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validated by comparing with both manual analysis and 
DMV software. ADM will be publicly released as a free 
tool. The software can also be used on a video file or files 
without the integration with the camera SDK.
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1  Introduction

Droplet-based microfluidics served as a common platform 
for many lab-on-a-chip applications ranging from the synthe-
sis of material (Gunther and Jensen 2006), examining chemi-
cal and physical interaction (Song et al. 2006; Konry et al. 
2013) to biological studies for drug screening (Kintses et al. 
2010). The fundamental attraction of the system lies in the 
inherent ability to generate droplets with extreme precision. 
Droplets can be formed in microfluidic devices using typi-
cal geometries such as the T-junction (Tan et al. 2010), flow-
focusing (Tan et al. 2008) and co-flow junction (Hong and 
Wang 2006). Alternatively, external perturbation can also be 
incorporated easily using thermal (Yap et al. 2009), electric 
(Tan et  al. 2014a, b; Castro-Hernández et  al. 2015), mag-
netic (Tan and Nguyen 2011) or acoustic energy (Schmid 
and Franke 2013; Chong et al. 2015) to provide an additional 
level of refined control (Chong et al. 2016). One application 
in droplet-based microfluidics is the encapsulation of cells in 
droplets for selective microcultures (Brouzesa et  al. 2009), 
differential cell growth studies (Najah et  al. 2014) or drug 
delivery (Li et al. 2005). In such applications, the controlled 
size and morphology of the droplets are critical parameters 
related to cell survival, proliferation or bioavailability (Wan 
2012). Droplet-based microfluidics is also used to synthesize 
micron-sized polymeric particles such as the Janus particles 

Abstract  This paper identifies and addresses the bottle-
necks that hamper the currently available software to per-
form in  situ measurement on droplet-based microfluidic. 
The new and more universal object-based background 
extraction operation and automated binary threshold value 
selection make the processing step of our video process-
ing software (ADM) fully automated. The ADM software, 
which is based on OpenCV image processing library, is 
made to perform measurements with high processing speed 
using efficient code. As the processing speed is higher than 
the data transfer speed from the video camera to perma-
nent storage of computer, we integrate the camera software 
development kit (SDK) with ADM. The integration allows 
simultaneous operations of the video transfer/streaming 
and the video processing. As a result, the total time for 
droplet measurement using the new process flow with the 
integrated program is shortened significantly. ADM is also 
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(Chen et  al. 2009), ternary particles (Nie et  al. 2006) or 
porous particles (Dubinsky et al. 2008). During the synthe-
sis, it is also paramount that the droplets are produced in the 
desired size within a narrow size distribution.

In the above-mentioned applications, it is apparent that an 
automated and in situ measurement system which can moni-
tor the generated droplet will serve as an invaluable tool. This 
function will allow users to implement immediate changes 
to rectify any abnormalities detected. For example, leak-
ages or the presence of foreign particles in the microfluidic 
system will affect the flow behavior which in turn affects 
the size, speed and polydispersion of the generated droplets. 
This is also usually not apparent and obvious and can only 
be detected after a period of time or during routine checks. In 
certain cases, inconsistent results obtained after the evalua-
tion entail repeated experiments which can be averted if in situ 
measurements are done promptly. However to the best of our 
knowledge, no such method or software exist despite the obvi-
ous nature of the situation. This may be due to the absence of a 
simple, automated and efficient droplet measurement system.

Recently, advances have been made by Basu (2013) who 
published his MATLAB-based video processing algorithm, 
droplet morphometry and velocimetry (DMV). The soft-
ware is available freely upon request and is currently used 
by 35 laboratories in 14 countries worldwide for various 
droplet measurements. The software is able to obtain dif-
ferent droplet parameters such as area, centroid position, 
velocity and orientation of motion after post-processing the 
traveling droplet videos. This step inadvertently reduces 
the barrier of entry into droplet-based microfluidics for 
researchers coming from various different background and 
disciplines. The automated droplet measurement (ADM) 
software allows rapid in  situ automated droplet measure-
ments on the generated droplets. The enhanced capability 
will be beneficial and useful for different droplet-based 
applications. For example, an in  situ automated droplet 
measurements will allow an immediate intervention to 
correct any detected abnormalities, tuning the droplet to 
the required size accurately; by adjusting the flow condi-
tion such as flow rates of syringe pumps, either manually 
or automatically using a feedback loop. This is especially 
important for applications such as cell encapsulation that 
require high-precision control in droplet size.

2 � Methods

2.1 � Droplet measurement process

2.1.1 � Conventional process flow

Figure  1 illustrates a typical process flow for droplet 
measurements. In brief, the process can be divided into 

on-site and off-site steps. In the on-site step, the process 
initiates by recording droplets using a high-speed video 
camera which is fitted onto a microscope. The record-
ing duration depends on several factors such as the speed 
of the droplets, droplet production frequency and num-
ber of droplets to be evaluated. This in turn determines 
the frame rate to be used and the duration of the record-
ing. In general, the frame rate has to be higher than the 
droplet production frequency to allow an accurate analy-
sis. For instance, it takes 0.1  s to record 1000 frames at 
10,000 frame per second (FPS) on 35 droplets generated 
at a production rate of 350 Hz. The recorded video is then 
transferred from the camera’s temporary storage to a per-
manent storage such as computer hard drive or external 
memory storage. The time taken depends on the trans-
fer speed and the writing speed of the video data. As an 
example, this process takes more than 5  s transferring 
1000 frames, 520 × 64 pixels video data from a camera 
(Phantom Miro M310) without any video compression to 
a computer hard drive.

In the off-site image evaluation, the experimental videos 
first need to be processed before any droplet measurements 
can be extracted for further analysis. In this operation, it 
first involves extracting the background and the selection of 
an appropriate threshold value in order to convert the video 
into binary images. This step is usually done manually by 
inputting and selecting the appropriate parameters. The 
parameters are then checked by scanning through the video 
in the software to inspect the suitability. Next, the droplets 
are tracked and monitored to avoid repetition and dou-
ble counting. This is done by analyzing each frame of the 
video. In each frame, the background is removed and the 
image is then converted into a binary image. The contours 
of the droplets are then identified from the binary image. 
After filtering the contours, each of them is compared and 
linked to one of the contours obtained from the previous 
frame. The time used in this process depends on the image 
recognition library and the efficiency of the coding. For 
instance, a MATLAB-based DMV video recognition soft-
ware by Basu (2013) takes about 45 s (Windows 7 PC with 
Intel Core i7 M620 CPU) to process 945 frames of video 
with resolution of 520 × 64.
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Fig. 1   Conventional droplet measurement process flow



Microfluid Nanofluid (2016) 20:66	

1 3

Page 3 of 14  66

2.1.2 � New process flow with ADM software

The study of the droplets characteristic in different flow 
fields or external conditions requires multiple experiments 
and repeated tests. Usually, tens or even hundreds of tests 
have to be performed diligently before one can understand 
and elucidate the unique experimental observation. When 
coupled with the above image processing technique, it usu-
ally takes many painful months or even years before plau-
sible conclusions are reached after the analysis. Recogniz-
ing this, it is impractical and time-consuming to perform 
the above process. The process is also highly inefficient 
as the droplet measurements can only be obtained after an 
off-site analysis. Therefore, rapid and automated droplet 
measurement software will address this inadequacy. We 
propose here a new process flow in Fig.  2 which allows 
droplet measurements to be carried out on-site and run 
automatically.

In order for the new process flow to be efficient and 
practical, we addressed three main bottlenecks that hamper 
the rapid measurement of droplets. We first identified and 
automated two main critical functions, namely the extrac-
tion of background image and selection of threshold values. 
We then addressed the tracking speed of the droplets by 
optimizing the coding for tracking to enable a fast detec-
tion and measurement system. The new process flow can 
be executed seamlessly and run on-site for rapid droplet 
measurements.

The first bottleneck to remove toward an automated and 
rapid measurement system is the extraction of background 
information. The implementation of an effective back-
ground extraction operation (BEO) must (1) suit the char-
acteristics of the droplet movement and (2) be universally 
applicable to different environments.

The automation of the binary threshold value selection 
(BTVS) operation suppresses the second bottleneck: by 
selecting its optimized value automatically from the opera-
tion, the prominent contours from each video frames can be 
properly recognized by the software.

For most video conditions, the two operations described 
enable the software to track the droplets reliably. 

Furthermore, an unmanned processing step drastically 
overcomes manual operation in terms of time and invari-
ability of objective criteria for the selection of optimal 
parameters. Also, for most situations, finding the optimal 
parameters for video tracking resolve the other processing 
parameters such as erosion, dilation and advanced filtering 
measures. The two devised algorithms will be explained in 
detail in Sect. 2.2.

The third bottleneck entails the speed of our ADM 
software to run the two mentioned automated processing 
operations. In addition, the software must be able to track 
the droplet at a much higher image processing speed than 
the currently available software. To do so, our target is to 
achieve a tracking speed comparable to or higher than the 
transfer speed of video data. The viability of the new pro-
cess flow is thus linked to that target. The improvement 
provided by the new process lies on the streaming of video 
data into a PC memory instead of transferring it to a perma-
nent storage. As the I/O (input/output) speed of PC mem-
ory is higher than a permanent storage, it allows simulta-
neous video frame streaming from camera and access by 
ADM for the tracking step. For BEO and BTVS opera-
tions though, the software accesses the temporary storage 
directly as the number of frames is small (about 100) and 
the frames are picked randomly.

By implementing the new process flow with the pro-
posed ADM, the tracking speed is now limited by the 
transfer/streaming speed only, as the tracking speed is com-
parable or faster than the transfer speed. This will further 
cut down the time spent on the whole process. Moreover, 
simultaneous streaming and tracking allow the software to 
stop the streaming after tracking sufficient number of drop-
lets, which reduces the time taken even further.

2.2 � Making processing step fully automated

2.2.1 � Object‑based BEO

The background extraction operation (BEO) is the first 
basic step in the image processing for subsequent droplet 
measurements. Indeed, tracking the moving object (drop-
let) accurately by the image processing software requires 
a background removal operation (BRO), which uses the 
extracted background by BEO (Gavrilova and Monwar 
2013). By using a properly extracted background, BRO 
clears out permanent background features such as the chan-
nel wall from every frame in the video. This eliminates the 
need for manual intervention to prevent those features from 
being tracked by the software.

Naturally, BEO can be done by simply taking the picture 
of the channel before the formation of droplet. However, 
the extracted background becomes obsolete once the image 
condition has been changed. For instance, a new BEO has 
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Fig. 2   New droplet measurement process flow with automated pre-
processing step and fast tracking speed
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to be performed once the stage position or the lightning 
condition changes. New BEO is also needed; when the 
device has been used for an extended period of time, the 
channel walls may swell and deform due to the presence of 
organic solvents.

It is inconvenient and inefficient to stop the droplet 
formation process just for a new BEO whenever there is 
a change in the image condition. Fortunately, each of the 
video frames capturing the droplet generation already 
contains fractional information regarding the background 
image. Therefore, it is possible to perform BEO from a 
video, by combining the fractional information from a lim-
ited number of video frames in order to form a complete 
background image.

Basu (2013) suggested a statistical survey approach on 
each of the pixels in the video frames in order to perform 
BEO from a video. By performing the survey, the statistics 
of the intensity value for each of the pixels across the sam-
pled frames can be determined. A new image can then be 
formed by setting each of the pixels with the intensity value 
accordingly to the statistical data such as average, mode, 
median, minimum and maximum.

According to Basu (2013), the new image generated by 
setting the intensity values to their modes can represent 
the background correctly for most of the time. However, 
we find that this method is not ideal for all situations as it 
fails to extract a proper background for droplet generated at 
low flow rate ratio (dispersed phase to continuous phase). 
This curbs the universality of the method to perform BEO, 
where the study of droplet generating at low flow rate ratio 
is common. As this limitation can impede the automation 
of the processing step, we developed a new and more uni-
versal object-based BEO that suits the characteristics of the 
droplets traveling in microchannel.

As illustrated in Fig.  3, we developed an object-based 
BEO that is derived from a modified statistical method. 
The operation starts by generating an average image (A1) 
using 40 randomly selected frames (F1–F40), where 40 is 
a number that balances BEO accuracy with operation speed 
and cost as described next. Then we remove the non-back-
ground regions in A1 by using an operator h which extracts 
fragments of background regions from randomly selected 
frames (F41–F80). Image R1 shows the result of the first 
iteration of the operator h on image A1 with image F41. 
The area of the non-background regions in image A1 is 
reduced after h(A1, F41, A1) operation. The area is reduced 
further in the second iteration applying h(R1, F42, A1), as 
shown in image R2. After 40 iterations, the area of the non-
background regions is reduced, as shown in image R40. 
Further iterations produce exponentially decaying, negligi-
ble improvements in background extraction.

Operator h is crucial for the effectiveness of the pro-
posed object-based BEO. The operation discriminates 

between the moving objects and the background in the 
randomly selected video frame. This operator determines 
the regions to extract from the randomly selected video 
frame and patches them on the average image. The result 
of applying h on images with 256 gray intensity levels is 
illustrated in Fig. 4. We use the transformation of image R1 
to R2 by h(R1,  F42, A1) as an example to show how the 
operator works in detail.

The operation starts by performing a preliminary back-
ground removal (PBR) procedure on image F42 using A1 
as an average image. The formula used for the procedure 
is shown in Eq. (1), where F is the image to perform PBR 
while A is the average image. 
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Fij,Aij and Iij are the pixel intensity matrices of the cor-
responding images. The Imin and Imax used in Eq. (1b) are 
the minimum and maximum pixel intensity value of image 
F1–F40 found out during the generation of image A1. l2 
function is used to optimize the intensity range. Note that 
the minimum pixel intensity value yielded is 10 in order to 
avoid oversensitive division operation at single digit value 
of intensity. As shown in Fig. 4, image D1 is the result after 
performing PBR on image F42. Here we use background 
division instead of subtraction for the background removal 
procedure as it is more robust to illumination changes 
(Izquierdo-Guerra and García-Reyes 2010) and uneven 
illumination. This is important to produce consistent results 
under a variety of situations. Background division is also 
effective for the procedure that uses an imperfect back-
ground image like A1.

Operation is then continued by converting image D1 into 
a binary mask B1 (see Fig. 4). The g procedure used for the 
conversion marks the moving objects in image F42 as dark 
regions. The procedure starts by converting image D1 into 
a binary image with 0 (dark) or 1 (bright) in pixel inten-
sity value. The bright inner areas of the binary image are 
then filled up to mark out the moving objects. Afterward, 
we expand the dark areas with a scale relative to the width 
of their minimum bounding rectangle. The expansion is 
done to cover the shallow shadows of droplets that are not 
bounded by the initial dark areas.

The produced binary mask B1 is then multiplied with 
image F42 element by element to cover the moving objects 
in the image, as shown in image M1. Conversely, image 
B2, a complimentary binary mask of B1 is multiplied 
with R1 element by element to produce M2. Afterward, 
addition of M1 with M2 produces image R2, [the result 
of the operator h on the image vector {R1,F42,A1}, i.e., 
R2 = h(R1,F42,A1)] has a closer representation of the 
real background compared to R1. Finally, the BEO process 
can be formally defined as the sum of an average operation 
over an image vector {F[I]}I=1,...,n, where n is a properly 
selected order (here, n = 40), plus an operator H composed 
of n nested operators h(R[J − 1],F[J + n],A1) on the 
image vector {F[J + n]}J=1,...,n, starting with the average 
image R0 ≡ A1.

2.2.2 � Automated BTVS

An image is usually converted into a binary image for 
contour recognition. Before binary image conversion, 
we need to select a suitable binary threshold value as it 
affects the quality of the contour recognition. The suit-
able binary threshold value is unique for each video as the 
channels are captured under a variety of lightning condi-
tion, background and degree of transparency. This makes 
the video, from one to the other, to have different edge 

contrast of droplet outlines. Therefore, binary threshold 
value selection (BTVS) is another essential operation in 
the processing step. The operation ensures the exact con-
tours to be recognized from the converted binary image 
and that conforms closely to the outlines of droplets. 
BTVS is also vital for the reliability of droplet tracking 
and the accuracy of the droplet measurement. By using 
the optimal threshold value, we could also reduce the 
need to perform dilation or closing operation to join the 
disconnected traced droplet outlines from an improperly 
processed binary image.

The currently available droplet measurement software or 
DMV requires the user to perform BTVS manually. This is 
done by changing the value of binary threshold and check-
ing the converted binary image. As the selection is done 
visually, the selected value is different not only from one 
user to the other but also from time to time within the same 
user. In order to resolve the issue, we have developed a 
method to perform BTVS automatically. The method ena-
bles automatic selection of an optimum threshold value 
with high repeatability.

Our automated BTVS starts by selecting one frame from 
a video to produce multiple binary images converted using 
different threshold values. As the frame is an image with 
gray intensity level from 0 to 255, we convert the frame 
into 254 binary images using threshold values from 1 to 
254 in one operation of automated BTVS. Afterward, con-
tour recognition is done on each binary image, ascending 
from the binary image converted at the lowest threshold 
value (T = 1) to the highest threshold value (T = 254). The 
contours recognized at each threshold value are grouped 
together according to their centroids using a nearest neigh-
bor search. By the end of the nearest neighbor search at 
T = 254, each group will contain at least one or multiple 
contours with similar centroid, collected at subsequent 
threshold values.

Table  1 shows an example that illustrates the process 
of the automated BTVS on the droplet image in the table. 
The outline of the droplet first appears at binary image 
T = 12 as two dots. The outline becomes more prominent 
when the threshold value increases, as shown in the binary 
images in Table  1. After performing filtering of contours 
and nearest neighbor search, there is only one group of 
contours with similar centroids and recognized from binary 
images converted with increasing threshold value (T = 102 
to T =  252). The recognized contours from binary image 
T =  101 and below are unqualified either for not reach-
ing the minimum area (e.g., small contours in T = 12 and 
T = 70) or with circularity value (4π × Area/Perimeter2) 
lesser than 0.5 (e.g., disconnected contours in T = 70 and 
T  =  101). The recognized contours from binary image 
T = 253 and T = 254 are also unqualified as the spiky con-
tours have low circularity values.



	 Microfluid Nanofluid (2016) 20:66

1 3

66  Page 6 of 14

After sorting the filtered contours into groups, we know 
from each group the range of threshold value with features 
recognizable as qualified contours. In  situations where 
there is only one group of contours, the automated BTVS 
will select the median of the range as the suitable threshold 
value. For the example in Table 1, the outline of the drop-
let image is recognizable in the range from T = 102–252. 
Thus, the median value, 177, will be selected.

In order to increase the repeatability of the automated 
BTVS, we would need to sample more than a droplet 
image. Our policy, outlined in the following, will be sub-
sequently discussed in detail in Sect. 3.2. By increasing 
the sample size, there will be more groups of qualified 
contours. Furthermore, as more frames are sampled in 
the automated BTVS, it is unavoidable to have groups of 
contours that have small range of threshold value, repre-
senting the non-prominent features such as a faint back-
ground object. The groups of this kind can be excluded 
by setting a minimum acceptable range, such as 20 set in 
ADM software. We can finally select a suitable threshold 
value from the remaining groups by analyzing the range 
of threshold values of each group. We select the top 
50 % groups of the larger range and collect the medians 
of their range. The final value will be the median of the 
collected medians. The lower 50 % groups are excluded 
from the collection as they may contain groups of shorter 
range recognized from the droplets near the edge or the 
extended fingers right before separating from the dis-
persed phase.

2.3 � Integrated program with ADM software 
and camera SDK

After implementing object-based BEO and automated 
BTVS in ADM software, we have made the processing 
step fully automated, together with tracking operation. 
Besides, the implementation also ensures proper tracking 

of the moving object by ADM software according to the 
characteristic of the video, under most of the situations. 
The whole measurement process flow can then be com-
puterized by developing an integrated program. As shown 
in Fig. 5, the two main modules used in the program are 
the software development kit (SDK) provided by camera 
manufacturer and ADM software. The former module is 
used to control the high-speed camera and retrieve the data 
from it, while the latter is to perform the processing step 
automatically.

As far as we know, DMV by Basu (2013) is the only 
publicly available droplet tracking software, which is 
written in MATLAB. The software has not been opti-
mized for high performance as mentioned by Basu 
(2013). Apart from MATLAB, OpenCV is another popu-
lar image processing library. OpenCV library is written 
in optimized C, and its performance can be enhanced by 
the use of multicore processors (Nuno-Maganda et  al. 
2011). Due to this, OpenCV consumes lesser CPU time 
than MATLAB for basic image processing operations 
(Matuska et  al. 2012). OpenCV is also widely used and 
adopted in many research fields as the tool for real-time 
computer vision that requires high processing speed 
(Bradski 2008). Therefore, we use the OpenCV library for 
our ADM software in order to achieve rapid tracking of 
droplet movement.

We wrote ADM software from ground up in Visual 
C# using OpenCV through Emgu CV, a wrapper to the 
OpenCV library. Visual C# is adopted for efficient Win-
dows GUI development, and it will help to design instan-
taneous result feedback without consuming large computer 
resources. We optimized the coding to match or surpass the 
video data transfer speed. The simplified architecture of 
the integrated software is illustrated in Fig. 5. Thread con-
trol is required for program features such as simultaneous 
streaming and tracking and instantaneous visual feedback. 
Resource management is particularly important for inten-
sive processes such as frame streaming and tracking. Some 
of the results are represented by graph plotting using Zed-
Graph, an open-source class library and user control for 
drawing 2D Line, bar and pie charts.

ADM software (C#)

EMGU CV (C#)
OpenCV
(C/C++)Image processing

Presentation

BEO

BTVF

Tracking

Result Windows GUI (C#)

ZedGraph (C#)

Camera SDK (C#)
Camera control

Frame reading

Frame streaming

Integrated program

Thread control

Resource management

Fig. 5   The simplified architecture of the program integrating camera 
SDK and ADM software

Table 1   The process data of automated BTVS on a droplet image

(Droplet image)
Threshold

value
Binary
image

Recognized
contour Circularity Qualified

First
appearance 12 NA No

Under 70 NA No

Just under 101 0.0185 No

Min 102 0.8836 Yes

Median 177 0.8621 Yes

Max 252 0.6754 Yes

Just over 253 0.3203 No
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3 � Results and discussion

3.1 � Object‑based BEO

3.1.1 � Choosing a suitable method for PBR procedure

As mentioned in Sect.  2.2.1, operator h is crucial for the 
effectiveness of object-based BEO. The operator patches 
part of the non-background regions in an image with the 
background in a newly selected random image. This opera-
tion is made possible by having an effective PBR proce-
dure based on an average image, which is an imperfect 
background. The result of the procedure is shown in Fig. 4, 
where the background in image F42 is removed using 
image A1 to produce image D1 under the f(F42, A1) proce-
dure. Other methods have also been tried for the PBR pro-
cedure before adopting method f stated in Eq.  (1) for the 
procedure. The methods are r1, r2 and r3, which are shown 
in Eq.  (2). For the symbols used in the equations, Fij is 
the image to perform PBR, Aij is the average image, l1 is a 
leveling function to optimize the range of intensity value, 
while Imin and Imax are the minimum and maximum inten-
sity value, respectively. Imin and Imax are surveyed during 
the generation of the average image. 

Method r1 is a standard background subtraction. The 
pixel in image r1(F,A) takes the middle value (128) 
when Fij = Aij. The pixel intensity is darker (<128) when 
Fij < Aij while lighter (>128) when Fij > Aij. Method r2 
is an absolute background subtraction. The pixel in image 
r2(F,A) is 255 when Fij = Aij. The pixel intensity becomes 
darker (<255) whenever there is a difference between Fij 
and Aij. Method r3 is similar to r2, but the pixel intensity 
remains 255 when Fij > Aij.

As shown in Fig. 6, all the methods are able to remove 
the outlines of the channel wall effectively. Interestingly, the 
images produced by method r3 and f do not have the shad-
owy droplet outline shown in image inherited from image A. 
This is because the methods do not discriminate the change 
for Fij > Aij. Methods r3 and f are especially suitable for 
capturing droplets because the droplet outlines are darker 
than the background. Method f is preferred than method r3,  
as the images produced using f method shows the droplet 
outlines more clearly and in higher contrast. Additionally, 

(2a)r1(Fij,Aij) =128+ 0.5l1(Fij)− 0.5l1(Aij)

(2b)r2(Fij,Aij) =255− |l1(Fij)− l1(Aij)|

(2c)
r3(Fij,Aij) =

{

255, l1(Aij)− l1(Fij) < 0

255− (l1(Aij)− l1(Fij)), otherwise

(2d)l1(Iij) =
255(Iij − Imin)

Imax − Imin

method f is insensitive to the lightning distribution, as exem-
plified in case (b) of Fig.  6. For this case, the outline of 
droplet in the darker region is much clearer from the image 
produced using method f than the one using method r3.

After performing the assessment on several other vid-
eos using the above-stated methods, we chose method f as 
the PBR procedure in BEO. Method f is able to produce 
consistent result in a variety of lightning conditions, with 
high contrast images showing the droplet outlines clearly. 
This allows the use of a fixed threshold value, independent 
of the video condition, in using g procedure to produce a 
binary mask for operator h.

F A r1(F,A) r2(F,A) r3(F,A) f(F,A)(a)

(b)

Fig. 6   Comparison of four different methods for PBR procedure 
(r1, r2, r3, f ) on a video A—the experimental setup is discussed in 
Sect.  3.3.1 and b video B—the experimental setup is discussed in 
Sect. 3.3.2

Video

Object
based
BEO

Mode
BEO

(a) (b) (c) (d)

Fig. 7   BEO on different types of video. a Droplet splitting, b droplet 
formation, c droplets traveling under channel with variety lightning 
distribution and d bubble formation
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3.1.2 � Application of BEO on different videos

Our proposed object-based BEO has been tested on differ-
ent types of video. As shown in Fig. 7, the videos include 
(a) droplet splitting, (b) droplet formation, (c) droplets 
traveling under channel with non-homogeneous lightning 
distribution, and (d) bubble formation.1 According to the 
test results, object-based BEO is able to extract the correct 
background for droplets captured under different situations. 
The test result is also compared to mode BEO (a statistical 
method, by setting the intensity values to their modes), 
which highlights benefits of object-based BEO. Mode BEO 
fails to generate the correct background for from video (a), 
(c) and (d), as some of the intensity values are from the 
moving objects. This generates the unwanted darker or 
lighter tails in the extracted backgrounds.

3.2 � Automated BTVS

3.2.1 � Application of automated BTVS

Figure 8 shows the result of our automated BTVS opera-
tion applied on a video capturing the droplet formation. 
The video is the same as the one used in case (b) in Fig. 7. 
The operation is done on an image combining five frames 
from the video. Each frame is selected randomly from the 
video and performed with background removal before the 
combination. Five frames are used to increase the prob-
ability of capturing a droplet in the field of view while not 
reducing the speed of BTVS operation. There are 14 groups 
of qualified contours recognized from the image under the 
operation. Each group is labeled in the figure with a pair of 
rectangles in red and blue. The red rectangle is the bound-
ing rectangle for the qualified contour recognized at the 
lowest binary threshold value from a group, while the blue 
one is at the highest value. For instance, object (2) is recog-
nizable as a qualified contour from the image starting from 
threshold value of 100 until 253, with range of 154.

Table  2 lists the groups recognized from the video 
using our automated BTVS. As all the sizes of the range 
are larger than 20, none of the groups are removed from 
the list. Each group is then ranked according to the size 
of range, from biggest to the smallest. Afterward, the top 
50 % groups in terms of the size of range will be included 
in the selection of a suitable threshold value. For this case, 
groups (3), (4), (6), (7), (8), (10) and (14) are excluded. 
Object (7) has the smallest in range as it is recognized from 
the extended finger right before separating from the dis-
persed phase. Object (14) is the next smallest recognized 
from a droplet near the edge of the frame.

1  ADM can also be used to measure bubbles.

The medians of the included groups are then collected. 
Finally, by computing the median of the collected medians, 
automated BTVS selects value 176 for the threshold value. 
In order to evaluate the quality of the selected threshold 
value, we compare the object images and their converted 
binary image at the selected threshold value. We list the 
object images, binary images and recognized contours 

(1) r=158
t= -96 253

(2) r=154
t= -100 253

(3) r=138
t= -115 252

(4) r=149
t= -104 252

(5) r=164
t= -90 253

(6) r=124
t= -127 250

(7) r=31
t= -183 213

(8) r=151
t= -102 252

(9) r=158
t= -96 253

(10) r=145
t= -109 253

(11) r=153
t= -101 253

(12) r=152
t= -102 253

(13) r=152
t= -101 252

(14) r=117
t= -131 247

Fig. 8   The groups of qualified contours recognized from the image 
under automated binary threshold value selection (BTVS)

Table 2   Data of the groups of recognized contours

Group Max Min Range Rank ˜T
Object
image

Binary at
T=176

Contour at
T=176

Qualified
contour

(1) 96 253 158 2 174 Yes

(2) 100 253 154 4 176 Yes

(3) 115 252 138 11 - Yes

(4) 104 252 149 9 - Yes

(5) 90 253 164 1 171 Yes

(6) 127 250 124 12 - Yes

(7) 183 213 31 14 - No

(8) 102 252 151 8 - Yes

(9) 96 253 158 2 174 Yes

(10) 109 253 145 10 - Yes

(11) 101 253 153 5 177 Yes

(12) 102 253 152 6 177 Yes

(13) 101 252 152 6 176 Yes

(14) 131 247 117 13 - Yes

The median is collected only from the top 50 % of the group in terms 
of size of range. Therefore, we find out the median only for the rank 7 
or higher groups
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according to their associated groups in Table  2. We find 
the binary images generated at the selected threshold value 
(176) represent the object outlines correctly. Addition-
ally, the recognized contours from the binary images are 
able to trace the outlines of the objects closely. Among the 
contours generated at T = 176, contour from group (7) is 
unqualified automatically as it is recognized from an object 
with a broken outline. The contour has circularity value 
lower than 0.5. The exclusion of the group (7) at T = 176 is 
consistent to what we want as it is not yet a droplet.

3.2.2 � Repeatability of automated BTVS

The automated BTVS operation is sampled from image 
combining five randomly selected frames from a video. 
The probability of capturing at least one droplet is near def-
inite with five frames while not compromising the comput-
ing performance. As the frames are randomly selected, the 
determined threshold value can fluctuate from one execu-
tion of the operator to the other. Here, we study the fluctua-
tion of the value and its implication to the measured droplet 
area on the same video. Figure 9a shows the histogram of 
the threshold value obtained using the automated BTVS for 
100 times. The threshold value fluctuates between 174 and 
178. The measured droplet area changes slightly from one 
threshold value to the other, from 1133.3 to 1136.1 pixel2 . 
For this case, the standard deviation of the measured area 
is 0.7427 pixel2, or with coefficient of variation (CV) of 
0.0655 %. This value is small enough to ensure high repeat-
ability for the measurement.

3.3 � Measurement result

3.3.1 � Droplet generation

Our ADM software has been used to perform droplet 
measurement on a typical microfluidic droplet generation 
process. We captured the process of droplet generation by 
a polydimethylsiloxane (PDMS) device with a cross junc-
tion design (channel width and height of 100 and 45µm, 
respectively). The device was fabricated using standard soft 
lithography techniques (Duffy et  al. 1998). As shown in 
Fig. 9b, we form water droplets in oil by flowing deionized 
water (dispersed phase) to the central channel of the cross 
junction and mineral oil (continuous phase, Sigma-Aldrich 
M5904 with 5%w/w surfactant; viscosity η = 30mPa s; 
surface tension γ = 33mNm−1) to the two side channels.

The volumetric flow rates are maintained using syringe 
pumps (neMESYS, Cetoni) at 200µL/h for the dispersed 
phase while 1000µL/h for the continuous phase. We cap-
ture the droplet generation using a microscope (BX51, 
Olympus) fitted with a high-speed camera (Miro M310, 
Phantom). After maintaining the flow rates for an hour, 

30 droplets are captured and measured under the new pro-
cess flow with ADM software. The average area, speed and 
perimeter were found to be 4503.1µm2, 100.51mm/s and 
255.7µm, respectively. The CVs for the three values are 
all lesser than 0.2 %. Right after measuring directly using 
ADM, we also recorded a short video capturing 30 droplets 
for manual and DMV measurement.

We check the accuracy of our measurement by compar-
ing the deduced flow rate from our measurement data to the 
set flow rate at the pump. The flow rate is deduced using 
Eq.  (3), together with the estimated droplet volume equa-
tion, Eq. (4), for droplet in a channel with rectangular cross 
section (Steijn et al. 2010).

The Q, f and V values are the deduced flow rate, drop-
let generation frequency and droplet volume, respectively, 
while h, A and p are the height of channel, top-view area 
and perimeter, respectively. As the measured droplet gen-
eration frequency is 353.7 Hz, the corresponding deduced 
flow rate is 187.3µL/h, which do not deviate much from 
the set flow rate (200µL/h) at the pump for the dispersed 

(3)Q = fV

(4)V = hA− 2p

(

h

2

)2
(

1−
π

4

)

(a)

(b)

Fig. 9   a Histogram of the obtained threshold value in 100 times 
using automated BTVS algorithm. b Droplet generation device. The 
schematic is not drawn to scale
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phase. This deviation can be attributed to the volume equa-
tion used, which may need appropriate correction factors 
to account for the roundness features in the direction nor-
mal to the plane of view in this case. Other factors such as 
inaccuracy in the measurement of channel height, recogni-
tion of contour and syringe pump may also contribute to 
the deviation. Here, the length-average error is only 2.17 % 
(cube root of the ratio of the deduced and the set volume 
flow rate), which is an acceptable value.

Figure  10 shows the screenshot of our ADM software. 
We are able to trace each of the recognized contours, 
grouped accordingly using nearest neighbor finding, after 
tracking of droplets. For the plotting of data, we list com-
mon parameters needed in droplet measurements. For the 
plots, (a) is time against group ID (unique serial number 
to the group with recognized contours classified as from 
the same droplet), illustrating the time and duration of the 
occurrence of each droplet, (b) is y position against x posi-
tion, which shows the imperfectness of the stage align-
ment and also highlights the deviation of droplet movement 
from the centerline due to some defects in the channel, (c) 
is contour perimeter against time, showing the trend of the 
dimension across the time, and (d) is a histogram showing 
the distribution of top-view droplet areas.

The recorded video of the droplet generation is measured 
manually and validated using both DMV and ADM. Man-
ual measurements were taken by inspecting each individual 
frames of the recorded video. The comparison between 
each measurement is shown in Table 3, row no. 1. First, the 
number of droplet detected by DMV is higher than both 
the manual analysis and ADM. Here, ADM is more accu-
rate than DMV due to the enforcement of a tighter drop-
let discrimination rule. A droplet is counted only when it 
is traced from its separation from the liquid finger to the 
disappearance from the defined region of interest. This rule 

is implemented to prevent double counting of droplets and 
also to ensure a more accurate measurement when comput-
ing the average. As a result, the first three droplets and the 
last three droplets counted by DMV are disqualified when 
counted by ADM. The droplet generation frequency and 
the droplet speed calculated by DMV is higher due to the 
inclusion of the unqualified droplets. In the same table, row 
no. 2–6 shows the measurement of droplet generation using 
the same setup with different flow conditions. Again, the 
measurement performance is consistent with row no. 1.

3.3.2 � Droplet splitting

ADM software has also been used to perform measure-
ments on droplet splitting. The device used in this video is 
a PMMA device fabricated by injection molding (Yu et al. 
2014). The channel width and height are both 200µm. The 
dispersed phase is deionized water, while the continuous 
phase is light mineral oil (330779, Sigma-Aldrich) with 
2%w/w surfactant (Span 80, Sigma-Aldrich). The volu-
metric flow rates are maintained using syringe pumps at 
35µL/min for the dispersed phase while 100µL/min for 
the continuous phase. The frames of the video are shown in 
image F41 and F42 of Fig. 3.

ADM software has a special image box for visual feed-
back in order to monitor the tracking effectively. This fea-
ture is also suitable for the splitting case. The software 
updates the special image box with a representative con-
tour from its contours group once the group exits from the 
visible region. The representative contour is the contour at 
the half of the group’s visible period. For example, contour 
at frame 20 is chosen from a group appearing from frame 
11–29. The contour is then filled with the color according 
to the group number and drawn on top of the image box, 
as shown in Fig. 11a. As the image box is not cleared for 
each draw, we still can see some remnant contours around 
the three filled contours. This feature helps us to have a 
snapshot of the history of tracking. Erroneous tracking due 
to the factors such as selection of wrong binary threshold 
value can be easily spotted as the filled contours are scat-
tered around the channel, as shown in Fig. 11b.

Figure  11 also includes some useful plot generated 
instantaneously from ADM software. Plot (c) tracks the 
centroids of all contours with their according to their group 
color. This is to show the contours are traced and grouped 
properly during the tracking process. Plot (d) shows the ori-
entation of droplet movement against x position. The ori-
entation of two newly split droplets differ the most. They 
return to near 0◦ gradually as they move along the x direc-
tion. Plot (e) shows the changing of the top-view area of 
droplets. The area increases before the splitting and drop 
significantly after the splitting. Plot (f) shows the histogram 
of the top-view droplet areas. The count for the smaller 

Fig. 10   Screenshot of our ADM software with data plots: a time 
against group ID, b y position against x position, c contour perimeter 
against time and d histogram of droplet areas
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area is 108, while the bigger area is 55. By counting the last 
two split droplets excluded from the data as they are still in 
the viewing region, the count for the smaller area is 110, 
which makes it exactly twice the count of the bigger area.

The recorded video of the droplet splitting has also 
been measured manually for validation. The split droplets 
are measured according to the locations of the split chan-
nel (upper and lower). The comparison is shown in Table 4. 
For the comparison, we deduce the dispersed flow rate by 
using Eq.  (3). As the split droplets are unconfined under 
the channel (diameters smaller than the width and height of 

the channel), the droplets are assumed to be perfect spheres 
with volume of V = (4/3)πr3. The r of the equation is 
deduced from the average area (A) using r =

√
A/π .

The deduced dispersed flow rate (Qd) is found by adding 
the deduced half Qd from the upper and lower channel. Both 
the deduced Qd by ADM and DMV are close to the imposed 
dispersed flow rate (35µL/min) by the setup. The meas-
urements for ADM are found to be within a ratio (0.9634–
1.0038). The measurements for DMV are found to be within 
a ratio (0.9833–1.0427). Here, it is reasonable to conclude that 
both software are fairly accurate in the above measurements.

3.4 � Features of ADM

3.4.1 � Speed

The integrated program is run on a PC with Intel Core i7 
CPU (M620) on Windows 7. The time taken for the pro-
gram to execute the object-based BEO on droplet genera-
tion video (520 × 64 pixels, Lagarith lossless video codec) 
is about 0.5  s, while the automated BTVS takes about 
1.1 s. For the tracking step, the program takes about 2.9 s 
to process 945 frames of the video, with visual feedback 
showing the tracking process and instant data plotting. On 
the other hand, DMV takes about 45 s to process the same 
video without visual feedback. When the visual feedback is 
enabled, the time taken increases to about 380 s. Therefore, 
our ADM software is able to process the video more than 

Table 3   ADM measurement 
result compared to DMV 
(droplet generation) with 
different measurement types—
(a) number of droplet, (b) 
frequency (Hz) and (c) speed 
(mm s−1)

No. Type Manual ADM DMV ADM ratio DMV ratio

1. (a) 30 30 36 1.0000 1.2000

(b) 353.7 353.7 358.5 1.0000 1.0136

(c) 100.5 100.5 100.6 1.0000 1.0010

2. (a) 30 30 34 1.0000 1.1333

(b) 185.4 185.1 187.2 0.9984 1.0097

(c) 63.03 63.04 63.15 1.0006 1.0019

3. (a) 30 30 36 1.0000 1.2000

(b) 348.1 348.1 353.4 0.9997 1.0152

(c) 92.90 92.85 93.04 0.9994 1.0015

4. (a) 30 30 38 1.0000 1.2667

(b) 500.3 500.6 513.6 1.0006 1.0266

(c) 106.1 106.0 106.1 0.9991 1.0000

5. (a) 30 30 37 1.0000 1.2333

(b) 572.0 572.4 606.7 1.0007 1.0607

(c) 120.7 120.9 120.8 1.0017 1.0008

6. (a) 30 30 40 1.0000 1.3333

(b) 868.7 868.3 900.7 0.9995 1.0368

(c) 150.1 150.1 150.3 1.0000 1.0013

Ave. (a) – – – 1.0000 1.3333

(b) – – – 0.9995 1.0368

(c) – – – 1.0000 1.0013

Fig. 11   The result of droplet splitting measurement taken from 
screenshot of the ADM software a visual feedback for correct track-
ing, b visual feedback for erroneous tracking at low binary threshold 
value, c y position against x position of centroids, d droplet move-
ment orientation against x position, e changing of droplet area against 
x position and f histogram of droplet area
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15 times faster than the MATLAB-based DMV program, 
even when the ADM is enabled with the visual feedback 
and data plotting for the tracking of the droplets.

As the tracking speed (∼326 FPS) is much faster than 
the streaming speed from camera (Phantom Miro M310) 
(∼150 FPS) at the given resolution, the ADM software has 
been combined with the SDK of the camera to perform 
tracking operation while streaming from the camera. This 
enables rapid tracking of droplet using the new process 
flow proposed in Fig. 2. However, the software is still able 
to operate separately without the SDK using the conven-
tional process flow by loading avi format video files.

Table  5 shows the time taken to perform different sets 
of tasks for droplet measurement. Each of the two videos 
is given three different sets of tasks that emulate the pos-
sible strategies to be adopted for measurement of droplets. 
The first two sets perform only the record and transfer steps 
on-site. Processing step (BEO, BTVS and tracking) is done 
off-site after transferring the videos, as stated in the con-
ventional process flow. The former uses DMV software to 
do processing step, while the later uses our ADM software. 
Set 3 uses the new process flow to perform all the steps 
of droplet measurement on-site, by making streaming and 
tracking working in simultaneously.

It is obvious from the result that set 1 requires the long-
est time to finish both videos. The tracking step consumes 
the most time. For set 1, the time taken for the BEO and 
BTVS is only estimated as they are done manually and 
depends on the experience of the operator. We assume 
more time will be taken in the BEO for the second video as 
the operator needs more time to choose the other suitable 
background extraction scheme, after failing to extract the 
background using the default mode scheme.

The second set saves a lot of time for both videos com-
pared to set 1. This is because the BEO and BTVS can 
be done automatically and the tracking operation is much 
faster. Set 3 consumes the least time. However, as the BEO 
and BTVS are taking the video frames directly from the 
camera, the times are extended for those operations com-
pared to set 2. Furthermore, the tracking time is limited by 
the streaming speed from the camera. The streaming speed 
is slightly slower than the transfer speed in first two sets, as 
it takes some time to initiate the buffer for the streaming. 
Overall, the time taken in set 3 is still quicker than set 2, 
and comparable to the transfer speed.

3.4.2 � Additional features

Apart from speed improvement, ADM also comes with a 
batch processing feature. This feature is especially helpful 
for automated mass measurements of droplets. The batch 
processing function processes each of the video files in a list 
automatically. ADM also measures more droplets param-
eters than DMV. Besides the droplet parameters in DMV, 
ADM measures an additional three important parameters. 
The additional parameters are advancing/receding angle 
and droplet deformation which are critical for understand-
ing the physical characteristic of droplets. These parameters 
are also useful to characterize and understand the droplet 
behavior in different conditions. Furthermore, ADM has an 
advanced option which allow users to modify the process-
ing parameters to tailor to one needs. The contour history 
review for spotting unusual tracking phenomena is also 
included to allow users to check for abnormalities.

The important features of ADM are as follows: (a) 
more than 15 times faster than the MATLAB-based DMV 

Table 4   ADM measurement result compared to DMV (droplet splitting)

The split droplets are measured according to the locations of the split channel (upper and lower)
a  Not including unqualified droplets
b  Average value from upper and lower measurement
c  Estimated from dispersed flow rate using Eq. (3), by assuming V = (4/3)πr3, A = πr2

d  Equivalent diameter, found from area using D = 2
√
A/π

Measurement Manual ADM DMV ADM ratio DMV ratio

Upper Lower Upper Lower

Number of droplet 54 54 54 54a 54a 1.0000 1.0000

Frequency (Hz) 165.34 165.34 165.34 165.48a 165.36a 1.0000 1.0001–1.0008

Speed (mm s−1) 40.532b 40.474 40.685 40.800 40.877 0.9986–1.0038 1.0066–1.0085

Area (μm2) 17,651c 17,218 17,356 18,063 18,149 0.9755–0.9877 0.9833–0.9916

Diameterd (μm2) 149.91c 148.06 148.65 151.65 152.01 0.9877–0.9916 1.0116–1.0140

Deduced volume (pL) 1.7640 1.6995 1.7200 1.8261 1.8392 0.9634–0.9751 1.0352–1.0426

Deduced half dispersed flow rate (μL/min) 17.500 16.860 17.064 18.131 18.248 0.9634–0.9751 1.0361–1.0427

Deduced dispersed flow rate  (μL/min) 35.000 33.924 36.378 0.9693 1.0394
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program. ∼3000 frames in 10 seconds (520 ×  64 pixels, 
Lagarith lossless video codec), (b) automated batch pro-
cessing from a list of video files, (c) a total of 24 param-
eters including three new features—advancing/receding 
angle and droplet deformation, (d) user-defined image pro-
cessing parameters and (e) contour history viewer to review 
tracked objects and spotting abnormalities.

Different from DMV, which is only available to selected 
requests, our ADM is available freely from the ADM web-
site (ADM 2015). A tutorial and guide are also available 
to provide a clear and concise usage on the software. The 
software can also be used as a standalone without the inte-
gration with the camera SDK.

3.4.3 � Limitations

Currently, the ADM software still inherits certain limita-
tion inherent in the image processing technology. As dis-
cussed by Basu (2013), the video resolution determines 
the accuracy and speed of image processing. Therefore, we 
still need to choose a suitable resolution that addresses the 
trade-offs in ADM. The current ADM software still has dif-
ficulty in processing droplets that are touching each other. 
Although it is still possible to tune the threshold value and 
change the contour recognition algorithm to accommodate 
this situation, we do not include this feature as the accuracy 
of measurement will be severely compromised.

In order to allow the ADM system to perform properly, 
users are advised to adjust the frame rate of the camera 
so that it captures the movement of droplets with distance 
lesser than ten pixels between two frames. Users are also 
advised to optimize the microscope focus and lighting 
conditions to capture a clear contour of the droplets. This 
measure will provide a sharp contrast between the droplets 
and the background.

4 � Conclusions

The main bottlenecks hampering the currently available 
software to perform in  situ vital, rapid and automatic 
measurement on droplet-based microfluidics have been 
identified and successfully addressed. First, the processing 
step has been automated, and second, the droplet meas-
urement software has been redesigned to generate auto-
matic, real-time output at a speed overcoming that of video 
transfer.

Automated processing step has been achieved using a 
newly developed object-based background extraction oper-
ation (BEO) and automated binary threshold value selec-
tion (BTVS) operation. The new object-based BEO was 
found to be more effective, adaptive and general than the 
current BEO in extracting the correct background from 
traveling droplet videos. Automated BTVS, on the other 
hand, was able to adaptively select a near optimum thresh-
old value that allows close tracking of droplet outlines.

Automated droplet measurement (ADM) software has 
been developed based on OpenCV image processing library 
that has much higher throughput than currently available 
software. The process speed (∼300 FPS) was found to be 
higher than the transfer speed (~110–150 FPS) even when 
the visual feedback is enabled. ADM is also validated by 
comparing with both manual analysis and DMV.

Subsequently, to shorten the total time taken on droplet 
measurement even further, we integrated the newly devel-
oped ADM software and camera SDK together in a new 
process flow. This was done by performing video transfer/
streaming simultaneously with video processing.

The total time for the droplet measurement using the 
integrated software was found significantly shorter than 
using the old process flow with DMV software (9.2 vs 
∼61.1 s, 16.7 vs ∼100.1 s). Our process flow timing is 

Table 5   Time spent for different sets of tasks emulating the possible strategies to be adopted for measurement of droplets

The total times with bold are done with DMV, while the italic times are done with ADM

Video Droplet generation Droplet splitting

Set 1 2 3 1 2 3

On-site measurement No No Yes No No Yes

Process Flow Old Old New Old Old New

Software DMV ADM ADM DMV ADM ADM

Duration (s)

 Record 0.1 0.1 0.1 0.4 0.4 0.4

 Transfer 6.3 6.3 0.0 13.1 13.1 0.0

 BEO ~2.0 0.5 1.1 ~7.0 0.6 1.4

 BTVS ~8.0 1.1 1.2 ~8.0 1.1 1.1

 Tracking (& streaming) 44.7 2.9 6.8 71.6 3.6 13.8

 Total time ~61.1 10.9 9.2 ~100 18.8 16.7
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even comparable to the ones without droplet measurement 
(6.4 s, 13.5 s). Our ADM software will be publicly released 
for free. The software can be used on an avi video file, 
without the need to integrate the camera SDK.

5 � ADM website

ADM software is available at http://a-d-m.weebly.com.
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