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QUANTUM ALGORITHMS FOR

LEARNING SYMMETRIC JUNTAS

VIA THE ADVERSARY BOUND

Aleksandrs Belovs

Abstract. In this paper, we study the following variant of the junta
learning problem. We are given oracle access to a Boolean function f
on n variables that only depends on k variables, and, when restricted
to them, equals some predefined function h. The task is to identify
the variables the function depends on. When h is the XOR or the OR
function, this gives a restricted variant of the Bernstein–Vazirani or the
combinatorial group testing problem, respectively.
We analyze the general case using the adversary bound and give an
alternative formulation for the quantum query complexity of this prob-
lem. We construct optimal quantum query algorithms for the cases
when h is the OR function (complexity is Θ(

√
k)) or the exact-half

function (complexity is Θ(k1/4)). The first algorithm resolves an open
problem from Ambainis & Montanaro (Quantum Inf Comput 14(5&6):
439–453, 2014). For the case when h is the majority function, we prove
an upper bound of O(k1/4). All these algorithms can be made exact. We
obtain a quartic improvement when compared to the randomized com-
plexity (if h is the exact-half or the majority function), and a quadratic
one when compared to the non-adaptive quantum complexity (for all
functions considered in the paper).
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1. Introduction

Learning theory studies the problem of reconstructing functions
from their values in various points. In this paper, we study the
problem of exact learning from membership queries. In this prob-
lem, one is given oracle access to a function f : {0, 1}n → {0, 1}
belonging to some fixed class of functions C (usually called con-
cept class). The task is to identify the function using the small-
est possible number of queries to the oracle. It is required to
give the exact description of the function, not an approxima-
tion (although, it is allowed to err with small probability like
1/3).

This is a broad area of research both classically and quantumly.
We shall highlight some of the results. Classically, the problem
was defined by Angluin (1988). Bshouty et al. (1996) obtained
upper and lower bounds on the randomized query complexity of
learning a concept class C exactly using a combinatorial parameter
0 < γ̂C ≤ 1 of the class. More specifically, the query complexity is
O
(
log |C|

γ̂C
)

and Ω
(

1
γ̂C + log |C|).

Quantumly, this problem was analyzed (under the name of
quantum oracle interrogation or identification) by van Dam (1998)
and Ambainis et al. (2004). Van Dam considered the case when C
consists of all Boolean functions on n variables, where n/2+O(

√
n)

quantum queries suffice, in contrast to n queries required classi-
cally. Ambainis et al. constructed a quantum algorithm for the
general case with query complexity O(

√
n log |C| log n log log |C|).

Finally, Kothari (2014) gave a complete characterization of the
quantum query complexity of this problem in terms of n and |C|.

Servedio & Gortler (2004) proved some quantum analogues of
the results in Bshouty et al. (1996). In particular, they showed
that, for any concept class C, the quantum query complexity of

learning C exactly is Ω
(

1√
γ̂C + log |C|

n

)
. Using this result, they

obtained that the deterministic complexity of the same problem is
O(nQ3) where Q is its quantum query complexity. Atıcı & Servedio

(2005) constructed a quantum O
(

log |C| log log |C|√
γ̂C

)
-query algorithm

for the same problem.
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The problem and related work In this paper, we study the
following learning problem proposed by Ambainis & Montanaro
(2014). Let h : {0, 1}k → {0, 1} be a fixed symmetric Boolean
function. We are given oracle access to a Boolean function f on
n � k variables that satisfies the following properties. The func-
tion f only depends on a subset A of k input variables, and, when
restricted to these variables, the function equals h. Thus, the learn-
ing problem reduces to identifying the set A.

Functions that only depend on a small number of the input vari-
ables are called juntas. Thus, our problem is related to the problem
of learning and testing juntas, which has been studied both clas-
sically (see Blais 2009 and the references therein) and quantumly
(Atıcı & Servedio 2007). Note, however, that our settings are differ-
ent from that of usual junta learning. First, we have an additional
promise that the function f equals the function h. Second, we
are allowed adaptive membership queries, not only samples. And
third, we have to find the function f exactly, not an approxima-
tion. The last two aspects make our settings different from the
quantum PAC model (Bshouty & Jackson 1998).

From a simple information-theoretical argument it follows that
Ω(log |C|) = Ω(k log n

k
) randomized queries are required to solve

this problem classically. Quantumly, as usual, one can do better.
One of the pioneering quantum algorithms, the Bernstein-Vazirani
algorithm (Bernstein & Vazirani 1997), can be stated in these set-
tings. The algorithm solves our problem for the case when h is
the XOR function. It does so in one query, without an error, and,
moreover, for all values of k simultaneously.

Another example is the combinatorial group testing problem
(despite the name, it is a learning problem). In this problem,
a set X of n elements is given, and it is known that at most k
of them are marked. For any subset S ⊆ X, it is possible to
detect, in one query, whether S contains a marked element. The
task is to identify all marked elements making as few queries as
possible. It corresponds to the case when h is the OR function (if
we additionally require having exactly k marked elements). This is
a well-studied problem classically (Du & Hwang 1993). Ambainis &
Montanaro (2014) studied the quantum complexity of this problem
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and its special case, search with wildcards, that we do not define
here. The search with wildcards problem was resolved, but the
complexity of the combinatorial group testing problem was only
stated to lie between Ω(

√
k) and O(k).

The quantum counterfeit coin problem studied by Iwama et al.
(2012) is also closely connected to our work. In this problem, one
is given n coins, and it is known that exactly k of them are counter-
feit. All genuine coins have the same weight, all counterfeit coins
have the same weight, and the counterfeit coins are strictly lighter
than the genuine ones. One is also given perfect scales, and the task
is to find all counterfeit coins using as few weighing operations as
possible. More formally, the oracle accepts two disjoint equal-sized
subsets S, T ⊆ [n] as its input. It replies with 0 if S and T contain
equal number of counterfeit coins, and with 1 otherwise. (I.e., one
only gets to know whether the scales are balanced or not.) Iwama
et al. constructed a quantum algorithm that solves this problem
in O(k1/4) queries to the oracle. No general lower bound is known
for this problem.

Our contribution In this paper, we do the following. In Sec-
tion 3, we resolve the question posed by Ambainis and Monta-
naro by describing a tight quantum O(

√
k)-query algorithm for

the combinatorial group testing problem (in its full generality, i.e.,
allowing less than k marked elements). In Section 4, we use the
adversary bound and representation theory to formulate an opti-
mization problem for the quantum query complexity of our learn-
ing problem for any symmetric function h. In Section 5, we solve
this optimization problem when h is the exact-half function (the
function that evaluates to 1 iff exactly �k/2� of the input variables
equal 1). The quantum query complexity of the learning problem
turns out to be Θ(k1/4). In Section 6, we describe some partial
results for the case when h is the majority function. Finally, in
Section 7, we show that most of the above algorithms can be made
exact without increase in their complexity, and prove some no-go
results for non-adaptive quantum algorithms.

Previous techniques Before discussing our techniques, let us
describe some previously used techniques. One possibility is to



cc 24 (2015) Quantum algorithms for learning juntas 259

apply the Grover search (as in the papers by Ambainis et al. 2004,
and Atıcı & Servedio 2005). This gives at most quadratic speed-up.

Most of the papers, however, use the following prepare-and-
measure strategy: A quantum state |ψ〉 is prepared, a tensor power
O⊗T

x of the input oracle is applied to the state, and the result is
measured. This strategy usually comes in one of the two variations.
The first one is Fourier sampling. In this case, T = 1 and |ψ〉 is
the uniform superposition. The resulting state, Ox|ψ〉, is mea-
sured in the Fourier basis. This procedure is repeated many times,
and when enough samples have been collected, they are processed
by a classical subroutine to reconstruct f . Notable examples are
the DNF learning algorithm by Bshouty & Jackson (1998) and
the junta learning algorithm by Atıcı & Servedio (2007), where
this approach is mentioned explicitly (under the name of quantum
example oracle in the first paper, and Fourier sampling oracle in
the second one).

A more general variant is to show that the states O⊗T
x |ψ〉 and

O⊗T
y |ψ〉 are almost orthogonal for all x 
= y and then apply the

Pretty Good Measurement (Hausladen & Wootters 1994) to dis-
tinguish them. Examples here are Childs et al. (2013); Ettinger
et al. (2004).

Either way, the prepare-and-measure strategy usually can be
made non-adaptive (see Section 2 for the definition). This is a
limitation. For example, Zalka (1999) showed that a non-adaptive
quantum algorithm requires Ω(n) queries to solve the OR function,
in contrast to the Grover search. Childs et al. (2013) explain why
their hidden shift algorithm performs sub-optimally on the delta
function using this argument.

All these approaches are unsatisfactory for our problem. First,
the general results mentioned in the beginning of this section are
useless here, because the quantum query complexity of our prob-
lems is less than k, which is much less than n or log |C|. Next,
we attain super-quadratic speed-ups over randomized algorithms,
which is not possible by only using the Grover search. Finally,
in Section 7, we show that any non-adaptive quantum algorithm
requires quadratically more queries than our algorithms. This
does not completely rule out the prepare-and-measure strategy,
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but shows that its easiest and most common one-shot variant does
not work here.

It is also interesting to compare our algorithm for the exactly-
half function to the algorithm for the counterfeit coin problem by
Iwama et al. (2012). After all, both algorithms attain complex-
ity O(k1/4), which is a quartic improvement to the randomized
complexity. We are not aware of any reduction in either of two
directions. Iwama et al. reduce the counterfeit problem to the
Bernstein-Vazirani problem. Indeed, if an even-sized subset S con-
tains even number of counterfeit coins, there exist dissections of
S into two equal-sized subsets having equal number of counterfeit
coins. These dissections can be detected using quantum ampli-
tude amplification (Brassard et al. 2002). It seems unlikely that a
similar approach can be applied for the exact-half function.

Our techniques Instead of these techniques, we use the dual
adversary bound. The adversary bound is a lower bound on quan-
tum query complexity first developed by Ambainis (2002) in the
form that is now known as the positive-weighted adversary. Later,
it was strengthened by Høyer et al. (2007) to the negative-weighted,
or general adversary bound. Reichardt et al. proved that this
lower bound is tight by showing how the dual to the adversary
bound can be converted into a quantum query algorithm (Lee
et al. 2011; Reichardt 2009). Their algorithm is based on quantum
walks.

Thus, a quantum query algorithm can be constructed by coming
up with a feasible solution to the dual adversary bound. There
has been some work in this vein. One example is provided by
algorithms for formulae evaluation (Reichardt & Špalek 2012; Zhan
et al. 2012). Another line of development is learning graphs (Belovs
2012b). They were applied to improve quantum query complexity
of triangle and other subgraph detection (Belovs & Reichardt 2012;
Lee et al. 2013), and the k-distinctness problem (Belovs 2012a).
In general, learning graphs work well for Boolean functions with
small 1-certificates. Clearly, both of these general approaches do
not work here. Indeed, our problem does not have a nice formula
description, nor does it have Boolean output, nor small certificates.
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Instead of that, we construct a feasible solution to the dual
adversary from scratch. Let us give a short overview of our con-
struction. For precise formulations of the adversary bound, the
reader may refer to Section 2. Informally, the dual adversary
bound (2.4) boils down to distinguishing inputs A,B ∈ C using
queries (2.4b). In the following informal exposition, we analyze
complexity of distinguishing A and B using both a usual random-
ized algorithm and the adversary bound, and compare the two.
Although obtaining equality in (2.4b), and not a lower bound like
in (2.6), is important, we ignore this issue for now.

We start with combinatorial group testing, which corresponds
to the case when h is the OR function. Assume we want to distin-
guish k-subsets A,B ⊆ [n]. Moreover, we want to do so regardless
of the distance � = |B \ A|. A simple strategy is to take a subset
S ⊆ [n] by including each element of [n] with probability p inde-
pendently at random, and hope that exactly one of S∩A and S∩B
is empty.

Classically, the worst case is when the distance � = 1. In this
case, conditioned on S∩A = ∅, the probability that S distinguishes
A and B (i.e., that S ∩ B 
= ∅) is p. But taking p � 1/k does not
make much sense, because then the probability that S does not
intersect A is too small.

The dual adversary, however, allows for additional tricks. In
particular, we may “condition” on S and A having intersection of
size at most 1. That is, the queries S with |S∩A| ≥ 1 count neither
toward the complexity, nor toward distinguishing A and B. (The
same, clearly, applies for B as well.) Thus, in this settings, we may
even take p = 1/2, which increases the chances of A and B being
distinguished.

But when � is, say, k, the choice of p = 1/2 does not work.
Indeed, conditioned on A∩S = ∅, the probability of |S ∩B| = 1 is
very small. (Remember, we do not use S for B if |S ∩ B| > 1.) In
this case, p = 1/k is a much better choice. In the final solution, we
take p ∈ (0, 1) uniformly at random that, a bit surprisingly, works
for all values of �.

Thus, our solution to the combinatorial group testing problem
is somewhat ad hoc. The analysis is so simple because we may
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assume that S intersects A in either 0 or 1 element. If h is the
majority function, it is suboptimal to condition that |S ∩ A| is
�k/2�−1 or �k/2�. Indeed, assume A∩B = ∅. Then, regardless of
A∩S, the probability is at most O(1/

√
k) that |S ∩B| ∈ {�k/2�−

1, �k/2�}. Thus, to solve this case, we would have to take other
intersection sizes as well, and that would make the analysis much
more complicated.

Instead of sticking to this ad hoc solution, we use an approach
that is guaranteed to be tight. Without loss of generality, we
may assume that the optimal solution Γ to the adversary lower
bound (2.3) is symmetric with respect to permuting the elements
of [n]. Then, the matrix Γ can be uniquely described by k + 1 real
numbers. We use representation theory of the symmetric group
and obtain necessary and sufficient conditions that these numbers
must satisfy. A feasible solution to the dual problem again gives a
quantum query algorithm.

Unfortunately, the resulting optimization problem is still very
complicated. We were able to obtain a feasible solution, when h is
the majority or the exact-half function, using that these functions
are symmetric about the weight k/2. But applying these scheme
for the OR function, for instance, would be much more complicated
than our previous ad hoc solution. Our solutions for majority and
exact-half are essentially equivalent, but for exact-half, the solution
turns out to be tight. Generalizing this solution to the exact-� or
the �-threshold function is an open problem.

2. Preliminaries

We use [n] to denote the set {1, 2, . . . , n}, and 2A to denote the set
of subsets of A. A k-subset is a subset of size k.

All matrices in the paper have real entries. A∗ denotes the
adjoint (transposed) matrix of A. If A is a matrix, by A[[i, j]],
we denote the element on the intersection of row i and column j.
By ‖A‖ we denote the spectral norm of A (the maximal singular
value), and by ‖A‖tr we denote the trace norm of A (the sum of the
singular values). By 〈A,B〉 we denote the inner product between
the matrices: 〈A,B〉 = tr(A∗B).
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We assume familiarity with basic probability theory, and we
repeatedly use the following well-known result about binomial coef-
ficients:

Lemma 2.1. If n and k are positive integers satisfying k = O(
√

n),
then

(
n

�n/2�±k

)
= Θ(2n/

√
n).

Quantum query complexity Now we define quantum query
complexity both in its standard and non-adaptive variants. For a
more complete treatment refer to Buhrman & de Wolf (2002) for
query complexity and Montanaro (2010) for non-adaptive query
complexity. A quantum query algorithm is defined as a sequence
of unitary transformations alternated with the oracle calls:

(2.2) U0 → Ox → U1 → Ox → · · · → UT−1 → Ox → UT .

Here Uis are arbitrary unitary transformations independent of the
input. The oracle Ox is the same in all places, and it depends
on the input string x = (xi) as |i〉i|b〉v �→ |i〉i|b + xi〉v where the
addition is performed modulo 2. Other registers besides i and v
are left intact. The computation starts in a predefined state |0〉.
After all the operations in (2.2) are performed, some predefined
output register is measured. We say that the algorithm evaluates a
function f if, for any x in the domain, the result of the measurement
is f(x) with probability at least 2/3. The number T is the query
complexity of the algorithm. The smallest value of T among all
algorithms evaluating f is the quantum query complexity of f ,
and is denoted by Q(f).

Thus, we see that a quantum algorithm can prepare the input
to the next oracle query depending on the results of the previous
oracle calls. In many cases, this is crucial for obtaining a good
algorithm. But, in some cases, the input to the oracle does not
depend on the output of its previous executions. This is captured
by the notion of non-adaptive quantum query complexity. In such
an algorithm, we assume that all the oracle calls happen simulta-
neously in parallel. More formally, a non-adaptive quantum query
algorithm is of the form U0 → O⊗T

x → U1. The non-adaptive quan-
tum query complexity of f is then defined similarly to the adaptive
case.
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Formulation of the problem Let us rigorously define our
version of the learning problem. Let h : {0, 1}k → {0, 1} be a
symmetric Boolean function. It is uniquely defined by a subset
Wh ⊆ {0, . . . , k} such that h(x) = 1 iff |x| ∈ Wh, where |x| stands
for the Hamming weight of x. Let n ≥ k be a positive integer,
and C denote the set of all k-subsets of [n]. If A ∈ C, we define
the function fA : {0, 1}n → {0, 1} by fA(x) = h(xA) where xA

is the restriction of the input string x to the positions in A. It
is more convenient to identify the input string x with the sub-
set S ⊆ [n] defined by i ∈ S iff xi = 1. Thus, fA(S) = 1 iff
|A ∩ S| ∈ Wh.

The problem Ln
h : {0, 1}{0,1}n → 2[n] is defined by Ln

h(fA) = A.
Thus, h is fixed and known to the learner in advance, the inputs
are the functions fA (which can be identified with the elements of
C), and the input variables are the input strings to fA (which can
be identified with the subsets of [n]).

It is easy to see that the quantum query complexity Q(Ln
h) is

a non-decreasing function in n. There also exists an upper bound
on Q(Ln

h) independent of n. For instance, one may take the com-
plexity of the Fourier sampling algorithm like in Atıcı & Servedio
(2007), since its behavior does not depend on n. Hence, there
exists limn→∞ Q(Ln

h), which we denote by Q(Lh), and which we
are mostly interested in.

Adversary Bound Next, we define the adversary bound tai-
lored to our special case of Ln

h. An adversary matrix Γ is a C × C
real symmetric matrix with zeroes along the diagonal. Introduc-
ing an abuse of notation, let Γ ◦ ΔS denote the submatrix of Γ
formed by the rows in {A ∈ C | fA(S) = 0} and the columns in
{B ∈ C | fB(S) = 1}.

The adversary bound ADV±(Ln
h) is equal to the (common) opti-

mal value of the following two optimization problems:

maximize ‖Γ‖(2.3a)

subject to ‖Γ ◦ ΔS‖ ≤ 1 for all S ⊆ [n];(2.3b)

Γ[[A,A]] = 0 for all A ∈ C.(2.3c)
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and

minimize max
A∈C

∑

S⊆[n]
XS[[A,A]]

(2.4a)

subject to
∑

S : fA(S) 
=fB(S)
XS[[A,B]] = 1 for all A 
= B in C;

(2.4b)

XS � 0 for all S ⊆ [n],(2.4c)

where XS are C × C positive semi-definite matrices (see Reichardt
2009, Theorem 6.2 for the proof of the equality of both problems).
The adversary bound is very useful because of the following result:

Theorem 2.5 (Høyer et al. 2007; Lee et al. 2011). The quantum
query complexity of a function f equals Θ(ADV±(f)).

Using this theorem, we can estimate ADV±(Lh) instead of
Q(Lh). Here we denote ADV±(Lh) = limn→∞ ADV±(Ln

h). The
limit exists because ADV±(Ln

h) is a non-decreasing function in n.
An important special case is the positive-weighted adversary,

which we denote by ADV(Ln
h). It is a slight modification of the

original version by Ambainis (2002). It is strictly weaker than
the general bound, but it is usually much easier to apply. The
positive-weighted adversary is defined as in (2.3) and (2.4) with
the following modifications. In (2.3), we require all the entries of
Γ to be nonnegative. In (2.4), we replace condition (2.4b) by the
following one (Špalek & Szegedy 2006, Eq. (3.7)):

(2.6)
∑

S : fA(S) 
=fB(S)
XS[[A,B]] ≥ 1 for all A 
= B in C;

3. Combinatorial group testing

In this section, we describe a quantum query algorithm for the
combinatorial group testing problem. We solve the problem in
its original form, which deviates slightly from our version of the
learning problem. Let us reformulate the problem. Let k < n be
fixed positive integers, and C consist of all subsets of [n] of sizes at
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most k. For each A ∈ C, the function fA : 2[n] → {0, 1} is defined
by

fA(S) =

{
1, if A ∩ S 
= ∅;

0, otherwise.

We are given oracle access to fA, and the task is to detect A. The
difference with the LOR problem is that we allow A of size less
than k. In this section, we prove the following result:

Theorem 3.1. The quantum query complexity of the combinato-
rial group testing problem is Θ(

√
k).

The lower bound can be proved by a reduction from the
unordered search, refer to Ambainis & Montanaro (2014) for more
detail. Here we prove the upper bound. We do so by constructing
a feasible solution to (2.4). This is done in two steps: First, we
define rank-1 matrices YS(p), and then build the matrices XS from
them.

Let P be the binomial probability distribution on [n] with prob-
ability p. Recall that it is a probability distribution on the subsets
of [n], where each element of [n] is included into the subset inde-
pendently with probability p. By P (S), we denote the probability
of sampling S from P : P (S) = p|S|(1 − p)n−|S|. Finally, let �
denote the symmetric difference of sets.

We define Y (p) = (YS(p))S⊆[n] by

YS(p) =
P (S)

2p
ψψ∗ � 0,

where

ψ[[A]] =
1

(1 − p)|A|/2 ×

⎧
⎪⎨

⎪⎩

4
√

kp/(1 − p), if |A ∩ S| = 0;
4
√

(1 − p)/(kp), if |A ∩ S| = 1;

0, otherwise;

for all A ∈ C. In this notation,
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∑

S⊆[n]

YS(p)[[A,A]] =
1

2p (1 − p)|A|

×
(

Pr
S∼P

[|S ∩ A| = 0
]
√

kp

1 − p
+ Pr

S∼P

[|S ∩ A| = 1
]
√

1 − p

kp

)

=
1

2p (1 − p)|A|

(
(1 − p)|A|

√
kp

1 − p
+ |A|p (1 − p)|A|−1

√
1 − p

kp

)

≤
√

k

p (1 − p)
.

Now we fix two distinct elements A,B of C. An element A is
used in YS only if |S ∩ A| ≤ 1. Thus, we are only interested in
S ⊆ [n] such that |A ∩ S| + |B ∩ S| = 1. Thus,

∑

S : fA(S) 
=fB(S)

YS(p)[[A,B]] =
PrS∼P

[|A ∩ S| + |B ∩ S| = 1
]

2p (1 − p)(|A|+|B|)/2

=
|A� B| p (1 − p)|A∪B|−1

2p (1 − p)(|A|+|B|)/2 =
|A�B|

2
(1 − p)

|A� B|
2

−1 .

Now, for each S ⊆ [n], let

XS =

∫ 1

0

YS(p) dp .

First, each XS is positive semi-definite, because positive semi-
definite matrices form a convex cone. Next, for any A ∈ C:

∑

S⊆[n]

XS[[A,A]] ≤
√

k

∫ 1

0

dp
√

p (1 − p)
= π

√
k .

And finally, for all A 
= B in C:

∑

S : fA(S) 
=fB(S)

XS[[A,B]] =
|A�B|

2

∫ 1

0

(1 − p)
|A� B|

2
−1 dp = 1.
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4. Application of representation theory

In the previous section, we described an ad hoc construction of a
feasible solution to (2.4) when h is the OR function. In this sec-
tion, we use representation theory to give an alternative description
for ADV±(Lh) that works for any function h. We work with the
lower bound (2.3), because it has a very simple structure. In the
next two sections, we use duality to the new formulation to prove
that the quantum query complexity of the LEXACT-HALFk

and the
LMAJORITYk

problems is O(k1/4).
Let h : {0, 1}k → {0, 1} be a symmetric function defined by the

subset Wh of weights, i.e., h(x) = 1 iff |x| ∈ Wh. The search for an
adversary matrix for the function Lh turns out to be equivalent to
the search for a list of real numbers d = (d0, . . . , dk) satisfying the
constraints we are about to describe.

Let m ≤ k be a positive integer and 0 < p < 1 be a real number.
We make use of Krawtchouk polynomials for probability p. These
polynomials are orthogonal with respect to the binomial distrib-
ution (see Szegő 1975 for the general definition, and Krasikov &
Litsyn 2001 for the special case p = 1/2, which we use in Sections 5
and 6). We treat them as column vectors in R

m+1 and also include
the weight (due to the weight, they cease to be polynomials). With
this modification, the definition is as follows:

K
(m,p)
t [[x]]

(4.1)

=

√(
m

x

)
px(1 − p)m−x

t∑

i=0

(−1)ipt−i(1 − p)i

(
x

i

)(
m − x

t − i

)
,

where t, x ∈ {0, . . . ,m}. Let κ
(m,p)
t = K

(m,p)
t /‖K

(m,p)
t ‖ be the

corresponding normalized vectors. Thus, {κ
(m,p)
t }, for fixed m and

p, form an orthonormal basis of R
m+1. We use the list d to define

the matrices

(4.2) M (d)
m,p =

m∑

i=0

dk−iκ
(m,p)
m−i

(
κ

(m,p)
m−i

)∗
.
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Let 0 ≤ t ≤ k − m be an integer, and define W1(t) = {� ∈ Z |
0 ≤ � ≤ m, � + t ∈ Wh}, and W0(t) = {0, . . . , m} \ W1(t). Let

(4.3) M
(d)
m,p,t = M (d)

m,p[[W0(t),W1(t)]]

be the submatrix of M
(d)
m,p formed by the rows in W0(t) and the

columns in W1(t).
The aim of this section is to prove the following result:

Theorem 4.4. For any symmetric function h, ADV±(Lh) equals
the supremum of maxi di over all lists of reals d = (d0, . . . , dk)
satisfying the following constraints:

◦ dk = 0, and

◦ for all integers 0 < m ≤ k, 0 ≤ t ≤ k−m, and reals 0 < p < 1,
we have ‖M

(d)
m,p,t‖ ≤ 1, where M

(d)
m,p,t is defined in (4.3).

In order to prove this theorem, we need some basic results from
representation theory of the symmetric group. These results are
only used in this section. The reader may refer to a textbook on
the topic like, e.g., Sagan (2001), or to the appendix, where we
briefly formulate the required notions and results.

If N is a finite set, let us denote by SN the symmetric group
on N . We consider modules over the group algebra RG where G
is either a symmetric group or a direct product of two symmetric
groups.

Fix an integer n, and consider the problem Ln
h. Let also N =

[n]. The rows and the columns of an adversary matrix Γ are labeled
by k-subsets of N . The problem is symmetric with respect to the
permutations of variables, so by Høyer et al. (2007) we may assume
that Γ is symmetric with respect to SN . More specifically, Γ does
not change if we simultaneously transform the labels of its rows
and columns by {a1, . . . , ak} �→ {πa1, . . . , πak} for some π ∈ SN .

The real vector space with the set of k-subsets of N as its
orthonormal basis, and the above action of SN , is the permutation
RSN -module corresponding to the partition (n − k, k) of n. We
denote it by M(N, k). We denote the basis element of M(N, k)
corresponding to A by A itself.
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Now consider ‖Γ ◦ ΔS‖ for S ⊆ N . We denote N0 = N \ S,
N1 = S, n0 = |N0|, and n1 = |N1|. Then, Γ ◦ ΔS is symmetric
with respect to SN0 × SN1 . Thus, we have to understand how the
RSN -module M(N, k) behaves under restriction to this subgroup.
It is easy to see that

(4.5) M(N, k)↓SN0
×SN1

=
⊕

k0+k1=k

M(N0, k0) ⊗ M(N1, k1),

where A ⊗ B, with A being a basis element of M(N0, k0) and B
being a basis element of M(N1, k1), is understood as the basis
element A∪B of M(N, k). We continue using the convention that
A⊗B is the disjoint union of A and B later, for instance, in (4.8).

Let Π1 be the projector onto the spaces on the right-hand side
of (4.5) with k1 ∈ Wh, and Π0 be the projector onto the orthogonal
complement of this space. Then,

(4.6) ‖Γ ◦ ΔS‖ = ‖Π0ΓΠ1‖.

The following result describes the decomposition of M(N, k)
into irreducible submodules. They are isomorphic to the Specht
modules S(N, t) corresponding to partitions (n − t, t) of n. The
modules with different values of t are not isomorphic. The lemma
follows from general theory (Sagan 2001, Sections 2.9 and 2.10).
We give a proof in the appendix.

Lemma 4.7. The RSN -module M(N, k) has the following decom-
position into irreducible submodules: M(N, k) =

⊕k
t=0 Sk(N, t),

where each Sk(N, t) is isomorphic to S(N, t). The submodule
Sk(N, t) is spanned by the vectors

vk(N, t, a, b) =
({a1} − {b1}

) ⊗ · · · ⊗ ({at} − {bt}
)

(4.8)

⊗
( ∑

A⊆N\{a1,...,at,b1,...,bt} : |A|=k−t

A
)

defined by disjoint sequences a = (a1, . . . , at) and b = (b1, . . . , bt)
of pairwise distinct elements of N . The dimension of S(N, t) is(

n
t

)− (
n

t−1

)
. Moreover, the only (up to a scalar) RSN -isomorphism

of Sk(N, t) onto S�(N, t) maps the vector vk(N, t, a, b) into a scalar
multiple of v�(N, t, a, b) for any choice of a and b.



cc 24 (2015) Quantum algorithms for learning juntas 271

We define Sk0(N0, t0) and Sk1(N1, t1) similarly. By combin-
ing (4.5) and Lemma 4.7, we get that the irreducible R(SN0 ×SN1)-
submodules of M(N, k)↓SN0

×SN1
are Sk0(N0, t0)⊗Sk1(N1, t1), where

(4.9) k0 + k1 = k, 0 ≤ t0 ≤ k0, and 0 ≤ t1 ≤ k1.

Two submodules of this form are isomorphic iff their values of t0
and t1 are equal. Thus,

R(t0, t1) =
⊕

k0, k1 satisfy (4.9)

Sk0(N0, t0) ⊗ Sk1(N1, t1),

are the canonical submodules of M(N, k)↓SN0
×SN1

with multiplici-
ties k + 1 − t0 − t1.

By Schur’s lemma, in a suitable basis of R(t0, t1), any R(SN0 ×
SN1)-homomorphism from R(t0, t1) to itself is of the form A⊗It0,t1 ,
where A is an (k+1−t0−t1)×(k+1−t0−t1) matrix, and It0,t1 is the
identity matrix in S(N0, t0)⊗S(N1, t1). For each (t0, t1), we choose
the basis {e�}�∈{0,...,k−t0−t1} for the matrix A so that (e�e

∗
�) ⊗ It0,t1

projects onto Sk−t1−�(N0, t0) ⊗ St1+�(N1, t1). With this choice of
the basis, we have that

(4.10) Π0(A ⊗ It0,t1)Π1 = A[[W0(t1),W1(t1)]] ⊗ It0,t1 ,

where Π0 and Π1 are as in (4.6), and W0 and W1 are as in (4.3).
Let Πk(N, t) denote the orthogonal projector onto Sk(N, t).

Again, by Schur’s lemma,

Πk(N, t) =
⊕

t0,t1

A
(t)
t0,t1 ⊗ It0,t1

for some matrices A
(t)
t0,t1 . By the Littlewood-Richardson rule (Sagan

2001, Section 4.9),

(4.11) S(N, t)↓SN0
×SN1

∼=
⊕

t0+t1≤t

S(N0, t0) ⊗ S(N1, t1),

so A
(t)
t0,t1 is zero if t < t0+t1, and, otherwise, it is a rank-1 orthogonal

projector (as the corresponding multiplicity is 1).
At the heart of the proof of Theorem 4.4 is the following obser-

vation (recall that the matrices A
(t)
t0,t1 depend on the values of n

and n1):
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Lemma 4.12. For any 0 < p < 1, the projector A
(t)
t0,t1 tends to the

projector onto κ
(k−t0−t1,p)
t−t0−t1 as n → ∞ and n1/n → p. Moreover,

the convergence is uniform for c < p < 1 − c where c > 0 is any
constant. On the other hand, there exists a bound εc satisfying
limc→0 εc = 0, such that ‖A

(t)
t0,t1 − et−t0−t1e

∗
t−t0−t1

‖ ≤ εc if n1 is less

than cn, and ‖A
(t)
t0,t1 − ek−te

∗
k−t‖ ≤ εc if n1 is more than (1 − c)n.

We prove the lemma at the end of the section. For now, let us
show how the lemma can be used to prove Theorem 4.4.

Assume that ADV±(Lh) = Q. As noticed in Section 2, Q < ∞.
Then, for each n, let Γ(n) be an optimal solution to (2.3). We may
assume that ‖Γ(n)‖ is an eigenvalue of Γ(n), otherwise replacing Γ(n)

by −Γ(n). By Schur’s lemma, we may also assume that

(4.13) Γ(n) =
k∑

t=0

d
(n)
t Πk(N, t).

Consider the vectors d(n) = (d
(n)
t ). As the absolute values of all

d
(n)
t are bounded by Q, the Bolzano-Weierstrass theorem gives a

convergent subsequence d(n1), d(n2), . . . . We define d = (dt) as the
limit of this subsequence. Clearly, maxt dt = Q.

Next, tr Πk(N, t) =
(

n
t

)− (
n

t−1

)
. Hence, tr Πk(N, k) overwhelms

the traces of all other projectors in (4.13) as n → ∞. Thus,
by (2.3c),

(4.14) dk = lim
i→∞

d
(ni)
k = lim

i→∞
tr Γ(ni)

(
ni

k

) − (
ni

k−1

) = 0.

This proves the first constraint in Theorem 4.4. The second con-
straint follows from Lemma 4.12 and (4.10).

Now assume d is an optimal solution to the optimization prob-
lem in Theorem 4.4, and let Q = maxt dt. We define Γ(n) as
in (4.13), where d

(n)
t = dt for t < k, and d

(n)
k is chosen so that

tr(Γ(n)) = 0. Then, due to symmetry, all diagonal entries of Γ(n)

are equal to zero. Also, similarly to (4.14), limn→∞ d
(n)
k = 0.

Choose c > 0 so that εc ≤ 1/(2(k + 1)Q), where εc is as in
Lemma 4.12. If |S|/n < c or |S|/n > 1− c, then ‖Γ(n) ◦ΔS‖ ≤ 1/2
for any choice of d satisfying maxt dt ≤ Q. If |S|/n → p with
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c < p < 1 − c, then limn→∞ ‖Γ(n) ◦ ΔS‖ = 1 by Lemma 4.12
and (4.10) again.

Proof of Lemma 4.12. Fix two sequences of pairwise distinct
elements in N0: a = (a1, . . . , at0) and b = (b1, . . . , bt0), and two
sequences a′ = (a′

1, . . . , a
′
t1
) and b′ = (b′

1, . . . , b
′
t1
) in N1. In order

to find the vector onto which A
(t)
t0,t1 projects, it suffices to find a

linear combination of the vectors

{
vk0(N0, t0, a, b) ⊗ vk1(N1, t1, a

′, b′)
∣
∣ k0, k1 satisfy (4.9)

}

that belongs to Sk(N, t).
Clearly, ({a1}−{b1})⊗· · ·⊗ ({at0}−{bt0}) and ({a′

1}−{b′
1})⊗

· · · ⊗ ({a′
t1
} − {b′

t1
}) factor out in any linear combination, so we

can remove the elements in a, b, a′ and b′, and consider the case
t0 = t1 = 0. The removal has the effect that t gets reduced by
t0 + t1, k0 by t0, k1 by t1, n0 by 2t0, and n1 by 2t1. The effect on
t, k0 and k1 is reflected in the statement of the lemma, and the
change in n0 and n1 is not substantial, as we assume n → ∞.

So, it suffices to consider the case t0 = t1 = 0. In this case, the
vector

(4.15)
1

t!

∑

a,b

vk(N, t, a, b),

where the sum is over all sequences a in N0 and b in N1, is a linear
combination of the vectors

{
vk0(N0, 0, ∅, ∅) ⊗ vk1(N1, 0, ∅, ∅)

∣
∣ k0 + k1 = k

}
.

More specifically, the coefficient of vk0(N0, 0, ∅, ∅) ⊗ vk1(N1, 0, ∅, ∅)
in (4.15) is

(4.16)
t∑

i=0

(−1)i

(
k0

t − i

)(
k1

i

)
(n0 − k0)

i (n1 − k1)
t−i ,

where ab = a(a − 1) · · · (a − b + 1) denotes the falling power. That
is, we claim that if A is a k0-subset of N0 and B is a k1-subset of
N1, then the coefficient of A ⊗ B in (4.15) is (4.16). Indeed, i is



274 Belovs cc 24 (2015)

the number of the elements of B used in the sequence b,
(

k1

i

)
is the

number of ways to choose them, (n0 − k0)
i is the number of ways

to choose the elements of N0\A that serve as the corresponding
element of the sequence a (they do not appear in the product).
Calculations for A are similar.

Taking the norm of the vector vk0(N0, 0, ∅, ∅) ⊗ vk1(N1, 0, ∅, ∅)

into account, we get that A
(t)
0,0 projects onto the vector wt ∈ R

k+1

defined by (where we assumed � = k1):

wt[[�]] =

√(
n1

�

)(
n0

k − �

)

×
t∑

i=0

(−1)i

(
�

i

)(
k − �

t − i

)
(n1 − �)t−i (n0 − k + �)i.

Let w̃t = wt/‖wt‖. Assuming n → ∞ and n1/n → p, it is

easy to check that w̃t → κ
(k,p)
t . Also, the convergence is uniform if

c < p < 1 − c.
Notice that the largest power of n0 in wt[[�]] is (k − �)/2 +

min{�, t}, and the largest power of n1 is �/2+min{k−�, t}. Hence,
w̃t is close to et if n1/n is sufficiently small. Also, w̃t is close to
ek−t if n0/n is small. �

5. Exact-half function

In this section, we apply Theorem 4.4 to the exact-half function.
The function EXACT-HALFk : {0, 1}k → {0, 1} is equal to 1 iff
the input string has Hamming weight �k/2� exactly. This section
is devoted to the proof of the following result:

Theorem 5.1. The quantum query complexity of LEXACT-HALFk

is Θ(k1/4).

The lower bound can be shown using a simple positive-weighted
adversary. Consider the adversary matrix Γ for Ln

EXACT-HALFk

defined by Γ[[A,B]] = 1 if A 
= B and Γ[[A,A]] = 0. We have
‖Γ‖ =

(
n
k

) − 1. On the other hand, Γ ◦ ΔS is the all-1 matrix,
and a simple argument involving Lemma 2.1 shows that it has
O
((

n
k

)
/
√

k
)

columns. Also, Γ◦ΔS still has almost
(

n
k

)
rows, hence,
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‖Γ ◦ ΔS‖ = O
((

n
k

)
k−1/4

)
. Thus, ADV(Ln

h) = Ω(k1/4). In the
remaining part of this section, we show that this simple lower
bound is actually tight.

We do so by providing a feasible solution to the optimization
problem in Theorem 4.4. Note that this optimization problem
has the following self-reducibility property: For every k′ < k,
if we denote d′

i = di+k−k′ and take an appropriate subset of
the constraints, we obtain the optimization problem for the case
h = EXACT-HALFk′ . This has a number of consequences. The
first one is that it suffices to estimate d0 only, because di with larger
values of i have been already estimated for smaller values of k.

We consider the constraints
∥
∥
∥M

(d)
m,1/2,�k/2�−�m/2�

∥
∥
∥ ≤ 1, where m

ranges from 1 to k. Let,

(5.2) Am,� =
(
κ

(m,1/2)
� (κ

(m,1/2)
� )∗)[[W0(t),W1(t)]]

in the notation of (4.2) and (4.3), where t = �k/2� − �m/2�. With
this choice of parameters, Am,� is an m × 1 matrix. Later in the
proof, we will treat it as a vector in R

m. Note also that the matrices
Am,� do not depend on k. Thus, we get the following optimization
problem:

maximize d0

(5.3a)

subject to
∥
∥
∥

m∑

i=1

dk−iAm,m−i

∥
∥
∥ ≤ 1 for all m = 1, . . . , k;

(5.3b)

di ∈ R for i = 0, . . . , k − 1.(5.3c)

Applying semi-definite duality (Boyd & Vandenberghe 2004, Sec-
tion 5.9), we obtain the following upper bound on (5.3):

minimize
k∑

m=1

‖Λm‖tr(5.4a)

subject to 〈Λk, Ak,0〉 = 1;(5.4b)
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�∑

i=0

〈Λk−i, Ak−i,�−i〉 = 0 for all �;(5.4c)

Λm has the same size as Am,� for all m and �.(5.4d)

We are going to construct a feasible solution to this problem.
We use the following elimination strategy. Constraint (5.4b) only
uses Λk. So, we take some Λk that satisfies 〈Λk, Ak,0〉 = 1, but may
have nonzero inner products with other Ak,i. Then we take Λk−1

that satisfies (5.4c) for � = 1, then Λk−2 that satisfies (5.4c) for
� = 2, and so on. We find Λk−i for i > 0 using self-reducibility.

More formally, we apply induction. Let Λ(k) = (Λ
(k)
1 , . . . , Λ

(k)
k )

be our solution to (5.4) for a specific value of k, and let g(k) denote
the corresponding value of (5.4a). The base case, Λ(1), is trivial to
construct. Assume we have constructed Λ(k′) for all k′ < k. Then,
we take

Λ(k) = (0, . . . , 0, Λk) −
k−1∑

�=1

〈Λk, Ak,�〉 Λ(k−�),

where the first list has Λk in the kth position, and the remaining
lists are padded with zeroes from the right. Here Λk is some matrix
satisfying (5.4b). We will define it later. It is easy to check that
Λ(k) satisfies (5.4b) and (5.4c). Using the triangle inequality for
the trace norm, we obtain

(5.5) g(k) ≤ ‖Λk‖tr +
k−1∑

�=1

∣
∣〈Λk, Ak,�〉

∣
∣ g(k − �).

So, it remains to choose Λk. For the remainder of this section
and the next section, let κ� = κ

(k,1/2)
� . Recall that {κ�} form

an orthonormal basis of R
k+1. Let, for brevity, s = �k/2�. We

have Ak,� = κ�[[s]] κ̆�, where κ̆� denotes κ� with the sth element
removed. We take

Λk =
1

κ0[[s]](1 − κ0[[s]]2)
κ̆0.
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It is straightforward to check that 〈Λk, Ak,0〉 = 1. Also, for � > 0,
〈κ̆0, Ak,�〉 = κ�[[s]] 〈κ̆0, κ̆�〉 = −κ0[[s]]κ�[[s]]

2. Hence,

(5.6) 〈Λk, Ak,�〉 =
−κ�[[s]]

2

1 − κ0[[s]]2
.

Now we apply additional properties of κ�. First, κ0[[x]] =
√(

k
x

)
/2k.

Thus, by Lemma 2.1, κ0[[s]] = Θ(k−1/4), and ‖Λk‖tr = Θ(k1/4).
Another property (Krasikov & Litsyn 2001, Eq. (32)) is κ�[[s]] =

±κk−�[[s]]. As {κ�} form an orthonormal basis,
∑k

�=0 κ�[[s]]
2 = 1,

hence, by (5.6),

k−1∑

�=1

| 〈Λk, Ak,�〉 | =
1 − 2κ0[[s]]

2

1 − κ0[[s]]2
,

and

1 − κ0[[s]]
2

1 − 2κ0[[s]]2

k−1∑

�=1

(k − �)| 〈Λk, Ak,�〉 | =
k

2
.

Let C0 be some constant such that g(k) ≤ C0k
1/4 for small values

of k, and let C1 be such that ‖Λk‖tr ≤ C1k
1/4 for all k. Then, we

prove by induction that g(k) ≤ Ck1/4 for C = max{C0,
4√2

4√2−1
C1}.

Indeed, this is satisfied for the small values of k. Assume this is
satisfied for all k′ < k. Then, by (5.5) and the concavity of k1/4:

g(k) ≤ C1k
1/4 +

k−1∑

�=1

| 〈Λk, Ak,�〉 |C(k − �)1/4

≤ C1k
1/4 + C

(
1 − κ0[[s]]

2

1 − 2κ0[[s]]2

k−1∑

�=1

| 〈Λk, Ak,�〉 |(k − �)

)1/4

= C1k
1/4 + C(k/2)1/4 ≤ Ck1/4.

6. Majority function

In this section, we prove some partial results on the quantum query
complexity of the LMAJORITYk

function. The function is defined by
MAJORITYk(x) = 1 iff |x| ≥ k/2. First, the algorithm from
Section 5 carries over to this case with minor modifications.
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Theorem 6.1. The quantum query complexity of LMAJORITYk
is

O(k1/4).

Proof. Again, we construct a feasible solution to (5.4) where
Am,� are as in (5.2) with W0 and W1 modified accordingly. This
time, we use different strategies to construct Λ(k) for odd and even
values of k. We need the following easy symmetry result about
Krawtchouk polynomials (Krasikov & Litsyn 2001, Eq. (31)):

(6.2) κ�[[x]] = (−1)�
κ�[[k − x]],

where again κ� = κ
(k,1/2)
� . We also use notations W0 = W0(0) and

W1 = W1(0).
For the even values of k, we use the same elimination strategy,

but we change the way we define the matrix Λk. Let s = k/2, and
let this time κ̆� denote the W0 × W1 matrix having the elements
of κ[[W0]] in column s, and zeroes everywhere else. Intuitively, the
nonzero elements of κ̆� form the upper half of the vector κ̆� from
the proof of Theorem 5.1. We define

Λk =
2

κ0[[s]](1 − κ0[[s]]2)
κ̆0.

From (6.2), we get 〈Λk, Ak,0〉 = 1. Also, ‖Λk‖tr = Θ(k1/4). If
� is odd, we get from (6.2) that the sth column of Ak,� consists
of zeroes. If � is even, using the same property, we get that
〈κ̆0, κ̆�〉 = −κ0[[s]]κ�[[s]]/2. Either way, (5.6) holds. The proof
further proceeds as in Section 5. Also, we have to note that
〈Λk, Ak,�〉 = 0 if � is odd, hence, we only need Λ(k′) with even
values of k′ < k to define Λ(k).

Now assume that k is odd. We know that d1 = O(k1/4) by
considering Λ(k−1). Thus, we change our strategy and prove that
d0 − d1 = O(1). If we replace (5.3a) by d0 − d1, we get the prob-
lem (5.4) with (5.4b) replaced by

(6.3) 〈Λk, Ak,0〉 = 1 and 〈Λk, Ak,1〉+〈Λk−1, Ak−1,0〉 = −1,

and � ranging in (5.4c) from 2 to k−1. A possible feasible solution
is

Λk =
2

〈κ0[[W1]], κ1[[W1]]〉(κ0[[W0]])(κ1[[W1]])
∗
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and Λm = 0 for other values of m. Using (6.2) and the orthogo-
nality of {κ�}, we get that 〈κ0[[W0]], κ�[W0]〉 = 0 for even � ≥ 2,
and 〈κ1[[W1]], κ�[W1]〉 = 0 for odd � ≥ 3, hence (5.4c) holds. We
get (6.3) similarly. Finally, K1[[x]] = k −2x, ‖K0‖ = 1 and ‖K1‖ =√

k, where K is defined in (4.1) (Krasikov & Litsyn 2001, Eqs. (12,
33)), thus, using the definition of κ and the central limit theorem:

〈κ0[[W1]], κ1[[W1]]〉 =
1

2k
√

k

k∑

x=�k/2�

(
k

x

)
(k − 2x)

k→∞−→ − 4

k
√

2π

∫ ∞

0

e−2x2/kx dx = − 1√
2π

.

Hence, ‖Λk‖tr = O(1). �
For the case when h is the OR or the exact-half function, we

were able to prove tight lower bounds using the positive-weighted
adversary. In the next theorem, we show that it is not possible to
prove a polynomial (in k) lower bound using this technique, when h
is the majority function. There are some limitations known on the
positive-weighted adversary, like the certificate complexity barrier
(Špalek & Szegedy 2006) or the property testing barrier (Høyer
et al. 2007). Neither apply here, so we give a direct proof using
the optimization problem given by (2.4a), (2.6) and (2.4c).

Theorem 6.4. No positive-weighted adversary for the function
LMAJORITYk

can be better than Ω(log k).

Proof. Fix n. If X = (XS) is a family of positive semi-definite
matrices, let m(X) stand for the objective (2.4a), and �A,B(X)
stand for the left-hand side of (2.6). The proof is based on the
following lemma:

Lemma 6.5. For each 1 ≤ d ≤ k, there exist positive semi-definite
matrices X = (XS) with nonnegative entries such that m(X) =
O(1) and �A,B(X) ≥ 1 for all A,B ∈ C satisfying d ≤ |A \B| ≤ 2d.

The theorem immediately follows from Lemma 6.5. Indeed, we
cover the interval [1, k] with a logarithmic number of intervals of
the form [d, 2d]. For each of them, we apply Lemma 6.5 and take
the sum of the resulting matrices.
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So, it remains to prove the lemma. Consider the matrices XS

built in the following way. For each S, XS is a rank-1 matrix with
XS[[A,B]] = 2−n if both |A ∩ S| and |B ∩ S| lie in the interval
[k/2−√

d, k/2+
√

d], and zeroes elsewhere. Using Lemma 2.1, we
get that, for all A,

(6.6) m(X) = Pr
S

[k

2
−

√
d ≤ |S ∩ A| ≤ k

2
+

√
d
]

= Θ(
√

d/k),

where S is taken uniformly at random from 2[n]. Fix A,B ∈ C, and
let � = |A\B|. Assume d ≤ � ≤ 2d. Again, we have PrS

[
k−�
2

−√
d ≤

|A ∩ B ∩ S| ≤ k−�
2

+
√

d
]

= Ω(
√

d/k). Also, provided that the last

condition on A ∩ B ∩ S holds, we get that k
2

− √
d ≤ |A ∩ S| < k

2

with probability Ω(1), and similarly for k
2

≤ |B ∩ S| ≤ k
2

+
√

d.
Thus,

�A,B(X) = Ω(
√

d/k).

Combining this with (6.6), and rescaling the matrices XS, we get
the statement of Lemma 6.5. �

7. Further observations

In this section, we prove two additional results about the problems
studied in the previous sections. First, we show that many of the
above algorithms can be made exact.

Proposition 7.1. The quantum algorithms for the LORk
, the

LEXACT-HALFk
and the LMAJORITYk

problems from Theorems 3.1,
5.1 and 6.1 can be made exact without increasing their complex-
ity.

Proof. We use the same observation as in Iwama et al. (2012).
Inputs to all these problems are k-subsets of [n]. Due to symmetry,
the error probability of any of these algorithms is the same on all
inputs. Also, for each of the problems, there exists a deterministic
procedure that efficiently tests whether a given k-subset A is the
true input. Indeed, for the OR function, query the complement of
A. For exact-half, cover A by 3 subsets of size �k/2� and query
each of them. Similarly for the majority function.
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This means that we can apply the exact amplitude amplifi-
cation algorithm from Brassard et al. (2002), and get an exact
algorithm with an O(1) multiplicative overhead in complexity. �

Next, we show that the query complexity achieved in the previ-
ous sections cannot be obtained by a non-adaptive quantum query
algorithm. If h is the OR function, any non-adaptive quantum
algorithm requires Ω(k) queries. This follows from Zalka’s result
(Zalka 1999) and the fact that unstructured search can be reduced
to LOR. For the remaining problems, we obtain the following result:

Theorem 7.2. The non-adaptive quantum query complexity of
LMAJORITYk

and LEXACT-HALFk
is Ω(

√
k).

Note that this result is nearly tight: Using Fourier sampling like
in Atıcı & Servedio (2007), it is possible to solve both problems in
Õ(

√
k) quantum queries non-adaptively. Indeed, the Fourier spec-

trum of the majority and the exact-half functions is concentrated
on sets of size roughly

√
k, so, after O(

√
k log k) Fourier samples,

it is likely to have seen all k relevant variables.

Proof of Theorem 7.2. Essentially, we use the non-adaptive
version of the adversary bound from Koiran et al. (2010). We give a
direct proof, however. Consider a non-adaptive T -query algorithm
for one of these problems on n variables. The state of the algorithm
before the query is of the form

ψ =
∑

S1,...,ST

αS1,...,ST
|S1, . . . , ST 〉|φS1,...,ST

〉,

where Si are subsets of [n], and φS1,...,ST
are some unit vectors.

Assuming T = o(
√

k), we are going to construct two subsets A
and B such that O⊗T

A ψ and O⊗T
B ψ have large inner product. For

the latter, we have

(7.3)
∣
∣〈O⊗T

A ψ,O⊗T
B ψ

〉∣∣ ≥ 2
∑

|αS1,...,ST
|2 − 1,

where the summation is over all (S1, . . . , ST ) such that fA(Si) =
fB(Si) for all i ∈ [T ].
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The subsets A and B will be such that A ∩ B = D with |D| =
k − 1. Then, fA(S) = fB(S) if |S ∩ D| /∈ {�k/2� − 1, �k/2�} for
both cases of h equal to MAJORITYk or EXACT-HALFk.

It is easy to show, using Lemma 2.1, that if D is a (k−1)-subset
of [n] taken uniformly at random, and n is large enough, then, for
any S ⊆ [n], the probability of |S ∩ D| ∈ {�k/2� − 1, �k/2�} is
O(1/

√
k). By the union bound, the probability that fA(Si) =

fB(Si) for all i ∈ [T ] is 1 − o(1). By the linearity of expectation,
the expectation of the right-hand side of (7.3) is 1 − o(1). Hence,
there exist A and B such that it is not possible to distinguish O⊗T

A ψ
and O⊗T

B ψ with error probability less than 1/3. �

8. Discussion

In this paper, we studied the quantum query complexity of the
function Lh, when h is the OR, the exact-half, and the majority
function. For the first two functions, we gave optimal algorithms.
The algorithms are based on the adversary bound and attain at
least quartic improvement in query complexity in comparison with
the randomized algorithms when h is the exact-half or the majority
function. This shows that the dual adversary bound can be an
important tool for quantum learning algorithms.

One apparent open problem is the study of Q(Lh) for other
functions h. For instance, can our solution in Section 5 be general-
ized to the exact-� or the �-threshold functions? For the majority
function, there is still an exponential gap between the lower and
the upper bounds that we can prove. If the query complexity is
logarithmic, we would get an exponential separation using quan-
tum walks. There is already an example of such separation (Childs
et al. 2003), but the problem studied in the latter paper is not so
natural. However, we believe that the complexity is polynomial in
k. In this case, we would get an example of a quantum query lower
bound outperforming the positive-weighted adversary. There are
not so many cases known when a general adversary is strictly bet-
ter than a positive-weighted adversary (Belovs & Rosmanis 2014;
Reichardt & Špalek 2012). Of course, it is also possible to use
the polynomial method, as was done for the collision problem in
Aaronson & Shi (2004).
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Another open problem is to use these ideas in the development
of other learning or property testing algorithms. For instance, the
combinatorial group testing problem is related to junta testing. Is
it possible to use any ideas from the current paper to improve the
algorithm in Atıcı & Servedio (2007)?
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A. Basics of representation theory

In this appendix, we formulate the basic results in representation
theory of the symmetric group used in Section 4. For general rep-
resentation theory of finite groups, the reader may refer to Serre
(1977) and Curtis & Reiner (1962). For representation theory of
the symmetric group, we mostly use Sagan (2001).

An algebra A over a field K is a vector space over K that
is simultaneously a ring with the identity element. Moreover,
the algebra A has to satisfy the following associativity condition:
α(uv) = (αu)v = u(αv) for all α ∈ K and u, v ∈ A.

The only type of algebra we use in the paper is the group alge-
bra. Let G be a finite group. The group algebra KG is the vector
space over K with the elements of G forming a basis. The ring
multiplication operation for the basis elements of KG is inher-
ited from the group G and then uniquely extended by linearity
for the remaining elements. That is,

(∑
g∈G αgg

)(∑
h∈G βhh

)
=∑

g,h∈G αgβh(gh).
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Assume that A is an algebra over K. A (left) A-module is a
vector space M over K such that for all u ∈ A and m ∈ M , the
product um is defined that satisfies the following conditions:

u(m + n) = um + un, (u + v)m = um + vm, (uv)m = u(vm),

em = m, (αu)m = α(um),

for all α ∈ K, u, v ∈ A, and m,n ∈ M , and e is the identity
element of A. A submodule of M is a subspace of M that is closed
under multiplication by the elements of A. A module M is called
irreducible if it does not contain any submodule except for the
trivial ones: M itself, and the zero-dimensional subspace {0}.

Assume that M and N are A-modules. An A-homomorphism
from M to N is a linear operator θ : M → N that satisfies
θ(um) = uθ(m) for all u ∈ A and m ∈ M . Let Hom(M,N)
denote the linear space of all A-homomorphisms from M to N .
If an A-homomorphism θ is also a linear isomorphism, then θ is
called an A-isomorphism, and M and N are called A-isomorphic.

A direct sum M ⊕ N of M and N as linear spaces is an A-
module with the operation u(m ⊕ n) = um ⊕ un for all u ∈ A,
m ∈ M and n ∈ N .

A.1. Representations. We only consider RG-modules, where
G is a finite group, and R is the field of real numbers. Such modules
are known as (real) representations. To define an RG-module M ,
it suffices to define the products gu, where g ∈ G, and u is a basis
element of M . The operation u �→ gu is also known as group action.
We assume that M is equipped with an inner product satisfying
〈u, v〉 = 〈gu, gv〉 for all g ∈ G and u, v ∈ M . Such an inner product
can be always constructed (Sagan 2001, Proof of Theorem 1.5.3).

Lemma A.1 (Schur’s Lemma, Serre 1977, Section 2.2). Assume
θ : V → W is an RG-homomorphism between two irreducible RG-
modules V and W . Then, θ = 0 if V and W are not isomorphic.
Otherwise, θ is uniquely defined up to a scalar multiplier.

Maschke’s theorem (Sagan 2001, Theorem 1.5.3) implies that
any RG-module is decomposable into a direct sum of pairwise
orthogonal irreducible RG-modules:
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(A.2) M = M1 ⊕ M2 ⊕ · · · ⊕ Mm.

However, this decomposition is not unique.
Let V be an irreducible RG-module. The number of compo-

nents in (A.2) isomorphic to V is called the multiplicity of V in
M . Their direct sum is the canonical submodule of M associated
with V . Both the multiplicity and the canonical submodule do not
depend on the decomposition in (A.2) (Serre 1977, Section 2.6).

Let N be a direct sum of � copies of V , and let k be the multi-
plicity of V in M . Then, Schur’s lemma implies that, in a specif-
ically chosen basis, any RG-homomorphism from N to M can be
given by A ⊗ I, where A is an arbitrary k × �-matrix and I is the
d× d identity matrix where d is the dimension of V . In particular,
the dimension of Hom(N,M) is k�.

Assume that M is an RG-module and H is a subgroup of G.
Then, M can be also considered as an RH-module. It is called the
restricted module and is denoted by M↓H .

Let G and H be finite groups, M be an RG-module, and N be
an RH-module. Then, the tensor product of M and N as vector
spaces, M ⊗ N , is an R(G × H)-module with the group action
defined by (g, h)(u⊗v) = (gu)⊗(hv) for all (g, h) ∈ G×H, u ∈ M
and v ∈ N . This operation is called the outer tensor product. The
resulting module is irreducible if M and N are irreducible, and
every irreducible R(G × H)-module can be obtained in this way
(Serre 1977, Section 3.2).

A.2. Representations of the symmetric group. Through-
out this section, X is a finite set of n elements. Let N denote the
set of positive integers. The symmetric group on X is denoted by
SX . It consists of all permutations on X. Clearly, SX and SY are
isomorphic if |X| = |Y |.

A partition of n is a sequence λ = (λi)i∈N of non-increasing non-
negative integers that sum up to n, denoted λ � n. In particular,
λ is eventually zero, and its description is usually truncated at the
first zero. The diagram of λ is defined as λ = {(i, j) ∈ N

2 | j ≤ λi}.
A tableau of shape λ, or λ-tableau, is a bijection t : λ → X. For

example, if λ = (3, 1), and X = [4],
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t =
1 2 4
3

is a tableau with t(1, 1) = 1, t(1, 2) = 2, t(1, 3) = 4, and t(2, 1) =
3. For π ∈ SX , the notation πt denotes the composition π ◦ t,
which is also a tableau of shape λ. The ith row of t is defined
by Ri(t) = {t(i, j) | (i, j) ∈ λ}. The jth column of t is Cj(t) =
{t(i, j) | (i, j) ∈ λ}. For each λ-tableau t, we define two subgroups
of SX : Rt =

∏
i SRi(t) and Ct =

∏
j SCj(t).

The content of a function f : X → N is the sequence
(|f−1(i)|)

as i goes through N. Assume λ � n. A λ-tabloid is a func-
tion f : X → N of content λ. The set of all λ-tabloids forms an
orthonormal basis of the corresponding permutation module Mλ.
Let us, for greater clarity, denote the basis element corresponding
to f by vf . The group action on the basis elements is given by
πvf = vf◦π−1 .

For each λ-tableau t, denote vt = vf , where the λ-tabloid f
maps x to t−1(x)[[1]], i.e., to the number of the row of t that contains
x. Note that πvt = vπt. Define the element κt of the group
algebra RSX by

κt =
∑

π∈Ct

sgn(π)π =
∏

j

( ∑

π∈SCj(t)

sgn(π)π

)
,

where sgn(π) denotes the sign of the permutation π. The subspace
of Mλ spanned by κtvt, as t ranges over all λ-tableaux, is an RSX-
submodule. It is known as the Specht module Sλ corresponding to
λ (Sagan 2001, Proposition 2.3.5). Each irreducible RSX-module
is isomorphic to exactly one of the Specht modules (Sagan 2001,
Theorem 2.4.6).

Our next aim is to give a description of Hom(Sλ,Mμ) for par-
titions λ and μ of n. For that, it is easier to assume that X = λ.
As SX

∼= Sλ, this is without loss of generality. In this case, the
identity function id : λ → λ is a valid λ-tableau. A generalized
tableau of shape λ is a function T : λ → N. The tableau T is called
semi-standard if T (i, j + 1) ≥ T (i, j) and T (i + 1, j) > T (i, j) for
all i, j for which these expressions are defined.
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Theorem A.3 (Sagan 2001, Theorem 2.10.1). For each general-
ized tableau T of shape λ and content μ, there exists a unique RSX-
homomorphism θT : Mλ → Mμ satisfying θT (vid) =

∑
π∈Rid

πvT .
The corresponding set of restricted homomorphisms {θT |Sλ}, where
T runs through the set of all semi-standard generalized tableaux
of shape λ and content μ, forms a basis of Hom(Sλ,Mμ).

Assume X = Y ∪ Z is a partition. Let Sλ, Sμ and Sν be
Specht SX-, SY - and SZ-modules, respectively. The Littlewood-
Richardson rule (Sagan 2001, Section 4.9) gives the multiplicity of
Sμ ⊗ Sν in Sλ↓SX×SY

. The multiplicity is 0 unless μ ⊆ λ. Now
assume that μ ⊆ λ, and consider a function f : λ \ μ → N. It is
known as a skew tableau. A semi-standard skew tableau is defined
as for generalized tableaux. The multiplicity of Sμ⊗Sν in Sλ↓SX×SY

is equal to the number of semi-standard tableaux f : λ \ μ → N

of content ν such that the content of the restriction of f onto
{(i, j) ∈ N

2 | j ≥ a} is non-increasing for any a ∈ N.

A.3. Johnson association scheme. In this section, we apply
the general theory from the previous section to the special case
used in Section 4 and prove some results from that section.

Let N = [n]. The permutation SN -module M(N, k) corre-
sponding to a partition μ = (n − k, k) is known as the Johnson
association scheme. In this case, we identify a μ-tabloid f with
the subset f−1(2). That is, we assume that M(N, k) has the set
of all k-subsets of [n] as its orthonormal basis. The tensor product
A ⊗ B of two disjoint subsets is understood as their union. For
example,

({1} − {2}) ⊗ ({3} − {4}) = {1, 3} − {1, 4} − {2, 3} + {2, 4}

is an element of M(N, 2) for n ≥ 4.

Proof of Lemma 4.7. We aim to apply Theorem A.3. Let
λ � n, and X = λ. If λ3 > 0, or if λ3 = 0 but λ2 > k, then there
is no semi-standard generalized tableaux of shape λ and content
μ. So, we will further assume that λ3 = 0, λ2 = t ≤ k. In this
case, there is unique semi-standard generalized tableau T of shape
λ and content μ:
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(A.4) T =
1 . . . 1 1 1 . . . 1 2 . . . 2
2 . . . 2

,

where there are t occurrences of ‘2’ in the second row, and k − t
occurrences in the first row. Hence, M(N, k) =

⊕k
t=0 Sk(N, t).

It is easy to see that the dimension of M(N, k) is
(

n
k

)
. As

M(N, k) has only one additional irreducible submodule, S(n−k,k),
compared to M(N, k − 1), the dimension of S(n−k,k) is

(
n
k

)− (
n

k−1

)
.

By Theorem A.3, Hom(Sλ,Mμ) is 1-dimensional. Moreover,
the only (up to a scalar factor) RSX-homomorphism θ : Sλ → Mμ

maps κidvid into κid

∑
π∈Rid

πvT . Let us analyze the last expression
in more detail. The elements of Rid permute the elements in the
rows of the tableau in (A.4), and the elements of Cid permute the
elements in its columns. Let π ∈ Rid, and U = T ◦ π−1. Then,
U(2, j) = 2 for all j. If U(1, j) = 2 for some j ≤ t, then κidvU = 0,
because, for any σ ∈ Cid, σvU cancels out with τσvU , where τ is the
transposition exchanging (1, j) and (2, j). Thus, κid

∑
π∈Rid

πvT is
proportional to a linear combination of generalized tableau U of
the same form as T , where each of the first t columns of U contain
one ‘1’ and one ‘2’, and some of the next k − t columns contain ‘2’.
Moreover, the coefficient of U in this linear combination is 1 if its
second row contains even number of ‘1’s, and −1 otherwise.

Let us now translate this to RSN . Let a = (a1, . . . , at) and b =
(b1, . . . , bt) be two disjoint sequences of pairwise distinct elements
of N . We choose a bijection t : λ → N such that t(1, j) = bj

and t(2, j) = aj for all j ∈ [t]. In other words, we identify the
positions in the tableau with integers in N . In our interpretation,
a generalized tableau U corresponds to the set of positions labeled
by ‘2’. Thus, if we apply the bijection t to the homomorphism θ,
we get that the only RSN -homomorphism from Sλ to Mμ maps
the vector

({a1} − {b1}
) ⊗ ({a2} − {b2}

) · · · ⊗ ({at} − {bt}
)

(corresponding to κidvid) into the vector

({a1} − {b1}
)⊗· · ·⊗({at}−{bt}

)⊗
( ∑

A⊆N\{a1,...,at,b1,...,bt} : |A|=k−t

A
)

(corresponding to κid

∑
π∈Rid

πvT ). �
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Proof of (4.11). Let N = N0 ∪ N1 be a partition, and let
Sk(N, t) be the unique copy of S(n−t,t) in M(N, k). We aim to apply
the Littlewood-Richardson rule in order to get the decomposition
of Sk(N, t)↓SN0

×SN1
into irreducible submodules Sμ⊗Sν . As before,

the multiplicity is zero if μ3 > 0, ν3 > 0, μ2 > k, or ν2 > k. Thus,
let us assume μ3 = ν3 = 0, and μ2 = t0, ν2 = t1 satisfy t0, t1 ≤ k.
Thus, if there is any skew tableau satisfying the conditions of the
Littlewood-Richardson rule, it must have the form

∗ . . . ∗ ∗ . . . ∗ . . . 1 . . . 1
∗ . . . ∗ 1 . . . 2

,

where the ∗ stand for the elements of μ. (The crucial observation
here is that the right-most element of the first row must be equal
to 1.) That is, the inequality t1 + t2 ≤ t must hold, and in this
case the multiplicity is 1. �
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