
J
H
E
P
0
7
(
2
0
1
3
)
1
2
4

Published for SISSA by Springer

Received: December 6, 2012

Revised: June 12, 2013

Accepted: July 6, 2013

Published: July 22, 2013

A note on (no) firewalls: the entropy argument

Yasunori Nomura and Jaime Varela

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics,

Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

Berkeley Center for Theoretical Physics, Department of Physics,

and Theoretical Physics Group, Lawrence Berkeley National Laboratory,

University of California, Berkeley, CA 94720, U.S.A.

E-mail: ynomura@berkeley.edu, jaimevrl@berkeley.edu

Abstract: An argument for firewalls based on entropy relations is refuted.

Keywords: Models of Quantum Gravity, Black Holes, Black Holes in String Theory

ArXiv ePrint: 1211.7033

c© SISSA 2013 doi:10.1007/JHEP07(2013)124

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78071634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ynomura@berkeley.edu
mailto:jaimevrl@berkeley.edu
http://arxiv.org/abs/1211.7033
http://dx.doi.org/10.1007/JHEP07(2013)124


J
H
E
P
0
7
(
2
0
1
3
)
1
2
4

Recently, Almheiri, Marolf, Polchinski, and Sully (AMPS) have posed an interesting

paradox [1]: the equivalence principle for an infalling observer is incompatible with the

hypothesis that the formation and evaporation of a black hole, as viewed from a distant

observer, is described by unitary quantum mechanics and that physics outside the stretched

horizon is well approximated by a semi-classical theory (the complementarity hypothesis [2,

3]). If true, this would have profound implications for physics of spacetime and gravity. In

particular, AMPS advocate that the most conservative resolution of the paradox is that

for an old (but still macroscopic) black hole, the infalling observer hits a “firewall” of high

energy quanta at the horizon — a drastic deviation from the prediction of general relativity.

AMPS present two arguments for firewalls: one based on a measurement of early Hawk-

ing radiation by an observer falling into an old black hole and the other based on properties

of entropies associated with various subsystems of an old black hole. In previous papers,

we, together with Sean Weinberg, have refuted the first AMPS argument [4, 5]. (For other

work on firewalls, see, e.g., [6–20].) A key observation is that a full quantum state, to

which the unitarity argument applies, is in general a superposition of different classical

worlds; on the other hand, general relativity (or the equivalence principle) applies to each

of these classical worlds, not necessarily to the whole quantum state. In this short note,

we show that a similar observation also allows us to avoid the second AMPS argument, i.e.

the argument based on entropies.

Let us briefly recall how the first AMPS argument was addressed in refs. [4, 5]. The

argument is concerned about a state of an old black hole (after the Page time) that has

formed from collapse of some pure state:

|Ψ〉 =
∑

i

ci |ψi〉 ⊗ |i〉 , (1)

where |ψi〉 ∈ Hrad and |i〉 ∈ Hhorizon represent degrees of freedom associated with

early Hawking radiation and the horizon region, respectively. Now, since dimHrad ≫

dimHhorizon, one can construct an operator Pi that acts only on Hrad (not on Hhorizon)

but selects a term in eq. (1) corresponding to any state |i〉 ∈ Hhorizon: Pi |Ψ〉 ∝ |ψi〉 ⊗ |i〉.

Suppose we choose Pi so that |i〉 is an eigenstate of the number operator, b†b, of a Hawking

radiation mode that will escape from the horizon region. The state |i〉 then cannot be a

vacuum for the infalling modes aω, which are related to b by b =
∫∞

0
dω(B(ω)aω +C(ω)a

†
ω)

with some functions B(ω) and C(ω). AMPS argue that the fact that one can choose such

Pi implies that the infalling observer must encounter high energy modes, i.e. the firewall,

because he/she can (in principle) measure early Hawking radiation to select the particular

term |ψi〉 ⊗ |i〉 in |Ψ〉.

This argument, however, misses the fact that the existence of projection operator

Pi does not mean that a measurement performed by a classical observer, which general

relativity is supposed to describe, picks up the corresponding state |i〉. In fact, quite

generally, the state |ψi〉 that is entangled with a b†b eigenstate |i〉 is a superposition of

states |ψ̂a〉 having well-defined classical configurations of Hawking radiation quanta:

|ψi〉 =
∑

a

dia|ψ̂a〉, (2)
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with dia 6≈ δia [4]. An important point is that the coefficients dia are determined dynami-

cally by the form of Hamiltonian, especially its local nature — it is not something we can

choose arbitrarily, e.g. as dia = δia, independent of the dynamics. Substituting eq. (2) into

eq. (1), we obtain

|Ψ〉 =
∑

a

|ψ̂a〉 ⊗

(

∑

i

diaci |i〉

)

≡
∑

a

|ψ̂a〉 ⊗ |â〉, (3)

implying that |Ψ〉 is a superposition of terms having well-defined configurations of Hawking

quanta. Now, a classical world can be defined as a basis state in which the information

is amplified; see, e.g., [21–23]. In ref. [4], it was considered that the natural basis in the

present context, i.e. in addressing AMPS’s first argument, is given by interactions between

Hawking quanta and the classical measuring devise, which is spanned by the |ψ̂a〉’s. General

relativity says that the horizon state in each classical world must be approximately a

vacuum state for the infalling modes, and this is not a contradiction since |â〉 can be far

from an eigenstate of b†b: |â〉 6≈ |i〉.1

We now turn to the main theme of the present note. We suggest that the resolution of

the firewall paradox may lie in the emergence of classical worlds in a full quantum state,

and this can be determined by the internal dynamics of the horizon (when the system is

viewed from outside). (The role played by interactions of a device with early Hawking

quanta can be minor.) In particular, the fallen object is represented differently at the

microscopic level in each of these classical worlds, although they all correspond to the

object falling in the same infalling vacuum when described in general relativity. We will

see that this can address AMPS’s second argument based on entanglements (and their first

argument as well).

AMPS’s second argument goes as follows. Consider three subsystems of an old black

hole A, B, and C. In an infalling frame, take

A : early/distant Hawking modes, (4)

B : outgoing modes localized near outside of a (small) patch of the horizon, (5)

C : modes inside the horizon that are Hawking partners of B. (6)

In a distant frame, the interpretation of C (but not of A or B) changes:

C : a subsystem of the degrees of freedom composing the stretched horizon, (7)

although it still represents the same degrees of freedom as in eq. (6) (complementar-

ity). Now, unitarity says that for an old black hole the entropy of the distant modes

decreases, implying

SAB < SA, (8)

1If we prepare a carefully-crafted quantum device that will be entangled with one of the |i〉’s and send,

e.g., a particle toward the horizon, then that particle may see a firewall. Such a device, however, needs to

be an exponentially fine-tuned superposition state of different classical configurations, and can be ignored

under realistic circumstances [5].
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where SX represents the von Neumann entropy of system X. On the other hand, the

equivalence principle applied to a freely falling observer says

SBC = 0, (9)

implying SABC = SA. These two relations contradict strong subadditivity of entropy

SAB + SBC ≥ SB + SABC , (10)

since they lead to SB < 0 if both are true. This implies that one must abandon either

unitarity of a black hole formation/evaporation process (with physics outside the stretched

horizon well described by a semi-classical theory) or the equivalence principle.

What can be wrong with this argument? Again, the key observation is that unitarity

is a statement about an entire quantum state while the equivalence principle is a statement

about a classical world — a component/branch of the entire quantum state. Let us assume

that both these statements are correct. Then, for the entire quantum state, eq. (8) must

apply while eq. (9) need not (and in fact cannot) be satisfied. On the other hand, if we

focus only on a single component of the state corresponding to a classical world, then the

relation as in eq. (9) must be satisfied (where the entropy should be derived only from

that particular component of the state, which we will denote as S̃BC from now on), while

the bound as in eq. (8), i.e. S̃AB < S̃A, will not be true. This is consistent because the

information is (almost) always lost for a classical observer in a quantum mechanical system.

To illustrate this point more explicitly, let us consider the quantum state of an old

black hole, which we write in the form

|Ψ〉 =
∑

i,j,k,l

cijkl |Ai〉 |Bj〉 |Ck〉 |Dl〉 , (11)

where |Bj〉 and |Ck〉 represent states for B and C in eqs. (5), (6), (7). (Here and below, we

omit the direct-product symbol.) |Dl〉 are states for subsystem D which represents all the

internal (or stretched horizon) degrees of freedom other than C, and |Ai〉 are states for A,

in which we now include all the outside degrees of freedom other than B. The state |Ψ〉

comprises our entire quantum state.2

Unitarity of the evolution of |Ψ〉 implies that eq. (8) must apply. The strong subad-

ditivity relation in eq. (10) then says that eq. (9) cannot be true. In fact, to satisfy the

relation, SBC must be of order SB, so the BC system is far from maximally entangled.

Namely, we have

SAB < SA, SBC 6≈ 0. (12)

Does this mean that general relativity is incorrect, i.e. a freely falling classical observer

finds a drastic violation of the equivalence principle at the horizon?

2To be precise, |Ψ〉may not be the complete state for an old black hole, which in general is a superposition

of various |Ψ〉’s corresponding to black holes in different locations and with different spins [5]. Therefore,

the complete information about the initial state may not be reproduced from a single |Ψ〉 alone. This

aspect, however, is irrelevant for our argument below, since the entropy for distant radiation decreases in

|Ψ〉 (not only in the complete state), i.e. SAB < SA in |Ψ〉.

– 4 –



J
H
E
P
0
7
(
2
0
1
3
)
1
2
4

The answer is no. As discussed before, emergence of classical worlds in a quantum

mechanical system is controlled by the dynamics, and a quantum state is in general a

superposition of these classical worlds. In particular, the dynamics selects a set of natural

basis states in which the information is amplified, and with which any classical objects

would be entangled. (For a sufficiently large system with a local Hamiltonian, the basis

states are those having well-defined configurations in classical phase space, with spreads

dictated by the uncertainty principle.) Let us now consider a state representing one of

these classical worlds

|Ψ̃〉 = z
∑′

i,j,k,l

cijkl |Ai〉 |Bj〉 |Ck〉 |Dl〉 , (13)

where the sum runs only over a subset of the A through D states so that |Ψ̃〉 corresponds

to a (decohered) classical world in |Ψ〉. (The sum is denoted with prime to emphasize this

point, and z is the normalization constant.) We can define von Neumann entropies for

subsystems A, B, etc. of the state |Ψ̃〉 (not of |Ψ〉). We call such entropies branch world

entropies and denote them with the tilde: S̃X for a subsystem X of |Ψ̃〉.

The validity of general relativity requires the BC system in |Ψ̃〉 to be maximally

entangled, and applying the strong subadditivity relation to |Ψ̃〉 then leads to the conclusion

that the entropy of the combined AB system cannot be lower than that of A:

S̃BC = 0, S̃AB ≮ S̃A. (14)

In fact, with S̃BC = 0, the strong subadditivity relation yields a stronger condition S̃AB ≥

S̃A + S̃B. Together with another basic inequality of entropy S̃AB ≤ S̃A + S̃B, this leads to

S̃AB = S̃A + S̃B, (15)

i.e. two subsystems A and B are (almost) separable in a classical world in which S̃BC ≈ 0

is valid. This implies that a classical observer in |Ψ̃〉 cannot see any entanglement between

A and B.

We now come to our main point: relations in eq. (12) are not incompatible with those

in eq. (14)—they are relations on two different quantities: entropies for the entire state

and branch world entropies. The two are compatible because for an old black hole the

coefficients cijkl in eq. (11) can have significant support spanning different classical worlds

(otherwise |Ψ〉 ≈ |Ψ̃〉) and because the infalling “vacuum” state in the BC region need

not be unique (otherwise, the BC state could be factored from |Ψ〉, making SAB < SA

impossible to satisfy). Here, different classical worlds mean different microstates for the

BC states that are described as the same semi-classical spacetime in general relativity.

In the true Minkowski space, the vacuum state is believed to be unique. The near hori-

zon region, however, is only Minkowski vacuum-like (i.e. the equivalence principle requires

only a small region compared with the black hole to be Minkowski vacuum-like), and there

can be many such states because of microscopic degrees of freedom of the black hole. In

particular, the vacuum state for each classical branch can differ in which subsystem of the

black hole (i.e. C+D) is identified as C (i.e. the partner modes of B) and/or how the modes

in B are entangled with those in C. (General relativity, however, describes all these states

– 5 –



J
H
E
P
0
7
(
2
0
1
3
)
1
2
4

as the same infalling vacuum.) Branches having different entanglement structures between

B and the black hole degrees of freedom correspond to different decohered classical worlds.

Because the dimension of Hilbert space for the CD system (black hole) is eA/4l2
P , where

A and lP are the area of the black hole and the Planck length respectively, the number of

different classical worlds can be as large as eA/4l2
P , enough to fully recover unitarity. The

basis for the classical states is selected by the internal dynamics of the horizon, which we

assume to be maximally-entangled black hole and exterior near-horizon mode states corre-

sponding to the infalling vacuum. Overlaps among these states are extremely small, so they

are regarded as different decohered classical worlds. An infalling classical (macroscopic)

object will be entangled with states in this basis. In particular, the object entering the

horizon is represented by different states of the black hole in various branches, specifically

as a small fluctuation around each of the eA/4l2
P different vacuum states.

For dimHA >∼ dimHBC , one can easily see that |Ψ〉 can satisfy eq. (12) while keeping

eq. (14) for each classical state |Ψ̃〉. Of course, this does not prove what we have postulated

above: (i) unitarity, (ii) the equivalence principle, and (iii) the semi-classical nature of

physics outside the stretched horizon — these are still assumptions. It, however, does show

that the argument by AMPS is flawed, and that (i), (ii), and (iii) can all simultaneously

be true.

Once again, an important point is to realize that states corresponding to well-defined

classical worlds are very special in quantum mechanics (most of the states in general Hilbert

space are superpositions of different classical worlds) and that general relativity is a theory

describing a classical world (whose emergence is controlled by the dynamics of a system),

as has been emphasized by the authors both in black hole physics [4, 5] and cosmology

(especially the eternally inflating multiverse) [23–26]. By carefully considering this point,

we conclude that complementarity is a consistent hypothesis. A realization of it in which

the intrinsically quantum mechanical nature is manifest has been discussed in ref. [23],

where complementarity is interpreted as (a part of) unitary reference-frame change trans-

formations acting on the covariant Hilbert space. For detailed discussions on this proposal

in the context of black holes, see [5].
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[INSPIRE].

[20] D.N. Page, Hyper-entropic gravitational fireballs (grireballs) with firewalls,

JCAP 04 (2013) 037 [arXiv:1211.6734] [INSPIRE].

[21] H. Ollivier, D. Poulin and W.H. Zurek, Objective properties from subjective quantum states:

environment as a witness, Phys. Rev. Lett. 93 (2004) 220401 [quant-ph/0307229].

[22] R. Blume-Kohout and W.H. Zurek, Quantum darwinism: entanglement, branches and the

emergent classicality of redundantly stored quantum information,

Phys. Rev. A 73 (2006) 062310 [quant-ph/0505031].

[23] Y. Nomura, Quantum mechanics, spacetime locality and gravity, arXiv:1110.4630 [INSPIRE].

[24] Y. Nomura, Physical theories, eternal inflation and quantum universe, JHEP 11 (2011) 063

[arXiv:1104.2324] [INSPIRE].

[25] Y. Nomura, Quantum mechanics, gravity and the multiverse, Astron. Rev. 7 (2012) 36

[arXiv:1205.2675] [INSPIRE].

[26] Y. Nomura, The static quantum multiverse, Phys. Rev. D 86 (2012) 083505

[arXiv:1205.5550] [INSPIRE].

– 7 –

http://dx.doi.org/10.1007/JHEP03(2013)059
http://arxiv.org/abs/1207.6626
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.6626
http://dx.doi.org/10.1103/PhysRevD.87.084050
http://arxiv.org/abs/1210.6348
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6348
http://arxiv.org/abs/1207.5192
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.5192
http://arxiv.org/abs/1208.3445
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.3445
http://arxiv.org/abs/1210.2098
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.2098
http://arxiv.org/abs/1208.2005
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.2005
http://arxiv.org/abs/1208.2026
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.2026
http://dx.doi.org/10.1007/JHEP12(2012)014
http://arxiv.org/abs/1208.3468
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.3468
http://dx.doi.org/10.1007/JHEP12(2012)094
http://arxiv.org/abs/1208.3930
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.3930
http://arxiv.org/abs/1208.4757
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.4757
http://arxiv.org/abs/1208.6480
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.6480
http://arxiv.org/abs/1210.5317
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.5317
http://dx.doi.org/10.1088/1475-7516/2013/01/005
http://arxiv.org/abs/1210.6733
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6733
http://arxiv.org/abs/1210.6996
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6996
http://dx.doi.org/10.1103/PhysRevD.87.104018
http://arxiv.org/abs/1211.4620
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.4620
http://arxiv.org/abs/1211.5645
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.5645
http://dx.doi.org/10.1088/1475-7516/2013/04/037
http://arxiv.org/abs/1211.6734
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.6734
http://dx.doi.org/10.1103/PhysRevLett.93.220401
http://arxiv.org/abs/quant-ph/0307229
http://dx.doi.org/10.1103/PhysRevA.73.062310
http://arxiv.org/abs/quant-ph/0505031
http://arxiv.org/abs/1110.4630
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4630
http://dx.doi.org/10.1007/JHEP11(2011)063
http://arxiv.org/abs/1104.2324
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2324
http://arxiv.org/abs/1205.2675
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.2675
http://dx.doi.org/10.1103/PhysRevD.86.083505
http://arxiv.org/abs/1205.5550
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5550

