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Abstract Consideration of a question of E. R. Berlekamp led Carlitz, Roselle, and
Scoville to give a combinatorial interpretation of the entries of certain matrices of
determinant 1 in terms of lattice paths. Here we generalize this result by refining
the matrix entries to be multivariate polynomials, and by determining not only the
determinant but also the Smith normal form of these matrices. A priori the Smith form
need not exist but its existence follows from the explicit computation. It will be more
convenient for us to state our results in terms of partitions rather than lattice paths.
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Berlekamp [1,2] raised a question concerning the entries of certain matrices of
determinant 1. (Originally, Berlekamp was interested only in the entries modulo 2.)
Carlitz, Roselle, and Scoville [3] gave a combinatorial interpretation of the entries
(over the integers, not just modulo 2) in terms of lattice paths. Here we will generalize
the result of Carlitz, Roselle, and Scoville in two ways: (a) we will refine the matrix
entries so that they are multivariate polynomials, and (b) we compute not just the
determinant of these matrices, but more strongly their Smith normal form (SNF).
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Fig. 1 The polynomials Prs for λ = (3, 2)

A priori our matrices need not have a Smith normal form, since they are not defined
over a principal ideal domain, but the existence of SNF will follow from its explicit
computation. A special case is a determinant of q-Catalan numbers. It will be more
convenient for us to state our results in terms of partitions rather than lattice paths.

Let λ be a partition, identified with its Young diagram regarded as a set of squares;
we fix λ for all that follows. Adjoin to λ a border strip extending from the end of the
first row to the end of the first column of λ, yielding an extended partition λ∗. Let (r, s)
denote the square in the r th row and sth column of λ∗. If (r, s) ∈ λ∗, then let λ(r, s)
be the partition whose diagram consists of all squares (u, v) of λ satisfying u ≥ r and
v ≥ s. Thus, λ(1, 1) = λ, while λ(r, s) = ∅ (the empty partition) if (r, s) ∈ λ∗\λ.
Associate with the square (i, j) of λ an indeterminate xi j . Now for each square (r, s)
of λ∗, associate a polynomial Prs in the variables xi j , defined as follows:

Prs =
∑

μ⊆λ(r,s)

∏

(i, j)∈λ(r,s)\μ
xi j , (1)

where μ runs over all partitions contained in λ(r, s). In particular, if (r, s) ∈ λ∗\λ then
Prs = 1. Thus, for (r, s) ∈ λ, Prs may be regarded as a generating function for the
squares of all skew diagrams λ(r, s)\μ. For instance, if λ = (3, 2) and we set x11 = a,
x12 = b, x13 = c, x21 = d, and x22 = e, then Fig. 1 shows the extended diagram λ∗
with the polynomial Prs placed in the square (r, s).

Write

Ars =
∏

(i, j)∈λ(r,s)

xi j .

Note that Ars is simply the leading term of Prs . Thus, for λ = (3, 2) as in Fig. 1 we
have A11 = abcde, A12 = bce, A13 = c, A21 = de, and A22 = e.

For each square (i, j) ∈ λ∗ there will be a unique subset of the squares of λ∗
forming an m × m square S(i, j) for some m ≥ 1, such that the upper left-hand
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corner of S(i, j) is (i, j), and the lower right-hand corner of S(i, j) lies in λ∗\λ. In
fact, if ρi j denotes the rank of λ(i, j) (the number of squares on the main diagonal, or
equivalently, the largest k for which λ(i, j)k ≥ k), then m = ρi j +1. Let M(i, j) denote
the matrix obtained by inserting in each square (r, s) of S(i, j) the polynomial Prs .
For instance, for the partition λ = (3, 2) of Fig. 1, the matrix M(1, 1) is given by

M(1, 1) =
⎡

⎣
P11 bce + ce + c + e + 1 c + 1

de + e + 1 e + 1 1
1 1 1

⎤

⎦ ,

where P11 = abcde + bcde + bce + cde + ce + de + c + e + 1. Note that for this
example we have

det M(1, 1) = A11 A22 A33 = abcde · e · 1 = abcde2.

If R is a commutative ring (with identity), and M an m×n matrix over R, then we say
that M has a Smith normal form (SNF) over R if there exist matrices P ∈ GL(m, R)

(the set of m × m matrices over R which have an inverse whose entries also lie in R,
so that det P is a unit in R), Q ∈ GL(n, R), such that P M Q has the form (w.l.o.g.,
here m ≤ n, the other case is dual)

P M Q =

⎡

⎢⎢⎢⎣

0 d1d2 · · · dm

0 d1d2 · · · dm−1 0
... 0

. . .

0 d1

⎤

⎥⎥⎥⎦

= (0, diag(d1d2 · · · dm, d1d2 · · · dm−1, . . . , d1)) ,

where each di ∈ R. If R is an integral domain and M has an SNF, then it is unique up
to multiplication of the diagonal entries by units. If R is a principal ideal domain then
the SNF always exists, but not over more general rings. We will be working over the
polynomial ring

R = Z[xi j : (i, j) ∈ λ]. (2)

Our main result asserts that M(i, j) has a Smith normal form over R, which we
describe explicitly. In particular, the entries on the main diagonal are monomials. It
is stated below for M(1, 1), but it applies to any M(i, j) by replacing λ with λ(i, j).
Note also that the transforming matrices are particularly nice as they are triangular
matrices with 1’s on the diagonal.

Theorem 1 There are an upper unitriangular matrix P and a lower unitriangular
matrix Q in SL(ρ + 1, R) such that

P · M(1, 1) · Q = diag(A11, A22, . . . , Aρ+1,ρ+1).

In particular, det M(1, 1) = A11 A22 · · · Aρρ (since Aρ+1,ρ+1 = 1).
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For instance, in the example of Fig. 1 we have

P · M(1, 1) · Q = diag(abcde, e, 1) .

We will give two proofs for Theorem 1.
The main tool used for the first proof is a recurrence for the polynomials Prs .

To state this recurrence we need some definitions. Let ρ = rank(λ), the size of the
main diagonal of λ. For 1 ≤ i ≤ ρ, define the rectangular array

Ri =

⎡

⎢⎢⎢⎣

(1, 2) (1, 3) · · · (1, λi − i + 1)

(2, 3) (2, 4) · · · (2, λi − i + 2)
...

(i, i + 1) (i, i + 2) · · · (i, λi )

⎤

⎥⎥⎥⎦ .

Note that if λρ = ρ, then Rρ has no columns, i.e., Rρ = ∅. Let Xi denote the set of all
subarrays of Ri whose shapes form a vertical reflection of a Young diagram, justified
into the upper right-hand corner of Ri . Define

�i =
∑

α∈Xi

∏

(a,b)∈α

xab.

For instance, if λ2 = 4, then

R2 =
[

(1, 2) (1, 3)

(2, 3) (2, 4)

]
,

so

�2 = 1 + x13 + x12x13 + x13x24 + x12x13x24 + x12x13x23x24.

In general, Ri will have i rows and λi − i columns, so �i will have
(
λi
i

)
terms.

We also set �0 = 1, which is consistent with regarding R0 to be an empty array.
Next set S0 = ∅ and define for 1 ≤ i ≤ ρ,

Si = {(a, b) ∈ λ : 1 ≤ a ≤ i, λi − i + a < b ≤ λa}.

In particular S1 = ∅. When λρ = ρ, then Sρ consists of all squares strictly to the right
of the main diagonal of λ; otherwise, Si consists of those squares of λ that are in the
same row and to the right of all squares appearing as an entry of Ri .
Set

τi = �i ·
∏

(a,b)∈Si

xab,

where as usual an empty product is equal to 1. In particular, τ0 = 1.
We can now state the recurrence relation for Prs .
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Fig. 2 The variables for λ = (5, 4, 1)

Theorem 2 Let 2 ≤ j ≤ ρ + 1 = rank(λ) + 1. Then

τ0 P1 j − τ1 P2 j + · · · + (−1)ρτρ Pρ+1, j = 0.

Moreover, for j = 1, we have

τ0 P11 − τ1 P21 + · · · + (−1)ρτρ Pρ+1,1 = A11.

Before presenting the proof, we first give a couple of examples. Let λ = (3, 2),
with x11 = a, x12 = b, x13 = c, x21 = d, and x22 = e as in Fig. 1. For j = 1 we
obtain the identity

(1 + c + e + ce + de + bce + cde + bcde + abcde)

−(1 + c + bc)(1 + e + de) + bc = abcde,

For j = 2 we have

(1 + c + e + ce + bce) − (1 + c + bc)(1 + e) + bc = 0,

while for j = 3 we get

(1 + c) − (1 + c + bc) + bc = 0.

For a further example, let λ = (5, 4, 1), with the variables xi j replaced by the letters
a, b, . . . , j as shown in Fig. 2.

For j = 1, we get

P11 − (1 + e + de + cde + bcde)(1 + i + j + i j + hi + hi j + ghi + ghi j

+ f ghi j) + de(1 + c + bc + ci + bci + bchi)(1 + j) = abcde f ghi j,

where P11 = 1 + e + i + j + · · · + abcde f ghi j , a polynomial with 34 terms. For
j = 2, we get

(1 + e + i + ei + hi + dei + ehi + ghi + dehi + eghi + cdehi + deghi

+ cdeghi + bcdeghi) − (1 + e + de + cde + bcde)(1 + i + hi + ghi)

+de(1 + c + bc + ci + bci + bchi) = 0.
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For j = 3 we have

(1 + e + i + ei + hi + dei + ehi + dehi + cdehi)

− (1 + e + de + cde + bcde)(1 + i + hi)

+ de(1 + c + bc + ci + bci + bchi) = 0.

Proof of Theorem 2 First suppose that j ≥ 2. We will prove the result in the form

τ0 P1 j = τ1 P2 j − · · · + (−1)ρ−1τρ Pρ+1, j

by an Inclusion–Exclusion argument. Since τ0 = 1, the left-hand side is the generating
function for all skew diagrams λ(1, j)\μ, as defined by Eq. (1). If we take a skew
diagram λ(2, j)\σ and append to it some element of X1 (that is, some squares on the
first row forming a contiguous strip up to the last square (1, λ1)), then we will include
every skew diagram λ(1, j)\μ. However, some additional diagrams δ will also be
included. These will have the property that the first row begins strictly to the left of the
second. We obtain the first two rows of such a diagram δ by choosing an element of X2
and adjoining to it the set S2. The remainder of the diagram δ is a skew shape λ(3, j)\ζ .
Thus, we cancel out the unwanted terms of τ1 P2 j by subtracting τ2 P3 j . However, the
product τ2 P3 j has some additional terms that need to be added back in. These terms
will correspond to diagrams η with the property that the first row begins strictly to the
left of the second, and the second begins strictly to the left of the third. We obtain the
first three rows of such a diagram η by choosing an element of X3 and adjoining to it
the set S3. The remainder of the diagram η is a skew shape λ(4, j)\ξ . Thus, we cancel
out the unwanted terms of τ2 P3 j by adding τ3 P4 j . This Inclusion–Exclusion process
will come to end when we reach the term τρ Pρ+1, j , since we cannot have ρ + 1 rows,
each strictly to the left of the one below. This proves the theorem for j ≥ 2.

When j = 1, the Inclusion–Exclusion process works exactly as before, except that
the term A11 is never canceled from τ0 P11 = P11. Hence the theorem is also true for
j = 1. �	

With this result at hand, we can now embark on the proof of Theorem 1. This
is done by induction on ρ, the result being trivial for ρ = 0 (so λ = ∅). Assume
the assertion holds for partitions of rank less than ρ, and let rank(λ) = ρ. For each
1 ≤ i ≤ ρ, multiply row i + 1 of M(1, 1) by (−1)iτi and add it to the first row. By
Theorem 2 we get a matrix M ′ whose first row is [A11, 0, 0, . . . , 0]. Now by symmetry
we can perform the analogous operations on the columns of M ′. We then get a matrix

in the block diagonal form

[
A11 0
0 M(2, 2)

]
. The row and column operations that we

have performed are equivalent to computing P ′M Q′ for upper and lower unitriangular
matrices P ′, Q′ ∈ SL(ρ + 1, R), respectively. The proof now follows by induction. �	

Note The determinant above can also easily be evaluated by the Lindström–Wilf–
Gessel–Viennot method of nonintersecting lattice paths, but it seems impossible to
extend this method to a computation of SNF.

We now come to the second approach toward the SNF which does not use Theo-
rem 2. Indeed, we will prove the more general version below where the weight matrix
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is not necessarily square; while this is not expounded here, the previous proof may also
be extended easily to any rectangular subarray (regarded as a matrix) of λ∗ whose lower
right-hand corner lies in λ∗\λ. The inductive proof below will not involve Inclusion–
Exclusion arguments; again, suitable transformation matrices are computed explicitly
stepwise along the way.

Given our partition λ, let F be a rectangle of size d × e in λ∗, with top left corner
at (1, 1), such that its corner (d, e) is a square in the added border strip λ∗\λ; thus
Ade = 1 and Pde = 1. We denote the corresponding matrix of weights by

WF = (Pi j )(i, j)∈F .

Theorem 3 Let F be a rectangle in λ∗ as above, of size d × e; assume d ≤ e (the
other case is dual). Then there are an upper unitriangular matrix P ∈ SL(d, R) and
a lower unitriangular matrix Q ∈ SL(e, R) such that

P · WF · Q = (0, diag(A1,1+e−d , A2,2+e−d . . . , Ad,e)) .

In particular, when λ is of rank ρ and F is the Durfee square in λ∗, we have the result
in Theorem 1 for WF = M(1, 1).

Proof We note that the claim clearly holds for 1×e rectangles as then A1,e = 1 = P1,e.
We use induction on the size of λ. For λ = ∅, λ∗ = (1) and F can only be a 1 × 1
rectangle. We now assume that the result holds for all rectangles as above in partitions
of n. We take a partition λ′ of n + 1 and a rectangle F ′ with its corner on the rim
λ′∗\λ′, where we may assume that F ′ has at least two rows, we will produce the
required transformation matrices inductively along the way.

First we assume that we can remove a square s = (a, b) from λ′ and obtain a
partition λ = λ′\s such that F ′ ⊆ λ∗. By induction, we thus have the result for λ and
F = F ′ ⊂ λ∗, say this is a rectangle with corner (d, e), d ≤ e. Then, a < d and
b ≥ e, or a ≥ d and b < e. We discuss the first case, the other case is analogous. Set
z = xab.

Let t ∈ λ ⊂ λ′; denote the weights of t with respect to λ by At , Pt , and with
respect to λ′ by A′

t , P ′
t . Let W = WF = (Pi j )(i, j)∈F and W ′ = (P ′

i j )(i, j)∈F be the
corresponding weight matrices. We clearly have

A′
j, j+e−d =

{
z A j, j+e−d for 1 ≤ j ≤ a

A j, j+e−d for a < j ≤ d
.

When we compute the weight of t = (i, j) ∈ F with i ≤ a with respect to λ′, we
get two types of contributions to P ′

i j . For a partition μ ⊆ λ′(i, j) with s �∈ μ, i.e.,
μ ⊆ λ(i, j), the corresponding weight summand in Pi j is multiplied by z, and hence
the total contribution from all such μ is exactly z Pi j . On the other hand, if the partition
μ ⊆ λ′(i, j) contains s, then it contains the full rectangle R spanned by the corners t
and s, that is, running over rows i to a and columns j to b; μ arises from R by gluing
suitable (possibly empty) partitions α, β to its right and bottom side, respectively, and

λ′(i, j)\μ = (λ(i, b + 1)\α) ∪ (λ(a + 1, j)\β) .
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Summing the terms for all such μ, we get the contribution Pi,b+1 · Pa+1, j . Clearly,
when i > a, then the square s has no effect on the weight of t . Hence

P ′
i j =

{
z Pi j + Pi,b+1 · Pa+1, j for 1 ≤ i ≤ a

Pi j for a < i ≤ d
.

We now transform W ′. Multiplying the (a +1)-th row of W ′ by Pi,b+1 and subtracting
this from row i , for all i ≤ a, corresponds to multiplication from the left with an upper
unitriangular matrix in SL(d, R) and gives

W ′
1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

z P11 · · · z P1e
... · · · ...

z Pa1 · · · z Pae

Pa+1,1 · · · Pa+1,e
... · · · ...

Pd1 · · · Pde

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By induction, we know that there are upper and lower unitriangular matrices
U = (ui j )1≤i, j≤d , V = (vi j )1≤i, j≤e, respectively, defined over R, such that
U W V = (0, diag(A1,1+e−d , . . . , Ad,e)). We then define an upper unitriangular matrix
U ′ = (u′

i j )1≤i, j≤d ∈ SL(d, R) by setting

u′
i j =

{
zui j for i ≤ a < j
ui j otherwise

.

With U W = (P̃i j ), we then have

U ′W ′
1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

z P̃11 · · · z P̃1e
... · · · ...

z P̃a1 · · · z P̃ae

P̃a+1,1 · · · P̃a+1,e
... · · · ...

P̃d1 · · · P̃de

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and hence we obtain the desired form via

U ′W ′
1V = (0, diag(z A1,1+e−d , . . . , z Aa,a+e−d , Aa+1,a+1+e−d , . . . , Ade)) .

Next we deal with the case where we cannot remove a square from λ′ such that
the rectangle F ′ is still contained in the extension of the smaller partition λ of n. This
is exactly the case when λ′ is a rectangle, with corner square s = (d, e) (say), and
F ′ = λ′∗ is the rectangle with its corner at (d +1, e+1). Then, s is the only square that
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can be removed from λ′; for λ = λ′\s, we have λ∗ = λ′∗\(d + 1, e + 1). We now use
the induction hypothesis for the partition λ of n and the rectangle F = λ′ ⊂ λ′∗ = F ′.

We keep the notation for the weights of a square t = (i, j) with respect to λ, λ′,
and set z = xs = xde. Clearly, we have for the monomial weights to λ′

A′
j, j+e−d =

{
z A j, j+e−d for j ≤ d
1 for j = d + 1

.

Now we consider how to compute the matrix W ′ = (P ′
i j )(i, j)∈F ′ from the values Pi j ,

(i, j) ∈ F . Arguing analogously as before, we obtain

P ′
i j =

⎧
⎨

⎩

z Pi j + 1 for 1 ≤ i ≤ d, 1 ≤ j ≤ e
1 for i ≤ d + 1 and j = e + 1
1 for i = d + 1 and j ≤ e + 1

.

As a first simplification on W ′, we subtract the (d + 1)-th row of W ′ from row i ,
for all i ≤ d (corresponding to a multiplication from the left with a suitable upper
unitriangular matrix), and we obtain the matrix

W ′
1 =

⎡

⎢⎢⎢⎣

z P11 . . . z P1e 0
... . . .

...
...

z Pd1 . . . z Pde 0
1 . . . 1 1

⎤

⎥⎥⎥⎦ .

Subtracting the last column from column j , for all j ≤ e, transforms this (via post-

multiplication with a lower unitriangular matrix as required) into W ′
2 =

[
zW 0
0 1

]
.

By induction we have an upper and a lower unitriangular matrix U ∈ SL(d, R),
V ∈ SL(e, R), respectively, with U W V = (0, diag(A1,1+e−d , . . . , Ade)). Then

[
U 0
0 1

] [
zW 0
0 1

] [
V 0
0 1

]
=

[
0 diag(z A1,1+e−d , . . . , z Ade) 0
0 0 1

]
,

and we have the assertion as claimed. �	
We conclude with an interesting special case, namely, when λ is the “staircase”

(n −1, n −2, . . . , 1) and each xi j = q, we get that Pi j is the q-Catalan number that is
denoted C̃n+2−i− j (q) by Fürlinger and Hofbauer [6], [7, Exer. 6.34(a)]. For instance,
C̃3(q) = 1 + 2q + q2 + q3. Theorem 1 gives that the matrix

M2m−1 = [C̃2m+1−i− j (q)]m
i, j=1

has SNF diag(q(2m−1
2 ), q(2m−3

2 ), q(2m−5
2 ), . . . , q3, 1), and the matrix

M2m = [C̃2m+2−i− j (q)]m+1
i, j=1
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has SNF diag(q(2m
2 ), q(2m−2

2 ), q(2m−4
2 ), . . . , q, 1). The determinants of the matrices Mn

were already known (e.g., [4], [5, p. 7]), but their Smith normal form is new.
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