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Abstract—Plasma equilibria in gravitational and open-ended magnetic fields are considered for the case of
topologically disconnected regions of the magnetic f lux surfaces where plasma occupies just one of these
regions. Special dependences of the plasma temperature and density on the magnetic f lux are used which
allow the solution of the Grad–Shafranov equation in a separable form permitting analytic treatment. It is
found that plasma pressure tends to play the dominant role in the setting the shape of magnetic field equilib-
rium, while a strong gravitational force localizes the plasma density to a thin disc centered at the equatorial
plane.
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1. INTRODUCTION

Magnetohydrodynamic (MHD) equilibria of
plasma subject to a gravitational field were considered
originally by Chandrasekhar [1]. In recent years, other
MHD plasma equilibria studies retaining gravity
effects appeared in the literature [2–8]. Without dis-
cussing the validity of the approximations used in
those papers, we notice that two of them [2, 8] are
focused on disc-like plasma equilibria resembling the
plasma shape of accretion discs. The goal of this work
is to further study disc-like plasma equilibria in mag-
netic and gravity fields. However, in the contrast to [2,
8], where the whole space is topologically connected
by the magnetic field lines, we consider an axisymmet-
ric disc-like plasma equilibrium with open magnetic
field lines for the case where the space is divided into
regions which are topologically disconnected by mag-
netic f lux surfaces and plasma occupies just one of
these regions or lobes (see Fig. 1). Somewhat similar
topology of the magnetic field and plasma was consid-
ered in [9] for the case of closed magnetic field lines
corresponding to magnetic multipoles.

To demonstrate the possibility of the existence of
such equilibria, we consider a model problem and find
axisymmetric magnetic f lux surfaces , generated by
the azimuthally symmetric equatorial plane current
density

 (1)

1 The article is published in the original.
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where  and  are the cylindrical coordinates,  is a
unit vector along the azimuthal direction,  is a nor-
malization constant,  is a delta-function, and  is
an adjustable parameter. Then, using the expression
for the magnetic field , from
Ampere’s law we find
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Fig. 1. Schematic view of plasma equilibrium in gravita-
tional and open-ended magnetic fields with topologically
disconnected regions of magnetic f lux surfaces.
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 ( ) are spherical coordinates, we
find the following equation for :

 (3)

We notice that Eq. (3) has the same solution if we
let . To have the axial magnetic field
dominate over poloidal field at the axis of symmetry,
the solution of Eq. (3) should satisfy the boundary

condition . Taking this

into account and assuming that  is a symmetric
function of , the solution of Eq. (3) for a noninteger

 can be written as

 (4)

where  is a Legendre function of the
first kind and a homogeneous solution of Eq. (3) is

. The jump
condition, , associated with Eq. (3), is
used to determine the coefficient along with

. For positive even inte-
gers , we can use Eq. (4), while for odd integer , we
should replace  in Eq. (4) with , which is a
Legendre function of the second kind.

The functions  for  and  are
shown in Figs. 2 and 3, respectively. As we see, for

, the function  does not change its sign,
which means that the whole space is topologically
connected by magnetic field lines. For , how-
ever,  changes its sign at , which
means that  and the space is sepa-
rated in three distinct magnetically disconnected
regions or lobes with  and . In the next sec-
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tion, we will exploit this three lobe solution for a self-
consistent current satisfying the Shafranov–Grad
equation.

The paper is organized as follows, in Section 2, we
describe our model of plasma equilibrium in gravita-
tional and magnetic fields and formulate the governing
equation; in Section 3, we present analytic solutions of
this equation for some extreme conditions; and in Sec-
tion 4, we summarize our findings.

2. GOVERNING EQUATION

We consider plasma equilibrium in a gravitational
potential  and an axisymmetric mag-
netic field , where  and  are the
gravitational constant and the mass of the gravitational
center located at , respectively. In the derivation
of the equation governing our plasma equilibrium, we
will follow [8] and assume that both electron, , and
ion, , temperatures are functions of , as required
for a drifting Maxwellian solution of the drift-kinetic
or gyrophase-averaged Fokker–Planck equation in an
axisymmetric system [10–12]. Then, expressing the
plasma density in the form ,
from the force balance along the magnetic field lines,
we find , where

 and M is the mass of
plasma ions having the charge . From the force bal-
ance equation across the magnetic field lines and
Ampere’s law, we obtain the Grad–Shafranov equa-
tion

 (5)
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Fig. 2. The function  for .
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Following [13], we will seek a solution of Eq. (5) in
a separable form by taking

 (6)

where  is an adjustable parameter which plays the
role of an eigenvalue to find a solution of Eq. (5) (see,
e.g., [13]), while  and  are normalization con-
stants such that . One can show that ansatz (6)
is compatible with Eq. (5) for the following depen-
dences of  and :

 (7)

where  and  are normalization constants chosen
in a such a way that . Substituting
expressions (6) and (7) into Eq. (5), we find the gov-
erning equation for  to be

 (8)

where

 (9)

Equation (8) agrees with the different cases analyzed
in [4, 8, 13–15]. The solution of Eq. (8) with the bound-

ary conditions  and  can

only be satisfied for some particular values of .

3. SOLUTIONS OF THE GOVERNING 
EQUATION

The plasma equilibria in gravitational and mag-
netic fields considered by Krasheninnikov and Catto
[4, 8], where within the framework of separable solu-
tions (6) for the case where the whole space was topo-
logically connected by the magnetic field lines. Here,
however, we follow [9] and consider equilibria with
open magnetic field lines and topologically discon-
nected regions of the magnetic f lux surfaces where
plasma occupies just one of these regions (recall
Fig. 1). Based on the results in Section 2, it is easy to
see that the topology of the magnetic f lux surfaces is
determined by the magnitude of  (see [9]). Indeed,
symmetric ( ) vacuum ( ) solutions of
Eq. (8), which in this case is identical to the left-hand
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side of Eq. (3), for  are given by the following
expression:

 (10)

where α a nonzero adjustable parameter (  for
), with the first form useful for α an even nega-

tive integer, and the second form useful for α an odd
positive integer. From Eq. (10) one can see that, for

 or , the function 
reaches zero only at the poles ( ). For other

, additional roots of  appear within
the range , giving rise to additional lobes as
was illustrated in Section 1. These roots become the
separatrices, , dividing the space
into magnetically disconnected regions with different
signs of .

In [9] the Grad–Shafranov equation for plasma
equilibrium in a multipolar magnetic field was consid-
ered for closed magnetic field lines, corresponding to
positive  (with ). Here, we consider the
case of plasma equilibria in gravitational and open
magnetic fields corresponding to negative . In [4, 8],
only  were considered for  and the whole
space was topologically connected by the magnetic
field lines. The simplest symmetric ( )
case with topologically disconnected magnetic f lux
surfaces and open magnetic field lines can be found for

.

For  and , the right-hand side of
Eq. (8) is small and  is close to the vacuum solu-
tion corresponding to ,

 (11)

so that we have . The correction for the
eigenvalue  caused by the small, but finite
right-hand side of Eq. (8), can be found by multiplying
Eq. (8) by  and integrating from  to ,
to find
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cability of this approximation), we find the correction
to the eigenvalue ,

 (13)

From this form we can get some insight into what
would happen if the right-hand side of Eq. (8) were to
dominate. We would then expect the function  to
have a large negative second derivative about ,
which quickly reduces  to zero, so that the region
occupied by plasma shrinks and . In addition,
we expect α to become greater than  and, as the
region becomes narrower, move toward . As a
result, in the limit ,  in vacuum regions is
given by Eq. (10) with . Expanding for small μ
and , by considering vacuum solution (10),
gives

 (14)

where  is a new normalization constant and

 (15)

which becomes small for  in the vicinity of .

When the magnitude of the right-hand side of
Eq. (8) is large, we can neglect the second term on the
left-hand side of Eq. (8) to obtain
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where we let  on the right-hand side of Eq. (8).
Accounting for the boundary conditions  and

, multiplying Eq. (16) by , and
integrating from  gives

 (17)

Integrating Eq. (17) from  to , where

, we obtain  and find ,
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Matching expressions (15) and (18), we find α to be
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We can estimate the integral expression on the
right-hand side of Eq. (19). For small and large g, we
find
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Thus, from Eqs. (19) and (20) we see that  can
only be close to  for , giving
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We also conclude that, for ,  stays close to
 and  is close to  for both small and large

g (although at ,  deviates significantly
from  in a small region in the vicinity of ,
so that Eq. (13) may not be applied). As a result, from
Eq. (13) we find

 (22)

with the limit  a plasma disc equilibrium
based on the localization of the density.

4. CONCLUSIONS
We have considered plasma equilibria in gravita-

tional and open-ended magnetic fields for the case of
topologically disconnected regions of the magnetic
flux surfaces where plasma occupies just the central
lobe (see Fig. 1). Choosing the special dependences of
both plasma temperature and density on the magnetic
flux as given by Eq. (7) allows us to search for the solu-
tions of the Grad–Shafranov equation in separable
form (6) that permits tractable analytic analysis. We
find that the plasma pressure sets the shape of mag-
netic equilibrium at high β, while a strong gravitational
force ( ) localizes the plasma density to a disc
about the equatorial plane, but does not alter the mag-
netic equilibrium critically. At low β, the gravitational
field affects the magnetic equilibrium when

, but not for , and again a thin
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plasma disc about the equatorial plane is obtained
only when gravity is strong.
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