fil-
ters are automatically updated when bodies are attached and
detached from each other during run-time (eg. impact driver
and its battery). This also extends to the run-time grasping
and ungrasping of objects by the hands. Such grasping is not
limited to rigid body objects and can involve articulated task
object linkages such as trimmers. Pose estimates generated
by the estimator are used to continually update the attachment
poses within the modeling layer.

When heavy objects such as the tire or the impact driver
are grasped by a hand, appropriate gravity compensation
torques need to be applied to avoid degrading end-effector
positioning accuracy from arm sag. Such feed-forward com-
pensating torques are computed by the modeling layer for
the control module. Dual-arm manipulation introduces loop
constraints within the system topology. While reducing the
available number of motion degrees of freedom, these con-
straints lead to internal forces that build up within the robot.
A move/squeeze decomposition approach (Jain 2010) is used
to compute the feed-forward terms that optimally load bal-
ances the torques across the arms.

The modeling layer also has provisions for full dynamics
based time simulation of selected, or all, the bodies within
the system. The smooth dynamics solver uses the minimal
coordinates, O(N), articulated body forward dynamics algo-
rithms for solving the smooth dynamics, and a minimal coor-
dinate complementarity based solver to handle non-smooth
contact/collision and constrained dynamics (Jain et al. 2012).
Such dynamics simulations are used by the task planner to
plan execution sequences, and by the estimator to generate
dynamics based predictions.

4 Test results

4.1 Wheel change

Testing results of the wheel change scenario include formal
testing by the DARPA test team at a remote site, and internal
JPL testing.

123



44 Auton Robot (2014) 36:31–49

The complete wheel change scenario has not been com-
pleted yet, as the current Barrett™BH8-280 hand cannot
kinematically pickup the lug nuts and re-thread them on the
axle assembly. Full completion and testing of the tire change
sequence will be enabled with the addition of new robot hands
from the DARPA Autonomous Robotic Manipulation low
cost Hand (ARM-H) track (Hackett et al. 2013). These new
hands have been demonstrated to re-thread the lug nuts to
the axle assembly bolts using tele-operation, but have not yet
been fully incorporated into the software algorithms in this
paper.

The removal of the wheel and all four nuts, including the
impact tool grasp and it’s use was demonstrated by the JPL
team at a remote DARPA test site. The success rate for this
task sequence was 3/5. To the best of our knowledge, this is
the best that any team achieved during remote testing. We had
two failures to remove a single nut, which was not understood
by the autonomy system, causing sequence failure. Both nut-

Table 2 Internal wheel change testing: times for sub-task completion
(seconds)

Task 1 2 3 4 5 Avg.

Scan scene 45.3 44.3 46.8 41.3 46.8 44.9

Task plan 7.6 8.3 7.1 8.7 7.6 7.8

Re-grasp 0 27.2 0 25.2 0 26.2

Impact grasp 33.6 33.3 33.0 32.9 33.0 33.2

Remove nut1 40.3 52 51.8 72.9 69.1 57.2

Remove wheel 36.3 36.9 36.8 36.6 37.7 36.9

Re-scan 24.0 21.4 20.4 21.7 21.1 21.7

Attach wheel 68.0 70.6 71.6 70.3 70.9 70.3

removal failures were caused by incorrect data association
during object tracking; we utilize the distinctive red tip of
the impact drill (Fig. 5 as discussed in Sect. 3.1.3). Classi-
fication of the red tip failed during testing due to shadows
and lighting conditions at the remote site that differed from
the development environment. This event occurred during
the verification that the impact driver was on the nut, causing
the autonomy system to move incorrectly to a recovery posi-
tion. As a result, the impact driver unfortunately jammed on
the nut and the subsequent motion caused a safety fault end-
condition to trigger (Sect. 3.4.1). This required a human reset
and the stoppage of the test. Further autonomy and robotic
deliberation could in the future be used to rationalize this
occurrence.

To provide a more detailed breakdown of testing results,
the same tests have been run at JPL, with the estimation and
perception system being updated with more rigorous outlier
rejection on data association results. The wheel change task
was run 5 times. We have tabulated run times of each task
component independently in Table 2. Two of the tests posi-
tioned the impact driver such that it required re-manipulation.
The task planner, through verification of the task sequence,
detected that re-grasping was required and updated the task
sequence.

We have provided a video recorded at JPL showing the
wheel change task as supplementary material available from
Autonomous Robotics.

4.2 Wire cutting

Testing results of the wire-cutting scenario (illustrated by
Fig. 11) presented here are only from internal JPL test-

Fig. 11 Wire-Cutting Scenario overview. a The robot first removes the
burlap sack to uncover a hidden junction box with a green wire. b The
toolbag is then repositioned in front of the robot for further manipula-
tion. c The robot unzips the bag and removes the lid/flap obstructing

the opening of the bag. d A search behavior is commenced to remove
the necessary cutting tool. e The bag is removed from the scene and the
trimmers replaced on the table for a better re-grasp. f The trimmers are
re-positioned with both hands above the wire for cutting

123



Auton Robot (2014) 36:31–49 45

Table 3 Internal wire cut testing: times for sub-task completion (sec-
onds)

Task 1 2 3 4 5 Avg.

Uncover 57.1 56.7 57.0 56.9 57.8 57.1

Move bag 48.1 50.4 47.3 47.4 47.5 48.1

Open bag 127.4 127.7 125.3 117.1 125.6 124.6

Search 87.7 75.9 164.8 85.0 90.5 100.8

Grasp 43.4 42.7 95.7 46.0 93.9 64.3

Extract 14.2 12.8 15.9 11.5 11.7 13.2

Position 47.3 35.4 109.4 51.5 46.7 58.1

Cut wire 61.2 59.2 62.3 55.1 64.2 60.4

ing. While the full scenario was tested with the DARPA
test team, only certain subtasks of the scenario were com-
pleted successfully at the DARPA test site due to varying
environmental conditions (lighting, calibrations, etc.) that
identified over-tuning of parameters in our system and pre-
vented a continuous end-to-end task completion, though
each individual subtask was completed successfully on their
system.

The complete end-to-end wire-cutting scenario has been
completed successfully during internal JPL testing. This
internal testing had improved trimmer detection/localization,
manipulation planning and grasp verification. Table 3 shows
the timing of each completed subtask during 5 trials of inter-
nal testing. Our testing showed that we could reliably com-
plete the scenario up-to and including the grasp subtask of
the trimmers. This was due to correct grasp and bag veri-
fication, allowing automatic retrying of the subtask. In the
bag-search subtask the robot experienced 4 failures in the 5
trials and continued to re-attempt the task until the trial was
a success. Similarly with the grasp subtask, 3 failures were
encountered and the robot continued the subtask until success
was achieved. The entire scenario, which included detecting
and localizing (extracting) the object in the hand, positioning
the trimmers, and lastly cutting of the wire was found to be
less reliable. In our testing the robot managed to cut the wire
3/5 times during fully automated sequence runs. (One trial
did not cleanly cut the wire, leaving some of the sheath con-
nected, but was counted as success). The two failures resulted
from two separate issues. The first failure occurred from the
inability to verify a successful cut. The robot did manage
to position the trimmers over the wire and attempt a cut but
missed. The second failure initiated from a bad initial grasp
of the trimmers, leading the motion planner incapable of find-
ing feasible kinematic solutions to position the trimmers over
the wire.

We have provided a video recorded at JPL demonstrating a
successful end-to-end wire-cutting sequence as supplemen-
tary material available from Autonomous Robotics.

5 Discussion

The presented system utilizes a novel combination of ideas
and has required the development and refinement of many
system components. In creating the system, care was taken to
generalize components, enable algorithmic reuse, and require
as little tuning or special cases as possible. This system has
been tested with many one-off tasks and multiple sequences
of tasks, both on a local development robot, and on a dis-
tinct independently run DARPA system. However the system
falls short of being truly deployable, or quickly adaptable to
new task and sequences; the system requires an interface
or learning algorithms to enable general users to specify or
demonstrate new behaviors and sequences, and a more com-
plete understanding of the discrete system state. The follow-
ing discussion attempts to highlight aspects of the system
which worked well, and those which would benefit from new
approaches.

The estimation module (Sect. 3.2), which persistently
updates manipulated objects, significantly increased the
reuse of behaviors, and reduced the need to parametrize
behaviors (Sect. 3.4.1). For instance a move into contact
control behavior was completely generic for aligning and
touching the wheel to the axle hub (dual handed), align-
ing the trimmers before cutting (dual handed), or align-
ing and contacting the impact driver and the nut on the
wheel (single handed). The use of models, understanding
the connections between the hands and the object, accu-
rate estimation, and the ability to defined control frames
in the object, made behavior definition very easy and con-
sistent across widely varying objects. Note that there are
still specialized behaviors in the system, for instance grasp-
ing the impact driver before tool use required a specific
approach angle and extra fixturing steps to robustly align
the finger and the trigger. These specific behaviors were only
ever associated with specific manipulation tasks (unzipping,
cutting, etc).

Grasping tasks (where the only requirement was a secure
grasp) tended to be immediately achievable by the system
for novel objects once grasp sets were generated from the
geometric object (Sect. 3.3.1), and the object could be clas-
sified and detected by the perception system. Surprisingly the
same table-grasp behavior (where the open hand was pressed
against the object and or table, and the fingers scraped closed
over the table surface) immediately worked for picking up the
trimmers from within the bag, picking up the burlap sack, and
picking up the tool bag itself. Other ARM teams, using a sim-
ilar behavior, have experienced comparable results (Kazemi
et al. 2012).

The ability to verify task completion (and detect or esti-
mate the discrete state of the environment) was not rigorously
implemented in the developed system. The continuous state
estimator (object location, mass, etc. in Sect. 3.2), performed

123



46 Auton Robot (2014) 36:31–49

well conditioned on the correct discrete state (zipper grasped,
bag open, tire attached, nut removed), but the detection or
classification of the discrete state was usually a specialized
ad-hoc algorithm. This in a large part explains why the prob-
ability of executing an entire sequence of tasks was similar
to the product of each sub-task’s probability of success. For
instance, we have a very high success rate of picking up the
impact driver, and a very high rate of removing each nut, but
overall the sequence did not perform as well as expected in
independent testing. Most discrete state classifications were
based on simple thresholds which were tuned at the devel-
opment site, and occasionally failed at the DARPA test site.
For instance, we used visual distance classifiers for the red
impact driver tip with respect to the nut position to check
for attachment of the impact driver and nut. A false nega-
tive from this classifier was enough to ruin an entire tire-
change sequence. While some classifiers worked well (was
a heavy object grasped), many of the most difficult manip-
ulation tasks have similarly difficult verification problems
(knowing that we have grasped the zipper, and not a fold
of the bag, is as difficult as actually grasping the zipper).
There certainly more sophisticated methods of learning to
classify task outcomes (Pastor et al. 2011), but it is unclear
how observable all of these criteria are in difficult manipula-
tion tasks. To realistically approach human-like performance
in manipulation, it seems likely that human-like performance
in understanding the system state, or the task outcome is
required.

The DARPA ARM program did not seek to emphasize the
role of perception in manipulation systems. The developed
system provided very high accuracy in both classification
and localization of objects within the confines of the table
top. However creating algorithms for object recognition was
time consuming and often required special case detectors or
classifiers in addition to the reusable ICP and contour-based
algorithms. For instance, finding a thin, flexible green wire,
and localizing it in 3D space, or detecting lug-nuts on a ply-
wood surface, or localizing the zipper on the camouflage
bag all required distinct algorithms, and often imposed con-
straints on where the objects were located to succeed. Generic
scene understanding, object classification and localization
is an open topic of research. While imprecise visual object
localization could be updated through kinesthetic feedback
mechanisms, and not affect task outcome, no task succeeded
with incorrect object classification.

A significant difficultly, and in general the most time con-
suming aspect of developing sequences to achieve a com-
plicated task (such as changing a tire), was understanding
the intersection of kinematic constraints from each subtask.
The task planner (Sect. 3.5), was developed to select valid
elements from a manipulation set (Sect. 3.3.1) enabling the
entire sequence, but often the manipulation sets (or corre-
spondingly the admissible poses before a behavior is execut-

ing) were too limited to achieve the whole sequence with-
out significant constraints in the location of objects in the
environment. For instance, the position of the tire in the
workspace of the robot was critical to task completion, and
was required to be between 40 and 50 cm away from the
robot. If the tire was too far away, dual handed manipulation
would fail, and it was hard to see the impact driver tip; if the
tire was too close, there was inadequate room to maneuver
the impact driver. The choice of how to pick up the impact
driver was reduced to a picking up the driver sideways as the
distance of the wrist to palm in the Barrett system is 15cm,
causing severe workspace issues. This problem would likely
be ameliorated with a mobile base, but was a challenge in this
project. However, it is important to note that often in develop-
ment we apparently had sufficiently expressive manipulation
sets so that each subtask would on it’s own succeed, but once
integrated into the whole sequence we found the set to be
insufficient.

The importance of testing with independent evaluators and
different copies of the same system or locations, is often
neglected in manipulation research (if only for cost reasons).
The ARM program did a rigorous job of enforcing this testing
on participants. A significant result of this is that all teams,
despite their best efforts to create a general system, have
anecdotally reported lower testing performance on the alter-
nate systems. 1 While it is perhaps expected that developing
on one system and testing on another may result in a per-
formance drop, it is unclear if this could be corrected by
developing on multiple systems, or if there is requirement to
modify the developed approach.

6 Conclusions

The paper puts forth a complete model-based system that
is able to autonomously complete human-level manipula-
tion tasks through decomposition and deliberation over sub-
tasks. Through novel model-based perception and estima-
tion, efficient planning and reactive control, the system can
perform robustly in semi-structured and uncertain environ-
ments. Unlike most other systems, remote independent test-
ing of the software was performed to ensure robustness and
test for generality.

Future work will incorporate new robotic hands, devel-
oped under the DARPA ARM program which are more dex-
terous than the existing hardware.

Further research into verification of task completion
and understanding the discrete system state is required to
improve system reliability and adaptability to new scenar-
ios. Future work should also include the ability to synthesize

1 Personal communication at PI meetings.

123



Auton Robot (2014) 36:31–49 47

sequences of behaviors and or learn from demonstration of
sequences.

Acknowledgments The research described in this publication was
carried out at the Jet Propulsion Laboratory, California Institute of Tech-
nology, with funding from the DARPA Autonomous Robotic Manip-
ulation Software Track (ARM-S) program through an agreement with
NASA.

References

Backes, P. G. (1994). Dual-arm supervisory and shared control task
description and execution. Robotics and Autonomous Systems, 12,
29–54.

Bagnell, J. A. D., Cavalcanti, F., Cui, L., Galluzzo, T., Hebert, M.,
Kazemi, M., Klingensmith, M., Libby, J., Liu, T.Y., Pollard, N.,
Pivtoraiko, M., Valois, J. S., & Zhu, R. (2012). An integrated system
for autonomous robotics manipulation. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (pp. 2955–2962).

Bajracharya, M., Ma, J., Howard, A., & Matthies, L. (2013). Real-
time 3d stereo mapping in complex dynamic environments. In: IEEE
International Conference on Robotics and Automation Workshop:
Semantic Perception Mapping and Exploration.

Beetz, M., Klank, U., Kresse, I., Maldonado, A., Mosenlechner, L.,
Pangercic, D., Ruhr, T., & Tenorth, M. (2011). Robotic room-
mates making pancakes. In: IEEE-RAS International Conference on
Humanoid Robots (pp. 529–536).

Bohren, J., Rusu, R., Jones, E., Marder-Eppstein, E., Pantofaru, C.,
Wise, M., Mosenlechner, L., Meeussen, W., & Holzer, S. (2011).
Towards autonomous robotic butlers: Lessons learned with the pr2.
In: IEEE International Conference on Robotics and Automation (pp.
5568–5575).

Chitta, S., Jones, E., Ciocarlie, M., & Hsiao, K. (2012). Mobile manip-
ulation in unstructured environments: Perception, planning, and exe-
cution. IEEE Robotics Automation Magazine, 19(2), 58–71.

Coumans, E., et al. (2013). Bullet physics library. http://bulletphysics.
org.

Diankov, R., & Kuffner, J. (2008). OpenRAVE: a planning architec-
ture for autonomous robotics (Technical Report CMU-RI-TR-08-
34). Pittsburgh, PA: Robotics Institute. Accessed 13 Nov 2013.

Dynamics and Real-Time Simulation (DARTS) Lab (2013). http://
dartslab.jpl.nasa.gov. Accessed 13 Nov 2013.

Gallagher, G., Srinivasa, S. S., Bagnell, J. A., & Ferguson, D. (2009).
GATMO: A generalized approach to tracking movable objects. In:
IEEE International Conference on Robotics and Automation.

Hackett, D., Pippine, J., Watson, A., Sullivan, C., & Pratt, G. (2013). An
overview of the DARPA autonomous robotic manipulation (ARM)
program. Journal of the Robotics Society of Japan (to appear).

Hebert, P. (2013). Estimation and inference for grasping and manipu-
lation tasks using vision and kinesthetic sensors. Ph.D. thesis, Cali-
fornia Institute of Technology.

Hebert, P., Hudson, N., Ma, J., & Burdick, J. (2011). Fusion of stereo
vision, force-torque, and joint sensors for estimation of in-hand
object location. In: IEEE International Conference on Robotics and
Automation.

Hebert, P., Hudson, N., Ma, J., & Burdick, J. (2013). Dual arm estima-
tion for coordinated bi-manual manipulation. In: IEEE International
Conference on Robotics and Automation.

Hebert, P., Hudson, N., Ma, J., Howard, T., & Burdick, J. (2013). Action
inference: The next best touch for model-based object localization,
parametrization, and identification. In: IEEE International Confer-
ence on Robotics and Automation.

Hebert, P., Hudson, N., Ma, J., Howard, T., Fuchs, T., & Burdick,
J. (2012). Combined shape, appearance and silhouette for object
manipulation. In: IEEE International Conference on Robotics and
Automation.

Howard, T., Green, C., Kelly, A., & Ferguson, D. (2008). State space
sampling of feasible motions for high-performance mobile robot nav-
igation in complex environments. Journal of Field Robotics, 25(6–7),
325–345.

Hudson, N., Howard, T., Ma, J., Jain, A., Bajracharya, M., Kuo, C., et
al. (2012). End-to-end dexterous manipulation with deliberate inter-
active estimation. In: IEEE International Conference on Robotics
and Automation.

Jain, A. (2010). Robot and multibody dynamics: Analysis and algo-
rithms. New York: Springer.

Jain, A. (2013). Structure based modeling and computational archi-
tecture for robotic systems. In: IEEE International Conference on
Robotics and Automation.

Jain, A., Crean, C., Kuo, C., von Bremen, H., & Myint, S. (2012).
Minimal coordinate formulation of contact dynamics in operational
space. In: Robotics Science and Systems, Sydney, Australia.

Jain, A., & Kemp, C. C. (2010). EL-E: An assistive mobile manipulator
that autonomously fetches objects from flat surfaces. Autonomous
Robots, 28, 45–64.

Kalakrishnan, M., Pastor, P., Righetti, L., & Schaal, S. (2013). Learning
objective functions for manipulation. In: IEEE International Confer-
ence on Robotics and Automation.

Kazemi, M., Valois, J. S., Bagnell, J. A., & Pollard, N. (2012). Robust
object grasping using force compliant motion primitives. In: Pro-
ceedings of Robotics: Science and Systems, Sydney, Australia.

Knepper, R., Srinivasa, S., & Mason, M. (2010). Hierarchical planning
architectures for mobile manipulation tasks in indoor environments.
In: IEEE International Conference on Robotics and Automation (pp.
1985–1990).

Kuffner, J. J., & LaValle, S. (2000). Rrt-connect: An efficient approach
to single-query path planning. In: IEEE International Conference on
Robotics and Automation (Vol. 2, pp. 995–1001).

Ma, J., Susca, S., Bajracharya, M., Matthies, L., Malchano, M., &
Wooden, D. (2012). Robust multi-sensor, day/night 6-dof pose
estimation for a dynamic legged vehicle in gps-denied envi-
ronments. In: IEEE International Conference on Robotics and
Automation.

Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., & Abbeel, P. (2010).
Cloth grasp point detection based on multiple-view geometric cues
with application to robotic towel folding. In: IEEE International
Conference on Robotics and Automation (pp. 2308–2315).

Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., & Schaal, S.
(2011). skill learning and task outcome prediction for manipulation.
In: IEEE International Conference on Robotics and Automation.

Quigley, M., Berger, E., & Ng, A. (2007). Stair: Hardware and software
architecture. In: AAAI Robotics Workshop.

Srinivasa, S., Ferguson, D., Helfrich, C., Berenson, D., Romea, A. C.,
Diankov, R., et al. (2010). HERB: A home exploring robotic butler.
Autonomous Robots, 28, 520.

Xue, Z., Ruehl, S. W., Hermann, A., Kerscher, T., & Dillmann, R.
(2012). Autonomous grasp and manipulation planning using a tof
camera. Robotics and Autonomous Systems, 60(3), 387–395.

123

http://bulletphysics.org
http://bulletphysics.org
http://dartslab.jpl.nasa.gov
http://dartslab.jpl.nasa.gov


48 Auton Robot (2014) 36:31–49

Nicolas Hudson PhD is cur-
rently a member of technical staff
in the Mobility and Manipulation
Group at the Jet Propulsion Lab-
oratory in Pasadena, California.
He is currently the task manager
for the DARPA ARM-S task.

Jeremy Ma PhD is currently a
member of technical staff in the
Computer Vision Group at the Jet
Propulsion Laboratory. He leads
the perception team effort for the
DARPA ARM-S task.

Paul Hebert PhD is currently
a member of technical staff in
the Manipulation and Sampling
Group at the Jet Propulsion Lab-
oratory in Pasadena, California.
He is the estimation lead of the
DARPA ARM-S task.

Abhinandan Jain PhD is a
Senior Research Scientist at the
Jet Propulsion Laboratory. His
reasearch interests are in the
areas of robot and multibody
dynamics, control applications,
and the development of compu-
tational modeling algorithms and
architectures.

Max Bajracharya is a senior
member of the Computer Vision
Group at the Jet Propulsion
Laboratory, Pasadena, CA. His
research focuses on applica-
tions of computer vision to
autonomous mobile robots in
unstructured environments. His
current work includes vision-
guided manipulation, learning
terrain classification, autonomous
instrument/tool placement, coor-
dinated arm/vehicle tool con-
trol, and person detection. Max
received his Bachelors and Mas-

ters degrees in computer science and electrical engineering from MIT
in 2001.

Thomas Allen received his BS
degree in mechanical engineer-
ing from the University of Cal-
ifornia, Berkeley in 2005. After
three years in the aerospace
industry he is now working
towards his PhD in mechani-
cal engineering at the California
Institute of Technology, advised
by Joel Burdick. His research
focuses on robotic grasping and
caging.

Rangoli Sharan received her
BTech degree in Electrical Engi-
neering from the Indian Insti-
tute of Technology in 2007. She
is currently working towards a
PhD in Control and Dynamical
Systems at California Institute
of Technology in Pasadena, CA.
Her research interests include
robot task planning, partially
observable discrete systems and
formal verification techniques in
control.

Matanya Horowitz is a doc-
toral student in the Control and
Dynamical Systems department
at Caltech. Before coming to
Caltech, Matanya obtained four
technical undergraduate degrees
and an MS from the Univer-
sity of Colorado at Boulder. His
research spans topics in com-
puter vision, control theory, and
robotic manipulation.

123



Auton Robot (2014) 36:31–49 49

Calvin Kuo is currently a grad-
uate student at Stanford Univer-
sity. Formerly a software engi-
neer in the Robotic Simulation
and Modelling Group at the Jet
Propulsion Laboratory provid-
ing modelling assistance for the
DARPA ARM-S task.

Thomas Howard PhD cur-
rently a Post-doctoral Fellow in
the Roboust Robotics Group at
the Massachusetts Institute of
Technology. He was previously
a Research Technologist with
the Robotics Software Systems
Group at the JPL. Dr. Howard
earned a PhD in Robotics from
Carnegie Mellon University in
2009.

Larry Matthies is a Senior
Research Scientist at JPL and
is the Supervisor of the Com-
puter Vision Group (3474) in the
Mobility and Robotic Systems
Section. His also an Adjunct Pro-
fessor in Computer Science at the
University of Southern Califor-
nia and is a member of the edito-
rial boards for the Autonomous
Robots journal and the Journal of
Field Robotics.

Paul Backes PhD is the
Group Supervisor of the Robotic
Manipulation and Sampling group
at Jet Propulsion Laboratory,
California Institute of Technol-
ogy, where he has been since
1987. He received the BSME
degree from U.C. Berkeley in
1982, MSME degree from Pur-
due University in 1984, and
PhD in Mechanical Engineering
from Purdue University in 1987.
Dr. Backes received the 1993
NASA Exceptional Engineering
Achievement Medal for his con-

tributions to space telerobotics, 1998 JPL Award for Excellence, 1998
NASA Software of the Year Award Sole Runner-up, 2004 NASA Soft-
ware of the Year Award, and 2008 IEEE Robotics and Automation
Award. He has served as an Associate Editor of the IEEE Robotics and
Automation Society Magazine. He is the Principal Investigator for the
DARPA ARM-S task.

Joel Burdick PhD is currently
the Richard L. and Dorothy M.
Hayman Professor of Mechan-
ical Engineering and Bioengi-
neering at the California Institute
of Technology. He leads the Cal-
tech team in the DARPA ARM-S
effort.

123


	Model-based autonomous system for performing dexterous, human-level manipulation tasks
	Abstract 
	1 Introduction
	1.1 Wheel change scenario
	1.2 Wire cut scenario

	2 Related work
	3 Technical approach
	3.1 Perception
	3.1.1 Mapping
	3.1.2 Object detection
	3.1.3 Object tracking

	3.2 World estimation
	3.2.1 Kalman filter framework
	3.2.2 Visual servoing

	3.3 Motion planning
	3.3.1 Manipulation sets
	3.3.2 Manipulation planner
	3.3.3 Arm planner

	3.4 Control
	3.4.1 Task frame behaviors
	3.4.2 Inverse kinematics and redundancy resolution
	3.4.3 Joint space control

	3.5 Task level planning
	3.5.1 Remanipulation
	3.5.2 Kinematically dependent tasks
	3.5.3 Kinematic verification based execution

	3.6 Modeling

	4 Test results
	4.1 Wheel change
	4.2 Wire cutting

	5 Discussion
	6 Conclusions
	Acknowledgments
	References


