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Abstract Given a real finite hyperplane arrangementA and a point p not on any of the
hyperplanes, we define an arrangement vo(A, p), called the valid order arrangement,
whose regions correspond to the different orders in which a line through p can cross
the hyperplanes inA. IfA is the set of affine spans of the facets of a convex polytope
P and p lies in the interior of P , then the valid orderings with respect to p are just the
line shellings of P where the shelling line contains p. When p is sufficiently generic,
the intersection lattice of vo(A, p) is the Dilworth truncation of the semicone of A.
Various applications and examples are given. For instance, we determine themaximum
number of line shellings of a d-polytope withm facets when the shelling line contains
a fixed point p. IfP is the order polytope of a poset, then the sets of facets visible from
a point involve a generalization of chromatic polynomials related to list colorings.

Keywords Hyperplane arrangement ·Matroid ·Dilworth truncation · Line shelling ·
Order polytope · Chromatic polynomial

Mathematics Subject Classification 52C35 · 52B22 · 05C15

1 Introduction

Let A be a (finite) real hyperplane arrangement, i.e., a finite set of affine hyperplanes
in some d-dimensional real affine space V ∼= R

d . Since we consider only hyperplane
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arrangements in this paper, we call A simply a real arrangement, always assumed to
be finite. Basic information on arrangements may be found in Orlik and Terao [9] and
Stanley [13].

The main question that will concern us is the following. Let L be a directed line in
V . If L is sufficiently generic, then it will cross the hyperplanes H ∈ A in a certain
order. What can we say about the possible orders of the hyperplanes?We can say more
when we fix a point p ∈ V not lying on any of the hyperplanes in A and assume that
L passes through p. The different orders then correspond in a simple way to regions
of another arrangement, which we call the valid order arrangement vo(A, p).

A special situation occurs when A consists of the affine spans of the facets of a
d-dimensional convex polytope P in R

d . We then call A the visibility arrangement
vis(P) ofP , since its regions correspond to sets of facets ofP visible from some point.
If p lies in the interior of P , then the regions of the valid order arrangement vo(A)

correspond to the line shellings of P , where the line defining the shelling (which we
call the shelling line) passes through p. In this case, we call vo(A, p) the line shelling
arrangement of P (with respect to p).

We will discuss a number of results concerning visibility and valid order arrange-
ments. Most notably, when p is sufficiently generic, then the matroid corresponding
to the semicone (defined below) of vo(A, p) is the Dilworth truncation of the matroid
corresponding toA. This observation enables us (Theorem 7) to answer the following
question: given n ≥ d + 1, what is the most number of line shellings that a convex
d-polytope with n facets can have, where the shelling line passes through a fixed point
p? Another result (Theorem 4) is a connection between the visibility arrangement of
the order polytope of a poset and a generalization of chromatic polynomials. Some
of our work overlaps (in a dual setting) that of Edelman [5]. We will point out these
instances in the appropriate places below. Edelman mentions that his paper provides a
framework in which to extend the work of Ungar [15] to higher dimensions. Ungar’s
work was put in a general two-dimensional context by Goodman and Pollack [6],
stated in terms of allowable sequences. Thus Edelman’s paper and the present paper
may be regarded as a higher dimensional generalization of the theory of allowable
sequences.

2 The Valid Order Arrangement

Let A be a hyperplane arrangement in a real affine space V , and let p be a point in
V not lying on any hyperplane H ∈ A. The following definition is equivalent to the
(matroid) dual of Edelman’s difference set D(C) [5, p. 147].

Definition 1 The valid order arrangement vo(A, p) consists of all hyperplanes of the
following two types:

– The affine span of p and H∩H ′, where H and H ′ are two non-parallel hyperplanes
in A. We denote this affine span as aff(p, H ∩ H ′).

– The hyperplane through p parallel to two parallel hyperplanes H, H ′ ∈ A, denoted
by par(p, H) or par(p, H ′).
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Note that vo(A, p) is a central arrangement, i.e., all the hyperplanes in vo(A, p)
intersect, since every hyperplane in vo(A, p) contains p.

Consider a directed line L through p that is not parallel to any hyperplane H ∈ A
and that does not intersect two distinct hyperplanes of A in the same point. Thus L
intersects the hyperplanes in A in some order H1, H2, . . . , Hm as we come in from
∞ along L in the direction of L . We call the sequence H1, . . . , Hm a valid ordering
of A with respect to p. Note that if we reverse the direction of L , then we get a new
valid ordering Hm, . . . , H1.

Suppose that H and H ′ are two non-parallel hyperplanes of A. The question of
whether L intersects H before H ′ depends on the side of the hyperplane aff(p, H∩H ′)
in which a point q lies, where q is a point of L near p in the positive direction (the
direction of L) from p. Similarly, if H and H ′ are parallel hyperplanes of A, then
either q lies on the same side of both (i.e., not between them), in which case the order
in which L intersects H and H ′ is independent of L , or else q lies between H and
H ′, in which case the order in which L intersects H and H ′ depends on the side of
the hyperplane par(p, H) in which the point q lies. It follows that the valid ordering
corresponding to L is determined by the region of vo(A, p) in which the point q lies.
In particular, we have the following result, which is equivalent to [5, Cor. 2.6].

Proposition 1 The number of valid orderings of A with respect to p is equal to the
number r(vo(A, p)) of regions of the valid order arrangement vo(A, p).

We now wish to explain the connection between the valid order arrangement and a
matroidal construction known as “Dilworth truncation.” Recall that amatroid on a set
E may be defined as a collection I of subsets of E , called independent sets, satisfying
the following condition: for any subset F ⊆ E , the maximal (under inclusion) sets
in I that are contained in F all have the same number of elements. The prototypical
example of a matroid consists of a finite subset E of a vector space, where a set F ⊆ E
is independent if it is linearly independent. For further information on matroid theory,
see for instance [10,16,17].

We first define a matroid MA associated with an arrangement. Given a real arrange-
ment A in a vector space V , which we identify with R

d , let H be a hyperplane in A
defined by the equation x · α = c, where 0 	= α ∈ R

d and c ∈ R. Associate with
H the vector vH = (α,−c) ∈ R

d+1. Let MA be the matroid corresponding to the
set EA = {vH : H ∈ A}. That is, the points of MA are the vectors in EA, with
independence in MA given by linearly independence of vectors. Note that EA is a
linear arrangement, that is, all its hyperplanes pass through the origin.

Denote the coordinates in R
d+1 by x1, . . . , xd , y. Preserving the notation from

above, let sc(A) denote the set of all hyperplanes α · x = cy in R
n+1. We call

sc(A) the semicone of A. If we add the additional hyperplane y = 0, then we obtain
the cone c(A), as defined e.g. in [13, §1.1]. Note that sc(A) is a linear arrangement
satisfyingMA ∼= Msc(A).Moreover, the “lines,” i.e., the rank twoflats (or codimension
two intersection subspaces) in the matroid Msc(A) correspond bijectively to the pair
{H, H ′} of hyperplanes inA. In particular, the parallel pairs {H, H ′} correspond to the
codimension two intersections of sc(A) lying within the hyperplane at infinity y = 0
(from c(A)\sc(A)).
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Now let M be a matroid on a set E , and let L = LM denote the lattice of flats
of M . If we remove the top k levels from L below the maximum element 1̂, then we
obtain the kth truncation T k L of L . It is easy to see that T k L is a geometric lattice
and hence the lattice of flats of a matroid. What if, however, we remove the bottom k
levels from L above the minimum element 0̂? In general, we do not obtain a geometric
lattice. We would like to “fill in” this lower truncation as generically as possible to
obtain a geometric lattice, without adding any new atoms (elements of rank k + 1 of
L) and without increasing the rank. This rather vague description was formalized by
Dilworth [4]. Three other references are Brylawski [1,2] and Mason [7]. We will give
the definition at the level of matroids. Define the kth Dilworth truncation DkM to be
the matroid on the set

( E
k+1

)
of (k + 1)-element subsets of E , with independent sets

I =
{
I ⊆

(
E

k + 1

)
: rankM

( ⋃

p∈I ′
p
)

≥ #I ′ + k, ∀∅ 	= I ′ ⊆ I
}
.

Thus the flats of rank one of DkM are just the flats of rank k + 1 of M . In particular,
the flats of D1M are the lines (flats of rank two) of M . We carry over the notation Dk

to geometric lattices. In other words, if L is a geometric lattice, so L = LM for some
matroid M , then we define DkL = LDkM .

Note. Various other notations are used for Dk , including Dk+1 and Tk+1.
In general, D1L seems to be an intractable object. For the boolean algebra Bm , we

have [4, Thm. 3.2] and [7, p. 163]

D1Bm ∼= �m, (1)

the lattice of partitions of anm-set (or the intersection lattice of the braid arrangement
Bm), but for more complicated geometric lattices L it is difficult to describe D1L in a
reasonable way. If L has rank two, then clearly D1L consists of just two points 0̂ and 1̂.
If L has rank three, then when we remove the atoms from L we still have a geometric
lattice, so D1L consists just of L with the atoms removed. When L has rank four, to
obtain D1L first remove the atoms from L to obtain a lattice L ′ of rank three. For any
two atoms s, t of L ′ whose join in L ′ is the top element 1̂ of L ′, adjoin a new element
xst covering s and t and covered by 1̂. The resulting poset is D1L . This construction
allows us to give a formula for the characteristic polynomial (e.g., [13, §1.3] and [14,
§3.11.2]) of D1L when rank(L) = 4. Let ρ2 be the number of elements of L of rank
two, let L3 be the set of elements of L of rank three, and let c(t) be the number of
elements u covering t ∈ L , i.e., u > t , and no element v satisfies u > v > t . Then

χD1L(q) = q3 − ρ2 q
2 +

[(ρ2

2

)
−

∑

t∈L3

(
c(t) − 1

2

)]
q

+
∑

t∈L3

(
c(t) − 1

2

)
−

(
ρ2 − 1

2

)
.

When rank(L) = 5 the situation becomes much more complicated.
We now come to our main result on the valid order arrangement.
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(b)(a)
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b
p

p

Fig. 1 Two valid order arrangements

Theorem 1 Let A be an arrangement in the real vector space V , and let p be a
generic point of V . Then Lvo(A,p)

∼= LD1(A).

Proof Brylawski [1, p. 62] and [2, p. 197] and Mason [7, pp. 161–162] note that the
Dilworth truncation of a geometry (simple matroid) M embedded in a vector space
V of the same dimension (over a sufficiently large field if the field characteristic
is nonzero) is obtained as the set of intersections of the lines of M with a generic
hyperplane in V . This is precisely dual to the statement of our theorem. �


As an example illustrating Theorem 1, Fig. 1a shows an arrangement A of four
hyperplanes (solid lines) in R

2 and a nongeneric point p. The dashed lines are the
hyperplanes in vo(A). The point p is not generic since the same hyperplane of vo(A)

passes through the two intersections marked a and b. The arrangement vo(A) has ten
regions, so there are ten valid orderings of the four hyperplanes of A with respect to
p. Figure 1b shows the same situation with a generic point p. There are now 12 valid
orderings with respect to p. In this case, the lattice LA is an (upper) truncated boolean
algebra T 1B4, with four atoms and six elements of rank two. Since rank (LA) = 3,
the Dilworth truncation D1(LA) is obtained simply by removing the atoms from LA.

3 Examples

As mentioned in Sect. 1, a special situation of interest occurs when A consists of the
affine spans aff(F) of the facets F of a d-dimensional convex polytope P in R

d , in
which case we call A the visibility arrangement vis(P) of P . The regions of vis(P)

correspond to the sets of facets that are visible (on the outside) from some point in
R
d . In particular, the interior of P is a region from which no facets are visible. Let

v(P) = r(vis(P)), the number of regions of vis(P) or visibility sets of facets of P . If
p is a point inside P , then the valid orderings (aff(F1), . . . , aff(Fr )) with respect to
p correspond to the line shellings (F1, . . . , Fr ) where the shelling line passes through
p. For basic information on line shellings, see Ziegler [20, Lecture 8].
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For an arrangement A in Rd , let χA(q) denote the characteristic polynomial of A
(e.g., [13, §1.3] and [14, §3.11.2]). Awell-known theorem of Zaslavsky [13, Thm. 2.5]
and [14, Thm. 3.11.7] states that the number r(A) of regions of A is given by

r(A) = (−1)dχA(−1). (2)

Suppose thatA is defined over Z, that is, the equations defining the hyperplanes inA
have integer coefficients. By taking these coefficients modulo a prime p, we get an
arrangementAp defined over the finite field Fp. It is also well known [13, Thm. 5.15]
and [14, Thm. 3.11.10] that for p sufficiently large,

χA(p) = #
(
F
d
p −

⋃

H∈Ap

H
)
. (3)

This result will be a useful tool below in computing some characteristic polynomials.
We now discuss two examples: the n-cube and the order polytope of a finite poset.

Let Cn denote the standard n-dimensional cube, given by the inequalities 0 ≤ xi ≤ 1,
for 1 ≤ i ≤ n. It is easy to see, e.g., by (3), that the visibility arrangement vis(Cn)
satisfies

χvis(Cn)(q) = (q − 2)n .

In particular, r(vis(Cn)) = 3n . Drawing a picture for n = 2 will make it geometrically
clear why vis(Cn) has 3n regions. In fact, the facets of Cn come in n antipodal pairs F
and F̄ . The sets of facets visible from some point are obtained by choosing for each
pair {F, F̄} either F , F̄ , or neither. There are three choices for each pair and hence 3n
visibility sets in all.

More interesting are the line shellings of cubes. We summarize some information
in the following result.

Theorem 2 (a) Let p = ( 1
2 ,

1
2 , . . . ,

1
2

)
, the center of the cube Cn. Then

χvo(vis(Cn),p)(q) = (q − 1)(q − 3) · · · (q − (2n − 1)),

so the number of line shellings with respect to p is 2nn!.
(b) The total number of line shellings of Cn is 2nn!2.
(c) Let f (n) denote the total number of shellings of Cn. Then

∑

n≥1

f (n)
xn

n! = 1 − 1
∑

n≥0(2n)! xnn!
. (4)

(d) Every shelling of Cn can be realized as a corresponding line shelling of a polytope
combinatorially equivalent to Cn.

Proof (a) The hyperplanes of vo(vis(Cn)) are given by xi = 0, 1 ≤ i ≤ n, and
xi ± x j = 0, 1 ≤ i < j ≤ 1. The characteristic polynomial can now easily
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be computed from (3). Alternatively, vo(vis(Cn)) is the Coxeter arrangement of
type Bn , whose characteristic polynomial is well known ([13, p. 451] and [14,
Exercise 3.115(d)]).

(b) If we stand at a generic point far away from Cn , we will see n facets of Cn—all
with a common vertex v. By symmetry, there are 2n choices for v, and then n!
orderings of the n facets containing v that can begin a line shelling σ . Hence it
remains to prove that the remaining n facets can come in any order in σ .
Let the parametric equation of the line L defining the shelling be (a1, a2, . . . , an)+
t (α1, α2, . . . , αn), where t ∈ R. Making a small perturbation if necessary, we may
assume that each αi 	= 0. We may also assume by symmetry that the facet Fi of
the shelling, for 1 ≤ i ≤ n, has the equation xi = 0. The line L intersects the
hyperplane xi = 0 when t = −ai/αi , so

a1
α1

>
a2
α2

> · · · >
an
αn

.

The line L intersects the hyperplane xi = 1 when t = (1 − ai )/αi . Write

1 − ai
αi

= 1

αi
+ bi ,

so b1 < b2 < · · · < bn . Thus we can first choose b1 < b2 < · · · < bn . Then
choose α1, α2, . . . , αn so that the numbers 1

αi
+bi come in any desired order. This

then determines a1, . . . , an uniquely, completing the proof.
(c) This result is stated without proof in [14, Exercise 1.131]. To prove it, note that

F1, F2, . . . , F2n is a shelling if and only if for no 1 ≤ j < n is it true that
{F1, F2, . . . , F2 j } consists of j pairs of antipodal facets. There follows the recur-
rence

(2n)! =
n∑

j=0

f ( j)

(
n

j

)
(2n − 2 j)!,

from which (4) is immediate.
(d) See Develin [3, Cor. 2.12].

�


Conspicuously absent from Theorem 2 is the characteristic polynomial or number
of regions of the line shelling arrangement vo(vis(Cn), p) when p is generic, the
situation of Theorem 1. Suppose for instance that n = 3. Let A(p) = vo(vis(C3), p).
If p = ( 1

2 ,
1
2 ,

1
2

)
, then by Theorem 2(a) we have

χA(p)(q) = (q − 1)(q − 3)(q − 5), r(A) = 48.

For p = ( 1
2 ,

1
2 ,

1
4

)
we have
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χA(p)(q) = (q − 1)(q − 5)(q − 7), r(A) = 96.

For generic p we have

χA(p)(q) = (q − 1)(q2 − 14q + 53), r(A) = 136 = 23 · 17.

The total number of line shellings of C3 is 288, and the total number of shellings is
480. While the Dilworth truncation D1(vis(Cn)) seems quite complicated, it might not
be hopeless to compute its characteristic polynomial or number of regions. We leave
this as an open problem.

We next consider the order polytopeO(P) of a finite poset P , first defined explicitly
in [11]. By definition,O(P) is the set of all order-preserving maps τ : P → [0, 1] and
is hence a convex polytope in the spaceRP of all maps P → R. Ourmain result will be
a connection between the number of regions of vis(O(P)), i.e., the number of visibility
sets of facets of O(P), and a certain generalization of the chromatic polynomial of a
graph.

Let G be a finite simple (i.e., no loops or multiple edges) graph with vertex set
V . Recall that a proper coloring of G with colors from the set P of positive integers
is a map f : V → P such that if u and v are adjacent in G then f (u) 	= f (v).
The chromatic polynomial χG(q) is defined when q ∈ P to be the number of proper
colorings f : V → {1, 2, . . . , q}. It is a standard result that χG(q) is a polynomial
in q. Moreover, if V = {v1, . . . , vp}, then define the graphical arrangement AG to
be the arrangement in R

p with hyperplanes xi = x j , where vi and v j are adjacent
vertices of G. Then χAG (q) = AG(q) ([13, Thm. 2.7] and [14, Exercise 3.108]).

We will generalize the definition of χG(q) by imposing finitely many disallowed
colors at each vertex. More precisely, let 2P denote the set of all subsets of P, and
let ψ : V → 2P satisfy #ψ(v) < ∞ for all v ∈ V . For q ∈ P, define χG,ψ (q) to
be the number of proper colorings f : V → {1, 2, . . . , q} such that f (v) 	∈ ψ(v) for
all v ∈ V . Thus for each vertex v, there is a finite set ψ(v) of “disallowed colors.”
We call such a coloring a ψ-coloring. The idea of permitting only certain colors of
each vertex in a proper coloring of G has received much attention in the context of
list colorings [19], but the function χG,ψ (q) seems to be new.

It is easy to see that χG,ψ (q) is a monic polynomial in q of degree p with integer
coefficients. We call it the ψ-chromatic polynomial of G. Define the ψ-graphical
arrangement AG,ψ to be the arrangement in R

p with hyperplanes xi = x j whenever
vi and v j are adjacent in V , together with xi = α j if α j ∈ ψ(vi ).

Theorem 3 We have χAG,ψ
(q) = χG,ψ (q), that is, the ψ-chromatic polynomial of G

coincides with the characteristic polynomial of the ψ-graphical arrangement AG,ψ .

Proof The proof is an immediate consequence of (3). �

Because χG,ψ is the characteristic polynomial of a hyperplane arrangement, it

satisfies all the properties of such polynomials. For instance, there is a deletion–
contraction recurrence, a broken circuit theorem, an extension to the Tutte polynomial,
etc. We now give the connection between vis(O(P)) and ψ-graphical arrangements.
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Theorem 4 Let P be a finite poset, and let H denote the Hasse diagram of P, con-
sidered as a graph with vertex set V . Define ψ : V → P by

ψ(v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{1, 2} if v is an isolated point,

{1} if v is minimal but not maximal,

{2} if v is maximal but not minimal,

∅ otherwise.

Then vis(O(P)) + (1, 1, . . . , 1) = AH,ψ , where vis(O(P)) + (1, 1, . . . , 1) denotes
the translation of vis(O(P)) by the vector (1, 1, . . . , 1).

Proof The result is an immediate consequence of the relevant definitions. Namely, if
V = {v1, . . . , vp}, then the facets of O(P) are given by

xi = x j if v j covers vi in P,

xi = 0 if xi is a minimal element of P,

xi = 1 if xi is a maximal element of P,

and the proof follows. �

Note. We could have avoided the translation by (1, 1, . . . , 1) by allowing 0 to be

a color, but it is more natural in many situations to let the set of colors be P.
A curious result arises when P is graded of rank one, i.e., every maximal chain of

P has two elements. For W ⊆ V , let HW be the restriction of H to W , or in other
words, the induced subgraph on the vertex set W .

Theorem 5 Suppose that P is graded of rank one. Then

χvis(O(P))(q) =
∑

W⊆V

χHW (q − 2), (5)

v(O(P)) = (−1)#P
∑

W⊆V

χHW (−3). (6)

Proof Let q ≥ 2. Choose a subset W ⊆ V . Color each minimal element of P not in
W with the color 2, and color each maximal element of P not in W with the color
1. Color the remaining elements with the colors {3, 4, . . . , q} in χHW (q − 2) ways.
This produces each ψ-coloring of H , so the proof of (5) follows. To obtain (6), put
q = −1 in (5).

As an example, let Pmn denote the poset of rank one with m minimal elements, n
maximal elements, and u < v for every minimal element u and maximal element v.
Hence H is the complete bipartite graph Kmn . It is known [12, Exercise 5.6] that

∑

m≥0

∑

n≥0

χKmn (q)
xm

m!
xn

n! = (ex + ey − 1)q .
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By simple properties of exponential generating functions, we get

∑

m≥0

∑

n≥0

χvis(O(Pmn))(q)
xm

m!
xn

n! = ex+y(ex + ey − 1)q−2

and

∑

m≥0

∑

n≥0

v(O(Pmn))
xm

m!
xn

n! = e−x−y(e−x + e−y − 1)−3

= 1 + 2(x + y) + 7xy + 4
x2 + y2

2! + 23
x2y + xy2

2!
+ 115

x2y2

2!2 + 8
x3 + y3

3! + 73
x3y + xy3

3!
+ 533

x3y2 + x2y3

2! 3! + 3451
x3y3

3!2 + · · ·

For instance, the order polytope of P22 has 8 facets and 115 visibility sets of facets.
We now pose the question of extending some results on graphical arrangements

to ψ-graphical arrangements. An arrangement A is supersolvable if the intersection
lattice Lc(A) of the cone c(A) contains a maximal chain of modular elements. See for
instance [13] for further details. If A is supersolvable, then every zero of χA(q) is a
nonnegative integer. A graphical arrangementAG is supersolvable if and only ifG is a
chordal graph (also called a triangulated graph or rigid circuit graph) [13, Cor. 4.10].
It is natural to ask for an extension of this result to ψ-graphical arrangements. The
proof of the following result is straightforward and will be omitted.

Theorem 6 Let (G, ψ) be as above. Suppose that we can order the vertices of G as
v1, . . . , vp such that

– vi+1 connects to previous vertices along a clique (so G is chordal).
– If i < j and vi is adjacent to v j , then ψ(v j ) ⊆ ψ(vi ).

Then AG,ψ is supersolvable.

The converse to Theorem 6 is proved in [8]. There are numerous characterizations
of chordal graphs [18]. It would be interesting to investigate which of these charac-
terizations have analogs for the pairs (G, ψ) satisfying the conditions of Theorem 6.

A profound generalization of supersolvable arrangements is due to Saito and Terao
(e.g., [9, Chap. 4] and [13, Thm. 4.14]), called free arrangements. Freeness was defined
originally for central arrangements, but we can define a noncentral arrangement A to
be free if the cone c(A) is free. The “factorization theorem” of Terao asserts that
if A is free, then the zeros of χA(q) are nonnegative integers (with an algebraic
interpretation). Every supersolvable arrangement is free, and every free graphical
arrangement is supersolvable. This leads to the following conjecture.

Conjecture 1 IfAG,ψ is a freeψ-graphical arrangement, thenAG,ψ is supersolvable.

Some partial results related to Conjecture 1 appear in [8].
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4 Applications

One immediate application of Theorem 1 follows from the matroidal definition of
Dilworth truncation.

Corollary 1 The characteristic polynomial χvo(A,p)(q), where p is generic, is a
matroidal invariant, that is, it depends only on LA. In particular, the number v(A, p)
of valid orderings with respect to a generic point p is a matroidal invariant and hence
is independent of the region in which p lies.

Proof TheDilworth truncation DkL of a geometric lattice L is defined as LDkM , where
M is the matroid associated to L . The proof that Lvo(A,p)(q) is a matroidal invariant
follows from Theorem 1. The statement for v(A, p) then follows from Zaslavsky’s
Theorem (2). �


For our second application, let c(n, k) denote the signless Stirling number of the
first kind, i.e., the number of permutationsw ∈ Sn with k cycles. The following result
is equivalent to [5, Cor. 3.2].

Theorem 7 LetA be an arrangement in Rd with m hyperplanes, and let p be a point
in Rd not lying on any H ∈ A. Then

v(A, p) ≤ 2(c(m,m − d + 1) + c(m,m − d + 3) + c(m,m − d + 5) + · · · ),

and this inequality is best possible. (The sum on the right is finite since c(m, k) = 0
for k > m.)

Proof It is not hard to see thatv(A, p)will bemaximizedwhen thehyperplanes H ∈ A
are as “generic as possible,” i.e., the intersection poset LA is a boolean algebra Bm

with all elements of rank greater than d (including the top element) removed, and
when p is also generic. (Consider the effect of small perturbations of hyperplanes not
in general position.) Assume then that LA is such a truncated boolean algebra. Since
LA becomes a geometric lattice L̂A when we add a top element, it follows that the
semicone sc(A) satisfies Lsc(A)

∼= L̂A. Now ordinary truncation T i and Dilworth
truncation Dj commute (for i + j < d, the ambient dimension). By (1) we have
D1 L̂A ∼= Tm−d−1�m . Now [14, Examples 3.11.11]

χ�m (q) = (q − 1) · · · (q − m + 1) =
m−1∑

j=0

(−1) j c(m,m − j)qm− j−1.

Thus

χTm−d−1�m
(q) =

d−1∑

j=0

(−1) j c(m,m − j)qd− j + C

for some C ∈ Z. Since χB(1) = 0 for any central arrangement B, we get
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C = −
d−1∑

j=0

(−1) j c(m,m − j).

Therefore

v(A) = (−1)dχTm−d−1�m
(−1)

=
d−1∑

j=0

c(m,m − j) − (−1)d
d−1∑

j=0

(−1) j c(m,m − j)

= 2(c(m,m − d + 1) + c(m,m − d + 3) + c(m,m − d + 5) + · · · ),

and the proof follows. �

For fixed k, we have that c(m,m − k) is a polynomial in m. Hence for fixed d, the

bound in Theorem 7 is a polynomial Pd(m) in m. For instance,

P1(m) = 2,

P2(m) = m(m − 1),

P3(m) = 1

12
(2m4 − 10m3 + 9m2 − 2m + 4),

P4(m) = 1

24
m(m − 1)(m4 − 6m3 + 11m2 − 6m + 24),

P5(m) = 1

2880
(15m8 − 180m7 + 830m6 − 1848m5 + 2735m4 − 3300m3

+ 2180m2 − 432m + 5760).

Clearly given m > d, we can find a convex d-polytope with m facets, where the
affine spans of the facets are as “generic as possible,” as defined at the beginning of
the proof of Theorem 7. Thus we obtain the following corollary to Theorem 7.

Corollary 2 Let P be a convex polytope in R
d with m facets, and let p be a point in

the interior of P . Then the number ls(P, p) of line shellings of P whose shelling line
passes through p satisfies

ls(P, p) ≤ 2(c(m,m − d + 1) + c(m,m − d + 3) + c(m,m − d + 5) + · · · ),

and this inequality is best possible.

5 Further Vistas

We have considered the intersection of a line L through a point p with the hyperplanes
of an arrangement A. We will sketchily describe an extension. Namely, what if we
replace L with an m-dimensional plane (or m-plane for short) P through m affinely
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Fig. 2 An example of a
polyhedral decomposition Γ

associated to valid orderings
10

10

8

12

independent points p1, . . . , pm not lying on any H ∈ A? We will obtain an induced
arrangement

AP = {H ∩ P : H ∈ A}

in the ambient space P . Define the generalized valid order arrangement
vo(A; p1, . . . , pm) to consist of all the hyperplanes passing through p1, . . . , pm and
every intersection of m + 1 hyperplanes of A, including “intersections at ∞.”
The regions of vo(A; p1, . . . , pm) correspond to the different equivalence classes
of arrangementsAP , whereAP andAQ are considered equivalent if they correspond
to the same oriented matroid. We then have the following analog of Theorem 1.

Theorem 8 LetA be an arrangement in the real vector space V , and let p1, . . . , pm
be “sufficiently generic” points of V . Then Lvo(A;p1,...,pm )

∼= LDm (A).

Theorem 1 deals with vo(A, p) when p is generic. What about nongeneric p?
Define two points p, q not lying on any hyperplane of A to be equivalent if there is a
canonical bijection ϕ : vo(A, p) → vo(A, q). By canonical, we mean that if H is a
hyperplane of vo(A, p) which is the affine span with p and the intersection H1 ∩ H2
of two hyperplanes in A (including an intersection at ∞, i.e., H is parallel to H1
and H2), then ϕ(H) is the affine span of q and H1 ∩ H2. The equivalence classes
of this equivalence relation form a polyhedral decomposition of Rd . Figure 2 shows
an example. The arrangement A is given by solid lines and the lines (1-faces) of the
polyhedral decomposition Γ by broken lines. Certain faces F of Γ are marked with
the number vF (A, p) of valid orderings for p ∈ F . If a face F ′ ⊆ aff(F) satisfies
dim F = dim F ′, then vF (A, p) = vF ′(A, p).

What can be said about the polyhedral complex Γ ? The two-dimensional case
illustrated in Fig. 2 is somewhat misleading. Let A be an arrangement in R

d , and let
p ∈ R

d − ⋃
H∈A H . Suppose that H1, . . . , H4 ∈ A with H1 	= H2 and H3 	= H4.

If aff(p, H1 ∩ H2) = aff(p, H3 ∩ H4), then the two (d − 2)-dimensional subspaces
H1 ∩ H2 and H3 ∩ H4 must both lie on an affine hyperplane K . If d = 2, then this
condition always holds, but for d > 2 it does not hold for “generic” A. Thus for
genericA and d > 4, the valid order arrangements vo(A, p) have the same number of
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hyperplanes for any p. However, they may still differ in how the hyperplanes intersect.
It may be interesting to further investigate the properties of Γ .
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