
Int J Geomath (2015) 6:251–294
DOI 10.1007/s13137-015-0073-9

ORIGINAL PAPER

Compression approaches for the regularized solutions
of linear systems from large-scale inverse problems

Sergey Voronin1 · Dylan Mikesell2 · Guust Nolet3

Received: 16 January 2015 / Accepted: 6 May 2015 / Published online: 19 May 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract We introduce and compare new compression approaches to obtain regular-
ized solutions of large linear systems which are commonly encountered in large scale
inverse problems.Wefirst describe how to approximatematrix vector operationswith a
largematrix through a sparser matrix with fewer nonzero elements, by borrowing from
ideas used in wavelet image compression. Next, we describe and compare approaches
based on the use of the low rank singular value decomposition (SVD), which can result
in further size reductions. We describe how to obtain the approximate low rank SVD
of the original matrix using the sparser wavelet compressed matrix. Some analytical
results concerning the various methods are presented and the results of the proposed
techniques are illustrated using both synthetic data and a very large linear system from
a seismic tomography application, wherewe obtain significant compression gainswith
our methods, while still resolving the main features of the solutions.

Keywords Ill-posedness · Regularization · Singular value decomposition ·
Wavelets · Data compression

Mathematics Subject Classification 65F22 · 86-08 · 65T60 · 15A18

B Sergey Voronin
sergey.voronin@colorado.edu

1 Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA

2 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA

3 Géoazur, Université de Nice, 06560 Sophia Antipolis, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13137-015-0073-9&domain=pdf

252 Int J Geomath (2015) 6:251–294

1 Introduction

This paper describes practical approaches to obtain approximate but accurate regu-
larized solutions to large linear systems arising from large scale inverse problems,
without the need to load into memory the often very large original matrix used in the
corresponding optimization problems. Typically, such as in the case of the seismic
tomography application which we mention here for illustration (Simons et al. 2011)
(involving the reconstruction of seismic wave velocities in the Earth’s interior with
respect to a given spherically symmetric model), the physics calls for a solution of a
linear system Ax = b̄ with matrix A ∈ R

m×n (often with m �= n). In practice, instead
of the true right hand side b̄, we are given the noisy right hand side b = b̄ + ν, with
ν being an unknown noise vector. The matrix A can be very large and is likely to
be ill-conditioned and exhibit fast nonlinear decay of singular values (Nolet 2008).
In order to obtain a solution given matrix A and right hand side b, one often uses
a derivative of Tikhonov regularization involving a regularization parameter λ > 0
(Tikhonov 1963). In its classical form, this is simply the minimization problem:

x̄ = argmin
x

{
||Ax − b||22 + λ||x ||22

}
, (1.1)

which replaces the constrained system Ax = b by the �2 minimization of the model
residual norm ‖Ax −b‖2, with a constraint on the �2 norm of the model, controlled by
the parameter λ. For large λ, x̄ tends to be close to zero. Regularization is necessary
to counter the effects of ill-conditioning: the presence of small singular values in the
matrix, which if left unaccounted for, blows up the norm of the solution and makes
it very sensitive to data errors (Calvetti et al. 2000). The latter part of this property is
worth repeating as it is central to the ideas in this paper: small errors in the operator
A and the right hand side b do not induce big changes in the regularized solution.
The regularization in (1.1) is referred to as �2 regularization, because it involves
the minimization of the �2 model norm. Other types of regularization are possible:
for example, sparsity constrained regularization is also frequently used, including in
geophysical applications (Chárlety et al. 2013). In this paper,wediscuss the application
of our methods to �2 regularization, as it is the most commonly used regularization.
However, the techniques apply also to other types of regularization and optimization
techniques. The quadratic functional in (1.1) can be differentiated to yield the linear
system for the regularized solution:

(AT A + λI)x̄ = AT b. (1.2)

If the matrix A is not too large, then there is no problem in solving this linear system
with an iterative algorithm. A conjugate gradient or the LSQR algorithm (Paige and
Saunders 1982) can be efficiently used for this purpose. Typically, we may wish to
incorporate additional terms into the regularization, such as Laplacian smoothing
(Nolet 2008). In that case we solve instead:

x̄ = argmin
x

{
||Ax − b||22 + λ1||x ||22 + λ2||Lx ||22

}
, (1.3)

123

Int J Geomath (2015) 6:251–294 253

which can be solved through the linear system:

(AT A + λ1 I + λ2L
T L)x̄ = AT b, (1.4)

or through the augmented least squares problem and its corresponding normal equa-
tions:

x̄= argmin
x

∥∥∥∥∥∥

⎡
⎣

A√
λ1 I√
λ2L

⎤
⎦ x −

⎡
⎣
b
0
0

⎤
⎦

∥∥∥∥∥∥

2

2

�⇒
⎡
⎣

A√
λ1 I√
λ2L

⎤
⎦
T ⎡

⎣
A√
λ1 I√
λ2L

⎤
⎦ x̄=

⎡
⎣

A√
λ1 I√
λ2L

⎤
⎦
T ⎡

⎣
b
0
0

⎤
⎦ .

As long as A and L can be applied to vectors, the solution can be obtained by a number
of iterative algorithms. The problem occurs when A is too large to load into memory.
In the seismic tomography application we refer to (Debayle and Sambridge 2004;
Simons et al. 2011; van Heijst and Woodhouse 1999), the matrix is several terabytes
in size, so it may not be possible to load into memory in full, even on relatively large
memory computer clusters. Thus, we must find ways to condense the matrix size
using acceptable approximations which do not significantly alter the final regularized
solutions.

Many attempts at approximatingmatrices have beendocumented (Markovsky2012;
Wang and Zhang 2013). However, few attempts have been made to apply the approx-
imations to regularization. One of the main papers which precedes ours is Lampe
et al. (2012), where Krylov subspace approximations for Tikhonov regularization are
discussed. In this paper, we discuss two different techniques: wavelet based approxi-
mations and low rank singular value decomposition (SVD). Our SVD techniques are
especially effective when the matrix exhibits fast nonlinear decay of singular values.
From our experiments, Krylov subspace dimensionality reduction techniques, while
interesting and promising, tend to do worse when the decay of singular values of the
matrix is fast. This is in contrast to the techniques we describe, which in such cases,
do not significantly degrade the solution quality and lower the hardware requirements
to obtain a solution. Even if A is small enough that it can be loaded into memory, there
may still be interest in the techniques we describe for gains of speed or to be able to
solve several problems at once on one machine.

2 Organization of the paper

We now briefly describe the organization of this paper. We assume that the reader is
interested in obtaining regularized solutions to a system Ax = b, where A ∈ R

m×n is
as previously described: very large (perhaps more than a TB), with rapidly decaying
singular values, and stored on the disk. In Sect. 3, we describe notation and preliminary
concepts including the various norms we use, the SVD, and a few lemmas that we use
for our later derivations. In Sect. 4, we describe how to do approximate matrix–vector
operations with the matrix A, using a smaller matrix M derived from A, via a wavelet
thresholding based algorithm. The matrix M is obtained from A entirely on the disk.
The big A matrix is never required to be loaded into RAM. We assume that on output

123

254 Int J Geomath (2015) 6:251–294

of this procedure, the matrix M , which is still large, but significantly smaller than A
(in memory size), can be loaded into RAM at least for a limited number of operations.
After M is obtained, two options are available to the user: the regularization can be
performed directly via M , or greater compression may be sought. In many cases, we
assume that the latter will be true: the user would like to obtain a matrix small enough
to use on their local machine. In Sect. 5, we describe how to compute and use the low
rank SVD, which is known to provide an optimal (in terms of error in the Frobenius
and spectral norms) rank k approximation of the matrix. We mention how to compute
such an approximation with a randomized algorithm, which uses a limited number
of matrix vector operations with M (or with A, if that is feasible). We introduce
several different strategies which can be used. We show that several strategies are
mathematically equivalent, but one may be preferred over others depending on the
setup of the problem. Both in Sects. 4 and 5, we mention block matrix techniques,
which are very useful for very large problems, where operating with the full matrices
A or M is not possible. The outlined strategies make feasible to compute approximate
regularized solutions to the original Ax = b system, usingmatricesmany times smaller
than A, either with fewer nonzeros, in the case of the wavelet compressed M , or with
much smaller dimensions, in the case of the low rank SVD. For some approaches,
the matrices may be small enough to load on modern laptop computers, even if the
original Awas more than a TB in size. In Sect. 6, we present numerical experiments to
illustrate the techniques for the compression approaches outlined in Sects. 4 and 5.We
present results for both synthetic data, exhibiting different rates of decay of singular
values and different wavelet compressibility characteristics, and for real data from a
large scale seismic tomography application.

3 Notation and preliminaries

We refer to x ∈ R
n and A ∈ R

m×n , as respectively, a real valued vector of n elements
and a real valued matrix ofm rows and n columns. Most of the techniques we describe
apply to complex valued matrices also. For vectors, we define the vector norm as the
usual Euclidean norm:

‖x‖2 =
(

n∑
i=1

x2i

) 1
2

,

and we use the notation ‖x‖ to mean ‖x‖2. For matrices, we define the spectral norm
as:

‖A‖2 = σmax(A)

where σmax(A) denotes the largest singular value of matrix A. The Frobenius norm is
defined as:

‖A‖F =
⎛
⎝∑

i, j

A2
i, j

⎞
⎠

1
2

.

By A−1 we denote the inverse matrix, which is applicable only for square dimensions
(i.e. m = n). The following result, which can be directly verified by means of block

123

Int J Geomath (2015) 6:251–294 255

matrix inversion, is known as the Woodbury (1950) inverse formula and will be useful
in our analysis in Sect. 5:

Lemma 3.1 Take D ∈ R
n×n, P ∈ R

n×k, T ∈ R
k×k , and R ∈ R

k×n. Assume that D
and T are invertible. Then D + PT R is invertible if and only if T−1 + RD−1P is,
and the following identity holds:

(D + PT R)−1 = D−1 − D−1P
(
T−1 + RD−1P

)−1
RD−1. (3.1)

Every matrix A admits a SVD (Trefethen and Bau 1997) of the form

A = U � V T ,

m × n m × p p × p p × n
(3.2)

where p = min(m, n) and U and V are orthonormal matrices and � is a diagonal
matrix. The columns (u j)

p
j=1 and (v j)

p
j=1 of U and V are called the left and right

singular vectors of A, respectively, and the diagonal entries (σ j)
p
j=1 of � are the

singular values of A. The singular values of A are ordered so that σ1 ≥ σ2 ≥ · · · ≥
σp ≥ 0. U and V have orthonormal columns (UTU = V T V = Ip).

U = [
u1 u2 . . . u p

]
, V = [

v1 v2 . . . vp
]
, and � =

⎡
⎢⎢⎢⎣

σ1 0 0 · · ·
0 σ2 0 · · ·
0 0 σ3 · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎦ ,

so that

A =
p∑

j=1

σ j u j v
T
j .

In finite precision, the numerical rank of the matrix will be r and it is possible (in fact,
likely for a large matrix) that r < p. That is, σ j appears as 0 to the machine for j ≥ r .
Thus, in such scenario we write:

A =
r∑
j=1

σ j u j v
T
j .

where the precise value of r is typically unknown. It is always the case that r ≤ p.
For a matrix which is not well conditioned and has fast decay of singular values,

many nonzero singular values σ j for j < r will be very small relative to the largest
singular value σ1 and the drop off in value starting from σ1 will be rapid and nonlinear.
In these cases, the low rank SVD approximation Ak provides a good approximation
to the matrix for relatively small k relative to p. We define Ak by taking into account
only the first k < p singular values and vectors: that is, with Uk ∈ R

m×k consisting
of the first k columns of U, �k = Diag(σ1, . . . , σk) ∈ R

k×k consisting of k rows and
columns of �, and Vk ∈ R

n×k consisting of the first k columns of V :

123

256 Int J Geomath (2015) 6:251–294

Ak =
k∑
j=1

σ j u j v
T
j = Uk �k V

T
k , (3.3)

Uk = [
u1 u2 . . . uk

]
, Vk = [

v1 v2 . . . vk
]
, and �k =

⎡
⎢⎢⎢⎢⎢⎣

σ1 0 0 · · · 0
0 σ2 0 · · · 0
0 0 σ3 · · · 0
...

...
... 0

0 0 0 · · · σk

⎤
⎥⎥⎥⎥⎥⎦

.

By the Eckart–Young theorem (Trefethen and Bau 1997, Theorem 5.8), it is known
that Ak is the optimal rank k approximation to A in both the spectral and Frobenius
norms and that:

‖A − Ak‖2 = σk+1,

when the error is measured in the �2 operator norm, and

||A − Ak ||F =
⎛
⎝

p∑
j=k+1

σ 2
j

⎞
⎠

1/2

in the Frobenius norm. When k
 p, the matrices Uk, �k , and Vk are significantly
smaller than the corresponding full SVD matricesU, �, and V . The choice of k is up
to the user, but greater k requires greater computation time and storage requirements.
Notice that A and Ak are related via the expansion:

A =
k∑

i=1

σi uiv
T
i +

r∑
i=k+1

σi uiv
T
i

where the first sum on the right corresponds to Ak and the second sum corresponds
to Âk , consisting of the remaining singular vectors (in matrices Ûk, V̂k) which are not
used in the truncated SVD expansion. These remaining singular vectors are orthogonal
to the vectors in matrices Uk and Vk which go into the construction of Ak . We have
the following relations for k < r :

U = [Uk, Ûk]; V = [Vk, V̂k];

A =
k∑

i=1

σi uiv
T
i +

r∑
i=k+1

σi uiv
T
i = Uk�kV

T
k + Ûk�̂k V̂

T
k

= Ak + Ûk�̂k V̂
T
k = Ak + Âk,

AT =
k∑

i=1

σivi u
T
i +

r∑
i=k+1

σivi u
T
i = Vk�kU

T
k + V̂k�̂kÛ

T
k

= AT
k + V̂k�̂kÛ

T
k = AT

k + Âk
T
,

123

Int J Geomath (2015) 6:251–294 257

AT A =
k∑

i=1

σ 2
i viv

T
i +

r∑
i=k+1

σ 2
i viv

T
i = Vk�

2
k V

T
k + V̂k�̂

2
k V̂

T
k

= AT
k Ak + V̂k�̂

2
k V̂

T
k = AT

k Ak + Âk
T
Âk,

where

Ak =
k∑

i=1

σi uiv
T
i = Uk�kV

T
k and AT

k Ak =
k∑

i=1

σ 2
i viv

T
i = Vk�

2
k V

T
k ,

and UT
k Ûk = V T

k V̂k = 0 and UT
k Uk = Û T

k Ûk = V T
k Vk = V̂ T

k V̂k = I . Additionally,
we have the following properties which we will exploit in Sect. 5:

Lemma 3.2 For vectors v ∈ R
k and w ∈ R

m, ||Ukv||2 = ||v||2 and ||UT
k w||2 ≤

||w||2. The same also holds for vectors v̄ ∈ R
k and w̄ ∈ R

n and matrices Vk and V T
k .

Proof Note that

UUT = I = [Uk, Ûk]
[
UT
k

Û T
k

]
= UkU

T
k + ÛkÛ

T
k �⇒ UkU

T
k = I − ÛkÛ

T
k .

Thus:

||Ukv||22 = 〈Ukv,Ukv〉 = 〈v,UT
k Ukv〉 = 〈v, v〉 = ||v||22,

||UT
k w||22 = 〈UT

k w,UT
k w〉 = 〈w,UkU

T
k w〉 = 〈w, (I − ÛkÛ

T
k)w〉

= 〈w,w〉 − 〈w, ÛkÛ
T
k w〉 ≤ ||w||22.

The computations with Vk and V T
k take similar form. �

4 Approximate matrix–vector operations with wavelet compression

Most iterative algorithms applicable to our discussion canbe successfully implemented
if we can perform the two key operations with the matrix A:

Ax and AT y, (4.1)

where A ∈ R
m×n, x ∈ R

n and y ∈ R
m . We now discuss a technique to perform

these operations approximately, using a smaller matrix derived from A by means
of wavelet compression (Daubechies 1988; Härdle et al. 1998). Wavelets provide a
multi-resolution approach to signal analysis, capturing the fine and coarse scale parts
of a signal, and wavelet transforms can be performed efficiently (Akansu and Haddad
1992; Sweldens 1995). In our application, the matrix rows have features which are
well represented bywavelets. Tomotivate this approach, considerwavelet compression
applied to a geophysical model (or any typical vectorized image). We compare the

123

258 Int J Geomath (2015) 6:251–294

original model x (in row vector form) to the inverse transform of the thresholded
wavelet transformed model based on the relation:

x ≈ (W−1(T(WxT)))T , (4.2)

whereW andW−1 represent the forward and inverse wavelet transforms (Meyer 1993)
and the thresholding operation T(·) retains a certain percentage of the largest coef-
ficients (by absolute value) of its input vector. The transpose operations assure that
we are applying the transforms to column vectors, in view of their representation as
matricesW andW−1. Relation (4.2) holds when the row vector x is wavelet compress-
ible. This is not necessarily the case for arbitrary x , yet does hold in many situations.
For example, in the case of the application we allude to in this paper, the vectors
are geophysical kernels representing a sensitivity of the observable (usually a phase
or a delay) with respect to the intrinsic velocity as a function of space (Marquering
et al. 1998). These kernels arise from integral equations and are generally smooth, and
have been observed by us to be compressible by imposing a threshold on the wavelet
coefficients. Many different kinds of thresholding functions exist. For our purposes,
we simply use the hard thresholding function:

Hα(x) =
{
x if |x | > α,

0 if |x | ≤ α.
(4.3)

With the right choice of wavelet transform, only a small fraction of the coefficients in
the wavelet transformed representationWx need to be retained for a good reconstruc-
tion. That is, the threshold α can be taken to be quite large relative to the magnitudes
of the elements of the vector Wx . In Fig. 1, below, a smooth CDF 9–7 transform was
used (Cohen et al. 1992). We compare the original row vectorized image x to the
reconstructed image (W−1

T(WxT))T using a 2D CDF 9–7 transform over the image.
We observe that as the amount of retained nonzero wavelet coefficients decreases, the
reconstruction quality worsens, but the main features of the image are still retained. In

the rightmost plot of Fig. 1, we define E = 100 ‖x−(W−1
T(WxT))T ‖

‖x‖ as the percent error

and N = 100 nnz(T(WxT))

nnz(WxT)
as the percent coefficients retained. Clearly, the reconstruc-

tion error can be controlled by keeping a certain (typically small) number of nonzero
coefficients. Notice also that at about 7% coefficients retained, we have a substan-
tial 30% error E . Yet, the image looks quite recognizable to the eye, with a bit of
smoothing compared to the original.

Assuming the rows of our matrix A are wavelet compressible [that is for some
relatively small threshold, satisfy approximately the relation (4.2)], we would like to
apply the same principle to approximate matrix vector operations (4.1) with the big
original matrix A through a smaller matrix M so that only the smaller matrix M needs
to be loaded into memory. The matrix M will have the same dimensions as A but
fewer nonzeros, so it takes less space on disk and in memory. One forms this matrix
by transforming and thresholding the individual rows of A, an operation which can be
done entirely on the disk, without loading any parts of A into RAM. The transformW
used for each row can vary from application to application, depending on the structure

123

Int J Geomath (2015) 6:251–294 259

5 10 15 20 25 30
0

10

20

30

40

50

60
% ERRORS vs % NNZ RETAINED

N

E

Fig. 1 A fractal image x (left) and reconstructions (W−1(T(WxT)))T with 1.4 and 6.8% of retained
wavelet coefficients. Plot of percent error norm vs percent nonzeros retained

of the rows of A. In our seismic tomography application for which we give examples
in Sect. 6, we simply used the 1D CDF 9–7 transform for each row disregarding
their inherent multi-dimensional structure. We believe that even better results can be
obtained by tailoring W to the structure of the matrix data.

Each row of M is obtained by applying the wavelet transform and thresholding to
the corresponding row of A:

A =

⎡
⎢⎢⎢⎣

r1
r2
...

rm

⎤
⎥⎥⎥⎦ → M =

⎡
⎢⎢⎢⎣

T(WrT1)T

T(WrT2)T

...

T(WrTm)T

⎤
⎥⎥⎥⎦ = T(AWT) ≈ AWT .

We can then approximate the operations (4.1). Using the relations:

Mx ≈ AWT x and MT y ≈ (AWT)T y = W AT y,

we obtain the approximation formulas:

Ax ≈ MW−T x and AT y ≈ W−1MT y. (4.4)

This means that the operations (4.1) can be performed approximately via (4.4), using
the smaller matrix M and the inverse and inverse-transpose wavelet transforms. In
practice, only M needs to be loaded in memory as the wavelet transforms would be
implemented as routines. The inverse-transpose transform is equivalent to the forward
transform when W is orthogonal and W−1 = WT . For the non-orthogonal case,
such as for example the CDF 9–7 transform, the inverse-transpose transform can be
approximated by applying the forward transformwith the inverse filters. The success of
this approximation method depends on the size ratio between M and A and the percent
error in the approximate operations. This depends on the data, the transform that is
used, and the threshold used in the thresholding function. Typically, we identify the
threshold α in (4.3) as follows. The input is sorted by putting the entries with largest
absolute magnitude in front. Then a threshold is identified by putting the marker
at some point of the nonzero entries (for example at the largest 15% mark of the
total nonzeros). Then all the entries with absolute magnitude less than the identified
threshold are zeroed out. The percent error in the approximate operations then depends
on the percent error in the reconstruction of each row. That is, if for an arbitrary row

123

260 Int J Geomath (2015) 6:251–294

r, (W−1
T(WrT))T is not close to r , then the approximate operations using M formed

with this thresholdwill probably not be accurate.A less aggressive threshold thenneeds
to be used. Later we give examples for synthetic data and our seismic tomography
application. For our application, we have observed that one can expect M to be at least
3 times smaller in memory requirements than A without incurring significant errors
in the operations Ax, AT y, and AT Ax .

If A is very large, the matrix M may still be too big to load directly into memory. In
that case, we may consider splitting the matrix in parts along its rows, with the matrix
vector operations applied blockwise:

A =

⎡
⎢⎢⎢⎣

A1
A2
...

Ap

⎤
⎥⎥⎥⎦ �⇒ Ax =

⎡
⎢⎢⎢⎣

A1x
A2x
...

Apx

⎤
⎥⎥⎥⎦ and AT y =

⎡
⎢⎢⎢⎣

A1
A2
...

Ap

⎤
⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎣

y1
y2
...

yp

⎤
⎥⎥⎥⎦ =

p∑
j=1

AT
j y j .

Next, we can apply the wavelet compressed technique to the block matrices. We can
proceed to form the matrices M1 = T(A1WT

1), . . . , Mp = T(ApWT
p), which are

smaller wavelet thresholded versions of the original blocks A1, . . . , Ap. We can then
perform approximate operations using these new sparser blocks:

A =

⎡
⎢⎢⎢⎣

A1
A2
...

Ap

⎤
⎥⎥⎥⎦ → M =

⎡
⎢⎢⎢⎣

T(A1WT
1)

T(A2WT
2)

...

T(ApWT
p)

⎤
⎥⎥⎥⎦ �⇒ Ax ≈

⎡
⎢⎢⎢⎣

M1W
−T
1 x

M2W
−T
2 x
...

MpW−T
p x

⎤
⎥⎥⎥⎦

and AT y ≈
p∑

j=1

W−1
j MT

j y j . (4.5)

In the above formulas, we have used different transform matricesW1, . . . ,Wp for the
different blocks. This may provide an advantage when the data in the matrix can be
grouped. For example, some groups may have mostly smooth and others may have
mostly sharp features. In such a case, itmaybe advantageous to use different transforms
(ex, smooth CDFwavelet or sharper Haar wavelet) on the different blocks. If this is not
the case, the same transform can be used for each block so thatW1 = · · · = Wp = W .

Let us now discuss the application of these ideas to (1.2). Plugging in the approxi-
mated matrix–vector operations we obtain:

(W−1MT MW−T + λI)x̃w = W−1MTb.

where x̃w will be the approximation to x̄ in (1.2). If A is so large that after forming M
we still cannot load M into memory, then M would be split into blocks M1, . . . , Mp.
No matter how large A is, we can always choose p large enough so that the individual
blocks Mj are manageable in size and can be loaded into RAM. In that case, we can
still do operations in blocked form via (4.5) by loading as many parts of M as we

123

Int J Geomath (2015) 6:251–294 261

can into memory, performing part of the operation and then replacing the in-memory
blocks with the remaining blocks of M to perform the rest. As long as fast disks
(such as SSDs) are available, this is viable in practice, but may be very slow if many
operations are needed. In the case thatM is too large to be loaded in full, the techniques
discussed in the following section can be used to obtain further size reductions.

5 Low rank SVD approximation

The wavelet approximation techniques for matrix–vector operations discussed in the
previous section enable us to approximate the operations (4.1) through amatrix several
times smaller than A. However, in practice, the matrix M can still be quite big if A is
particularly large. It is plausible that we can do some operations with A through M but
only for a relatively short amount of time [perhaps through the blocked form (4.5)].
Assuming that we can indeed do a limited number of matrix vector multiplications
with A through M , we now discuss other techniques for compression based on the
low rank SVD. Once such a decomposition is obtained through a limited amount
of matrix vector multiplications with A (approximated through M), we can obtain
approximate forms of regularization algorithms which require the use of significantly
smaller matrices.

5.1 Computation with randomized algorithm

We now discuss how the low rank SVD of rank k may be computed. One direct way
is to compute it from the full SVD of the matrix. Given the full SVD A = U�V T

one can take the first k columns of U and V to be the matrices Uk and Vk and the
first k diagonal elements of � to form �k . For large matrices, this is not practical
since the computation of the full SVD is prohibitively expensive [the cost for anm×n
matrix is on the order ofO(mnmin(m, n)) operations (Trefethen and Bau 1997)]. The
algorithmwhich we use is an adaptation of themethod proposed in Halko et al. (2011).
The cost of the proposed randomized algorithm for the rank k SVD approximation is
substantially lower [the cost is O(mnk) operations].

The randomized algorithm finding a rank k approximation of A ∈ R
m×n proposed

in Halko et al. (2011) consists of several simple steps. The main idea is to obtain a
good estimate for the range of A by forming products of A with a sample of random
vectors, then using the orthogonal basis of this sample matrix to project the original
matrix into a smaller, lower dimensional one, of which we extract the full SVD and
use these components to construct the low rank SVD of the original big matrix A. The
steps are as follows:

• Take k samples of the range of matrix A by multiplying A with random Gaussian
vectors to form sample matrix Y of size m × k. We then have range Y ≈ range A.

• Obtain an orthogonal matrix Q from Y (by e.g. performing QR factorization on Y
to get Y = QR, where QT Q = I and R is upper triangular). Then range Q ≈
range A �⇒ QQT A ≈ A.

123

262 Int J Geomath (2015) 6:251–294

• Project the original matrix into a lower dimensional one: B = QT A where B is
k × n, substantially smaller than A which is m × n.

• Take the SVD of the smaller matrix B = Ũk�kV T
k .

• Take as low rank SVD of A the product Uk�kV T
k with Uk = QŨk

(since QQT A≈ A).

Various interpretations of these steps from Halko et al. (2011), including description
of developed open source software can be found in Voronin and Martinsson (2015).
We describe here the details of one particular approach mentioned in Voronin and
Martinsson (2015), and formulate it in awaywhich can be used for very largematrices.
In the approach we use, we construct a smaller matrix BBT and work with this matrix
instead of B, because the matrix B of size k × n, can still be quite large for large n.
We compute the SVD components Ũk and �k of B using the eigendecomposition of
the small k × k symmetric matrix BBT and obtain Vk by applying BT . This way, we
avoid building B or taking the SVD of it directly. We use the following relations:

B = Ũk�kV
T
k =

k∑
i=1

σi ũiv
T
i ; BT = Vk�kŨ

T
k ; Bvi = σi ũi ;

BBT =
(

k∑
i=1

σi ũiv
T
i

) ⎛
⎝

k∑
j=1

σ j ũ jv
T
j

⎞
⎠

T

=
k∑

i, j=1

σiσ j ũiv
T
i v j ũ

T
j

=
k∑

i=1

σ 2
i ũi ũ

T
i = Ũk DkŨ

T
k .

This means the eigendecomposition of the k × k matrix BBT gives us the low rank
SVD components Uk = QŨk and �k = √

Dk element-wise. To compute the right
eigenvectors vi , we can use the following relations:

BT Ũk = Vk�kŨ
T
k Ũk = Vk�k �⇒ BT Ũk�

−1
k = Vk,

which implies:

vi = Vkei = (BT Ũk�
−1
k)ei = 1

σi
BT ũi = 1

σi
AT Qũi , (5.1)

assuming all the singular values in �k are above zero (which is the case for k smaller
than the numerical rank r).

Notice that all matrix–vector operations involving A and AT can be approximated
via the wavelet compressed matrices M and MT . To build up BBT column by column
we can use matrix–vector products with standard basis vectors e j :

BBT e j = QT AAT Qe j ≈ QT MW−T W−1MT Qe j , (5.2)

and for the right eigenvectors, we have from (5.1) that:

vi = 1
σi
AT Qui ≈ 1

σi
W−1MT Qui .

123

Int J Geomath (2015) 6:251–294 263

We now illustrate the main steps of the random algorithm to compute the low rank
SVD, which we use in our computations for the numerical experiments. Below, we
use Matlab like pseudocode.

• Take k samples of matrix A with random Gaussian vectors and perform Gram–
Schmidt orthogonalization to calculate the projection matrix Q.

1 for j=1:k
2 rj = randn(n,1);
3 yj = A*rj;
4 Y(:,j) = yj;
5 end
6

7 Q = Y;
8 for ind =1:2
9 for j=1:k

10 vj = Q(:,j);
11 for i=1:(j-1)
12 vi = Q(:,i);
13 vj = vj - project_vec(vj ,vi);
14 end
15 vj = vj/norm(vj);
16 Q(:,j) = vj;
17 end
18 end

where the projection of v in direction of u is defined as (v·u)

||u||22
u. For best results,

the Gram–Schmidt orthogonalization should be performed twice to account for
loss of orthogonality. Note that for matrix–vector multiplications with A we use
Ark ≈ MW−T rk .

• Build the k×k matrix BBT = QT AAT Q by computing k matrix–vector products
with standard basis vectors.
Once we have built Q and its transpose, we can form the matrix BBT column by
column:

1 BBt = zeros(k,k);
2 for j=1:k
3 ej = zeros(k,1);
4 ej(j) = 1;
5 colj = Qt*(A*(At*(Q*ej)));
6 BBt(:,j) = colj;
7 end

Here, we would make use of (5.2) for approximating QT AAT Qe j .
• Compute the eigendecomposition of BBT .
This simply is the eigendecomposition of a small k × k matrix:

1 [Uhat ,D] = eig(BBt);

123

264 Int J Geomath (2015) 6:251–294

• Compute the low rank SVD components of A by using the eigendecomposition
derived in the previous step and applying BT = AT Q to eigenvectors.

Here we use the fact that the eigenvalues of BBT are the squares of the singular values
of B and the computation (5.1) for the eigenvectors V .

1 Sigma = zeros(k,k);
2 for i=1:k
3 Sigma(i,i) = sqrt(D(i,i));
4 end
5

6 U = Q * Uhat;
7

8 V = zeros(n,k);
9 for j=1:k

10 vj = 1/Sigma(j,j) * (At * U(:,j));
11 V(:,j) = vj;
12 end

Here, we can use AT u j ≈ W−1MTu j .

We note that the implementation of the low rank SVD algorithm above is simple, as
long as we can performmatrix–vector operations using the wavelet compressedmatrix
M and compute the eigendecomposition of a small k × k matrix, which can be done
with a large number of available numerical packages. The disadvantage of this version
is that working with the matrix BBT essentially squares the condition number of A,
such that small singular values near machine precision may not be properly resolved.
This is an issue if A is expected to have very small singular values amongst σ1, . . . , σk .
However, if we take k to be small relative to min(m, n) as we do in our application, σk
is significantly larger in magnitude thanmachine precision. The implementation of the
algorithm in the pseudocode above is not very efficient for the randomized algorithm
proposed inHalko et al. (2011), but one that is practical to use for very large Awhen the
corresponding wavelet compressed matrix M = T(AWT) is available. In particular,
for a more efficient implementation, one may want to block as many operations as
possible, replacing matrix–vector by matrix–matrix multiplications. If possible, one
may want to explicitly compute the matrix B and then use it to form BBT . Likewise,
Vk can be calculated directly from the matrix product BT Ũk�

−1
k . A power iteration

strategy can also be implemented to improve accuracy in cases where the tail singular
values decay more slowly. We refer the reader to Voronin and Martinsson (2015) for
more details.

5.2 Application to regularization schemes

For purposes of iterative regularization algorithms, we can make use of the low rank
SVD in several ways. If we obtain the low rank SVD of the whole matrix, we can
directly use it to approximate matrix vector operations:

Ax ≈ Uk

(
�k(V

T
k x)

)
and AT y ≈ Vk

(
�k(U

T
k y)

)
, (5.3)

123

Int J Geomath (2015) 6:251–294 265

and in some situations this is the most convenient and straightforward approach. The
disadvantage of this approach is that one must keep the matrices Uk,UT

k , Vk, V T
k in

memory. Here and below we do not pay attention to storing the matrix �k which is
a very small diagonal matrix in comparison to the former matrices. If the matrix A is
large it may be difficult to compute the low rank SVD of the whole matrix A. Instead,
if we block A as previously discussed, we can compute the low rank SVD of certain
blocks or of each block. In some applications, it may be possible to arrange the blocks
of A in a way that the first block of A contains many linearly dependent rows. If that
is the case, then it is worthwhile to use the low rank SVD for the first block since it
could be approximated well with small k. We can then write down mixed relations as
follows:

Ax ≈

⎡
⎢⎢⎢⎣

Uk1�k1V
T
k1
x

M2W
−T
2 x
...

MpW−T
p x

⎤
⎥⎥⎥⎦ and AT y ≈ Vk1�k1U

T
k1 y1 +

p∑
j=2

W−1
j MT

j y j , (5.4)

where in this example we have used the low rank SVD approximation for the first part
of the matrix and the wavelet based approximation for the other parts.

Additional information can be learned by plugging in the low rank SVD directly
into the regularization system.Our generalmodel problem and its corresponding linear
system are:

x̄ = argmin
x

(
||Ax − b||22 + λ1||x ||22 + λ2||Lx ||22

)

�⇒ (AT A + λ1 I + λ2L
T L)x̄ = AT b. (5.5)

Replacing all instances of A by the low rank SVD results in:

(
AT
k Ak + λ1 I + λ2L

T L
)
x̃1 = AT

k b,

which when expanded gives:

(
Vk�

2
k V

T
k + λ1 I + λ2L

T L
)
x̃1 = Vk�kU

T
k b. (5.6)

The advantage of (5.6) is that if the right hand side Vk�kUT
k b is computed at the

start of the iteration, only the matrices Vk and V T
k must be kept in memory during the

iteration. We may think of precomputing the right hand side AT b and approximating
only the operator AT A. Note that AT b can always be precomputed before the iteration
as long as we can split up A into blocks. In this case we get:

(
Vk�

2
k V

T
k + λ1 I + λ2L

T L
)
x̂1 = AT b. (5.7)

123

266 Int J Geomath (2015) 6:251–294

As we will show later, this can result in slightly better error upper bound when the
singular value σk+1 is sufficiently small, though the norm of the solution for the same
choice of λ1 would be higher in this case. Another approach is to work with the lower
dimensional projected system:

(
UT
k A

)
x = UT

k b, (5.8)

where UT
k A is k × n if A ∈ R

m×n . Note that we have the following simple result:

Lemma 5.1 Given the low rank SVD Ak = Uk�kV T
k of A, we have that UT

k A =
UT
k Ak = �kV T

k .

Proof First, UT
k Ak = UT

k (Uk�kV T
k) = �kV T

k . Also:

UT
k A = UT

k

(
Uk�kV

T
k + Ûk�̂k V̂

T
k

)
= �kV

T
k + 0 = �kV

T
k .

�
If we solve (5.8) by means of Tikhonov regularization:

x̃2 = argmin
x

{
||(UT

k A)x −UT
k b||22 + λ1||x ||22 + λ2||Lx ||22

}
(5.9)

�⇒
(
(UT

k A)T (UT
k A) + λ1 I + λ2L

T L
)
x̃2 =

(
UT
k A

)T
UT
k b, (5.10)

we will obtain the same solution as (5.6):

Lemma 5.2 The approximation scheme (Vk�2
k V

T
k + λ1 I + λ2LT L)x̃ = Vk�kUT

k b
has the same solution as the Tikhonov regularized solution (5.9) of the projected system
(UT

k A)x = UT
k b.

Proof Since

A = Uk�kV
T
k + Ûk�̂k V̂

T
k �⇒ UT

k A = �kV
T
k + 0 = �kV

T
k

�⇒ (UT
k A)T (UT

k A) = (UT
k Ak)

T (UT
k Ak)=(�kV

T
k)T (�kV

T
k)=Vk�

2
k V

T
k ,

the linear system from (5.9) is equivalent to:(
Vk�

2
k V

T
k + λ1 I + λ2L

T L
)
x̃2 = (UT

k A)TUT
k b = ATUkU

T
k b.

Next, for the right hand side we have:

ATUk = Vk�kU
T
k Uk + V̂k�̂kÛ T

k Uk = Vk�k I + 0

= Vk�k �⇒ ATUkU
T
k b = Vk�kU

T
k b.

Hence the solution of (5.9) is equivalent to that of (5.6):

(
Vk�

2
k V

T
k + λ1 I + λ2L

T L
)
x̃2 = Vk�kU

T
k b.

�

123

Int J Geomath (2015) 6:251–294 267

The advantage of (5.8) is that it may be convenient for larger systems where we can
only perform the low rank SVD of its blocks. In that case, we may form the blocked
system:

⎡
⎢⎢⎢⎢⎣

UT
k1
A1

UT
k2
A2

...

UT
kp
Ap

⎤
⎥⎥⎥⎥⎦
x =

⎡
⎢⎢⎢⎢⎣

UT
k1
b1

UT
k2
b2

...

UT
kp
bp

⎤
⎥⎥⎥⎥⎦

or

⎡
⎢⎢⎢⎢⎣

�k1V
T
k1

�k2V
T
k2

...

�kp V
T
kp

⎤
⎥⎥⎥⎥⎦
x =

⎡
⎢⎢⎢⎢⎣

UT
k1
b1

UT
k2
b2

...

UT
kp
bp

⎤
⎥⎥⎥⎥⎦

, (5.11)

and solve the optimization problem via the augmented normal equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

UT
k1
A1

UT
k2
A2

...

UT
kp
Ap√

λ1 I√
λ2L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

UT
k1
A1

UT
k2
A2

...

UT
kp
Ap√

λ1 I√
λ2L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
x̃2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

UT
k1
A1

UT
k2
A2

...

UT
kp
Ap√

λ1 I√
λ2L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

UT
k1
b1

UT
k2
b2

...

UT
kp
bp

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

or

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�k1V
T
k1

�k2V
T
k2

...

�kp V
T
kp√

λ1 I√
λ2L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�k1V
T
k1

�k2V
T
k2

...

�kp V
T
kp√

λ1 I√
λ2L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
x̃2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�k1V
T
k1

�k2V
T
k2

...

�kp V
T
kp√

λ1 I√
λ2L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

UT
k1
b1

UT
k2
b2

...

UT
kp
bp

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The number of eigenvectors for each block can be adjusted based on their conditioning.
If the same k is used for all the blocks then some are bound to be projected less
accurately than others. If the right hand side is precomputed, only the matrices V T

k j
and �k j must be in memory for each block. If it is easier to compute the eigenvector
matrix Uk , then the default system with UT

k A may be useful.
Amore aggressive approach is to use the right eigenvectors Vk to project the system

from both sides to form a matrix of size k × k. Instead of solving the full system:

(AT A + λ1 I + λ2L
T L)x̄ = AT b,

we project the matrix used to a smaller space by multiplying on left by V T
k and

preconditioning on the right by Vk :

V T
k (AT A + λ1 I + λ2L

T L)(Vk ỹ3) = V T
k AT b; x̃3 = Vk ỹ3.

Expanding this and noting that V T
k Vk = I , we have:

(
V T
k AT AVk + λ1 I + λ2V

T
k LT LVk

)
ỹ3 = V T

k AT b; x̃3 = Vk ỹ3. (5.12)

123

268 Int J Geomath (2015) 6:251–294

The key observation is that the matrix used in the linear system is V T
k AT AVk , which

is just of size k × k, much smaller than the m × n matrix A. We can further simplify
(5.12) using the following calculations:

Lemma 5.3 Given the low rank SVD Ak = Uk�kV T
k of A, we have that V T

k AT AVk =
V T
k AT

k AkVk = �2
k and Vk AT b = Vk AT

k b = �kUT
k b.

Proof

V T
k AT = V T

k (Vk�kU
T
k + V̂k�̂kÛ

T
k) = V T

k AT
k = �kU

T
k

�⇒ AVk = AkVk = (�kU
T
k)T = Uk�k

�⇒ V T
k AT AVk = �kU

T
k Uk�k = �2

k

�⇒ Vk A
T
k b = �kU

T
k b.

�
Thus, we can rewrite (5.12) as:

(
�2

k + λ1 I + λ2V
T
k LT LVk

)
ỹ3 = �kU

T
k b; x̃3 = Vk ỹ3. (5.13)

We will show later that when λ2 = 0, x̃3 = x̃1, an important result, since the system
for ỹ3 can be solved on a small machine, as it involves just a k × k matrix. When
λ2 �= 0, this is only an approximation. We can obtain the k columns of V T

k LT LVk by
evaluating matrix vector products:

V T
k LT LVke j for j = 1, . . . , k.

This is feasible to do in practice, since k is not very large. This method is useful when
many solutions with different values of λ1 and λ2 are required, or when a rough guess
to warm start a more accurate method is desired.

Let us now summarize the different techniques we have described for approximate
�2 regularization using the low rank SVD and their computational requirements.

(1) We can implement (AT A + λ1 I + λ2LT L)x̄ = AT b as usual and replace the
operations Ax and AT y with Uk�kV T

k x and Vk�kUT
k y. This requires one to

have the matrices Uk,UT
k , Vk, V T

k in memory, which may not be very efficient.
However, this direct approach may be useful for larger matrices split into blocks
using relations such as (5.4), where the low rank SVD is applied only to certain
blocks and not to the whole matrix. In that case, only the SVD components for
the relevant blocks need to be loaded.

(2) We can plug in the low rank SVD into the regularization problem to get the
system:

(Vk�
2
k V

T
k + λ1 I + λ2L

T L)x̃1 = Vk�kU
T
k b.

Note that the right hand side Vk�kUT
k b can be precomputed before the iteration

so that only the matrices Vk and V T
k need to be in memory during iteration. The

123

Int J Geomath (2015) 6:251–294 269

result should be equivalent to the first case but this approach is more efficient.
Additionally, we can precompute accurately the right hand side AT b and use the
system:

(Vk�
2
k V

T
k + λ1 I + λ2L

T L)x̂1 = AT b.

Here the only difference is in the right hand side. As we will see later this can
sometimes lead to solutions with a lower upper error bound, but should be used
with a larger threshold for λ1.

(3) We can utilize the lower dimensional projected system UT
k Ax = UT

k b. The
corresponding system for the regularized problem:

(
(UT

k A)T (UT
k A) + λ1 I + λ2L

T L
)
x̃2 = (UT

k A)UT
k b

is equivalent to the system for x̃1. However, in certain cases, the matrix Uk may
be easier to compute than Vk (depending on the dimensions of AT A and AAT)
in which case one may then compute UT

k A by means of matrix–vector products
ATUke j for j = 1, . . . , k. The methodmay also be useful for large systems since
we can make use of (5.11).

(4) We can use the k × k system:

(
�2

k + λ1 I + λ2V
T
k LT LVk

)
ỹ3 = �kU

T
k b; x̃3 = Vk ỹ3.

The solution of the linear system can be done on small memory computers since
it involves the use of k × k matrices only and one multiplication with Vk at the
end. The last step can be performed on a larger machine loading only Vk into
memory; or on smaller machines in blocks. This scheme is useful when many
runs with the system with different values of λ1 and λ2 are desired. The solution
is equivalent to x̃1 when λ2 = 0 as shown later in this section.

Note that up to now we have discussed the application of the compression tech-
niques to �2 norm minimization problems. However, the techniques are applicable
to other types of regularization also. For example, for �1 regularization, where we
minimize ||x ||1 instead of ||x ||2, one typically uses a scheme similar to the iterative
soft thresholding algorithm (Daubechies et al. 2004):

xn+1 = Sτ (x
n + AT b − AT Axn),

where (Sτ (x))k = sgn(xk)max {0, |xk | − τ } is the componentwise soft thresholding
function. The main computational requirement here is in the operation AT Axn , just
as for �2 regularization. Hence, many of the techniques we have described can be used
for different types of regularization problems.

5.3 Further analysis and error bounds

In this section, we give more analysis for the SVD based schemes we have discussed.
To make the analysis easier, we assume that λ1 = λ and λ2 = 0 so we can do our

123

270 Int J Geomath (2015) 6:251–294

analysis without the smoothing operator L , which is not approximated. Consider now
the true solution:

x̄ = (AT A + λI)−1AT b (True Solution). (5.14)

Notice that we can easily understand the significance of (5.14) by plugging in the (full
rank) SVD A = U�V T into (5.14). One then obtains the solution:

x̄ = V DUT b with D = Diag

(
σ1

σ 2
1 + λ

,
σ2

σ 2
2 + λ

, . . . ,
σr

σ 2
r + λ

, 0, . . . , 0

)
.

We see that the regularization alleviates the effects of the singular vectors correspond-
ing to small singular values σi , by replacing each σi by

σi
σ 2
i +λ

, which prevents the

singular vectors corresponding to singular values smaller than λ from dominating the
solution (Tikhonov 1963). Notice that while the application of Tikhonovminimization
acts to filter the small singular values of A on the solution, the use of the low rank
SVD Ak in place of A removes many of the small values entirely: the filtering is now
done on those singular values which are retained.

We now restate the approximate solutions x̃1, x̂1, x̃2, x̃3 that have been described
in detail in the last section, but now with λ1 = λ and λ2 = 0:

x̃1 = (AT
k Ak + λI)−1AT

k b, (5.15)

x̂1 = (AT
k Ak + λI)−1AT b, (5.16)

x̃2 =
(
(UT

k A)T (UT
k A) + λI

)−1
(UT

k A)UT
k b, (5.17)

x̃3 = Vk(�
2
k + λI)−1�kU

T
k b. (5.18)

Recall here that x̃1 and x̂1 correspond respectively, to (5.6) and (5.7), x̃2 corresponds
to (5.9), and x̃3 corresponds to (5.12). We have previously shown that x̃2 and x̃1 have
the same solution. We will show in this section that x̃3 also has the same solution as
x̃1.

Using the Woodbury inverse formula (3.1), we can derive expressions relating the
terms (AT

k Ak +λI)−1 and (AT A+λI)−1 which appear in the solutions x̃1, x̂1, x̃2, x̃3
and in the true solution x̄ .

Lemma 5.4 Let k be in the range 1 ≤ k ≤ r − 1 and λ > 0. Then:

(AT
k Ak + λI)−1 = λ−1 I − Vk SkV

T
k with

Sk = Diag

(
σ 2
s

λ2 + λσ 2
s

)
for s = 1, . . . , k, (5.19)

and:

(AT A + λI)−1 = (AT
k Ak + λI)−1 − V̂k Ŝk V̂

T
k

with Ŝk = Diag

(
σ 2
s

λ2 + λσ 2
s

)
for s = k + 1, . . . , r. (5.20)

123

Int J Geomath (2015) 6:251–294 271

These imply that:

x̄ =
(
(AT

k Ak + λI)−1 − V̂k Ŝk V̂
T
k

)
AT b, (5.21)

x̃1 = (λ−1 I − Vk SkV
T
k)AT

k b, (5.22)

x̂1 = (λ−1 I − Vk SkV
T
k)AT b. (5.23)

Proof The proof follows by the use of the Woodbury inverse formula (3.1):

(PT R + D)−1 = D−1 − D−1P(RD−1P + T−1)−1RD−1.

We match this with (AT
k Ak + λI)−1 = (Vk�2

k V
T
k + λI)−1 to get P = Vk, R =

V T
k , T = �2

k , and D = λI :

(AT
k Ak + λI)−1 = λ−1 I − λ−1Vk(V

T
k λ−1Vk + �−2

k)−1V T
k λ−1

= λ−1 I − λ−2Vk(�
−2
k + λ−1 I)−1V T

k

= λ−1 I − λ−2Vk
(
Diag(σ−2

1 , . . . , σ−2
k) + λ−1 I

)−1
V T
k

= λ−1 I − λ−2Vk Diag(σ
−2
1 + λ−1, . . . , σ−2

k + λ−1)−1V T
k

= λ−1 I − λ−2Vk Diag
(
(σ−2

1 + λ−1)−1, . . . , (σ−2
k + λ−1)−1

)
V T
k

= λ−1 I − λ−2Vk Diag

(
λσ 2

1

λ + σ 2
1

, . . . ,
λσ 2

k

λ + σ 2
k

)
V T
k

= λ−1 I − Vk Diag

(
σ 2
1

λ2 + λσ 2
1

, . . . ,
σ 2
k

λ2 + λσ 2
k

)
V T
k

= λ−1 I − Vk SkV
T
k ,

which proves (5.19).
For (5.20), we have:

(AT A + λI)−1 = (AT
k Ak + V̂k�̂

2
k V̂

T
k + λI)−1 = (V̂k�̂

2
k V̂

T
k + Y)−1,

with Y = AT
k Ak + λI . Using Woodbury matrix formula:

(V̂k�̂
2
k V̂

T
k + Y)−1 = Y−1 − Y−1V̂k(�̂

−2
k + V̂ T

k Y−1V̂k)
−1V̂ T

k Y−1.

Now, by (5.19) we have Y−1 = λ−1 I − Vk SkV T
k and by orthogonality we have

V̂ T
k Vk = 0:

V̂ T
k Y−1 = V̂ T

k (λ−1 I − Vk SkV
T
k) = λ−1V̂ T

k

Y−1V̂k = (λ−1 I − Vk SkV
T
k)V̂k = λ−1V̂k .

123

272 Int J Geomath (2015) 6:251–294

Thus:

(AT A + λI)−1 = Y−1 − Y−1V̂k(�̂
−2
k + V̂ T

k Y−1V̂k)
−1V̂ T

k Y−1

= Y−1 − λ−1V̂k(�̂
−2
k + V̂ T

k λ−1V̂k)
−1λ−1V̂ T

k

= Y−1 − λ−2V̂k(�̂
−2
k + λ−1 I)−1V̂ T

k

= Y−1 − λ−2V̂k Diag

(
λ + σ 2

k+1

λσ 2
k+1

, . . . ,
λ + σ 2

r

λσ 2
r

)−1

V̂ T
k

= Y−1 − λ−2V̂k Diag

(
λσ 2

k+1

λ + σ 2
k+1

, . . . ,
λσ 2

r

λ + σ 2
r

)
V̂ T
k

= (AT
k Ak + λI)−1 − V̂k Diag

(
σ 2
1

λ2 + λσ 2
k+1

, . . . ,
σ 2
r

λ2 + λσ 2
r

)
V̂ T
k

= (AT
k Ak + λI)−1 − V̂k Ŝk V̂

T
k ,

which proves (5.20).
Equations (5.19) and (5.20) imply that:

x̄ = (AT A + λI)−1AT b =
(
(AT

k Ak + λI)−1 − V̂k Ŝk V̂
T
k

)
AT b,

x̃1 = (AT
k Ak + λI)−1AT

k b = (λ−1 I − Vk SkV
T
k)AT

k b,

x̂1 = (AT
k Ak + λI)−1AT b = (λ−1 I − Vk SkV

T
k)AT b.

�
Now we show that x̃3 (involving the inversion of a k× k matrix) has the same solution
as x̃1 and derive the expression for the difference between x̃1 and x̂1.

Lemma 5.5 Let x̄ be the solution of (5.14), x̃1 the solution of (5.15), x̂1 the solution
of (5.16) and x̃3 the solution of (5.18). Then, we have:

x̃3 = x̃1, (5.24)

and
x̂1 − x̃1 = λ−1(AT − AT

k)b = λ−1 Âk
T
b. (5.25)

Proof First note that:

VkV
T
k AT

k b = VkV
T
k Vk�kU

T
k b = Vk�kU

T
k b = AT

k b.

Next, we expand:

x̃1 = (λ−1 I − Vk SkV
T
k)AT

k b = λ−1AT
k b − Vk SkV

T
k AT

k b

= λ−1VkV
T
k AT

k b − Vk SkV
T
k AT

k b

123

Int J Geomath (2015) 6:251–294 273

= Vk(λ
−1 I − Sk)V

T
k AT

k b = Vk

(
λ−1 I − Diag

(
σ 2
s

λ2 + λσ 2
s

))
V T
k AT

k b

= Vk Diag

(
1

λ
− σ 2

s

λ2 + λσ 2
s

)
V T
k AT

k b

= Vk Diag

(
(σ 2

s + λ) − σ 2
s

λ(σ 2
s + λ)

)
V T
k AT

k b

= Vk Diag

(
1

σ 2
s + λ

)
V T
k AT

k b = Vk(�
2
k + λI)−1V T

k AT
k b = x̃3,

which proves (5.24). Next, for the difference between x̃1 and x̂1 we have:

x̃1 = (AT
k Ak + λI)−1AT

k b = (λ−1 I − Vk SkV
T
k)AT

k b = λ−1AT
k b − Vk SkV

T
k AT

k b,

x̂1 = (AT
k Ak + λI)−1AT b = (λ−1 I − Vk SkV

T
k)AT b = λ−1AT b − Vk SkV

T
k AT b.

Note that:

VkSkV
T
k AT b = Vk SkV

T
k (Vk�kU

T
k + V̂k�̂kÛ

T
k)b = Vk SkV

T
k AT

k b.

Hence:

x̂1 − x̃1 = λ−1AT b − λ−1AT
k b = λ−1(AT − AT

k)b = λ−1 Âk
T
b,

which proves (5.25). �
By the result of Lemma 5.5, the only solutions which differ from each other are x̃1

and x̂1. We now analyze these two solutions with respect to the true solution x̄ .

Proposition 5.6 Let x̄ be the solution of (5.14) and x̃1 the solution of (5.15). Then:

||x̄ − x̃1||2 ≤ σk+1

λ + σ 2
k+1

||b||2, (5.26)

and
x̃1 = VkV

T
k x̄ . (5.27)

Proof Recall that x̃1 = (AT
k Ak + λI)−1AT

k b and that x̄ = (AT A + λI)−1AT b. Next

by Lemma 5.4 and using that Ak V̂k = (Uk�kV T
k)V̂k = 0 and V̂ T

k Vk = 0:

(AT A + λI)−1AT = (AT A + λI)−1(AT
k + V̂k�̂kÛ

T
k)

=
(
(AT

k Ak + λI)−1 − V̂k Ŝk V̂
T
k

)
(AT

k + V̂k�̂kÛ
T
k)

= (AT
k Ak + λI)−1AT

k + (AT
k Ak + λI)−1V̂k�̂kÛ

T
k − V̂k Ŝk�̂kÛ

T
k

= (AT
k Ak+λI)−1AT

k +(λ−1 I−Vk SkV
T
k)V̂k�̂kÛ

T
k −V̂k Ŝk�̂kÛ

T
k

= (AT
k Ak + λI)−1AT

k + λ−1V̂k�̂kÛ
T
k − V̂k Ŝk�̂kÛ

T
k

= (AT
k Ak + λI)−1AT

k + V̂k(λ
−1�̂k − Ŝk�̂k)Û

T
k .

123

274 Int J Geomath (2015) 6:251–294

Since Ŝk = Diag
(

σ 2
s

λ2+λσ 2
s

)
for s = (k + 1), . . . , r :

λ−1�̂k − Ŝk�̂k=Diag

(
σs

λ
− σ 3

s

λ(λ+σ 2
s)

)
=Diag

(
σs

λ+σ 2
s

)
for s=(k + 1), . . . , r.

Hence:

(AT A + λI)−1AT = (AT
k Ak + λI)−1AT

k + V̂k Diag

(
σs

λ + σ 2
s

)
Û T
k ,

which implies:

x̄ = (AT A + λI)−1AT b = (AT
k Ak + λI)−1AT

k b

+V̂k Diag

(
σs

λ + σ 2
s

)
Û T
k (5.28)

= x̃1 + V̂k Diag

(
σs

λ + σ 2
s

)
Û T
k b (5.29)

�⇒ ||x̄ − x̃1||2 =
∥∥∥∥V̂k Diag

(
σs

λ + σ 2
s

)
Û T
k b

∥∥∥∥ =
∥∥∥∥Diag

(
σs

λ + σ 2
s

)
Û T
k b

∥∥∥∥

≤
∥∥∥∥Diag

(
σs

λ + σ 2
s

)∥∥∥∥
2
||b||2

≤ σk+1

λ + σ 2
k+1

||b||2,

which proves (5.26).
Next, to derive (5.27), we have:

AT b = (Vk�kU
T
k)b + (V̂k�̂kÛ

T
k)b,

so that

V̂k�̂kÛ
T
k b = AT b − (Vk�kU

T
k)b �⇒ V̂ T

k V̂k�̂kÛ
T
k b = �̂kÛ

T
k b

= V̂ T
k AT b − 0 �⇒ Û T

k b = �̂−1
k V̂ T

k AT b

�⇒ Û T
k b = �̂−1

k V̂ T
k (AT A + λI)x̄ = �̂−1

k V̂ T
k (Vk�

2
k V

T
k + V̂k�̂

2
k V̂

T
k + λI)x̄

= �̂−1
k (�̂2

k V̂
T
k + λV̂ T

k)x̄ = �̂k V̂
T
k x̄ + λ�̂−1

k V̂ T
k x̄ = (�̂k + λ�̂−1

k)V̂ T
k x̄ .

Using (5.28), we have:

x̄ = x̃1 + V̂k Diag

(
σs

λ + σ 2
s

)
Û T
k b = x̃1 + V̂k Diag

(
σs

λ + σ 2
s

)
(�̂k + λ�̂−1

k)V̂ T
k x̄

= x̃1 + V̂k Diag

(
σs

λ + σ 2
s

)
Diag

(
σs + λ

σs

)
V̂ T
k x̄ = x̃1

123

Int J Geomath (2015) 6:251–294 275

+V̂k Diag

(
σs

λ + σ 2
s

)
Diag

(
σ 2
s + λ

σs

)
V̂ T
k x̄

= x̃1 + V̂k V̂
T
k x̄ = x̃1 + (I − VkV

T
k)x̄ = x̃1 + x̄ − VkV

T
k x̄ .

This proves (5.27):
x̃1 = VkV

T
k x̄ .

�
Next, we look at the solution x̂1 = (AT

k Ak + λI)−1AT b. Recall that the difference
from x̃1 is that in x̂1, AT b is not approximated by AT

k b.

Proposition 5.7 Let x̄ be the solution of (5.14) and x̂1 the solution of (5.16). Then:

||x̄ − x̂1||2 ≤ σ 3
k+1

λ2 + λσ 2
k+1

||b||2, (5.30)

and
||x̄ − x̂1||2

||x̄ ||2 ≤ σ 2
k+1

λ
. (5.31)

Proof We use Lemma 5.4 to relate x̄ to x̂1.

x̄ = (AT A + λI)−1AT b =
(
(AT

k Ak + λI)−1 − V̂k Ŝk V̂
T
k

)
AT b (5.32)

= x̂1 − V̂k Ŝk V̂
T
k AT b = x̂1 − V̂k Ŝk V̂

T
k (AT

k + V̂k�̂kÛ
T
k)b = x̂1 − V̂k Ŝk�̂kÛ

T
k b,

(5.33)

where the last equality follows from V̂ T
k AT

k = 0 and V̂ T
k V̂ = I . Thus, we have:

||x̄ − x̂1||2 = ||V̂k Ŝk�̂kÛ
T
k b||2 = ||Ŝk�̂kÛ

T
k b||2 ≤ ||Ŝk�̂k ||2||Û T

k b||2
≤ ||Ŝk�̂k ||2||b||2.

Now from Lemma 5.4:

Ŝk�̂k = Diag

(
σ 3
k+1

λ2 + λσ 2
k+1

,
σ 2
k+3

λ2 + λσ 2
k+2

, . . . ,
σ 3
r

λ2 + λσ 2
r

)

�⇒ ||Ŝk�̂k ||2 = max(Ŝk�̂k) = σ 3
k+1

λ2 + λσ 2
k+1

�⇒ ||Ŝk�̂k ||2||b||2 = σ 3
k+1

λ2 + λσ 2
k+1

||b||2.

So we obtain the bound (5.30):

||x̄ − x̂1||2 ≤ ||Ŝk�̂k ||2||b||2 = σ 3
k+1

λ2 + λσ 2
k+1

||b||2.

123

276 Int J Geomath (2015) 6:251–294

In order to obtain (5.31), we need to get rid of the ||b||2 term. We appeal back to
(5.33):

x̄ = x̂1 − V̂k Ŝk V̂
T
k AT b = x̂1 − V̂k Ŝk V̂

T
k (AT A + λI)x̄

= x̂1 − V̂k Ŝk V̂
T
k (Vk�

2
k V

T
k + V̂k�̂

2
k V̂

T
k + λI)x̄ = x̂1 − V̂k Ŝk(�̂

2
k + λI)V̂ T

k x̄ .

It follows that:

||x̄ − x̂1||2 = ||V̂k Ŝk(�̂2
k + λI)V̂ T

k x̄ ||2 ≤ ||V̂k Ŝk(�̂2
k + λI)V̂ T

k ||2||x̄ ||2
= ||Ŝk(�̂2

k + λI)||2||x̄ ||2
�⇒ ||x̄ − x̂1||2

||x̄ ||2 ≤ ||Ŝk(�̂2
k + λI)||2 ≤ ||Ŝk ||2||(�̂2

k + λI)||2

= σ 2
k+1

λ2 + λσ 2
k+1

(σ 2
k+1 + λ),

which simplifies to:
||x̄ − x̂1||2

||x̄ ||2 ≤ σ 2
k+1

λ
.

�

Let us now recall some results we have derived. First of all, we have shown that
x̃1, x̃2 and x̃3 lead to the same solution. Numerically, however, one may still observe
some differences if they are not run to convergence. On the other hand, x̃1 and x̂1 differ
from each other and have the following absolute error bounds with respect to the true
solution x̄ :

||x̄ − x̃1||2 ≤ σk+1

λ + σ 2
k+1

||b||2;

||x̄ − x̂1||2 ≤ σ 3
k+1

λ
(
λ + σ 2

k+1

) ||b||2.

Recall that the difference between the two is in the right hand side: x̂1 uses the un-
approximated right hand side, or at least one computed with the wavelet transformed
matrix (i.e. AT b ≈ W−1MTb). We mention again that one operation with a large A
or M is not prohibitively expensive as it can be done by splitting the matrix into small
enough blocks. The plot below in Fig. 2 gives us a sense of how the upper bounds
behave. We plot the fraction:

β =
σ 3
k+1

λ
(
λ+σ 2

k+1

) − σk+1

λ+σ 2
k+1∣∣∣∣ σk+1

λ+σ 2
k+1

∣∣∣∣
(5.34)

123

Int J Geomath (2015) 6:251–294 277

as a function of the value of σk+1 for two different choices of λ. The fraction (5.34)
is simply a relative difference between the two upper bounds for the error of the
approximate solutions x̂1 and x̃1. From Fig. 2, we may observe that the difference
fraction is negative (indicating a lower upper bound error for x̂1) when the value of
σk+1 is sufficiently small. However, if k is not large enough for σk+1 to be sufficiently
small then the upper bound of x̂1 will be worse than that of x̃1. Another observation
about the solution x̂1 compared to x̃1 (and the other solutions equivalent to it) is that
x̂1 for the same choice of λ is expected to have a larger norm:

Lemma 5.8 Let x̃1 be the solution of (5.15) and x̂1 the solution of (5.16) for a fixed
value of λ. Then, we have that ||x̃1||2 ≤ ||x̂1||2.
Proof Recall that A = Ak + Âk and

x̃1 = (AT
k Ak + λI)−1AT

k b; x̂1 = (AT
k Ak + λI)−1AT b.

Now by Lemma 5.5:

x̂1 = x̃1 + λ−1 ÂT
k b.

Thus, the norms are related as:

||x̂1||22 = ||x̃1||22 + 2λ−1 x̃1
T ÂT

k b + || ÂT
k b||22,

where the middle term is zero as we now show. Note that Âk AT
k = ÂkVk = 0 and:

(
x̃1

T ÂT
k

)T = Âk x̃1 = Âk(A
T
k Ak + λI)−1AT

k b = Âk(λ
−1 I − Vk SkV

T
k)AT

k b

= λ−1 Âk A
T
k b + ÂkVk SkV

T
k AT

k b = 0.

Thus:
||x̂1||22 = ||x̃1||22 + || ÂT

k b||22 �⇒ ||x̃1||2 ≤ ||x̂1||2.
�

Thus, when using x̂1 as an estimate for x̄ we typically would like to take a larger value
of λ to obtain a solution with similar norm to that of x̃1. If we use the same λ for x̂1
and x̄ , we will find that the components of the solution of x̄ have larger amplitudes.

6 Numerical experiments

In this section, we give some numerical examples to discuss and illustrate the approx-
imation techniques we have discussed. We will use both synthetic data and matrices
from the seismic tomography applicationwhichwe have previously referred to in order
to illustrate the effect of wavelet thresholding and low rank SVD based compression.

123

278 Int J Geomath (2015) 6:251–294

Fig. 2 Relative difference
between upper bounds for the
errors for approximate solutions
x̃1 and x̂1 [fraction (5.34)] as a
function of different values of
σk+1

−8 −6 −4 −2 0 2

−1

−0.5

0

0.5

1

RELATIVE UPPER BOUND DIFF FRACTION

log(σ
k+1

)

up
pe

r
bo

un
d

di
ff

fr
ac

λ = 0.1
λ = 10

6.1 Examples with synthetic data

We use three different synthetic matrix types, which we denote by A(1), A(2), and
A(3). The matrices are of size 1000× 1500, small enough to be easily handled in full,
but large enough for randomization techniques to work. Matrix A(1) is constructed
via the reverse SVD construction A(1) = U�V T where U and V are taken to be
orthonormal Gaussian random matrices and the singular values in � are logspaced
between 100 and 10−4. That is, the decay of singular values of A(1) is relatively fast.
Matrix A(2) is a different kind of matrix, whose rows are permuted vectorized images.
It is constructed by choosing at random, one of five images for each row, vectorizing
the image and then using a randomized permutation of its vector form as a row of the
matrix. Matrix A(3) is also constructed from the same vectorized images, but its rows
are not randomly permuted vectors but rather vectors rearranged in a continuous way
with overlooping boundaries, where we choose at random a starting index within the
image vector and then go to the end of the array, looping back to the beginning and
proceeding in order until we have n elements.

We now comment on the wavelet compressibility of each matrix. By “wavelet
compressible” we mean that the rows of the matrices satisfy the relation (4.2). In our
case, we apply the one dimensional CDF 9–7wavelet transform to each row vector and
threshold out all but 1/3 of the largest coefficients by absolute magnitude. It should
be apparent that the rows of A(1) are not readily wavelet compressible (as they are
vectors picked at random having no apparent structure), some but not all of the rows
of A(2) are wavelet compressible (as they are image vectors re-arranged in random
order so that only rows arranged by chance in such a way as to have some structure
are expected to be compressible), and virtually all rows of A(3) are readily wavelet
compressible (they are vectorized images with a random starting index, but the pixel
structure of the original image is preserved).

We start by constructing the compressed wavelet matrices M(1), M(2), and M(3),
keeping a third of the nonzero wavelet coefficients in the thresholding. We then
compare the errors induced in approximating matrix vector operations with the full

123

Int J Geomath (2015) 6:251–294 279

0 200 400 600 800 1000
−10

−8

−6

−4

−2

0

SINGULAR VALUES

i

lo
g(

si
gm

a i)

0 20 40 60 80 100
0

20

40

60

80

100

% ERRORS for Matrix−Vector Operations (WAV)

vector #

E

A
At
AtA

0 20 40 60 80 100
0

20

40

60

80

100

% ERRORS for Matrix−Vector Operations (SVD)

vector #

E

A via M
A via A
At via M
At via A
AtA via M
AtA via A

0 500 1000 1500
−20

−15

−10

−5

0

5

SINGULAR VALUES

i

lo
g(

si
gm

a i)

0 20 40 60 80 100
0

20

40

60

80

100

% ERRORS for Matrix−Vector Operations (WAV)

vector #

E

A
At
AtA

0 20 40 60 80 100
0

20

40

60

80

100

% ERRORS for Matrix−Vector Operations (SVD)

vector #

E

A via M
A via A
At via M
At via A
AtA via M
AtA via A

0 500 1000 1500
−50

−40

−30

−20

−10

0

10

SINGULAR VALUES

i

lo
g(

si
gm

a i)

0 20 40 60 80 100
0

20

40

60

80

100

% ERRORS for Matrix−Vector Operations (WAV)

vector #

E

A
At
AtA

0 20 40 60 80 100
0

20

40

60

80

100

% ERRORS for Matrix−Vector Operations (SVD)

vector #

E

A via M
A via A
At via M
At via A
AtA via M
AtA via A

Fig. 3 Percent errors for approximating matrix–vector operations with A(1) (row 1), A(2) (row 2), and
A(3) (row 3) via the wavelet compressed matrices M(i) and via the low rank SVD. Singular values (column
1), percent errors in matrix vector operations for 100 Gaussian random vectors using wavelet compression
(column 2) and low rank SVD (column 3). In column 3 we plot errors obtained via the low rank SVD
approximation obtained using the full A(i) matrices and using the corresponding wavelet compressed M(i)
matrices

matrices A(1), A(2), A(3) via these compressed matrices using the relations (4.4). For
100 Gaussian random vectors x ∈ R

1500 and y ∈ R
1000 we compare, using (4.4),

the results of the operations A(i)x versus M(i)W−T x, AT
(i)y versus W−1MT

(i)y and

AT
(i)A(i)x versusW−1MT

(i)M(i)W−T x for i = 1, 2, 3 corresponding to the threematri-

ces. The resulting percent errors (i.e. fractions such as E = 100 ‖A(1)x−M(1)W−T x‖
‖A(1)x‖ and

likewise for the other operations) are plotted in column 2 of Fig. 3, where we plot
median values over 10 trials and in each trial utilize 100 Gaussian random vectors
x and y. Notice that in the first case, where the matrix was chosen to not compress
well, the errors are high. In the other two cases, the operations with matrices AT

i Ai

(i = 2, 3) are approximated well. It is especially interesting that this is the case for
the second matrix, where some of the rows are not wavelet compressible.

Next, we use the M(i) matrices to compute the low rank SVD of A(i) with k = 200
to achieve further size reduction. That is, we use the randomized SVD algorithm
previously shown where we utilize matrix M to approximate all necessary operations

123

280 Int J Geomath (2015) 6:251–294

with A. Once the low rank SVD componentsUk, �k , and Vk are obtained, we compare
the same operations with A as before to the approximation via the low rank SVD:

Ax to Uk�kV
T
k x; AT y to Vk�kU

T
k y; AT Ax to Vk�

2
k V

T
k x .

For comparison, for each matrix, we also compute the low rank SVD with the full
A(i), without using M(i) to approximate matrix–vector operations. We expect this
to give a more accurate low rank SVD. The corresponding percent errors (such as

E = 100
‖A(1)x−Uk�kV T

k x‖
‖A(1)x‖) for the operations are shown in column 3 of Fig. 3. In

all cases, the plotted lines are median values obtained over ten separate trials. The
result is interesting but somewhat expected because of the use of randomization in
the computation: the low rank SVD computed via M produces similar results to that
computed via A even if for some particular row vectors of A, the relation (4.2) is not
satisfied. However, notice that this does not hold for matrix A(1) whose rows are not
wavelet compressible. From the last column of Fig. 3, we see differences between the
results of the low rank SVD computed with A(1) and with M(1).

Next, we make a synthetic data vector x , and use the three matrices A(1), A(2), A(3)
to construct the right hand side b(i) = A(i)x + ν with ν a Gaussian random noise
vector (we choose to use 10 percent noise relative to the norm of b(i)). We then try to
reconstruct x with the various approximation schemes by computing solutions to the
Tikhonov problem with smoothing (AT A+λ1 I +λ2LT L)x̄ = AT b, where for L we
take the tridiagonal matrix with elements (−1, 2,−1). In Fig. 4, we present the results
of various approximation schemes we described. In particular, we plot the following
solutions:

(AT A + λ1 I + λ2L
T L)x̄ = (AT b)

(W−1MT MW−T + λ1 I + λ2L
T L)−1xwav = (W−1(MTb))

(Vk�
2
k V

T
k + λ1 I + λ2L

T L)xsvd1 = (Vk�kU
T
k b)

(Vk�
2
k V

T
k + λ1 I + λ2L

T L)xsvd2 = (AT b)

(�2
k + λ1 Ik + λ2V

T
k LT LVk)ysvd3 = (�kU

T
k b); xsvd3 = Vk ysvd3.

In each case, we loop over 40 linearly spaced values of λ1 and λ2 (effecting the degree
of norm and smoothing penalty, respectively) and choose the values so that the residual
norm ||Axsol − b||2 of the solution is closest to the norm of the noise vector ||ν||2. In
Fig. 4, we plot the on the first row the true solution vector x followed by the solutions
obtained using the full matrix A. On the second row, we plot for each matrix type
(A(i)), the residual norms of the different solutions relative to the noise norm. On rows
three to six, we plot the different solutions obtained with the various approximations
schemes for thematrices (A(i)).We observe that in each case, we can obtain reasonable
reconstructions using the approximation schemes we introduced. The wavelet com-
pressed approach is the most accurate with respect to the full solution, followed by
the two svd methods. The k × k method (xsvd3) produces a suitable reconstruction for
the third matrix A(3), whose rows are all wavelet compressible. On the other hand, the
k × k method does not work well for the first two matrices. In summary, the synthetic

123

Int J Geomath (2015) 6:251–294 281

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
TRUE X

i

x(
i)

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
FULL

i

x(
i)

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
FULL

i

x(
i)

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
FULL

i

x(
i)

NOISE FULL WAV SVD1 SVD2 SVD3
0

0.5

1

1.5

2

2.5

3

3.5

4
RESIDUAL NORMS

NOISE FULL WAV SVD1 SVD2 SVD3
0

0.02

0.04

0.06

0.08

0.1

0.12
RESIDUAL NORMS

NOISE FULL WAV SVD1 SVD2 SVD3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
RESIDUAL NORMS

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
WAVELET

i

x(
i)

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
SVD 1

i

x(
i)

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
SVD 2

i

x(
i)

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
SVD 3

i

x(
i)

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
WAVELET

i

x(
i)

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
SVD 1

i

x(
i)

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
SVD 2

i

x(
i)

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
SVD 3

i

x(
i)

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
WAVELET

i

x(
i)

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
SVD 1

i

x(
i)

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
SVD 2

i

x(
i)

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
SVD 3

i

x(
i)

Fig. 4 Row 1 actual signal x and reconstructions using the full matrices A(1), A(2), A(3). Row 2 bar plots
of noise norm and solution residual norm values for each matrix system. Rows 3–5 plots of reconstructed
solutions using the different compressed schemes with wavelet compression and low rank SVD for A(1)
(row 3), A(2) (row 4), A(3) (row 5). For each SVD solution shown, the low rank SVD was obtained via the
corresponding M(i) matrix

data examples show that in many practical cases, wavelet compression and low rank
SVD techniques can be used together to obtain approximate regularized solutions,
with the SVDmatrices obtained using operations with the wavelet compressed matrix
instead of the original matrix.

6.2 Examples with real data

We now illustrate examples with real data from an application in seismic tomography.
We will keep our description of the problem and setup concise. Much details can be

123

282 Int J Geomath (2015) 6:251–294

found in Simons et al. (2011) and other mentioned references. In short, we have a
matrix A and a right hand side vector b from which we would like to obtain a vector
x corresponding to corrections to a spherically symmetric model (which varies only
with depth) of the seismic wave speeds in the Earth’s interior. The idea is that these
corrections can be used together with the spherically symmetric model in order to
construct a three dimensional model of the wave speeds. The data comes from mea-
surements made by seismometers on the surface of the Earth of different earthquakes
in the Earth’s interior.

The rows of our matrix A correspond to earthquake–receiver pairs, the number of
which is very high (almost 3 million). It is to our advantage to include as many such
pairs as possible. The more rows we include, the more information we include in the
system and the more detailed the solution and hence model, which can be obtained.
Each row is constructed froma surfacewave data set (vanHeijst andWoodhouse 1999),
which has information corresponding to energy waves from earthquakes only close to
the Earth’s surface. The columns of the matrix correspond to the coordinate system
that is used to grid the interior of the Earth between the surface and the core mantle
boundary. Each row of the matrix A is a sensitivity kernel (Marquering et al. 1998),
that is defined over a cubed-sphere coordinate system (Ronchi et al. 1996), in which
the contents at the surface of a sphere of a given radius are projected onto six faces of a
cube.We divide the region within the Earth between the core-mantle boundary and the
surface into 37 depth layers each divided laterally into 6 chunks subdivided into 128×
128 voxels. Each rowof thematrix A (a kernel) has information for each of the 37 depth
layers (corresponding to different radii from the core-mantle boundary to the Earth’s
surface) (Simons et al. 2011). This translates into approximately 3.6 million columns.

The matrix A is sparse, having approximately 1.5 % nonzeros. The resulting matrix
is thus very large: the dimensions of the matrix A are 2,968,933 × 3,637,248 and it is
approximately 3 TB in size on the disk in a double precision sparse format. The reason
for the large size is apparent from a typical sparse storage scheme which stores the
dimensions, the total number of nonzeros, the number of nonzerors in each row (or
column), and the column (or row) indices of all the nonzeros, followed by the floating
point values of all the nonzeros. We typically use integers to represent everything but
the floating point values for which we use floats or doubles. The resulting binary file
can easily be several terabytes in size when the dimensions and number of nonzeros
are large.

Since the matrix A is too large for us to handle directly, we split the matrix A into
20 different blocks:

A =

⎡
⎢⎢⎢⎣

A1
A2
...

A20

⎤
⎥⎥⎥⎦ .

In our illustrations, we will use also the smaller submatrix A1 of the full matrix A. The
submatrix has dimensions 438,674× 3,637,248 and is about 115 GB in uncompressed
form. We can load this matrix into memory. In Fig. 5, we show the fist 2000 singular
values of A1 and A (approximated numerically via the randomized low rank SVD
algorithm) with the first singular value scaled to be 1. We note that the singular values

123

Int J Geomath (2015) 6:251–294 283

500 1000 1500 2000
−6

−5

−4

−3

−2

−1

0
SINGULAR VALUES of A1

i

lo
g(

σ i)

500 1000 1500 2000
−6

−5

−4

−3

−2

−1

0
SINGULAR VALUES of A

i

lo
g(

σ i)

Fig. 5 First 2000 singular values of A1 and A (numerically approximated)

of A dropoff significantly faster than those of A1 because A is amuch largermatrixwith
significantly more linear dependence. This type of singular value behavior is common
for matrices from similar applications, so as we illustrate later in this section, the low
rank approximation techniques we describe here work relatively well even when the
rank k is marginal compared to matrix dimensions. It’s important to note again that
our schemes rely mostly on operations with the AT

1 A1 and AT A matrices for which
the decay of the singular values is very rapid, being the square of the illustrated rate
for A1 and A.

In order get an idea of the structure and wavelet compressibility of our matrices, we
take a look at a randomly chosen row of A, which represents a sensitivity kernel and
its representation with different numbers of wavelet coefficients as per (4.2), using
the same CDF 9–7 transform as before. In Fig. 6, we plot the sensitivity kernel near
the surface of the Earth (at 135 km depth). That is, we plot part of a row of matrix,
representing a certain depth layer near the surface. From the figure, we can clearly
see that the kernel looks like a continuous image and is hence similar to a row of
matrix A(3) in the previous section, which as we saw, was wavelet compressible. In
the top of Fig. 6, the leftmost plot is the original kernel while the rightmost plot is the
reconstructed kernel with about 10 % of the coefficients retained after transforming.
We see a notable degradation in quality. However, when we keep about 25 % of the
largest coefficients, we have much less noticeable reconstruction error. We clearly
observe that while some details are lost as less coefficients are retained, the majority
of the structure is preserved.We have performed such plots of several randomly chosen
rows and we conclude that our matrix A is at least as good for wavelet compression as
synthetic matrix A(2) (where at least a subset of the rows compressed well), but likely
significantly better, with most rows being wavelet compressible. In Fig. 6, we also

plot a curve of the percent error E = 100 ‖r−(W−1(T(WrT)))T ‖
‖r‖ versus the percent of

coefficients retained by the thresholding function. By percent coefficients retained we

mean the quantity 100
nnz

(
T(WrT)

)
nnz(WrT)

, where r is either the whole row vector or part of a

row (corresponding either to all depth layers or to a certain depth near the surface) and
nnz is the number of nonzeros. Notice that the error over all depths (all the entries of
the kernel row) is greater than just at the particular depth layer at which it is plotted; but
it is acceptable as long as we keep about 25 % or more coefficients after transforming.

123

284 Int J Geomath (2015) 6:251–294

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40
KERNEL RECONSTRUCTION % ERRORS

100*nnz(Thr(Wr))/nnz(Wr)

E

all depths
depth layer 34

Fig. 6 Original kernel r and reconstructed compressed kernels (W−1(T(WrT)))T (at 135 km depth) with
different numbers of coefficients retained after thresholding: approximately 48, 24, and 10 % coefficients,
respectively. The bottom plot shows the percent error curve between the reconstructed and original kernel
versus the number of nonzeros retained: errors for all depths and only for the displayed depth are shown

Since we find that the rows of A are in large part wavelet compressible, we will
again use wavelet compression and the low rank SVD, in order to approximate matrix
vector operations with the matrices A and A1 and the solutions:

(AT
1 A1 + λI)x̄1 = AT

1 b and (AT A + λI)x̄2
= AT b and (AT A + λ1 I + λ2L

T L)x̄3 = AT b

with L aLaplacian smoothing operator, whichwe build from scratch as a sparsematrix.
Just as with our synthetic data examples, we first obtain the wavelet thresholded
matrices M1 and M corresponding to A1 and A and use these smaller matrices to
obtain the low rank SVD of the A1 and A matrices, to achieve further compression.
Notice also that as our data comes from a surface wave data set, the resolution of
our inversions is primarily limited to a region close to the Earth’s surface, a point we
remind the reader of several times in this section.

6.2.1 Wavelet and SVD compression with smaller matrix A1

We now discuss the results of some experiments with matrix A1 which was just small
enough for us to load in RAM in uncompressed form. We form the corresponding
wavelet thresholded matrix M1 = T(A1WT) by replacing each row r of A1 by

123

Int J Geomath (2015) 6:251–294 285

0 10 20 30 40 50
0

10

20

30

40

50

60

70

% ERRORS for Matrix−Vector Operations (WAV)

vector #

E

A

AT

AT A

0 10 20 30 40 50
0

10

20

30

40

50

60

70

% ERRORS for Matrix−Vector Operations (SVD)

vector #

E

A

AT

AT A

Fig. 7 Percent errors for 50 Gaussian random vectors x and y between the vectors A1x, A
T
1 y, AT1 A1x

and their approximations through wavelet compressed and low rank SVD methods

(T(WrT))T . We retain one third of the largest coefficients by absolute magnitude.
The full matrix A1 is of size 115 GB while the matrix M1 computed with our cho-
sen threshold comes out to be 35 GB. In Fig. 7 we show the errors that result when
we use the compressed matrix M1 to approximate matrix vector operations with A1.
For 50 random Gaussian vectors x and y compatible with the dimensions of A1 and
AT
1 , we plot the percent errors between A1x and M1W−T x, AT

1 y and W−1MT
1 y, and

between AT
1 A1x andW−1MT

1 M1W−T x . The error quantity for the first case is simply

E = 100 ‖A1x−M1W−T x‖
‖A1x‖ , as before in the synthetic data tests.

We use the same CDF 9–7 wavelet transform as in the synthetic tests for W , but
do not build W explicitly as a matrix and cannot obtain the inverse-transpose matrix
W−T by transposing the inverse of W . This is because W is a very large n × n matrix
and is very costly to build for large n. Hence, we instead use a routine for applying W
andW−T to vectors. Unlike with synthetic data whereW−T is exact, the implemented
routine for the inverse transpose transform is approximate.We programmed the inverse
transpose routine by applying the forward transform with the inverse filters but it did
not exactly equal to the inverse of the transpose ofW because of complicated boundary
data treatment. We see that this increases the errors somewhat when approximating
matrix–vector operations with A1 and AT

1 A1. We see that the error for approximating
the operation AT

1 A1x is for some vectors higher than the approximation for A1x and
AT
1 y. However, from the figure we see that all operations are approximated with errors

below about 20 percent (which, although significant, will not give rise to large errors
in regularized solutions).

Next, as we previously did with synthetic data, we go on to compute the approx-
imate low rank SVD of A1 ≈ U1k�1k V

T
1k

using the wavelet compressed matrix M1
to approximate matrix–vector operations with A1 in the randomized low rank SVD
algorithm. The dimensions and sizes of the various matrices turn out as follows:

• A1, dimensions (438,674 × 3,637,248), size is 115 GB.
• M1, dimensions (438,674 × 3,637,248), size is 35 GB.
• U1k , �1k , V1k , dimensions (438,674× 2000), (2000× 2000), (3,637,248× 2000),
sizes are 7 GB, 30 MB, 55 GB (≈62 GB total).

123

286 Int J Geomath (2015) 6:251–294

We show the errors that result in approximating matrix–vector operations with A1
and AT

1 using the low rank SVD in the same Fig. 7 where we plot, for 50 randomly
generated vectors x and y, percent errors between A1x and U1k�1k V

T
1k
x, AT

1 y and

V1k�1kU
T
1k
y, and between AT

1 A1x and V1k�
2
1k
V T
1k
x . The error quantity for the first

case is simply E = 100
‖A1x−U1k�1k V

T
1k
x‖

‖A1x‖ , as before in the synthetic data tests. From

the figure we see that for approximating the AT
1 A1x operation with V1k�

2
1k
V T
1k
x , the

errors are similar to those obtained via the wavelet thresholded W−1MT
1 M1W−T x

approximation, though they do jump to about 50 % for a few vectors in the set.
The errors are significantly lower for the approximated AT

1 A1x operation then for
operations with A1 or AT

1 individually. This is because the decay of singular values
of AT

1 A1 is much more rapid than that of A1 and the matrix is thus well approximated
with a low rank k. Notice, however, that for the low rank SVD of A1, the total size
of the SVD components (which are not sparse matrices) is greater than the size of the
matrixM1. Hence, it may not be very practical to use the low rank SVD decomposition
for this smaller matrix. However, it is useful to use in this case for illustrative purposes.

We go on to obtain some approximate regularized solutions using the wavelet
compressed matrix M1 and the low rank SVD componentsU1k , �1k , V1k and compare
to the full solution we get with matrix A1. The solutions we plot in Fig. 8 are obtained
by doing 250 iterations of the CG algorithm for the systems listed below.

(AT
1 A1 + λI)x1 = AT

1 b1 solution with full matrix A1

(W−1MT
1 M1W−T + λI)x2 = W−1MT

1 b1 wavelet compressed solution with M1

(Vk1�
2
k1
V T
k1

+ λI)x3 = Vk1�k1U
T
k1
b1 replacing all instances of A1 by low rank SVD

(Vk1�
2
k1
V T
k1

+ 5λI)x4 = W−1MT
1 b1 using the low rank SVD only on the left hand side.

(6.1)
In the figure, we plot the solution at a certain depth near the surface because the data
set we used in the construction of A (and hence A1) is a surface wave data set, so
there is minimal resolution far down from the surface. We mention more on this later
in this section. At the depth we show, the differences between the solutions are very
small. The SVD solutions do show some minor degradations. We have observed the
same behavior slightly above and below the current depth: that is, for all regions where
we have significant resolution with our data set. Notice that the wavelet compressed
solution x2 is very close to the full solution. With x3 and x4 small differences can
be observed. The latter solution x4 actually reveals somewhat more details than x3.
Note also that in Fig. 8 we plot the depth profiles for each solution, where we show a
depth slice for a section of the Earth, from the surface to the core mantle boundary. As
expected, nonzero data is only present at depth layers near the surface and the quality
of the approximations decrease at the bottom layers. The loss of detail with the low
rank SVD solutions at the lower layers is visible in these plots.

Also in Fig. 8 we show the plots of solution norm and χ2 value versus iteration
for the different solutions. The norm of the solution is the �2 norm of the iterate xn at
iteration n. The χ2 value is calculated using the formula:

χ2 = 1

P

∑
k not outlier

|rnk |2,

123

Int J Geomath (2015) 6:251–294 287

Min=−13.4341

Max=10.9303 −3 −1.5 0.0 1.5 3

Min=−13.5311

Max=11.0029 −3 −1.5 0.0 1.5 3

Min=−11.2422

Max=7.5836 −3 −1.5 0.0 1.5 3

Min=−12.9467

Max=10.1939 −3 −1.5 0.0 1.5 3

50 100 150 200 250
300

400

500

600

700

800

900

1000
NORMS

iteration #

||x
n||

full
wav
svd
svd2

50 100 150 200 250
5

10

15

20

25

30
CHI2s

iteration #

ch
i2

s

full
wav
svd
svd2

0

2

4

6

8

10

12
AVG CHI2s for RSVD solutions

rsvd solution 1 & rsvd solution 2

m
ea

n
ch

i2

Fig. 8 Rows 1–2 regularized solutions x1 (full matrix—row 1, left), x2 (wavelet), x3 (svd 1—row 2, left),
and x4 (svd 2) from (6.1) plotted at 135 km depth. Row 3 solution norms and χ2 values versus iteration,
bar plot comparing average χ2 of the two SVD solutions computed using the low rank SVD matrix and
the wavelet compressed matrix. Row 4 depth profiles of the four solutions in a portion of the globe with
variations (the top arcs represent the Earth’s surface)

where rn = A1xn − b and P = m − m0 (number of rows minus number of outliers).
For each datum, we estimate standard errors in the data before inversion, then scale
the system to be univariant (i.e. all standard errors are equal to 1). We define outliers
as entries of the vector rn that are not within three standard errors. In the inversions we
present, the outliers are identified after 5 and 25 iterations, corresponding to dips in
the χ2 that may be seen in the plots. Since our systems are univariant, we would like
for the χ2 of the converged solution to be close to one. However, this is not possible
for this data set without including extra correction terms for spatial uncertainty in

123

288 Int J Geomath (2015) 6:251–294

the earthquake coordinates and instrument error in the data. Hence the χ2 values are
quite a bit higher. In the figure, we can see that the curves for the full and wavelet
thresholded case are very close to each other; the first SVD solution has a lower norm
and the second a slightly higher solution norm at the chosen value of λ.

For the χ2 calculation, we calculate the product A1xn using the full matrix A1
in the solution x1, using the approximation M1W−T xn in the solution x2, and using
the approximation U1k�1k V

T
1k
xn in the solutions x3 and x4. Notice that since the

operation A1xn is not as well approximated as the operation AT
1 A1xn , we have a

noticeable difference in χ2 values between solutions x1 and x2 and between x3 and
x4. For the latter two solutions, the calculated χ2 value comes out higher than it really
is. To illustrate this fact, we include in Fig. 8 a bar plot which shows the the mean
χ2 value after 50 iterations from the two SVD solutions x3 and x4 computed using
the low rank matrixU1k�1k V

T
1k

and using the full matrix A1. The same solutions have

correspondingly lower χ2 values when the residual rn = A1xn − b1 is approximated
via A1xn −b1 instead ofU1k�1k V

T
1k
xn −b1. Thus, while the solutions themselves are

approximated well with the SVD approximations, quantities such as χ2 which involve
calculations with A1 instead of AT

1 A1 can be far less accurate when computed with
the low rank SVDmatrices. Given the results with the matrix A1, we summarize a few
key points which we observe.

• In the case of matrix A1 which is not so large, wavelet thresholding makes the
most sense, as the low rank SVD does not provide compression, unless the k × k
methods are used. This is because the low rank SVD matrices are dense while the
original matrix is sparse.

• Approximate solutions with both wavelet thresholding and the low rank SVD are
quite accurate compared to those with the full matrix.

• In matrix vector operations, the error in the approximation to operations with
AT
1 A1 is significantly less than for the approximations to operations with A1 and

AT
1 . Hence, quantities such as χ2 are not accurately computed if the low rank

SVD matrix is used to compute the residual; instead one should use the wavelet
compressed or full matrix (for one computation) to accurately estimate the χ2

value of the solution vector.
• When computed with A1 or M1, the χ2 values for the approximate solutions are
very similar to that of the full solution.

• The difference between the full and approximate solutions becomes significant at
lower depths, where the data set resolution is poor.

6.2.2 Wavelet and SVD compression with matrix A

We now describe some results of wavelet and low rank SVD compression for our very
large matrix A. Due to the size of A, even after wavelet compression, the resulting M
is too big to load into RAM all at once on a single machine. For this reason, we do
not compute the wavelet thresholded M in one shot. Instead we operate on blocks of
A at a time and construct the block based:

123

Int J Geomath (2015) 6:251–294 289

0 10 20 30 40 50
0

10

20

30

40

50

60

70

% ERRORS for Matrix−Vector Operations (SVD vs WAV)

vector #

E

A

AT

AT A

Fig. 9 Percent errors in matrix–vector operations for 50 Gaussian random vectors with A, AT , and AT A
approximated via the wavelet compressed matrix M and compared to results obtained with the low rank
SVD (obtained via M)

M =

⎡
⎢⎢⎢⎣

M1
M2
...

M20

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

T(A1WT)

T(A2WT)
...

T(A20WT)

⎤
⎥⎥⎥⎦

This way, operations with A can be approximated using relations (4.5) and the com-
ponents of M can be stored in parallel over several different machines.

We now state the sizes and dimensions of the matrices involved:

• A, dimensions (2,968,933 × 3,637,248), size is 3.2 TB (approximate, never com-
puted).

• M , dimensions (2,968,933 × 3,637,248), size is 1 TB.
• Uk, �k, Vk , dimensions (2,968,933 × 2000), (2000× 2000), (3,637,248 × 2000),
sizes are 45 GB, 30 MB, 55 GB (≈100 GB total).

Notice that in this case, for the much larger matrix A, the low rank SVD provides for
very substantial memory savings.

Since we cannot use A directly, we can only compare results with the wavelet
compressed matrix M to results obtained with the low rank SVD Ak = Uk�kV T

k . As
before, we have first formed M and then used M in the randomized SVD scheme to
form the approximate low rank SVD of A. We again used k = 2000 (a very small
number relative to the dimensions of A). In Fig. 9, we plot the percent errors for
matrix vector operations done with the computed low rank SVD compared to those
approximated via the wavelet thresholded matrix M . We plot the percent errors for 50
random Gaussian vectors x and y compatible with the dimensions of A and AT : that
is, between MW−T x (approximating Ax) and Uk�kV T

k x,W−1MT y (approximat-
ing AT y) and Vk�kUT

k y and between W−1MT MW−T x (approximating AT Ax) and

123

290 Int J Geomath (2015) 6:251–294

Min=−1
Max=1

−1 −0.5 0.0 0.5 1

Azimut: 90on=(42oN,−120oE)

Δ
x
=20km

Δ
y
=20km

depth profile

Min=−1
Max=1

−1 0 1

Azimut: 90on=(42oN,−120oE)

Δ
x
=20km

Δ
y
=20km

depth profile

Min=−1.1596
Max=1.3105

−1 0 1

Min=−1.5019
Max=1.644

−1 −0.5 0.0 0.5 1

Min=−0.95349
Max=0.82761

−1 −0.5 0.0 0.5 1

Min=−0.35062
Max=0.29239

−1 −0.5 0.0 0.5 1

Min=−0.33205
Max=0.42499

−1 −0.5 0.0 0.5 1

Fig. 10 Checkerboard model and reconstructions at different depths. Row 1 synthetic xchk model and it’s
depth profile from the surface to the core mantle boundary followed by the depth profile of the reconstructed
solution xchkrec. At adjacent layers, checkerboards differ only by a sign change. Row 2 reconstructed layers
34 and 32 (135 and 316 km depth). Row 3 reconstructed layers 30 and 28 (428 and 586 km depth)

Vk�2
k V

T
k x . The error quantity for the first case is simply E = 100

‖MW−T x−Uk�kV T
k x‖

‖MW−T x‖ .

The plots again indicate that the operation AT Ax is likely to be well approximated
even with a low rank k we choose. In this case, for the large A, the singular values of
AT A decay very rapidly, with the square of the decay rate observed in Fig. 5.

As previously mentioned, the matrices we use come from a surface wave data set
(van Heijst and Woodhouse 1999), such that only the top few depth layers near the
surface carry nonzero information and even the bottom of these layers can already
offer limited resolution. Thus the quality of approximations can vary somewhat for
different depth layers. In order for the reader to have an idea of the data set we use,
we present some checkerboard reconstructions using the matrix A and a synthetically
constructed checkerboard model xchk. We define xchk to be a checkerboard grid, over
the top few layers (near the surface). The result is plotted in Fig. 10 using the depth
profile (a cross-section plot showing the model representation over all depth layers)

123

Int J Geomath (2015) 6:251–294 291

and corresponding cubed-sphere representations at certain depths (we plot at each
depth layer shown the projection onto the six cube faces). Then we form b = Axchk
and solve the regularized system (AT A + λI)xchkrec = AT b with λ = 5. We plot
the solution x in Fig. 10 using the same formats. We use the wavelet transformed and
thresholded matrix M = T(AWT) to approximate the matrix vector operations with
A. The comparison between xchk and the corresponding reconstruction xchkrec gives us
a summary of what the data set can pick up. In particular, we see from Fig. 10 that the
resolution is limited to layers near the surface and gets worse with increasing depth,
as expected. Also and perhaps more important is that the checkers used are about the
size of what we we can successfully resolve. We have tried using smaller checkers
which did not lead to good reconstructions, even for depth layers near the surface.

The checkerboard test shows the clear limitation of the matrix A: we are unable to
resolve features at all depths, nor are we able to resolve particularly small features.
Hence, we expect that we can safely use relatively high compression ratio approxi-
mation methods we have discussed (using aggressive thresholding with wavelet based
approximation and small k relative to matrix dimension in the SVD based schemes).
Even though the solutions which result from these methods may not resolve some fine
scale features in comparison with using the full (or even wavelet thresholded) matrix,
it is important to keep in mind that these fine scale features which appears in the more
detailed solutions may not be realistically explainable by the data we have available.
This is true in many applications similar to ours.

We will consider the following linear systems for approximating the regularized
solution to Ax = b:

(W−1MT MW−T + λI)x5 = W−1MT b wavelet compressed solution for A

(Vk�
2
k V

T
k + λI)x6 = Vk�kU

T
k b replacing all instances of A by low rank SVD

(Vk�
2
k V

T
k + 10λI)x7 = W−1MT b using the low rank SVD only on the left hand side

with λ = 1. We also show the following solutions corresponding to the system with
Laplacian smoothing included:

(W−1MT MW−T + λ1 I + λ2L
T L)x8 = W−1MT b wavelet compressed with smoothing

(Vk�
2
k V

T
k + λ1 I + λ2L

T L)x9 = Vk�kU
T
k b SVD 1 with smoothing

(Vk�
2
k V

T
k + 10λ1 I + λ2L

T L)x10 = W−1MT b SVD 2 with smoothing.

The results for a depth layer close to the surface are given in Fig. 11. Again, we find
that the results for depth layers around the given depth are quite similar to what we
present. We can readily notice the effect of the smoothing operator L on the solutions.
Notice that the wavelet compressed solution without smoothing offers a great deal of
detail. However, based on our checkerboard experiments, it’s unlikely that the smaller
scale features we find in this detailed solution are real, since they are generally smaller
than the checkers we used in our resolution test. In the figure, we also plot the same
plots as for the smaller matrix A1, including plots of the solution norms, χ2 values,
and of the depth profiles of the solutions x8, x9, x10 (with Laplacian smoothing). We
find similar behavior in the 3 solutions without the Laplacian. As before, we plot a
bar chart showing the χ2 of the SVD based solutions using the SVD and wavelet

123

292 Int J Geomath (2015) 6:251–294

Min=−26.6109

Max=21.152 −5 −2.5 0.0 2.5 5

Min=−11.046

Max=9.1325 −5 −2.5 0.0 2.5 5

Min=−14.379

Max=11.6269 −5 −2.5 0.0 2.5 5

Min=−7.9406

Max=8.5831 −5 −2.5 0.0 2.5 5

Min=−7.5823

Max=6.5072 −5 −2.5 0.0 2.5 5

Min=−11.5696

Max=9.6394 −5 −2.5 0.0 2.5 5

20 40 60 80 100 120 140
200

400

600

800

1000

1200

1400
NORMS

iteration #

||x
n||

wav
svd
svd2

20 40 60 80 100 120 140
5

10

15

20

25
CHI2s

iteration #

ch
i2

s

wav
svd
svd2

0

2

4

6

8

10

12

14
AVG CHI2s for RSVD solutions

rsvd solution 1 & rsvd solution 2

m
ea

n
ch

i2

Fig. 11 Plots for regularized solutions x5, x6, x7 (row 1) and x8, x9, x10 (row 2). First and second row
solutions plotted at 135 km depth. Third row norms of solution and χ2 value at each iteration, bar plot of
average χ2 of the two SVD solutions computed with the low rank SVDmatrix and the wavelet compressed
matrix, depth profiles of solutions x8, x9, and x10 in a portion of the globe with variations (the top arcs
represent the Earth’s surface)

compressed matrices. We see similar behavior in the sense that if χ2 is computed with
matrix M , it is close to that of the wavelet compressed solution. The depth profile
plots in Fig. 11 show significant differences between the wavelet compressed and low
rank SVD solutions at lower depths, although the resolution there is likely very low.

Given the results with the big matrix A, we summarize a few key points which we
observe.

• Both the wavelet thresholded and the low rank SVD approach allow us to usemuch
smaller matrices and still resolve the main solution features (in the case of A, the
low rank SVD components are collectively less than 30 times the size of the full
matrix and offer superior compression gains).

• For a matrix of this size, block matrix techniques we have discussed are likely
necessary for practical implementation, so that different parts of the matrices used
can be stored on different machines. Blocking can be applied both to wavelet
compression via (4.5) or to the low rank SVD schemes via e.g. (5.11).

• In matrix vector operations, the error in the approximation to operations with AT A
is significantly less than for the approximations to operations with A and AT . This
again has implications for the χ2 calculation as previously discussed.

• The solutions with the low rank SVD do show loss of detail when compared to
the wavelet thresholding solution. There is significantly less loss of detail when
Laplacian smoothing is used, since the smaller scale features are smoothed out in
that case.

• A checkerboard test is a good way to measure matrix resolution. The smallest
clearly resolved checker size corresponds roughly to the scale of properly resolved

123

Int J Geomath (2015) 6:251–294 293

features in the solution. If the resolution is poor, Laplacian smoothing should be
used to avoid presenting false fine scale details. In this case, the low rank SVD
solutions can offer a good approximation with the use of much smaller matrices.

7 Conclusions

We have presented the use of wavelet compression and low rank SVD techniques for
obtaining approximate solutions to regularization problems. We illustrate the appli-
cation of these techniques to �2 regularization for synthetic data and for a large scale
inverse problem from seismic tomography, where we show the pros and cons of these
approximation methods in a practical setting. We have also presented some mathe-
matical analysis for the various SVD based schemes we have considered, showing
interesting equivalence between different schemes with different memory require-
ments. The techniqueswepresent are alsowell applicable to other types of optimization
problems. In fact, the methods presented here can be of use to any application where
matrix–vector operations with large matrices are required, especially if the matrices
are not well conditioned and have nonlinear decay of singular values.

The wavelet compressed approach is found to be very accurate and gives close
reconstructions to the true solution, assuming the data arewavelet compressible. Based
on our experiments, applications utilizing similar data and wavelet transform can
benefit from a compression ratio of at least 3 times, with minimal accuracy loss. In
our examples, we used a simple one dimensional transform for each row. Recognizing
the rows as multi-dimensional images and transforming them via a multi-dimensional
transform would likely give even greater compression.

For large matrices, the compression with wavelets alone may not be sufficient. The
low rank SVD approach can give significantly better compression ratios (>10) and
resolve the main solution features. The low rank SVD can be obtained through an
efficient randomized algorithm using operations with the smaller wavelet compressed
matrix instead of the full matrix, so that the two compression techniques we present
can be utilized together. The approaches we discuss lead to the use of k × n or k × k
matrices (which can also be split in several smaller blocks), in place of the original
m × n matrix, which can result in very substantial compression ratios.

For both wavelet compressed and low rank SVD based methods, the accuracy and
compression ratio are inversely proportional and controlled by the user. In the case of
wavelet compression, the time it takes to form the compressed matrix is nearly inde-
pendent of the threshold used. However, for the computation of the low rank SVD,
the work involved substantially grows as the rank k increases. Often, a checkerboard
style test can be performed to see the resolution a data set is capable of. In large prob-
lems, the resolution possible with a given matrix is often limited. The approximation
techniques we propose can often be well justified physically, as the fine scale details
they may remove or smooth out may not be realistically resolved by the data set.

Acknowledgments The authors would like to thank the referees for very clear and helpful comments
which resulted in significant improvements. We also like to thank Ignace Loris, Gunnar Martinsson and
Frederik Simons for very helpful discussion. Support from the ERC (Advanced Grant 226837), the Defense
Advanced Projects Research Agency (Contract N66001-13-1-4050) and the National Science Foundation
(Contracts 1320652 and 0748488) is greatly appreciated.

123

294 Int J Geomath (2015) 6:251–294

References

Akansu, A.N., Haddad, R.A.: Multiresolution Signal Decomposition: Transforms, Subbands, andWavelets.
Academic Press Inc, Orlando (1992)

Calvetti, D., Morigi, S., Reichel, L., Sgallari, F.: Tikhonov regularization and the L-curve for large discrete
ill-posed problems. J. Comput. Appl. Math. 123 (1–2), 423–446 (2000)

Chárlety, J., Voronin, S., Nolet, G., Loris, I., Simons, F.J., Sigloch, K., Daubechies, I.C.: Global seismic
tomography with sparsity constraints: comparison with smoothing and damping regularization. J.
Geophys. Res. Solid Earth (2013)

Cohen, A., Daubechies, I.C., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Com-
mun. Pure Appl. Math. 45(5), 485–560 (1992)

Daubechies, I.C.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41,
909–996 (1988)

Daubechies, I.C., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems
with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

Debayle, E., Sambridge, M.: Inversion of massive surface wave data sets: model construction and resolution
assessment. J. Geophys. Res. 109, B02316 (2004)

Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for
constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

Härdle, W., Kerkyacharian, G., Picard, D., Tsybokov, A.: Wavelets, approximation, and statistical applica-
tions. Lecture Notes in Statistics, vol. 129. Springer, New York (1998)

Lampe, J., Reichel, L.,Voss,H.: Large-scale Tikhonov regularization via reduction by orthogonal projection.
Linear AlgebraAppl. 436(8), 2845–2865 (2012). (Special Issue dedicated toDanny Sorensen’s 65th
birthday)

Markovsky, I.: Low rank approximation: algorithms, implementation, applications. In: Communications
and Control Engineering. Springer, New York (2012)

Marquering, H., Nolet, G., Dahlen, F.A.: Three-dimensional waveform sensitivity kernels. Geophys. J. Int.
132(3), 521–534 (1998)

Meyer, Y.: Wavelets: Algorithms and Applications. Society for Industrial and Applied Mathematics,
Philadelphia (1993). (Translated and revised by Robert D. Ryan)

Nolet, G.: A Breviary of Seismic Tomography. Cambridge Univ. Press, Cambridge (2008)
Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM

Trans. Math. Softw. 8(1), 43–71 (1982)
Ronchi, C., Iacono, R., Paolucci, P.S.: The cubed sphere: a newmethod for the solution of partial differential

equations in spherical geometry. J. Comput. Phys. 124(1), 93–114 (1996)
Simons, F.J., Loris, I., Nolet, G., Daubechies, I.C., Voronin, S., Judd, J.S., Vetter, P.A., Chárlety, J., Vonesch,

C.: Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity
of seismic heterogeneity. Geophys. J. Int. 187(2), 969–988 (2011)

Sweldens, W.: The lifting scheme: a new philosophy in biorthogonal wavelet constructions. In: Laine,
A.F., Unser, M.A., Wickerhauser, M.V. (eds.) Wavelet applications in signal and image processing III.
Proceedings of SPIE, vol. 2569, pp. 68–79 (1995)

Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Sov. Math.
Dokl. (1963)

Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM Philadelphia (1997)
van Heijst, H.-J., Woodhouse, J.H.: Global high-resolution phase velocity distributions of overtone and

fundamental mode surface waves determined by mode branch stripping. Geophys. J. Int. 137(3),
601–620 (1999)

Voronin, S., Martinsson, P.-G.: RSVDPACK: subroutines for computing partial singular value decompo-
sitions via randomized sampling on single core, multi core, and GPU architectures (2015). ArXiv
e-prints

Wang, S., Zhang, Z.: Improving CUR matrix decomposition and the Nystrom approximation via adaptive
sampling. J. Mach. Learn. Res. 14(1), 2729–2769 (2013)

Woodbury,M.A.: Invertingmodifiedmatrices. In: Statistical ResearchGroup,Memo.Rep.No. 42. Princeton
University, Princeton (1950)

123

	Compression approaches for the regularized solutions of linear systems from large-scale inverse problems
	Abstract
	1 Introduction
	2 Organization of the paper
	3 Notation and preliminaries
	4 Approximate matrix--vector operations with wavelet compression
	5 Low rank SVD approximation
	5.1 Computation with randomized algorithm
	5.2 Application to regularization schemes
	5.3 Further analysis and error bounds

	6 Numerical experiments
	6.1 Examples with synthetic data
	6.2 Examples with real data
	6.2.1 Wavelet and SVD compression with smaller matrix A1
	6.2.2 Wavelet and SVD compression with matrix A

	7 Conclusions
	Acknowledgments
	References

