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Abstract Given an elliptic curve E over a finite field F, of g elements, we say that
an odd prime ¢ { ¢ is an Elkies prime for E if t%: — 4q is a square modulo ¢, where
tg =qg+1—#E[F,) and #E(F,) is the number of IF,-rational points on E; otherwise,
£ is called an Atkin prime. We show that there are asymptotically the same number
of Atkin and Elkies primes £ < L on average over all curves E over F,, provided
that L > (logg)® for any fixed ¢ > 0 and a sufficiently large ¢g. We use this result to
design and analyze a fast algorithm to generate random elliptic curves with #E(IF ,)
prime, where p varies uniformly over primes in a given interval [x, 2x].
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1 Introduction

Let IF, be a finite field of ¢ elements. For an elliptic curve E over I, we denote
by #E(F,) the number of IF-rational points on E and define the trace of Frobenius
tg =q+1—#E(F,); see [2,27] for background on elliptic curves. We say that an
odd prime ¢ 1 ¢ is an Elkies prime for E if t% — 4q is a quadratic residue modulo ¢;
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otherwise, € 1 g is called an Atkin prime. For any elliptic curve over a finite field, one
expects about the same number of Atkin and Elkies primes £ < L as L — oo.

These primes play a key role in the Schoof-Elkies—Atkin (SEA) algorithm (see [2,
§17.2.2 and §17.2.5]), and their distribution affects the performance of this algorithm
in a rather dramatic way. Thus we define N,(E; L) and N.(E; L) as the number of
Atkin and Elkies primes ¢ in the dyadic interval £ € [L, 2L] for an elliptic curve E
over [F, respectively. We clearly have

No(E; L) + Ne(E; L) = (2L) — (L) + O (1),

where 7 (L) denotes the number of primes £ < L, and one expects that
1
Na(E; L) ~ Ne(E; L) ~ = (w(2L) — 7 (L)) ey

as L — oo.

Under the generalized Riemann hypothesis (GRH), using the bound of quadratic
characters over primes, it was noted by Galbraith and Satoh that (1) holds for L >
(log ¢)>*¢ for any fixed ¢ > 0 and ¢ — 00; see [23, Appendix A], and also [12,
Proposition 5.25] or [21, Ex. 5.a in §13.1]. However, the unconditional results are
much weaker and essentially rely on our knowledge of the distribution of primes in
arithmetic progressions; see [12, §5.9] or [21, Chapter 4 and 11]. In the opposite
direction, it is shown in [26] that one must take at least L > clog p logloglog p for
infinitely many primes p, where ¢ > 0 is an absolute constant.

Here, we study the values of N,(E; L) and N.(E; L) on average over all elliptic
curves E over IF,. Let £ be any set of representative of all isomorphism classes of
elliptic curves over [F,.

Theorem 1 For any integer v > 1, we have

1 2v

#,

1
Ny(E; L) — 5 (r(2L) — (L))
q Ee&,

=0 (n(ZL)" logg loglogg + w(2L)* ¢~ /2 L" log L) ,

where N.(E; L) is either N,(E; L) or N.(E; L).

For an appropriate choice of v we obtain from Theorem 1 a nontrivial result in the
range

(logq)® < L < q'*(logq)~"/*¢

for any fixed ¢ > 0 and all sufficiently large g. This range includes values of L that
are much smaller than those addressed by the result of Galbraith and Satoh for any
particular elliptic curve, even under the GRH.
In many applications it is more convenient to consider curves given by the family
of short Weierstral} equations
Elol:;ﬂ
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Esp: Y> =X 4+aX+b, 2)

where a and b run through F,, with gcd(g, 6) = 1, and satisfy 4a3 +27b% = 0. Since
there are O (q) pairs (a, b) € ]Ffl for which E, p lies in a given isomorphism class, we
easily derive from Theorem 1 the following result.

Corollary 2 Foranyreale > 0andinteger C > 1, for a sufficiently large prime p and
p/%(log p)~127% > L > (log p)? there are at most p*(log p)~€ pairs (a, b) € IF%,
for which 4a® + 27b* + 0 and

N.(E; L) < %(ﬂ(ZL) — (L)),

where Ny (E; L) is either N,(E; L) or N.(E; L).

As an application of Corollary 2, in Sect. 5 we present Algorithm 2, which efficiently
generates a random elliptic curve of prime order. Given an integer x > 3, we seek
a random and sufficiently uniformly distributed element of the set 7' (x) of all triples
(p,a, b), where p is a prime in the interval [x, 2x], while a and b are elements of I,
for which the elliptic curve Ey  in (2) has a prime number of F ,-rational points. This
problem arises in cryptographic applications of elliptic curves, where one typically
requires a curve with prime (or near prime) order but wishes to choose a curve that is
otherwise as generic as possible.!

We show that the output and complexity of Algorithm 2 (Sect. 5) satisfy the fol-
lowing theorem.

Theorem 3 Given a real number x > 3, Algorithm 2 outputs a prime p € [x, 2x], two
elementsa,b € ¥, and N = #E, ,(IF,), where p is uniformly distributed over primes
in [x, 2x] and the pair (a, b) is then uniformly distributed over pairs in ¥, x I, for
which Eq p(F ) is prime. Assuming the GRH, the expected running time of Algorithm 2
is O((log x)>(loglog x)* log log log x).

2 Preparations

We recall the notations U = O(V), V = QU), U « V,and V > U, all of
which are equivalent to the statement that the inequality |[U| < ¢V holds asymp-
totically, with some constant ¢ > 0. We also write U = %) (V) to indicate that
|U| < V(log V)°M_ Throughout the paper, any implied constants in these symbols
may occasionally depend, where obvious, on the integer parameter v > 1 and the real
parameter ¢ > 0, and are absolute otherwise. We always assume that ¢ runs through
the prime integers. We also assume that for a prime p the field I}, is represented by
the integers in the interval [0, p — 1].

1 Some cryptographic security standards specifically preclude the use of alternative approaches such as the
CM method for this very reason [18].
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Let us first recall some known facts about elliptic curves, which are conveniently
summarized by Lenstra [15]. In particular, we need the following well-known asymp-
totic estimate on the cardinality of #&,; see [15, §1.4] for gcd(g, 6) = 1, [11, Theo-
rem 3.18] for 2 | ¢, and [13] for 3 | ¢.

Lemma 4 We have
#E, =29 + O(D).

Furthermore, let f,(¢) be the number of isomorphism classes of curves E over I,
with tg = t. McKee [20, Theorem 2] gives a more precise form of the upper bounds
of Lenstra [15, Proposition 1.9] on f, (¢), which we formulate together with the Hasse
estimate on possible values of ¢; see [15, Proposition 1.5] or [2,27].

Lemma 5 We have

0 if |1] > 2¢"'/2,

fq(t) < ql/ZIquloglogq, if |7] 52q1/2.

We also need some results on multiplicative character sums. More precisely, we
concentrate on the sums of Jacobi symbols (a/b); see [12, § 3.5]. Let us first consider
complete sums.

Lemma 6 For any integer a and a product m = £ ...4g of s distinct odd primes
Ly, ..., Ly with gcd(a, m) = 1 we have

C

t=0

Proof We use the following special case of the well-known identity for sums of Legen-
dre symbols with quadratic polynomials ([17, Theorem 5.48]):

‘i(ﬂg—a):_l

t=0

for any prime ¢ t a. Applying the multiplicativity of complete character sums, see [12,
Eq. 12.21], completes the proof. O

The following estimate is a slight generalization of [19, Lemma 2.2].

Lemma 7 Forany integersa and T > 1 and a productm = £1 ... L5 of s > 0 distinct
odd primes L1, ..., Ly with gcd(a, m) = 1 we have

> —a "
> ( )<< T/m+ C*m'logm
m

lt|l=T

for some absolute constant C > 1.
Elol:;ﬂ
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Proof The result is trivial when s = 0, that is, when m = 1.

For s > 1, as in [19], we note that the Weil bound applied to the mixed sums
of additive and multiplicative characters with polynomials, of the type given in [12,
Eq. 11.43], and the multiplicativity of complete character sums (see [12, Eq. 12.21])

imply that
moos.2
- — At
Z( a)exp (2711'—) < Cm!'’?
po m m

holds for any integer A and some absolute constant C > 1. Using the standard reduction
between complete and incomplete sums (see [12, § 12.2]), we derive that for any integer
K and any positive integer L < m we have

K+L 2
1< — At
E ( a) exp (2711'—) < Cm!/? logm. 3)
m m

t=K+1

Separating the summation range over ¢ into O (7 /m) intervals of length m (and
using Lemma 6 for the sums over these intervals) and at most one interval of length
m (and using (3) for the sums over these intervals), we obtain the desired result. O

Finally, for any integer n we denote by wy,(n) the number of primes in the interval
[L,2L] that divide n.

Lemma 8 For L > 3 and any integer v > 1 we have

L\)
+ .
logL ~ (log L)Y

Dot —a) <

|t|]<T

Proof We have

v

2oo-a=3 | > 1| = > 2. L

[t|<T lt|<T \ L<¢<2L L<0y,..0,<2L [t1|<T
02 —a lem [€1,....0,]112—a

By the Chinese remainder theorem, for any squarefree m > 1 we have

Dl T/m+1) D 1L2"(T/m+ 1),

|t|<T t=1
mlt?—a ml|t?—a
where w () is the number of distinct prime divisors of m. Now, foreach j = 1,...,v
we collect together the terms such that among ¢1, ... ¢, < L, only j are distinct. We

then obtain
FoCT
H_h
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v T
PIHGETIRS IS (zl...£j+l)

lt|<T J=1L<t,...;<2L
; . J
< T — 2L)
1 X ) +on
j=1 L<t<2L
Applying the prime number theorem completes the proof. O

3 Proof of Theorem 1

Clearly, we have

2 _
Na(E:L) = Ne(EsL) = 3 (tE 4q)+0(wL<r,%—4q>+1),

£
L<t<2L

where, as before, wy (n) denotes the number of primes £ € [L,2L] with £ | n.
Therefore,

2v

1ZN(E'L) Lren -7y <« U+ V41, @
% AR T g Swe, e,

1 Eeg,

where, as before, N.(E; L) is either N,(E; L) or N.(E; L) and

2v

15— 4q 2\2v
Uy= >, Z( ; ) and V= D (g —1p)*.

Ee&, |L<t=2L Ee&,
By Lemma 5,
5 2v
1 —4q
v= 3 ol 3 (57)

\;|<2q1/2 L<t<2L
2v

«q'loggloglogg > | > Codg)| (5)
¢

|,|<2q1/2 L<¢<2L

where f, (t) is defined as in Sect. 2. Furthermore,

2v
2 2
S () - T o2 (8
14 .. .4 )"
lt]<2¢1/2 |L<t<2L 3<ly,e b2 <L |1]<2g /2
FoCT
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Forevery j = 0,...v let Q; be the set of 2v tuples (¢, ..., £2,) of primes with
L <{p,...,43, < 2L such that the product r = £; ... {3, is of the form r = kZm
with m squarefree and k the product of j primes.

For the cardinalities of these sets we clearly have

2v—j
. _ 2v—j
#O; K (w(2L) — (L)) < Qog Ly
Using Lemma 7 for (1, ..., £€2,) € @, j =0, ..., v, we obtain

2v

12 —4 . ; ;
2 |2 ( [ q) <D #Qj(q' /L + L log L)

lt|<2¢1/2 |L<t<2L =0

12 L3v—2j
<<Z< <logL)2v i (logL>2v—f-‘)

12 LY N L3v
(logL)" = (logL)?v=1"

<Lq

Inserting this bound into (5) we obtain
L3v
Uy < (q” 2

(log L)’ (og Ly

) "2 logq loglogg. 6)

Finally, by Lemmas 5 and 8, we have
q'? . 12
logL  (log L)%

V, K ( )ql/2 log g logloggq. (7)

Substituting (6) and (7) into (4) and recalling Lemma 4, we conclude the proof.

4 Point Counting on Random Elliptic Curves

We now consider the problem of generating a random elliptic curve whose group of
IF,-rational points has prime order. One approach is to fix the prime p and then count
points on randomly generated elliptic curves over ¥}, until a curve with prime order
is found. Using the SEA point-counting algorithm, thls procedure heuristically has an
expected running time of O (n’), where n = log p. However, for a fixed prime p we
cannot hope to prove even a polynomial time bound because even under the GRH the
Hasse interval [p — 2,/p, p + 2,/p] is too narrow to permit a useful lower bound on
the number of primes it contains. Thus we let p vary over an interval [x, 2x], which
at least makes a polynomial-time bound feasible; see [14].

A second obstacle to obtaining an o) expected time bound is that the expected
running time of the SEA algorithm is not known to be polynomial in 7n, unless we
assume the GRH. Even with the GRH, the expected running time of the SEA algorithm
on any particular curve is only bounded by ond), yielding an O (n®) bound overall.
However, for randomly generated curves, Theorem 1 yields a tighter bound, on average,

FoE'ﬂ
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allowing us to prove an O (n°) bound on the expected time to find a curve of prime
order, under the GRH.

We first present an algorithm that attempts to count the points on the elliptic curve
E, », modulo p using a simplified version of the SEA algorithm that relies only on
Elkies primes. In the course of doing so, the algorithm may discover that p is composite
(using the Miller—Rabin algorithm [22]) or that the curve E, , is singular modulo p; in
either case, it outputs 0; otherwise, it returns a positive integer N in the Hasse interval
[p—2/p, p+2/pl. If pisin fact prime (and E, ; is not singular), then N is equal
o #E, »(F)p).

Algorithm 1 below specifies a “background task” initiated in Step 1 that is meant to
execute in parallel with the main task of the algorithm; this parallelism can easily be
simulated by a traditional sequential algorithm on a single processor. The completion
of either task terminates the algorithm.

Algorithm 1 Point counting modulo p using Elkies primes.

Input: An integer p > 3 and integers a, b € [0, p — 1].
Output: A positive integer N € [p —2./p, p + 2 /Pl with#E, »(F,) = N if p is
prime and 4a> + 27b* # 0 mod p, and 0 otherwise.

1. In parallel with the steps below, repeatedly test p for compositeness using the
Miller-Rabin algorithm [22]. If at any point p is found to be composite, then
output 0 and terminate.

2. If gcd(4a§ +27b%, p) # 1, then output 0 and terminate. Otherwise, set j <
1728 Mi#mod p.

3. Test whether E = E, ;modp is supersingular using Algorithm 2.

If so, then output p + 1 and terminate.

4. Seti <~ 0, M < 1, and for primes £ = 2, 3, 5, .. ., do the following:

(a) Compute the modular polynomial ®,(X, Y) using Algorithm 1.

(b) Compute ¢p(X) = Py(j, X) and f(X) = ged(X?P — X, ¢(x)) in the ring
(Z/pZ)[X]. If deg f = 0, then proceed to the next prime £.

(¢) Find aroot j of f(X) modulo p.

(d) Compute the Elkies polynomial 2(X) whose roots are the abscissae of the
points in the kernel of the £-isogeny ¢ from E to a curve E with j-invariant
j?

(e) Using h, determine the integer A € [1, £ — 1] for which the p-power Frobenius
action on ker ¢ is equivalent to multiplication by A. If no such X exists, then
output 0 and terminate.

(f) Seti <—i+1,¢; < €, M < M{,and t; < A+ p/Amodl.

(g) If M > 4,/p, then proceed to Step 5. Otherwise, continue Step 4.

5. Compute the unique integer ¢ € [—M, M] for which t = t;mod/; for each Elkies
prime ¢;. If |¢t| > 2,/p, then output 0 and terminate; otherwise, output N = p +1
—t and terminate.

2 The special case (0P, /9X)(j, J) = (0P,/3Y)(j, ) = 0 must be handled separately; see the proof of
Lemma 9 for details.

FolCT
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We note that the algorithm is not in any sense required to be “correct” when p
is composite; it may output either 0 or any integer N in the Hasse interval in this
case; however, it is required to terminate with probability 1, and we want to tightly
bound its expected running time in Lemma 9. This is the purpose of the Miller—Rabin
tests begun in Step 1 of Algorithm 1, which are repeated continuously, in parallel
with the remaining steps of the algorithm (as noted earlier, this “parallelism” may be
simulated). The algorithm terminates whenever it either proves that p is composite
or completes Step 5, whichever happens first. The reason for doing this is that if p is
composite, we cannot necessarily prove polynomial time bounds on certain steps of
the algorithm (in particular, the root-finding operation in Step 4c).

Assuming that p is prime, the value j computed in Step 2 is the j-invariant of the
elliptic curve E = Ej  over IFj,. The classical modular polynomial ®, parametrizes
pairs of £-isogenous elliptic curves; the roots of ®,(j(E), X) are the j-invariants of
the curves E that are related to E by a cyclic isogeny of degree £. There exists such
an elliptic curve E defined over F p precisely when £ is an Elkies prime for E; thus,
Elkies and Atkin primes are distinguished in Steps 4b and ¢, which attempt to find
aroot of ®¢(j(E), X) in F,. Steps 4c—f then apply the standard SEA procedure for
computing the trace of Frobenius modulo an Elkies prime ¢, as described by Schoof
in [25].

We now consider the complexity of Algorithm 1. We use the asymptotic bound
O (nlognloglogn) of Schonhage and Strassen [24] to bound the time M(r) to multiply
two n-bit integers (see also [9]) and note that all of our complexity estimates count bit
operations.

Lemma9 Let n = [log pl, and assume the GRH. For composite p, the expected
running time of Algorithm 1 is O (n* log n log log n). For prime p, the average expected
running time of Algorithm 1 over integers a, b € [0, p— 1] is O (n*(logn)? loglog n).

Proof We expect to detect a composite p using O (1) Miller—Rabin tests, each of
which has complexity O (nM(n)) = 0 (n? lognloglogn), the time to perform an
exponentiation modulo p. This proves the first claim.

We now assume p is prime. The complexity of Step 2 is O (M(n) logn), and Step 3
runs in O (n3 logn log log n) expected time; see [28, Proposition 4].

Let m be the largest prime ¢ used in Step 4. We have log M > n/2; thus, by the
prime number theorem, m >> n. Ignoring constant factors, we may use m as an upper
bound on both £ and n. Table 1 estimates the costs of Steps 4a—f in terms of ¢ and
n and also gives bounds in terms of m. We use standard asymptotic bounds on the
complexity of (fast) arithmetic operations in Z/pZ and Z/ pZ[ X ], all of which can be
found in [9].3

In Step 4a we use the isogeny volcano algorithm of [5] to compute the modular
polynomial ®;, and it is here that we need to assume the GRH. In the complexity
bound for Step 4d we include the cost of computing and evaluating various partial
derivatives of ®; modulo p and use Elkies’ algorithm to compute the kernel polynomial
h(X); see [7] and [8, Chapter 25] for details and [4] for further optimizations. In the

3 Some of these bounds can be improved using Kronecker substitution to multiply polynomialsin Z/ pZ[ X ],
but this does not change the overall complexity.
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Table 1 Complexity bounds for Step 4 of Algorithm 1

Step Result Expected time O(---) In terms of m
a Dp(X,Y) £3(log £)® loglog € m3 (logm)3 loglog m
b ¢ (X) £2M(Llog £ + n) m3 (logm)? loglog m
XPmod¢ aM@)M(n) m3 (logm)? (log log m)?
£ M(©)M(n) log £ + £M(n) log n m?(logm)? (log log m)?
¢ j M(@)M(n)n m3 (logm)? (log log m)?
d h(X) £2M(n) + M)t logn m3 logm loglogm
e A M@M(@n)n + M()M(n)e m3 (logm)? (log log m)?
f t £M(log ¢) loglog ¢ mlogm(loglog m)?
M M(n + log ) mlogmloglogm

complexity bound for Step 4e, the first term bounds the time to compute the action of
Frobenius on ker ¢ (this involves computing X? and Y” modulo / and E, ), while
the second term bounds the time to compute the action of multiplication by A on ker ¢
for every integer A in [1, £ — 1]; see [10] for details and optimizations.

The cost of Steps 4a—f is dominated by the O(m>(logm)>loglogm) cost of
Step 4a, which also dominates the cost of Steps 2, 3, and 5, the last of which
has complexity O(M(m)logm). The number of iterations in Step 4 is at most
w(m) = O(m/logm); thus, when p is prime, the total expected running time of
Algorithm 1 is O (m*(log m)? loglog m).

To address the special case (0®,;/0X)(j, J) = (0D¢/0Y)(j, j) = 0, we note
that, as explained by Schoof in [25, pp. 248-249], there are then only O (¢£2) possible
values for N. For p > 229 only one of these candidates satisfies Mestre’s theorem [25,
Theorem 3.2]. By multiplying random points on E, ,(IF,) and its quadratic twist by
each of the candidate values for N, we can uniquely determine N in O (£?nM(n)) =
O (m*logm loglog m) expected time, which is dominated by the bound we derived
earlier [and for p < 229 we can simply enumerate the elements of £, ,(IF,) by brute
force].

We now notice that by Corollary 2 (taken with C = 3) and the prime number
theorem, we have m < n for all but O(pzn_3) pairs (a, b) € ]F%, for which, by the
result of Galbraith and Satoh [23, Appendix A], we have m < n3.

Thus, if we average over all integers of a, b in [0, p — 1] for a fixed prime p, then
the expected value of m is O (n), which completes the proof. O

5 Proof of Theorem 3

The proof is based on the analysis of the following procedure.

Algorithm 2 Generation of a random elliptic curve with a prime number of rational
points over a finite field.

Input: A real x > 3.
Output: A prime p € [x,2x), a,b € Fp, and N = #E, ,(IF),) prime.
Elol:;ﬂ
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1. Pick a uniformly random integer p in the interval [x, 2x].

2. Pick uniformly random integers a,b € [0, p — 1] and apply Algorithm 1
to E, pmodp, obtaining N. If Algorithm 1 finds that p is composite or that
pl(4a’ + 27b?), then return to Step 1.

3. Apply [log x| Miller—Rabin tests to both p and N. If either p or N is found to be
composite, then return to Step 1.

4. Determine the primality of p and N using a randomized Agrawal-Kayal-Saxena
(AKS) algorithm [3]. If N and p are both prime, then output p, a, b, and N, and
terminate. Otherwise, return to Step 1.

The Miller—Rabin algorithm [22] attempts to prove that a given integer p is not
prime (that is, composite) via a sequence of independent random tests, each of which
detects a composite p with a probability of at least 3/4. Thus, the probability that
the algorithm reaches Step 4 when N is composite is less than 1/log x. The primality
testing algorithm used in Step 4 is a randomized version of the Agrawal-Kayal-Saxena
algorithm [1] due to Bernstein [3] and determines whether N is prime or composite
in O (n**%) expected time for any & > 0.

We now set n = [log x| and show that the expected running time of Algorithm 2
is O(n’(logn)3 loglogn). Step 2 of Algorithm 2 calls Algorithm 1 with parameters
(p, a, b), where p is an integer chosen uniformly at random from the interval [x, 2x]
and (a, b) are chosen uniformly at random from IF, x IF,. As before, let 7 (x) denote
the set of triples (p, a, b) for which both p and N = #E, ,(IF,) are prime [and
p 1 (4a® + 27b%), which we assume throughout].

We first show that the cardinality of 7 (x) satisfies

3

#T(x) > ()

x
(log x)?loglog x

By [14, Lemma 1], the number of pairs of primes (p, N) with x < p < 2x and
P—/P<N=<p+. /pis Q(x3/2 /(log x)?). For each such pair (p, N), the number
of pairs (a,b) with 0 < a,b < p for which #E, ,(F,) = N is %(p — 1)H(D),
where D = (p+ 1 — N)> —4p, and H (D) denotes the Hurwitz class number; see [6,
Theorem 14.18]. Let D = szo, where Dy is a fundamental discriminant. By [29,
Lemma 9], we have

1
H(D) = vH (Do) = gvh(Do),
and the GRH implies

h(Dg) > +/|Dol/loglog |Dol,

where h(Dy) is the usual class number, by a theorem of Littlewood [16]. It follows
that

H(D) > /|D|/loglog|D| > «/x/loglog x
EOE';W
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(see also comments in [15, §1.6]). Therefore, there are 2 (x3/2 / loglog x) pairs (a, b)
with#E, ,(F,) = N and (x> /(log x)?) pairs of primes (p, N), which implies (8).

Thus, we expect to generate O((log x)*loglogx) = O(n?logn) random triples
(p,a, b) in order to obtain a triple for which p and N = #E, ,(IF,) are both prime.
Once this occurs, the algorithm successfully completes Steps 2—5 and terminates. We
now consider the cost of processing each random triple, which we divide into three
cases.

1. If p is composite, the expected cost of Step 2 is O (n? log n log log 1), by Lemma 9,
which also bounds the complexity of Step 3 (assuming it is reached), since we
actually expect to discover that p is composite using just O (1) Miller—Rabin tests.
The probability of reaching Step 4 is less than 4~ 1°¢% = O(1/x), by [22], which
makes the conditional cost of Steps 4 and 5 in this case completely negligible since
they both have expected running times that are polynomial in log x.

2. If p is prime and N is composite, then the expected cost of Step 2 given by
Lemma 9 is O (n*(logn)? loglogn), which dominates the complexity of Step 3
and the conditional cost of Step 4 (which, as in Case 1, we have a negligible
probability of reaching).

3. If p and N are prime, then the expected costs of Steps 2-5 are, respectively,
(0] (n4(log n)? loglogn), O (n3 logn loglogn), O (n**%),and O (n? lognloglogn);
see [3] for the bound on Step 4. Thus, the total expected cost is O (n**+¢) for any
e > 0.

We now bound the expected running time of Algorithm 2 by considering how
often we expect each case to occur. We expect to be in Case 1 for O(n*logn)
triples, each of which takes O(n”lognloglogn) expected time, yielding a total
bound of O(n**+¢). We expect to be in Case 2 for O(nlogn) triples, each
of which takes O(n*(logn)*loglogn) expected time, yielding a total bound of
ow’ (log n)3 loglog n). Case 3 occurs exactly once and takes O (n*e) expected time.
Case 2 dominates and the theorem follows.

6 Comments

The bound in Theorem 3 would be improved by a factor of log n if one could show that
H (D) = Q(/]D]), on average. But this appears to be beyond our present capabilities.
First, we note that the distribution of D is not uniform, and even in the case of uniformly
chosen discriminants D, the average value of H (D) is not known; see [12, Sect. 15.9]
for a discussion.

As a practical optimization, one can add an early abort option in Algorithm 1
that causes the algorithm to terminate if it discovers that N = Omod¢. Heuristically,
this should reduce the running time of Algorithm 2 by a factor of logn. Another
practical optimization is to reuse the modular polynomials &, that are computed in
Algorithm 1, which do not depend on the inputs p, a, and b. This saves a factor of
log n in the expected running time but increases the expected space complexity from
O(n?logn) to O(n*logn). Combining these two optimizations with the assump-
tion that H(D) > +/[D] on average yields a heuristic expected running time of
O (n” loglogn) for Algorithm 2.
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