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Abstract The conformal loop ensemble CLEκ with parameter 8/3 < κ < 8 is the
canonical conformally invariant measure on countably infinite collections of non-
crossing loops in a simply connected domain. We show that the number of loops
surrounding an ε-ball (a random function of z and ε) minus its expectation converges
almost surely as ε → 0 to a random conformally invariant limit in the space of
distributions, which we call the nesting field. We generalize this result by assigning
i.i.d. weights to the loops, and we treat an alternate notion of convergence to the
nesting field in the case where the weight distribution has mean zero.We also establish
estimates for moments of the number of CLE loops surrounding two given points.
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1 Introduction

The conformal loop ensemble CLEκ for κ ∈ (8/3, 8) is the canonical conformally
invariant measure on countably infinite collections of non-crossing loops in a simply
connected domain D � C [12,14]. It is the loop analogue of SLEκ , the canonical
conformally invariantmeasure on non-crossing paths. Just as SLEκ arises as the scaling
limit of a single interface inmany two-dimensional discretemodels, CLEκ is a limiting
law for the joint distribution of all of the interfaces. Figures 1 and 2 shows two discrete
loop models believed or known to have CLEκ as a scaling limit. Figure 3 illustrates
these scaling limits for several values of κ .

Let κ ∈ (8/3, 8), let D � C be a simply connected domain, and let � be a
CLEκ in D. For each point z ∈ D and ε > 0, we let Nz(ε) be the number of
loops of � which surround B(z, ε), the ball of radius ε centered at z. We prove the
existence and conformal invariance of the limit as ε → 0 of the random function
z �→ Nz(ε) − E[Nz(ε)] (with no additional normalization) in an appropriate space
of distributions (Theorem 1.1). We refer to this object as the nesting field because,
roughly, its value describes the fluctuations of the nesting of � around its mean. This
result also holds when the loops are assigned i.i.d. weights. More precisely, we fix a
probability measure μ on R with finite second moment, define �z(ε) to be the set of
loops in � surrounding B(z, ε), and define

Sz(ε) =
∑

L∈�z(ε)

ξL, (1.1)

(a) (b) (c)

Fig. 1 Nesting of loops in the O(n) loopmodel. Each O(n) loop configuration has probability proportional
to x total length of loops × n# loops. For a certain critical value of x , the O(n) model for 0 ≤ n ≤ 2 has a
“dilute phase”, which is believed to converge CLEκ for 8/3 < κ ≤ 4 with n = −2 cos(4π/κ). For x above
this critical value, the O(n) loop model is in a “dense phase”, which is believed to converge to CLEκ for
4 ≤ κ ≤ 8, again with n = −2 cos(4π/κ). See [6] for further background, a site percolation, b O(n) loop
model. Percolation corresponds to n = 1 and x = 1, which is in the dense phase, c area shaded by nesting
of loops
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The CLE nesting field 771

(a) (b) (c)

Fig. 2 Nesting of loops separating critical Fortuin-Kasteleyn (FK) clusters from dual clusters. Each FK
bond configuration has probability proportional to (p/(1 − p))# edges × q# clusters [4], where there is
believed to be a critical point at p = 1/(1+ 1/

√
q) (proved for q ≥ 1 [2]). For 0 ≤ q ≤ 4, these loops are

believed to have the same large-scale behavior as the O(n) model loops for n = √
q in the dense phase,

that is, to converge to CLEκ for 4 ≤ κ ≤ 8 (see [6,11]), a Critical FK bond configuration. Here q = 2, b
loops separating FK clusters from dual clusters, c area shaded by nesting of loops

where ξL are i.i.d. random variables with law μ. We show that z �→ Sz(ε)− E[Sz(ε)]
converges as ε → 0 to a distribution we call the weighted nesting field. When κ = 4
and μ is a signed Bernoulli distribution, the weighted nesting field is the GFF [9,10].
Our result serves to generalize this construction to other values of κ ∈ (8/3, 8) and
weight measuresμ. In Theorem 1.2, we answer a question asked in [12, Problem 8.2].

The weighted nesting field is a random distribution, or generalized function, on D.
Informally, it is too rough to be defined pointwise on D, but it is still possible to
integrate it against sufficiently smooth compactly supported test functions on D. More
precisely, we prove convergence to the nesting field in a certain local Sobolev space
Hs
loc(D) ⊂ C∞

c (D)′ on D, whereC∞
c (D) is the space of compactly supported smooth

functions on D,C∞
c (D)′ is the space of distributions on D, and the index s ∈ R is a

parameter characterizing how smooth the test functions need to be. We review all the
relevant definitions in Sect. 5.

The nesting field gives a loop-free description of the conformal loop ensemble. For
κ ≤ 4 we believe that the nesting field determines the CLE, but that for κ > 4 the
CLE contains more information. (See Question 2 in the open problems section.) In
order to prove the existence of the nesting field, we show that the law of CLE near a
point rapidly forgets loops that are far away, in a sense that we make quantitative.

Given h ∈ C∞
c (D)′ and f ∈ C∞

c (D), we denote by 〈h, f 〉 the evaluation of the
linear functional h at f . Recall that the pullback h ◦ ϕ−1 of h ∈ C∞

c (D)′ under a
conformal map ϕ−1 is defined by 〈h ◦ ϕ−1, f 〉:=〈h, |ϕ′|2 f ◦ ϕ〉 for f ∈ C∞

c (ϕ(D)).

Theorem 1.1 Fix κ ∈ (8/3, 8) and δ > 0, and suppose μ is a probability measure
on R with finite second moment. Let D � C be a simply connected domain. Let �

be a CLEκ on D and (ξL)L∈� be i.i.d. weights on the loops of � drawn from the
distribution μ. Recall that for ε > 0 and z ∈ D,Sz(ε) denotes

Sz(ε) =
∑

L∈�L surrounds B(z,ε)

ξL.

123



772 J. Miller et al.

(a) (b)

(c) (d)

Fig. 3 Simulations of discrete loop models which converge to (or are believed to converge to, indicated
with asterisk) CLEκ in the fine mesh limit. For each of the CLEκ ’s, one particular nested sequence of loops
is outlined. For CLEκ , almost all of the points in the domain are surrounded by an infinite nested sequence
of loops, though the discrete samples shown here display only a few orders of nesting, aCLE3 (from critical
Ising model), b CLE4 (from the FK model with q = 4)	, c CLE16/3 (from the FK model with q = 2),
d CLE6 (from critical bond percolation) 	

Let
hε(z) = Sz(ε) − E[Sz(ε)]. (1.2)

There exists an H−2−δ
loc (D)-valued random variable h = h(�, (ξL)) such that for

all f ∈ C∞
c (D), almost surely limε→0〈hε, f 〉 = 〈h, f 〉. Moreover, h(�, (ξL)) is

almost surely a deterministic conformally invariant function of the CLE � and the
loop weights (ξL)L∈�: almost surely, for any conformal map ϕ from D to another
simply connected domain, we have

h(ϕ(�), (ξϕ(L))L∈�) = h(�, (ξL)L∈�) ◦ ϕ−1.
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The CLE nesting field 773

In Theorem 6.2, we prove a stronger form of convergence, namely almost sure
convergence in the norm topology of H−2−δ(D), when ε tends to 0 along any given
geometric sequence.

We also consider the step nesting sequence, defined by

hn(z) =
n∑

k=1

ξLk(z) − E

[
n∑

k=1

ξLk (z)

]
, n ∈ N,

where the random variables (ξL)L∈� are i.i.d. with law μ. We may assume without
loss of generality that μ has zero mean, so that hn(z) = ∑n

k=1 ξLk (z). We estab-
lish the following convergence result for the step nesting sequence, which parallels
Theorem 1.1:

Theorem 1.2 Suppose that D � C is a proper simply connected domain and δ > 0.
Assume that theweight distributionμ has a finite secondmoment and zeromean. There
exists an H−2−δ

loc (D)-valued random variable h such that limn→∞ hn = h almost
surely in H−2−δ

loc (D). Moreover, h is almost surely determined by � and (ξL)L∈� .

Suppose that D́ is another simply connected domain and ϕ : D → D́ is a conformal
map. Let h́ be the random element of H−2−δ

loc (D́) associated with the CLE �́ = ϕ(�)

on D́ and weights (ξ
ϕ−1(Ĺ)

)Ĺ∈�́
. Then h́ = h ◦ ϕ−1 almost surely.

In Proposition 7.2, we show that the step nesting field and the weighted nesting
field are equal, under the assumption that μ has zero mean.

When κ = 4, σ = √
π/2, and μ = μB where μB({σ }) = μB({−σ }) = 1/2

(as in Theorem 1.2 of [10]) the distribution h of Theorem 1.1 is that of a GFF on
D [9]. The existence of the distributional limit for other values of κ was posed in
[12, Problem 8.2]. Note that in this context, 2

π
E[Sz(ε)Sw(ε)] is equal to the expected

number of loops which surround both B(z, ε) and B(w, ε). Let GD(z, w) be the
Green’s function for the negative Dirichlet Laplacian on D. Since Sz(ε) converges to
the GFF [9], it follows that 2

π
E[Sz(ε)Sw(ε)] converges to 2

π
GD(z, w) (see Section 2

in [3]). That is, the expected number of CLE4 loops which surround both z and w is
given by 2

π
GD(z, w).

One of the elements of the proof of Theorem 1.1 is an extension of this boundwhich
holds for all κ ∈ (8/3, 8). We include this as our final main theorem.

Theorem 1.3 Let � be a CLEκ (with 8/3 < κ < 8) on a simply connected proper
domain D. For z, w ∈ D distinct, letNz,w be the number of loops of� which surround
both z and w. For each integer j ≥ 1, there exists a constant Cκ, j ∈ (0,∞) such that

∣∣E[N j
z,w] − (νtypical 2π GD(z, w)) j

∣∣ ≤ Cκ, j (GD(z, w) + 1) j−1. (1.3)

Outline In Sect. 2 we review background material and establish some general CLE
estimates, and in Sect. 3 we prove Theorem 1.3. Section 4 includes proofs of sev-
eral technical results used in the proof of Theorem 1.1. In Sect. 5 we provide a brief
overview of the necessary material on distributions and Sobolev spaces, and we estab-
lish a general result (Proposition 5.1) regarding the almost-sure convergence of a
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774 J. Miller et al.

sequence of random distributions. In Sects. 6 and 7 we prove Theorems 1.1 and 1.2,
respectively. We conclude by listing open questions in Sect. 8.

2 Basic CLE estimates

In this sectionwe record some facts about CLE.We refer the reader to the preliminaries
section [10] for an introduction toCLE.We begin by reminding the reader of theKoebe
distortion theorem and the Koebe quarter theorem.

Theorem 2.1 (Koebe distortion theorem) If f : D → C is an injective analytic
function and f (0) = 0, then

r

(1 + r)2
| f ′(0)| ≤ | f (reiθ )| ≤ r

(1 − r)2
| f ′(0)|, for θ ∈ R and 0 ≤ r < 1.

The Koebe quarter theorem, which says that B
(
0, 1

4 | f ′(0)|) ⊂ f (D), follows from
the lower bound in the distortion theorem [8, Theorem 3.17]. Combining the quarter
theorem with the Schwarz lemma [8, Lemma 2.1], we obtain the following corollary.

Corollary 2.2 If D � C is a simply connected domain, z ∈ D, and f : D → D is a
conformal map sending 0 to z, then the inradius inrad(z; D):= infw∈C\D |z − w| and
the conformal radius CR(z; D) := | f ′(0)| satisfy

inrad(z; D) ≤ CR(z; D) ≤ 4 inrad(z; D).

For the CLEκ � in D, z ∈ D, and j ≥ 0, we define L j
z to be the j th outermost loop

of � which surrounds z. For r > 0, we define

J∩
z,r :=min

{
j ≥ 1 : L j

z ∩ B(z, r) �= ∅

}
(2.1a)

J⊂
z,r :=min

{
j ≥ 1 : L j

z ⊂ B(z, r)
}

. (2.1b)

Lemma 2.3 For each κ ∈ (8/3, 8) there exists p = p(κ) > 0 such that for any
proper simply connected domain D and z ∈ D,

P[L2
z ⊆ B(z, dist(z, ∂D))] ≥ p.

Corollary 2.4 J⊂
z,r − J∩

z,r is stochastically dominated by 2Ñ where Ñ is a geometric
random variable with parameter p = p(κ) > 0 which depends only on κ ∈ (8/3, 8).

Proof See Corollary 3.5 in [10]. ��
We use the following estimate for the overshoot of a random walk the first time it

crosses a given threshold. We will apply this lemma to the random walk which tracks
the negative log conformal radius of the sequence of CLE loops surrounding a given
point z ∈ D, as viewed from z. See Lemma 2.8 in [10] for a proof.
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The CLE nesting field 775

Lemma 2.5 Suppose {X j } j∈N are nonnegative i.i.d. random variables for which
E[X1] > 0 and E[eλ0X1 ] < ∞ for some λ0 > 0. Let Sn = ∑n

j=1 X j and
τx = inf{n ≥ 0 : Sn ≥ x}. Then there exists C > 0 (depending on the law of
X1 and λ0) such that P[Sτx − x ≥ α] ≤ C exp(−λ0α) for all x ≥ 0 and α > 0.

The following lemma provides a quantitative version of the statement that it is
unlikely that there exists a CLE loop surrounding the inner boundary but not the outer
boundary of a given small, thin annulus. We make use of a quantitative coupling
between CLE in large domains and full-plane CLE, which appears as Theorem 9.1 in
the “Appendix”.

Lemma 2.6 Let � be a CLEκ in D. There exist constants C > 0, α > 0, and ε0 > 0
depending only on κ such that for 0 < ε < ε0 and 0 ≤ δ < 1/2,

E[N0(ε(1 − δ)) − N0(ε)] ≤ Cδ + Cεα. (2.2)

Proof We couple the CLEκ �D = � in the disk with a whole-plane CLEκ �C

as in Theorem 9.1. Index the loops of �C surrounding 0 by Z in such a way
that Ln

0(�C) and Ln
0(�D) are exponentially close for large n. For n ∈ N define

VD
n = − log inradLn

0(�D), and for n ∈ Z define VC
n = − log inradLn

0(�C). Since
whole-plane CLEκ is scale invariant, the set

{
VC
n : n ∈ Z

}
is translation invariant.

Using Corollary 2.2 to compare
(
VC
n

)
n∈Z to the sequence of log conformal radii of

the loops of �C surrounding the origin, the translation invariance implies

E

[
#
{
n : a ≤ VC

n < b
}]

= νtypical(b − a).

Let α and the term low distortion be defined as in the statement of Theorem 9.1.
With probability 1−O(εα) there is a low distortionmap from�D|B(0,ε)+ to�C|B(0,ε)+ ,
and on this event, we can bound

#

{
n : log

1

ε
≤ VD

n < log
1

ε(1 − δ)

}

≤ #

{
n : log 1

ε
− O(εα) ≤ VC

n < log
1

ε(1 − δ)
+ O(εα)

}
.

On the event that there is no such low distortion map, this can be detected by
comparing the boundaries of �D|B(0,ε)+ and �C|B(0,ε)+ , so that conditional on this
unlikely event, �D|B(0,ε)+ is still an unbiased CLEκ conformally mapped to the region
surrounded by the boundary of�D|B(0,ε)+ . In particular, the sequence of log-conformal
radii of loops of �D|B(0,ε)+ surrounding 0 is a renewal process, which together with
the Koebe distortion theorem and the bound δ ≤ 1/2 imply

E[N0(ε(1 − δ)) − N0(ε) | no low distortion map] ≤ constant.

Combining these bounds yields (2.2). ��
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776 J. Miller et al.

Lemma 2.7 For each κ ∈ (8/3, 8) and integer j ∈ N, there are constants C > 0, α >

0, and ε0 > 0 (depending only on κ and j ) such that whenever D is a simply connected
proper domain, z ∈ D, ϕ is a conformal transformation of D, and 0 < ε < ε0, if � is
a CLEκ in D, then

E

[∣∣Nz(εCR(z; D);�) − Nϕ(z)(εCR(ϕ(z);ϕ(D));ϕ(�))
∣∣ j
]

≤ Cεα.

Proof Observe that translating and scaling the domain D or its conformal image
ϕ(D) has no effect on the loop counts, so we assume without loss of generality that
z = 0, ϕ(z) = 0,CR(z; D) = 1, and CR(ϕ(z);ϕ(D)) = 1. Observe also that it
suffices to prove this lemma in the case that the domain D is the unit disk D, since a
general ϕ may be expressed as the composition ϕ = ϕ2 ◦ ϕ−1

1 where ϕ1 and ϕ2 are
conformal transformations of the unit disk with ϕi (0) = 0 and ϕ′

i (0) = 1, and the
desired bound follows from the triangle inequality.

Let � be a CLEκ on D, and let �́ = ϕ(�). By the Koebe distortion theorem and the
elementary inequality

1 − 3r ≤ 1

(1 + r)2
≤ 1

(1 − r)2
≤ 1 + 3r, for r small enough, (2.3)

we have

B(0, ε − 3ε2) ⊂ ϕ−1(B(0, ε)) ⊂ B(0, ε + 3ε2),

for small enough ε. HenceN0(ε +3ε2;�) ≤ N0(ε; �́) ≤ N0(ε −3ε2;�), and so for

X :=N0(ε − 3ε2;�) − N0(ε + 3ε2;�)

we have |N0(ε; �́) − N0(ε;�)| ≤ X .
By Lemma 2.6 we have E[X ] = O(εα), which proves the case j = 1.
Notice that the conformal radius of every new loop after the first that intersects

B(0, ε + 3ε2) has a uniformly positive probability of being less than 1
4 (ε − 3ε2),

conditioned on the previous loop. By the Koebe quarter theorem, such a loop intersects
B(0, ε−3ε2). Thus for some p < 1we haveP[X ≥k+1]≤ pP[X ≥k] for k≥0.Hence

E[X j ] =
∞∑

k=1

k jP[X = k]

≤
∞∑

k=1

k j pkP[X = 1]

≤
( ∞∑

k=1

k j pk
)

E[X ] = O(εα),

which proves the cases j > 1. ��
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The CLE nesting field 777

3 Co-nesting estimates

We use the following lemma in the proof of Theorem 1.3:

Lemma 3.1 Letλ0 > 0, and suppose {X j } j∈N arenonnegative i.i.d. randomvariables
for which E[X1] > 0 and E[eλ0X1 ] < ∞. Let �(λ) = logE[eλX1 ] and let Sn =∑n

j=1 X j . For x > 0, define τx = inf{n ≥ 0 : Sn ≥ x}. For λ < λ0, let

Mλ
n = exp(λSn − �(λ)n).

Then for λ < λ0 and x ≥ 0, the random variables
{
Mλ

n∧τx

}
n∈N are uniformly inte-

grable.

Proof Fix β > 1 such that βλ < λ0. By Hölder’s inequality, any family of random
variables which is uniformly bounded in L p for some p > 1 is uniformly integrable.

Therefore, it suffices to show that supn≥0 E

[(
Mλ

n∧τx

)β]
< ∞. We have,

(
Mλ

n∧τx

)β = exp(βλ(Sn∧τx − x)) × exp(βλx − β�(λ)(n ∧ τx ))

≤ exp(βλ(Sτx − x)) × exp(βλx).

The result follows from Lemma 2.5. ��
Proof of Theorem 1.3 Fix z, w ∈ D distinct and j ∈ N. Let ϕ : D → D be the
conformal map which sends z to 0 and w to e−x ∈ (0, 1). Let GD (resp. GD) be
the Green’s function for −� with Dirichlet boundary conditions on D (resp. D).
Explicitly,

GD(u, v) = 1

2π
log

|1 − uv|
|u − v| for u, v ∈ D.

In particular, GD(0, u) = 1
2π log |u|−1 for u ∈ D. By the conformal invariance of

CLEκ and the Green’s function, i.e. GD(u, v) = GD(ϕ(u), ϕ(v)), it suffices to show
that there exists a constant C j,κ ∈ (0,∞) which depends only on j and κ ∈ (8/3, 8)
such that

∣∣E[(N0,e−x ) j ] − (νtypicalx)
j
∣∣ ≤ C j,κ (x + 1) j−1 for all x > 0. (3.1)

Let {Ti }i∈N be the sequence of log conformal radii increments associated with the
loops of � which surround 0, let Sk = ∑k

i=1 Ti , and let τx = min{k ≥ 1 : Sk ≥ x}.
Recall that �κ(λ) denotes the log moment generating function of the law of T1. Let
Mn = exp(λSn − �κ(λ)n). By Lemma 3.1, {Mn∧τx }n∈N is a uniformly integrable
martingale for λ < 1 − 2

κ
− 3κ

32 . By Lemma 2.5, we can write Sτx = x + X where
E[eλX ] < ∞. By the optional stopping theorem for uniformly integrable martingales
(see [17, § A14.3]), we have that

1 = E[exp(λSτx − �κ(λ)τx )] = E[exp(λx + λX − �κ(λ)τx )]. (3.2)
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778 J. Miller et al.

We argue by induction on j that

E[(�′
κ(0)τx )

j ] = x j + O((x + 1) j−1). (3.3)

The base case j = 0 is trivial.
If we differentiate (3.2) with respect to λ and then evaluate at λ = 0, we obtain

0 = E[(x + X − �′
κ(0)τx )].

If we instead differentiate twice, we obtain

0 = E[(x + X − �′
κ(0)τx )

2 − �′′
κ(0)τx ].

Similarly, if we differentiate j times with respect to λ and then evaluate at λ = 0, we
obtain

0 = E[(x + X − �′
κ(0)τx )

j ] +
∑

i≥0,k≥1
i+2k≤ j

Aκ,i,kE[(x + X − �′
κ(0)τx )

iτ kx ], (3.4)

where the Aκ,i,k’s are constant coefficients depending on the higher order derivatives
of �κ at 0. By our induction hypothesis, for h < j we have E[τ hx ] = O((x + 1)h).
Conditional on τx , X has exponentially small tails, so E

[
τ hx X

�
] = O((x + 1)h) as

well. From this we obtain

0 = E

[
(x − �′

κ(0)τx )
j
]

+ O((x + 1) j−1). (3.5)

Using our induction hypothesis again for h < j , we obtain

0 =
j−1∑

h=0

(
j

h

)
(−1)hx j + E

[
(−�′

κ(0)τx )
j
]

+ O((x + 1) j−1), (3.6)

from which (3.3) follows, completing the induction.
Recall that J∩

0,r (resp. J
⊂
0,r ) is the smallest index j such that L j

0 intersects (resp. is
contained in) B(0, r). It is straightforward that

τx−log 4 ≤ J∩
0,e−x ≤ N0,e−x + 1 ≤ J⊂

0,e−x .

Since the τ ’s are stopping times for an i.i.d. sum, conditional on the value of τx−log 4, the
difference τx − τx−log 4 has exponentially decaying tails. Moreover, by Lemma 2.3,
conditional on the value of τx , J

⊂
0,e−x − τx has exponentially decaying tails. Thus

E

[
N j

0,e−x

]
= E

[
τ
j
x

]
+O((x +1) j−1). Finally, we recall that 1/�′

κ(0) = 1/E[T1] =
νtypical.

By combining Theorem 1.3 and Corollary 2.4, we can estimate the moments of the
number of loops which surround a ball in terms of powers of GD(z, w).
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The CLE nesting field 779

Corollary 3.2 There exists a constant C j,κ ∈ (0,∞) depending only on κ ∈ (8/3, 8)
and j ∈ N such that the following is true. For each ε > 0 and z ∈ D for which
dist(z, ∂D) ≥ 2ε and θ ∈ R, we have

∣∣E[(Nz(ε))
j ]−(2πνtypicalGD(z, z+εeiθ )) j

∣∣ ≤ C j,κ (GD(z, z+εeiθ )+1) j−1. (3.7)

In particular, there exists constant a constant Cκ ∈ (0,∞) depending only on κ ∈
(8/3, 8) such that

∣∣∣∣E[Nz(ε)] − νtypical log
CR(z; D)

ε

∣∣∣∣ ≤ Cκ . (3.8)

Proof Let w = z + εeiθ . Corollary 2.4 implies that |Nz,w − Nz(ε)| is stochastically
dominated by a geometric random variable whose parameter p depends only on κ .
Consequently, (3.7) is a consequence of Theorem 1.3. To see (3.8), we apply (3.7)
for j = 1 and use that GD(u, v) = 1

2π log |u − v|−1 − ψu(v) where ψu(v) is the
harmonic extension of v �→ 1

2π log |u − v|−1 from ∂D to D. In particular, ψz(z) =
1
2π logCR(z; D). ��

4 Regularity of the ε-ball nesting field

A key estimate that we use in the proof of Theorem 1.1 is the following bound on how
much the centered nesting field hε depends on ε. The proof of Theorem 4.1 and the
remaining sections may be read in either order.

Theorem 4.1 Let D be a proper simply connected domain, and let hε(z) be the cen-
tered weighted nesting around the ball B(z, ε) of a CLEκ on D, defined in (1.2).
Suppose 0 < ε1(z) ≤ ε and 0 < ε2(z) ≤ ε on a compact subset K ⊂ D of the
domain. Then there is some c > 0 (depending on κ) and C0 > 0 (depending on
κ, D, K, and the loop weight distribution) for which

∫∫

K×K

∣∣E
[
(hε1(z)(z)−hε2(z)(z)) (hε1(w)(w)−hε2(w)(w))

]∣∣ dz dw ≤ C0ε
c. (4.1)

Proof Let A, B, and C be the disjoint sets of loops for which A∪ B is the set of loops
surrounding B(z, ε1(z)) or B(z, ε2(z)) but not both, and B ∪ C is the set of loops
surrounding B(w, ε1(w)) or B(w, ε2(w)) but not both. Letting ξL denote the weight
of loop L, then we have

E[(hε1(z)(z)−hε2(z)(z))(hε1(w)(w)−hε2(w)(w))]
= Cov[hε1(z)(z)−hε2(z)(z), hε1(w)(w) − hε2(w)(w)]

= ±Cov

[
∑

a∈A

ξa +
∑

b∈B
ξb,
∑

b∈B
ξb +

∑

c∈C
ξc

]
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780 J. Miller et al.

= ±Var[ξ ] E[|B|] ± E[ξ ]2 Cov[|A|+|B|, |B|+|C |]
= ±Var[ξ ] E[|B|] + E[ξ ]2 Cov(Nz(ε1)−Nz(ε2),Nw(ε1)−Nw(ε2)), (4.2)

where the ± signs are the sign of (ε1(z)−ε2(z))(ε1(w)−ε2(w)).
Let Gκ,ε

D (z, w) denote the expected number of loops surrounding z and w but
surrounding neither B(z, ε) nor B(w, ε). Then E[|B|] ≤ Gκ,ε

D (z, w). In Lemma 4.3
we prove ∫∫

K×K
Gκ,ε

D (z, w) dz dw ≤ C1ε
c,

and in Lemma 4.8 we prove

∫∫

K×K

∣∣Cov(Nz(ε1(z)) − Nz(ε2(z)),Nw(ε1(w)) − Nw(ε2(w)))
∣∣ dz dw ≤ C2ε

c,

where c depends only on κ andC1 andC2 depend only on κ, D, and K . Equation (4.1)
follows from these bounds. ��

In the remainder of this section we prove Lemmas 4.3 and 4.8.

Lemma 4.2 For any κ ∈ (8/3, 8) and j ∈ N, there is a positive constant c > 0 such
that, whenever D � C is a simply connected proper domain, z ∈ D, and 0 < ε < r ,
the j th moment of the number of CLEκ loops surrounding z which intersect B(z, ε)
but are not contained in B(z, r) is O((ε/r)c).

Proof If there is a loop L = Lk
z surrounding z which is not contained in B(z, r) and

comes within distance ε of z, then J∩
z,ε ≤ k and J⊂

z,r > k, so J∩
z,ε < J⊂

z,r . But from
Corollary 2.4 J⊂

z,r − J∩
z,r is dominated by twice a geometric random variable, and by

Lemma 2.8 in [10] together with theKoebe quarter theoremwe have J∩
z,ε− J∩

z,r is order
log(r/ε) except with probability O((ε/r)c1), for some constant c1 > 0 (depending
on κ). Therefore, except with probability O((ε/r)c2) (with c2 = c2(κ) > 0), we have
J∩
z,ε ≥ J⊂

z,r . In this case there is no loopL surrounding z, not contained in B(z, r), and
coming within distance ε of z. Finally, note that conditioned on the event that there
is such a loop L, the conditional expected number of such loops is by Corollary 2.4
dominated by twice a geometric random variable. ��
Lemma 4.3 For some positive constant c < 2,

∫∫

K×K
Gκ,ε

D (z, w) dz dw = O(area(K )2−c/2εc). (4.3)

Proof Let Fε
z,w denote the number of loops surrounding both z and w but not B(z, ε)

or B(w, ε). Then Gκ,ε
D (z, w) = E[Fε

z,w].
Suppose |z−w| ≤ ε. LetL be the outermost loop (if any) surrounding both z andw

but not B(z, ε) or B(w, ε). The number of additional such loops isNz,w(�′), where�′
is a CLEκ in intL, and byTheorem1.3we haveE[Nz,w(�′)] ≤ C1 log(ε/|z−w|)+C2
for some constants C1 and C2. Integrating the logarithm, we find that
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∫∫

K×K|z−w|≤ε

Gκ,ε
D (z, w) dz dw = O(area(K )ε2). (4.4)

Next suppose |z−w| > ε. Now Fε
z,w is dominated by the number of loops surround-

ing z which intersect B(z, ε) but are not contained in B(z, |z − w|), and Lemma 4.2
bounds the expected number of these loops by O((ε/|z − w|)c) for some c > 0.
We decrease c if necessary to ensure 0 < c < 2, and let R = area(K )1/2. Since
(ε/|z − w|)c is decreasing in |z − w|, we can bound

∫∫

K×K|z−w|>ε

Gκ,ε
D (z, w) dz dw ≤

∫∫

RD×RD|z−w|>ε

O((ε/|z − w|)c) dz dw

= O(area(K )2−c/2εc). (4.5)

Combining (4.4) and (4.5), using again c < 2, we obtain (4.3). ��
We let Sz,w be the index of the outermost loop surrounding z which separates z

fromw in the sense thatw /∈ U
Sz,w
z . Note that Sz,w is also the smallest index for which

z /∈ U
Sz,w
w :

Sz,w:=min{k : w /∈ Uk
z } = min{k : z /∈ Uk

w}. (4.6)

We let �z,w denote the σ -algebra

�z,w := σ({Lk
z : 1 ≤ k ≤ Sz,w} ∪ {Lk

w : 1 ≤ k ≤ Sz,w}). (4.7)

Lemma 4.4 There is a constant C (depending only on κ) such that if z, w ∈ D are
distinct, then

−C ≤ E

[
log

CR(z;USz,w
z )

min(|z − w|,CR(z; D))

]
≤ C.

Proof Let r = min(|z − w|, dist(z, ∂D)). By the Koebe distortion theorem,

CR
(
z;USz,w

z

)
≤ 4r , which gives the upper bound. By [10, Lemma 3.6 ], there is

a loop contained in B(z, r) but which surrounds B(z, r/2k) except with probability
exponentially small k, which gives the lower bound. ��
Lemma 4.5 There exists a constant C > 0 (depending only on κ) such that if
z, w ∈ D are distinct, and 0 < ε < min(|z − w|,CR(z; D)), then on the event{
CR

(
z;USz,w

z

)
≥ 8ε

}
,

∣∣∣∣E
[
J∩
z,ε − Sz,w |USz,w

z
]− E

[
J∩
z,ε − Sz,w

]

−νtypical log
CR(z;USz,w

z )

min(|z − w|,CR(z; D))

∣∣∣∣ ≤ C. (4.8)
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Proof Let S = Sz,w. By (3.8) of Corollary 3.2 we see that there exist C1 > 0 such
that on the event

{
CR

(
z;US

z

) ≥ 8ε
}
we have

∣∣∣∣∣E
[
J∩
z,ε − Sz,w |USz,w

z
]− νtypical log

CR
(
z;USz,w

z
)

ε

∣∣∣∣∣ ≤ C1. (4.9)

We can write

E
[
J∩
z,ε − S

] = E

[
(J∩

z,ε − S)1{CR(z;US
z )≥8ε}

]
+ E

[
(J∩

z,ε − S)1{CR(z;US
z )<8ε}

]
.

(4.10)

Applying (4.9), we can write the first term of (4.10) as,

E

[(
J∩
z,ε − S

)
1{CR(z;US

z )≥8ε}
]

= E

[
E[J∩

z,ε − S |US
z ] 1{CR(z;US

z )≥8ε}
]

= E

[(
νtypical log

CR(z;US
z )

ε
± C1

)
1{CR(z;US

z )≥8ε}

]

= νtypical log
min(|z − w|,CR(z; D))

ε
± const

− E

[(
νtypical log

CR(z;US
z )

ε

)
1{CR(z;US

z )<8ε}

]
.

Using [10,Lemma3.6], there is a loop contained in B(z, ε)which surrounds B(z, ε/2k)
exceptwith probability exponentially small in k, so the last term on the right is bounded
by a constant (depending on κ).

If J∩
z,ε ≥ S, then J∩

z,ε − S counts the number of loops (Lk
z )k∈N after separating

z from w before hitting B(z, ε). If J∩
z,ε ≤ S, then S − J∩

z,ε counts the number of
loops (Lk

z )k∈N after intersecting B(z, ε) before separating z from w. Consequently,
by Corollary 2.4, we see that absolute value of the second term of (4.10) is bounded
by some constant C2 > 0. Putting these two terms of (4.10) together, we obtain

∣∣∣∣E
[
J∩
z,ε − Sz,w

]− νtypical log
min(|z − w|,CR(z; D))

ε

∣∣∣∣ ≤ const. (4.11)

Subtracting (4.11) from (4.9) and rearranging gives (4.8). ��
Lemma 4.6 Let {X j } j∈N be non-negative i.i.d. random variables whose law has a
positive density with respect to Lebesgue measure on (0,∞) and for which there
exists λ0 > 0 such that E[eλ0X1 ] < ∞. For a ≥ 0, let San = a +∑n

j=1 X j , and for
a, M > 0, let τ aM = min{n ≥ 0 : San ≥ M}. There exists a coupling between Sa and
Ŝb (identically distributed to Sb but not independent of it) and constants C, c > 0 so
that for all 0 ≤ a ≤ b ≤ M, we have

P

[
Sa
τaM

= Ŝb
τ̂ bM

]
≥ 1 − Ce−cM .
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Similar but non-quantitative convergence results are known for more general distrib-
utions (for example, see [5, Chapt. 3.10]). For our results we need this convergence to
be exponentially fast, for which we did not find a proof, so we provide one.

Proof of Lemma 4.6 For M > N > 0, we construct a coupling between ρN and ρM

as follows. We take S0 = 0 and Ŝ0 = N − M , and then take {X j } j∈N and {X̂ j } j∈N
to be two i.i.d. sequences with law as in the statement of the lemma, with the two
sequences coupled with one another in a manner that we shall describe momentarily.
We let Sn = ∑n

i=1 Xi and Ŝn = Ŝ0 +∑n
i=1 X̂i . Define stopping times

τN = min{n ≥ 0 : Sn ≥ N } and τ̂N = min{n ≥ 0 : Ŝn ≥ N }.

Then SτN − N ∼ ρN and Ŝτ̂N − N ∼ ρM . We will couple the X j ’s and X̂ j ’s so that
with high probability SτN = Ŝτ̂N .

Lemma 2.5 implies that there exists a law ρ̃ on (0,∞) with exponential tails such
that ρ̃ stochastically dominates ρM for all M > 0. We choose θ to be big enough so
that ρ̃([0, 2θ ]) ≥ 1/2.

We inductively define a sequence of pairs of integers (ik, jk) for k ∈ {0, 1, 2, . . .}
starting with (i0, j0) = (0, 0). If Sik + θ ≤ Ŝ jk then we set (ik+1, jk+1) := (ik + 1, jk)
and sample Xik+1 independently of the previous random variables. If Ŝ jk + θ ≤ Sik ,
thenwe set (ik+1, jk+1) := (ik, jk+1) and sample X̂ jk+1 independently of the previous
random variables. Otherwise,

∣∣Sik − Ŝ jk

∣∣ ≤ θ . In that case, we set (ik+1, jk+1) := (ik +
1, jk + 1) and sample (Xik+1 , X̂ jk+1) independently of the previous random variables
and coupled so as to maximize the probability that Sik+1 = Ŝ jk+1 . Note that once the
walks coalesce, they never separate.

We partition the set of steps into epochs. We adopt the convention that the kth step
is from time k−1 to time k. The first epoch starts at time k = 0. For the epoch starting
at time k (whose first step is k + 1), we let

�(k) = min
{
k′ ≥ k : min(Sik′ , Ŝ jk′ ) ≥ max(Sik , Ŝ jk ) − θ

}
.

Let Ek be the event

Ek = {|Si�(k) − Ŝ j�(k) | ≤ θ}.

By our choice of θ, P[Ek] ≥ 1/2. If event Ek occurs, then we let �(k) + 1 be the last
step of the epoch, and the next epoch starts at time �(k) + 1. Otherwise, we let �(k)
be the last step of the epoch, and the next epoch starts at time �(k).

Let D(t) denote the total variation distance between the law of X1 and the law of
t + X1. Since X1 has a density with respect to Lebesgue measure which is positive in
(0,∞), it follows that

q := sup
0≤t≤θ

D(t) < 1.

In particular, if the event E occurs, i.e.,
∣∣Si�(k) − Ŝ j�(k)

∣∣ ≤ θ , and the walks have not
already coalesced, then P[Si�(k)+1 �= Ŝ j�(k)+1] ≤ q.
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Let Yk = max(Sik , Ŝ jk ). For the epoch starting at time k, the difference Y�(k) −Yk is
dominated by a random variable with exponential tails, since ρ̃ has exponential tails.
On the event Ek there is one more step of size Y�(k)+1 − Y�(k) in the epoch. This step
size is dominated by the maximum of two independent copies of the random variable
X1 and therefore has exponential tails. Thus if k′ is the start of the next epoch, then
Yk′ −Yk is dominated by a fixed distribution (depending only on the law of X1) which
has exponential tails. It follows from Cramér’s theorem that for some c > 0, it is
exponentially unlikely that the number of epochs (before the walks overshoot N ) is
less than cN .

For each epoch, the walks have a (1 − q)P[Ek] > 0 chance of coalescing if they
have not done so already. After cN epochs, the walkers have coalesced except with
probability exponentially small in N , and except with exponentially small probability,
these epochs all occur before the walkers overshoot N . ��
Lemma 4.7 There exist constants C3, c > 0 (depending only on κ) such that if z, w ∈
D are distinct, and 0 < ε′ ≤ ε ≤ r where r = min(|z − w|,CR(z; D)), then

E

[(
E
[
J∩
z,ε − J∩

z,ε′ |USz,w
z

]− E[J∩
z,ε − J∩

z,ε′ ]
)2] ≤ C3

(ε

r

)c
. (4.12)

Proof We construct a coupling between three CLEκ ’s, �, �̃, and �́, on the domain
D. Let S = Sz,w, S̃ = S̃z,w, and Ś = Śz,w denote the three corresponding stopping

times. We take � and �́ to be independent. On D\Ú Ś
z , we take �̃ to be identical to

�́. In particular, S̃ = Ś and Ũ S̃
z = Ú Ś

z . Within Ũ S̃
z , we couple �̃ to � as follows. We

sample so that the sequences

{
− log CR

(
z;US+k

z

)}

k∈N and
{
− log CR

(
z; Ũ S̃+k

z

)}

k∈N

are coupled as in Lemma 4.6. Define

K = min
{
k ≥ S : CR

(
z;Uk

z

)
= CR

(
z; Ũ k̃

z

)
for some k̃ ≥ S̃

}
,

and let K̃ be the value of k̃ for which the conformal radius equality is realized. Let
ψ : UK

z → Ũ K̃
z be the unique conformal map with ψ(z) = z and ψ ′(z) > 0. We take

�̃ restricted to Ũ K̃
z to be given by the image under ψ of the restriction of � to UK

z .

Since | log CR (z;US
z

) − log r | and | log CR
(
z; Ũ S̃

z

)
− log r | have exponential

tails, and since the coupling time from Lemma 4.6 has exponential tails, each of

K − S, K̃ − S̃, and | logCR (z;UK
z

) − log r | = | logCR
(
z; Ũ K̃

z

)
− log r | have

exponential tails, with parameters depending only on κ .
Let

� := E

[
J∩
z,ε − J∩

z,ε′ |US
z

]
− E

[
J̃∩
z,ε − J̃∩

z,ε′ | Ũ S̃
z

]
.

123



The CLE nesting field 785

In the above coupling US
z and Ũ S̃

z are independent, so we have

E

[
J∩
z,ε − J∩

z,ε′ |US
z

]
− E

[
J∩
z,ε − J∩

z,ε′
]

= E

[
� |US

z

]
.

Therefore, the left-hand side of (4.12) is equal toE

[(
E
[
�|US

z

])2]
. Jensen’s inequality

applied to the inner expectation yields

E

[(
E

[
�|US

z

])2] ≤ E

[
E

[
�2 |US

z

]]
= E[�2].

We can also write � as

� = E
[
J∩
z,ε − J∩

z,ε′ − J̃∩
z,ε + J̃∩

z,ε′ |US
z , Ũ S̃

z

]

= E

[
J∩
z,ε − K − J̃∩

z,ε + K̃ |US
z , Ũ S̃

z

]
− E

[
J∩
z,ε′ − K − J̃∩

z,ε′ + K̃ |US
z , Ũ S̃

z

]
.

and then use the inequality (a + b)2 ≤ 2(a2 + b2) for a, b ∈ R to bound

�2 ≤ 2Yε + 2Yε′ ,

where for ε̂ ≤ ε we define

Yε̂ := E

[
J∩
z,ε̂ − K − J̃∩

z,ε̂ + K̃ |US
z , Ũ S̃

z

]2
.

We define the event

A = {CR(z;UK
z ) ≥ √

rε}.

Then

E[Yε̂ 1A] = E

[
E

[
J∩
z,ε̂ − K − J̃∩

z,ε̂ + K̃ |US
z , Ũ S̃

z

]2
1A

]

≤ E

[
E

[(
J∩
z,ε̂ − K − J̃∩

z,ε̂ + K̃
)2

1A
∣∣US

z , Ũ S̃
z

]]

= E

[(
J∩
z,ε̂ − K − J̃∩

z,ε̂ + K̃
)2

1A

]

≤ const × (ε/r)c

where the last inequality follows from Lemma 2.7, for some c > 0 and for suitably
large r/ε.

Next we apply Cauchy-Schwarz to find that

E[Yε̂1Ac ] ≤
√

E
[
Y 2

ε̂

]
P[Ac].
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Lemma 4.6 and the construction of the coupling between � and �̃ imply that P[Ac] ≤
const× (ε/r)c for some c > 0. It therefore suffices to show that E

[
Y 2

ε̂

] ≤ C for some
constant C which does not depend on ε or ε′. By Jensen’s inequality, it suffices to
show that there exists C such that

E

[(
J∩
z,ε̂ − K − J̃∩

z,ε̂ + K̃
)4] ≤ C. (4.13)

To prove (4.13), we consider the event B = {CR(z;UK
z ) ≥ ε}. By Lemma 2.7,

E

[(
J∩
z,ε̂ − K − J̃∩

z,ε̂ + K̃
)4

1B

]
≤ const

where the constant depends only on κ .
Using (a + b)4 ≤ 8(a4 + b4) for a, b ∈ R, and the fact that J∩

z,ε̂ − K and J̃∩
z,ε̂ − K̃

are equidistributed, we have

E

[(
J∩
z,ε̂ − K − J̃∩

z,ε̂ + K̃
)4

1Bc

]
≤ 16E

[(
J∩
z,ε̂ − K

)4
1Bc

]
.

On the event Bc, we have K ≥ J∩
z,ε̂. Conditional on this, K − J∩

z,ε̂ has exponentially
decaying tails, so the above fourth moment is bounded by a constant (depending on
κ), which completes the proof. ��
Lemma 4.8 Suppose 0 < ε1(z) ≤ ε and 0 < ε2(z) ≤ ε on a compact subset K ⊂ D
of the domain D. Then there is some c > 0 (depending on κ) and C0 > 0 (depending
on κ, D, and K ) for which

∫∫

K×K

|Cov(Nz(ε1(z)) − Nz(ε2(z)),Nw(ε1(w)) − Nw(ε2(w)))| dz dw ≤ C0ε
c.

(4.14)

Proof For a random variable X , we let
◦
X denote

◦
X = X − E[X ]. (4.15)

We let Yz denote
Yz := J∩

z, ε1(z) − J∩
z, ε2(z). (4.16)

Recalling that J∩
z,r = Nz(r) + 1, we see that

E

[ ◦
Y z

◦
Yw

]
= Cov(Nz(ε1(z)) − Nz(ε2(z)),Nw(ε1(w)) − Nw(ε2(w))),

so we need to bound
∣∣∣E[ ◦

Y z
◦
Yw]

∣∣∣.
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We treat two subsets of K×K separately: (1) the near regime {(z, w) : |z−w| ≤ ε},
and (2) the far regime {(z, w) : ε < |z − w|}.

For the near regime, we first write

Yz = Y (1)
z,w + Y (2)

z,w,

where Y (1)
z,w counts those loops surrounding B(z,min(ε1(z), ε2(z))) and intersecting

B(z,max(ε1(z), ε2(z))) with index smaller than Sz,w, and Y (2)
z,w counts those loops

with index at least Sz,w. Then �z,w determines Y (1)
z,w and Y (1)

w,z , and conditional on
�z,w,Y (2)

z,w and Y (2)
w,z are independent [recall that�z,w was defined in (4.7)]. Thus Y (i)

z,w

and Y ( j)
w,z are conditionally independent (given �z,w) for i, j ∈ {1, 2}.

Observe that ∣∣∣E
[ ◦
Y z

◦
Yw

]∣∣∣ ≤
∑

i, j∈{1,2}

∣∣∣∣E
[ ◦
Y

(i)

z,w

◦
Y

( j)

w,z

]∣∣∣∣ . (4.17)

For i, j ∈ {1, 2},
∣∣∣∣E
[ ◦
Y

(i)

z,w

◦
Y

( j)

w,z

]∣∣∣∣ =
∣∣∣∣E
[
E

[ ◦
Y

(i)

z,w

◦
Y

( j)

w,z | �z,w

]]∣∣∣∣

=
∣∣∣∣E
[
E

[ ◦
Y

(i)

z,w | �z,w

]
E

[ ◦
Y

( j)

w,z | �z,w

]]∣∣∣∣

≤ E

[
E

[ ◦
Y

(i)

z,w | �z,w

]2]1/2
E

[
E

[ ◦
Y

( j)

w,z | �z,w

]2]1/2
. (4.18)

For the index i = 1, we write

E

[
E

[ ◦
Y

(1)

z,w | �z,w

]2]
= E

[( ◦
Y

(1)

z,w

)2
]

≤ E

[(
Y (1)
z,w

)2] = E

[
E

[(
Y (1)
z,w

)2] ∣∣U J∩
z,ε

z

]
.

But

Y (1)
z,w ≤ 1 + Nz,w

(
�|

U
J∩
z,ε

z

)
.

By Theorem 1.3, E
[
(1 + Nz,w(�|U ))2

] ≤ const + const × GU (z, w)2, where GU

denotes the Green’s function for the Laplacian in the domainU . By the Koebe distor-
tion theorem, the Green’s function is in turn bounded by GU (z, w) ≤ const+ const×
max(0, log(CR(z;U )/|z − w|)). Therefore,

E

[( ◦
Y

(1)

z,w

)2
]

≤ E

⎡

⎢⎣O

⎛

⎜⎝1 + log2
|z − w|

CR
(
z;U J∩

z,ε
z

)

⎞

⎟⎠

⎤

⎥⎦ .
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By Lemma 2.5,− log CR

(
z;U J∩

z,ε
z

)
= − log ε+X for some random variable X with

exponentially decaying tails. It follows that

E

[
E

[ ◦
Y

(1)

z,w | �z,w

]2]
= E

[( ◦
Y

(1)

z,w

)2
]

= O

(
1 + log2

|z − w|
ε

)
. (4.19)

For the index i = 2, we express Y (2)
z,w in terms of Jz,ε1(z) and Jz,ε2(z) and use

Lemma 4.5 twice (once with ε1(z) and once with ε2(z) playing the role of ε in the
lemma statement) and subtract to write

E

[ ◦
Y

(2)

z,w | �z,w

]
= E

[ ◦
Y

(2)

z,w |USz,w
z

]
≤ const

E

[
E

[ ◦
Y

(2)

z,w | �z,w

]2]
≤ C. (4.20)

for some constant C depending only on κ .
Combining (4.17), (4.18), (4.19), and (4.20), we obtain

∣∣∣E
[ ◦
Y z

◦
Yw

]∣∣∣ ≤ const + const × log2
ε

|z − w| ,

which implies

∫∫

K×K|z−w|≤ε

∣∣∣E
[ ◦
Y z

◦
Yw

]∣∣∣ dz dw ≤ const × area(K ) × ε2. (4.21)

For the far regime, we again condition on �z,w, the loops up to and including the
first ones separating z from w, and use Cauchy-Schwarz, as in (4.18), but without first
expressing Yz and Yw as sums:

∣∣∣E
[ ◦
Y z

◦
Yw

]∣∣∣ ≤ E

[
E

[ ◦
Y z | �z,w

]2]1/2
E

[
E

[ ◦
Yw | �z,w

]2]1/2
. (4.22)

By Lemma 4.7, we have

E

[
E

[ ◦
Y z | �z,w

]2]
≤ C

(
ε

min(|z − w|,CR(z; D))

)c

. (4.23)

Integrating over {(z, w) ∈ K × K : ε < |z − w|} gives (4.14). ��
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5 Properties of Sobolev spaces

In this section we provide an overview of the distribution theory and Sobolev space
theory required for the proof of Theorem 1.1. We refer the reader to [15] or [16] for a
more detailed introduction.

Fix a positive integer d. Recall that the Schwartz space S(Rd) is defined to be the
set of smooth, complex-valued functions on Rd whose derivatives of all orders decay
faster than any polynomial at infinity. If β = (β1, β2, . . . , βd) is a multi-index, then
the partial differentiation operator ∂β is defined by ∂β = ∂

β1
x1 ∂

β2
x2 . . . ∂

βd
xd . We equip

S(Rd) with the topology generated by the family of seminorms

{
‖φ‖n,β := sup

x∈Rd
|x |n|∂βφ(x)| : n ≥ 0, β is a multi-index

}
.

The space S ′(Rd) of tempered distributions is defined to be the space of continuous
linear functionals on S(Rd). We write the evaluation of f ∈ S ′(Rd) on φ ∈ S(Rd)

using the notation 〈 f, φ〉. For any Schwartz function g ∈ S(Rd) there is an associated
continuous linear functional φ �→ ∫

Rd g(x)φ(x) dx in S ′(Rd), and S(Rd) is a dense
subset of S ′(Rd) with respect to the weak* topology.

For φ ∈ S(Rd), its Fourier transform φ̂ is defined by

φ̂(ξ) =
∫

Rd
e−2π i x ·ξφ(x) dx for ξ ∈ Rd .

Since φ ∈ S(Rd) implies φ̂ ∈ S(Rd) [15, Section 1.13] and since 〈φ̂1, φ2〉 =∫∫
φ1(x)e−2π i x ·yφ2(y) dx dy = 〈φ1, φ̂2〉 for all φ1, φ2 ∈ S(Rd), we may define the

Fourier transform f̂ of a tempered distribution f ∈ S ′(Rd) by setting 〈 f̂ , φ〉:=〈 f, φ̂〉
for each φ ∈ S(Rd).

For x ∈ Rd , we define 〈x〉:=(1 + |x |2)1/2. For s ∈ R, define Hs(Rd) ⊂ S ′(Rd)

to be the set of functionals f for which there exists Rs
f ∈ L2(Rd) such that for all

φ ∈ S(Rd),

〈 f̂ , φ〉 =
∫

Rd
Rs

f (ξ)φ(ξ)〈ξ 〉−s dξ. (5.1)

Equipped with the inner product

〈 f, g〉Hs (Rd ) :=
∫

Rd
Rs

f (ξ)Rs
g(ξ) dξ, (5.2)

Hs(Rd) is a Hilbert space. (The space Hs(Rd) is the same as the Sobolev space
denoted Ws,2(Rd) in the literature.)

Recall that the support of a function f : Rd → C is defined to the closure of the
set of points where f is nonzero. Define T = [−π, π ] with endpoints identified, so
that Td , the d-dimensional torus, is a compact manifold. If M is a manifold (such as
Rd or Td ), we denote byC∞

c (M) the space of smooth, compactly supported functions
on M . We define the topology of C∞

c (M) so that ψn → ψ if and only if there exists
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790 J. Miller et al.

a compact set K ⊂ M on which each ψn is supported and ∂αψn → ∂αψ uniformly,
for all multi-indices α [15]. We write C∞

c (M)′ for the space of continuous linear
functionals on C∞

c (M), and we call elements of C∞
c (M)′ distributions on M . For

f ∈ C∞
c (Td)′ and k ∈ Zd , we define the Fourier coefficient f̂ (k) by evaluating f on

the element x �→ e−ik·x of C∞
c (Td). For distributions f and g on Td , we define an

inner product with Fourier coefficients f̂ (k) and ĝ(k):

〈 f, g〉Hs (Td ) :=
∑

k∈Zd

〈k〉2s f̂ (k)ĝ(k). (5.3)

If f ∈ S ′(Rd) is supported in (−π, π)d , i.e. vanishes on functionswhich are supported
in the complement of (−π, π)d , then f can be thought of as a distribution on Td , and
the norms corresponding to the inner products in (5.2) and (5.3) are equivalent [16]
for such distributions f .

Note that H−s(Rd) can be identified with the dual of Hs(Rd): we associate with
f ∈ H−s(Rd) the functional g �→ 〈 f, g〉 defined for g ∈ Hs(Rd) by

〈 f, g〉 :=
∫

Rd
R−s

f (ξ)Rs
g(ξ) dξ.

This notation is justified by the fact that when f and g are in L2(Rd), this is the same
as the L2(Rd) inner product of f and g. By Cauchy-Schwarz, g �→ 〈 f, g〉 is a bounded
linear functional on Hs(Rd). Observe that the operator topology on the dual Hs(Rd)

coincides with the norm topology of H−s(Rd) under this identification.
It will be convenient to work with local versions of the Sobolev spaces Hs(Rd). If

h ∈ S ′(Rd) and ψ ∈ C∞
c (Rd), we define the product ψh ∈ S ′(Rd) by 〈ψh, f 〉 =

〈h, ψ f 〉. Furthermore, if h ∈ Hs(Rd), thenψh ∈ Hs(Rd) as well [1, Lemma 4.3.16].
Forh ∈ C∞

c (D)′,we say thath ∈ Hs
loc(D) ifψh ∈ Hs(Rd) for everyψ ∈ C∞

c (D).We
equip Hs

loc(D)with a topology generated by the seminorms ‖ψ ·‖Hs (Rd ), which implies
that hn → h in Hs

loc(D) if and only if ψhn → ψh in Hs(Rd) for all ψ ∈ C∞
c (D).

The following proposition provides sufficient conditions for proving almost sure
convergence in H−d−δ

loc (Rd).

Proposition 5.1 Let D ⊂ Rd be an open set, let δ > 0, and suppose that ( fn)n∈N is
a sequence of random measurable functions defined on D. Suppose further that for
every compact set K ⊂ D,

∫

K
E
[| fn(x)|2

]
dx < ∞

and there exist a summable sequence (an)n∈N of positive real numbers such that for
all n ∈ N, we have

∫∫

K×K
|E[( fn+1(x) − fn(x))( fn+1(y) − fn(y))]| dx dy ≤ a3n . (5.4)

Then there exists a random element f ∈ H−d−δ
loc (Rd) supported on the closure of D

such that fn → f in H−d−δ
loc (D) almost surely.

123



The CLE nesting field 791

Before proving Proposition 5.1, we prove the following lemma. Recall that a
sequence (Kn)n∈N of compact sets is called a compact exhaustion of D if Kn ⊂
Kn+1 ⊂ D for all n ∈ N and D = ⋃

n∈N Kn .

Lemma 5.2 Let s > 0, let D ⊂ Rd be an open set, suppose that (K j ) j∈N is a
compact exhaustion of D, and let ( fn)n∈N be a sequence of elements of H−s(Rd).
Suppose further that (ψ j ) j∈N satisfies ψ j ∈ C∞

c (D) and ψ j
∣∣
K j

= 1 for all j ∈ N.

If for every j there exists f ψ j ∈ H−s(Rd) such that ψ j fn → f ψ j as n → ∞ in
H−s(Rd), then there exists f ∈ H−s

loc (D) such that fn → f in H−s
loc (D).

Proof We claim that for all ψ ∈ C∞
c (D), the sequence ψ fn is Cauchy in H−s(Rd).

We choose j large enough that suppψ ⊂ K j . For all g ∈ Hs(Rd),

|〈ψ fn, g〉 − 〈ψ fm, g〉| = |〈ψ j ( fn − fm), ψg〉|.

By hypothesisψ j fn converges in H−s(Rd) as n → ∞, so wemay take the supremum
over {g : ‖g‖Hs (Rd ) ≤ 1} of both sides to conclude ‖ψ fn − ψ fm‖H−s (Rd ) → 0 as
min(m, n) → ∞. Since H−s(Rd) is complete, it follows that for every ψ ∈ C∞

c (D),
there exists f ψ ∈ H−s(Rd) such that ψ fn → f ψ in H−s(Rd).

We define a linear functional f on C∞
c (D) as follows. For g ∈ C∞

c (D), set

〈 f, g〉:=〈 f ψ, g〉, (5.5)

where ψ is a smooth compactly supported function which is identically equal to 1
on the support of g. To see that this definition does not depend on the choice of ψ ,
suppose that ψ1 ∈ C∞

c (D) and ψ2 ∈ C∞
c (D) are both equal to 1 on the support of g.

Then we have

〈 f ψ1 , g〉 − 〈 f ψ2 , g〉 = lim
n→∞〈(ψ1 − ψ2) fn, g〉 = 0,

as desired. From the definition in (5.5), f inherits linearity from f ψ and thus defines a
linear functional onC∞

c (D). Furthermore, f ∈ H−s
loc (D) sinceψ f = f ψ ∈ H−s(Rd)

for all ψ ∈ C∞
c (D). Finally, fn → f in H−s

loc (D) since ψ fn → ψ f = f ψ in
H−s(Rd). ��
Proof of Proposition 5.1 Fix ψ ∈ C∞

c (D). Let Dψ be a bounded open set containing
the support ψ and whose closure is contained in D. Since Dψ is bounded, we may
scale and translate it so that it is contained in (−π, π)d . We will calculate the Fourier
coefficients ofψ( fn+1− fn) in (−π, π)d , identifying it withTd . By Fubini’s theorem,
we have for all k ∈ Zd

E| ̂ψ fn+1 − ψ fn(k)|2

= E

[(∫

D
fn+1(x)ψ(x)e−ik·xdx −

∫

D
fn(x)ψ(x)e−ik·xdx

)2
]
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≤ ‖ψ‖2L∞(Rd )

∫∫

Dψ×Dψ

∣∣E
[
( fn+1(x) − fn(x))( fn+1(y) − fn(y))

]∣∣ dx dy

≤ ‖ψ‖2L∞(Rd )
a3n, (5.6)

by (5.4). By Markov’s inequality, (5.6) implies

P

[
| ̂ψ fn+1 − ψ fn(k)| ≥ an〈k〉d/2+δ/2

]
≤ ‖ψ‖2L∞(Rd )

〈k〉−d−δan .

The right-hand side is summable in k and n, so by the Borel-Cantelli lemma, the
event on the left-hand side occurs for at most finitely many pairs (n, k), almost surely.
Therefore, for sufficiently large n0, this event does not occur for any n ≥ n0. For these
values of n, we have

‖ψ fn − ψ fn+1‖2H−d−δ(Td )
=
∑

k∈Zd

| ̂ψ fn − ψ fn+1(k)|2〈k〉−2(d+δ)

≤
∑

k∈Zd

a2n〈k〉d+δ〈k〉−2d−2δ

= O(a2n/δ),

Applying the triangle inequality, we find that for m, n ≥ n0

‖ψ fm − ψ fn‖H−d−δ(Td ) = O

⎛

⎝δ−1/2
n−1∑

j=m

a j

⎞

⎠ . (5.7)

Recall that the H−d−δ(Td) and H−d−δ(Rd) norms are equivalent for functions sup-
ported in (−π, π)d [(see the discussion following (5.3)]. The sequence (an)n∈N is
summable by hypothesis, so (5.7) shows that (ψ fn)n∈N is almost surely Cauchy
in H−d−δ(Rd). Since H−d−δ(Rd) is complete, this implies that with probability 1
there exists hψ ∈ H−d−δ(Rd) to which ψ fn converges in the operator topology on
H−d−δ(Rd).

By assumption fn ∈ H0
loc(R

d), so fn ∈ H−d−δ(Rd). We may then apply
Lemma 5.2 to obtain a limiting random variable f ∈ H−d−δ

loc (Rd) to which ( fn)n∈N
converges in H−d−δ

loc (Rd). ��

6 Convergence to limiting field

We have most of the ingredients in place to prove the convergence of the centered
ε-nesting fields, but we need one more lemma.

Lemma 6.1 Fix C > 0, α > 0, and L ∈ R. Suppose that F, F1, and F2 are real-
valued functions on (0,∞) such that

(i) F1 is nondecreasing on (0,∞),
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(ii) |F2(x + δ) − F2(x)| ≤ C max(δα, e−αx ) for all x > 0 and δ > 0,
(iii) F = F1 + F2, and
(iv) For all δ > 0, F(nδ) → L as n → ∞ through the positive integers.

Then F(x) → L as x → ∞.

Proof Let ε > 0, and choose δ > 0 so that Cδα < ε. Choose x0 large enough that
Ce−αx0 < ε and |F(nδ)−L| < ε for all n > x0/δ. Fix x > x0, and define a = δ�x/δ�.
For u ∈ {F, F1, F2}, we write �u = u(a + δ) − u(a). Observe that |�F2| ≤ ε by
(ii). By (iii) and (iv), this implies

|�F1| = |�F − �F2| ≤ |�F | + |�F2| < 3ε.

Since F1 ismonotone, we get |F1(x)−F1(a)| < 3ε. Furthermore, (ii) implies |F2(x)−
F2(a)| < ε. It follows that

|F(x) − L| ≤ |F1(x) − F1(a)| + |F2(x) − F2(a)| + |F(a) − L| < 5ε.

Since x > x0 and ε > 0 were arbitrary, this concludes the proof. ��
Theorem 6.2 Let hε(z) be the centered weighted nesting of a CLEκ around the ball
B(z, ε), defined in (1.2). Suppose 0 < a < 1. Then (han )n∈N almost surely converges
in H−2−δ

loc (D).

Proof Immediate from Theorem 4.1 and Proposition 5.1. ��
Proof of Theorem 1.1 We claim that for all g ∈ C∞

c (D), we have 〈hε, g〉 → 〈h, g〉
almost surely. Supposefirst that the loopweights are almost surely nonnegative and that
g ∈ C∞

c (D) is a nonnegative test function.Define F(x):=〈he−x , g〉, F1(x):=〈Sz(e−x ),

g〉, and F2(x):=−〈E[Sz(e−x )], g〉.WeapplyLemma6.1withα as given inLemma2.6,
which implies

lim
ε→0

〈hε, g〉 = 〈h, g〉 for g ∈ C∞
c (D), g ≥ 0. (6.1)

For arbitrary g ∈ C∞
c (D), we choose g̃ ∈ C∞

c (D) so that g̃ and g + g̃ are both
nonnegative. Applying (6.1) to g̃ and g + g̃, we see that

lim
ε→0

〈hε, g〉 = 〈h, g〉 for g ∈ C∞
c (D). (6.2)

Finally, consider loop weights which are not necessarily nonnegative. Define loop
weights ξ±

L = (ξL)±, where x+ = max(0, x) and x− = max(0,−x) denote the
positive and negative parts of x ∈ R. Define h± to be the weighted nesting fields
associated with the weights ξ±

L (associated with the same CLE). Then 〈h±
ε , g〉 →

〈h±, g〉 almost surely, and

〈hε, g〉 = 〈h+
ε , g〉 − 〈h−

ε , g〉 → 〈h+, g〉 − 〈h−, g〉 = 〈h, g〉,

which concludes the proof that 〈hε, g〉 → 〈h, g〉 almost surely.
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To see that the field h is measurable with respect to the σ -algebra � generated by
the CLEκ and theweights (ξL)L∈� , note that there exists a countable dense subsetF of
C∞
c (D) [15, Exercise 1.13.6]. Observe that h2−n is�-measurable and h is determined

by the values {h2−n (g) : n ∈ N, g ∈ F}. Since h is an almost sure limit of h2−n , we
conclude that h is also �-measurable.

To establish conformal invariance, let z ∈ D and ε > 0 and define the sets of loops

�1 = loops surrounding B(ϕ(z), ε|ϕ′(z)|), and

�2 = loops surrounding ϕ(B(z, ε))

�3 = �1��2,

where � denotes the symmetric difference of two sets. Since either �1 ⊂ �2 or
�2 ⊂ �1,

hε(z) − h́ε|ϕ′(z)|(ϕ(z)) = ±
∑

ξ∈�3

ξL.

Multiplying by g ∈ C∞
c (D), integrating over D, and taking ε → 0, we see that by

Lemma 2.7 and the finiteness of E[|ξL|], the sum on the right-hand side goes to 0 in
L1 and hence in probability as ε → 0. Furthermore, we claim that

∫

D

[
h́ε|ϕ′(z)|(ϕ(z)) − h́ε(ϕ(z))

]
g(z) dz → 0

in probability as ε → 0. To see this, we write the difference in square brackets as

h́ε|ϕ′(z)|(ϕ(z)) − h́Cε(ϕ(z)) + h́Cε(ϕ(z)) − h́ε(ϕ(z)),

where C is an upper bound for |ϕ′(z)| as z ranges over the support of g. Note that∫
D

[
h́Cε(ϕ(z)) − h́ε(ϕ(z))

]
g(z) dz → 0 in probability because for all 0 < ε′ < ε

and ψ ∈ C∞
c (D), we have

E‖ψhε − ψhε′ ‖2H−d−δ(Td )
=
∑

k∈Zd

E| ̂ψhε − ψhε′ (k)|2〈k〉−2(d+δ)

≤
∑

k∈Zd

‖ψ‖2L∞(Rd )

∫∫

D2
ψ

∣∣E[(hε(x) − hε′(x))(hε(y)

− hε′ (y))]∣∣ dx dy〈k〉−2(d+δ)

≤ ε�(1)/δ;

see (5.6) for more details. The same calculation along with Theorem 4.1 show that

∫

D

[
h́Cε(ϕ(z)) − h́ε|ϕ′(z)|(ϕ(z))

]
g(z) dz → 0,

in probability. It follows that 〈h, g〉 = 〈h́ ◦ ϕ, g〉 for all g ∈ C∞
c (D), as desired. ��
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7 Step nesting

In this section we prove Theorem 1.2. Suppose that D is a proper simply connected
domain, and let � be a CLEκ in D. Let μ be a probability measure with finite second
moment and zero mean, and define

hn(z) =
n∑

k=1

ξLk (z), n ∈ N.

We call (hn)n∈N the step nesting sequence associated with � and (ξL)L∈� .

Lemma 7.1 For each κ ∈ (8/3, 8) there are positive constants c1, c2, and c3 (depend-
ing on κ) such that for any simply connected proper domain D � C and points
z, w ∈ D, for a CLEκ in D,

Pr

[
Nz,w ≥ c1 log

CR(z; D)

|z − w| + c2 j + c3

]
≤ exp[− j].

Proof Let Xi be i.i.d. copies of the log conformal radius distribution, and let T� =∑�
i=1 Xi . Then

Pr[T� ≤ t] ≤ E[e−X ]�et

Pr[T� ≤ log(CR(z; D)/|z − w|)] ≤ E[e−X ]�CR(z; D)

|z − w| .

If T� > log(CR(z; D)/|z − w|), then J∩
z,|z−w| ≤ �. But Nz,w < J⊂

z,|z−w|, and by

Corollary 2.4, J⊂
z,|z−w| − J∩

z,|z−w| has exponential tails. ��
Proof of Theorem 1.2 We check that (5.4) holds with fn = hn . Writing out each
difference as a sum of loop weights and using the linearity of expectation, we calculate
for 0 ≤ m ≤ n and z, w ∈ D,

E[(hm(z) − hn(z))(hm(w) − hn(w))] = σ 2
n∑

k=m+1

P[Nz,w ≥ k].

Let δ(z) be the value for which c1 log(CR(z; D)/δ(z)) + c3 = k, where c1 and c3
are as in Lemma 7.1. Let K be compact, and let δ = maxz∈K δ(z). Then

δ ≤ exp[−�(k)] × sup
z∈K

dist(z, ∂D) (7.1)

and ∫∫

K×K|z−w|≥δ

Pr[Nz,w ≥ k] dz dw ≤ exp(−k) × area(K )2. (7.2)
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The integral of P[Nz,w ≥ k] over z, w which are closer than δ is controlled by virtue
of the small volume of the domain of integration:

∫∫

K×K|z−w|≤δ

P[Nz,w ≥ k] dz dw ≤ δ2 × area(K ). (7.3)

Putting together (7.1)–(7.3) establishes

∫∫

K×K

P
[Nz,w ≥ k

]
dz dw ≤ exp[−�(k)] × CK ,D (7.4)

as k → ∞.
Having proved (7.4), we may appeal to Proposition 5.1 and conclude that hn con-

verges almost surely to a limiting random variable h taking values in H−2−δ
loc (D).

Since each hn is determined by � and (ξL)L∈� , the same is true of h. Similarly, for
each n ∈ N, hn inherits conformal invariance from the underlying CLEκ . It follows
that h is conformally invariant as well. ��

The following proposition shows that if the weight distribution μ has zero mean,
then the step nesting field h and the usual nesting field h are equal.

Proposition 7.2 Suppose that D � C is a simply connected domain, and let μ be
a probability measure with finite second moment and zero mean. Let � be a CLEκ

in D, and let (ξL)L∈� be an i.i.d. sequence of μ-distributed random variables. The
weighted nesting field h = h(�, (ξL)L∈�) from Theorem 1.1 and the step nesting field
h = h(�, (ξL)L∈�) from Theorems 1.1 and 1.2 are almost surely equal.

Proof Let g ∈ C∞
c (D), ε > 0 and n ∈ N. By Fubini’s theorem, we have

E[(〈hε, g〉 − 〈hn, g〉)2]
=
∫∫

D×D
E[(hε(z) − hn(z))(hε(w) − hn(w))] g(z)g(w) dz dw. (7.5)

Applying the same technique as in (4.2), we find that the expectation on the right-hand
side of (7.5) is bounded by σ 2 times the expectation of the number Nz,w(n, ε) of loops
L satisfying both of the following conditions:

1. L surrounds Bz(ε) or L is among the n outermost loops surrounding z, but not
both.

2. L surrounds Bw(ε) or L is among the n outermost loops surrounding w, but not
both.
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Using Fatou’s lemma and (7.5), we find that

E[(〈h, g〉 − 〈h, g〉)2] = E

[
lim
ε→0

lim
n→∞(〈hε, g〉 − 〈hn, g〉)2

]

≤ lim inf
ε→0

lim inf
n→∞ E[(〈hε, g〉 − 〈hn, g〉)2]

≤ lim inf
ε→0

lim inf
n→∞

∫∫

D×D
E[Nz,w(n, ε)] g(z)g(w) dz dw

≤ lim sup
ε→0

lim sup
n→∞

∫∫

D×D
E[Nz,w(n, ε)] g(z)g(w) dz dw.

If z �= w, then Nz,w < ∞ almost surely, so E[Nz,w(n, ε)] tends to 0 as ε → 0 and
n → ∞. Furthermore, the observation Nz,w(n, ε) ≤ Nz,w implies by Theorem 1.3
that E[Nz,w(n, ε)] is bounded by νtypical log |z−w|−1 + const independently of n and
ε. Since (z, w) �→ E[Nz,w(n, ε)]g(z)g(w) is dominated by the integrable function
(νtypical log |z − w|−1 + const)g(w)g(w), we may apply the reverse Fatou lemma to
obtain

E[(〈h, g〉 − 〈h, g〉)2] ≤
∫∫

D×D
lim sup

ε→0
lim sup
n→∞

E[Nz,w(n, ε)] g(z)g(w) dz dw

= 0,

which implies
〈h, g〉 = 〈h, g〉 (7.6)

almost surely. The space C∞
c (C) is separable [15, Exercise 1.13.6], which implies

that C∞
c (D) is also separable. To see this, consider a given countable dense subset of

C∞
c (C). Any sufficiently small neighborhood of a point in C∞

c (D) is open in C∞
c (C),

and therefore intersects the countable dense set. Therefore, we may apply (7.6) to a
countable dense subset of C∞

c (D) to conclude that h = h almost surely. ��

8 Further questions

Question 1 Suppose that h is the nesting field associated with a CLEκ process and
weight distribution μ. For each ε > 0 and z ∈ D, let Az(ε) be the average of h on the
disk B(z, ε). Is it true that the set of extremes of Az(ε), i.e., points where either Az(ε)

has unusually slow or fast growth as ε → 0, is the same as that for Sz(ε)?

Question 2 When κ = 4 and μ is the Bernoulli distribution, the nesting field h is a
GFF on D. In this case, it follows from [9] that the underlying CLE4 is a deterministic
function of h. Does a similar statement hold for κ ∈ (8/3, 4]? For κ ∈ (4, 8), we do
not expect this to hold because we do not believe that it is possible to determine the
outermost loops of such a CLEκ given the union of the outermost loops as a random
set. Nevertheless, is the union of all loops, viewed as a subset of D and its prime ends,
determined by the (weighted) nesting field?
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Question 3 When κ = 4 and μ is the Bernoulli distribution, then the nesting field
is a Gaussian process (in particular, a GFF). We do not expect this to hold with the
Bernoulli distribution for any κ �= 4. Do there exist other values of κ ∈ (8/3, 8) and
weight distributions μ such that the corresponding nesting field is also Gaussian?

Question 4 Does the nesting field in general satisfy a spatial Markov property which
is similar to that of the GFF? Is there a type of Markovian characterization for the
nesting field which is analogous to that for CLE [12,14]? The existence of a spatial
Markov property for the nesting field is natural in view of the conjectured convergence
of discrete models which possess a spatial Markov property to CLEκ .

Question 5 There are several discrete loop models which are known to converge to
CLE. Do their nesting fields converge to the nesting field of CLE?

Acknowledgments Both JM and SSW thank the hospitality of the Theory Group at Microsoft Research,
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and SSW’s work was partially supported by an NSF Graduate Research Fellowship, award No. 1122374.

9 Appendix A: Rapid convergence to full-plane CLE

In this appendix we prove that CLEκ (for 8/3 < κ < 8) in large domains rapidly
converges to a full-plane version of CLEκ . This was proved in [7] when κ ≤ 4 using
the loop-soup characterization of CLE.

For a collection � of nested noncrossing loops in C, let �|B(z,r)+ denote the
collection of loops in � which are in the connected component of C\{L ∈ � :
L surrounds B(z, r)} containing z. If� is a CLEκ in a proper simply connected domain
containing B(z, r), then �|B(z,r)+ = �|

U
J∩
z,r−1

z

.

Theorem 9.1 For κ ∈ (8/3, 8) there is a unique measure on nested noncrossing loops
inC, “full-planeCLEκ”, to whichCLEκ ’s on large domains D rapidly converge in the
following sense. There are constants C > 0 and α > 0 (depending on κ) such that for
any z ∈ C, r > 0, and simply connected proper domain D containing B(z, r), a full-
plane CLEκ �C and a CLEκ �D on D can be coupled so that with probability at least
1−C(r/ dist(z, ∂D))α , there is a conformalmapϕ from�C|B(z,r)+ to�D|B(z,r)+ which
has low distortion in the sense that |ϕ′(z) − 1| < C(r/ dist(z, ∂D))α on �C|B(z,r)+ .
Full-plane CLEκ is invariant under scalings, translations, and rotations.

For κ ≤ 4 Kemppainen and Werner showed that full-plane CLEκ is also invariant
under the map z �→ 1/z [7].

Proof We first prove for that x > 0, the stated estimates hold for z = 0 and r = 1,
withC and D replaced by any two proper simply connected domains D1 and D2 which
both contain the ball B(0, ex ).

For i ∈ {1, 2}, let �i denote the CLEκ on Di . Let λ
(i)
j = − log CR(0,L j

0(�i )).

Note that λ
(i)
0 ≤ −x for i ∈ {1, 2}. Furthermore,

{
λ

(i)
j+1 − λ

(i)
j

}

j∈N is an i.i.d. posi-

tive sequence whose terms have a continuous distribution with exponential tails [13].
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Therefore, by Lemma 4.6, there is a stationary point process λ(0) onRwith i.i.d. incre-
ments from this same distribution, and the sequences λ(1) and λ(2) can be coupled to
λ(0) so that λ(i)∩(− 3

4 x,∞
) = λ(0)∩(− 3

4 x,∞
)
for i ∈ {1, 2}, except with probability

exponentially small in x .
Let

a:=min

(
λ(0) ∩

(
−3

4
x,∞

))
. (9.1)

By Lemma 2.5, a ∈ (− 3
4 x,− 1

2 x
)
except with probability exponentially small in x .

We shall couple the two CLEκ processes �1 and �2 as follows. First we generate
the random point process λ(0). Then we sample the negative log conformal radii of
the loops of �1 and �2 surrounding 0, so as to maximize the probability that these
coincide with λ(0) on

(− 3
4 x,∞

)
. If either λ(1) or λ(2) does not coincide with λ(0)

on
(− 3

4 x,∞
)
, then we may complete the construction of �1 and �2 independently.

Otherwise, we construct �1 and �2 up to and including the loop with conformal radius
e−a , where a is defined in (9.1). Let L(i)

a denote the loop of �i whose negative log
conformal radius (seen from 0) is a, and let U (i)

a denote the connected component of
C\L(i)

a containing 0. Then we sample a random CLEκ �D of the unit disk D which is
independent of a and the portions of�1 and�2 constructed thus far. (We can either take
�D to be independent of λ(0), or so that the negative log conformal radii of �D’s loops
surrounding 0 coincide with (λ(0) − a) ∩ (0,∞).) Then we let ψ(i) be the conformal
map from D to U (i)

a with ψ(i)(0) = 0 and (ψ(i))′(0) > 0, and set the restriction of �i

toU (i)
a to beψ(i)(�D). If there are any bounded connected components ofC\L(i)

a other
than U (i)

a , then we generate the restriction of �i to these components independently
of everything else generated thus far. The resulting loop processes �i are distributed
according to the conformal loop ensemble on Di , and have been coupled to be similar
near 0.

Let ψ = ψ(2) ◦ (ψ(1))−1 be the conformal map from U (1)
a to U (2)

a for which
ψ(0) = 0 and ψ ′(0) = 1. Assuming a ∈ (− 3

4 x,− 1
2 x) and a ∈ λ(1) and a ∈ λ(2), the

Koebe distortion theorem implies that on B(0, ex/4), |ψ ′ − 1| is exponentially small
in x .

By [10, Lemma 3.6], except with probability exponentially small in x , both �1
and �2 contain a loop surrounding B(0, 1) which is contained in B(0, ex/4). It is
possible thatψ maps a loop of �1 surrounding D to a loop of �2 intersecting D or vice
versa. But sinceψ has exponentially low distortion, any such loop would have to have
inradius exponentially close to 1. The expected number of loops of �1 with negative
log conformal radius between− log 4 and 1 is bounded by a constant, so by the Koebe
quarter theorem, the expected number of loops of �1 with inradius between 1/e and 1
is bounded by a constant. Let D3 = euD1 be a third domain, where u is independent of
everything else and uniformly distributed on (0, 1). It is evident that eu�1 has no loop
with inradius exponentially (in x) close to 1, except with probability exponentially in
x . On the other hand,we can couple aCLEκ on D3 to�1 in the samemanner thatwe did
for domain D2, and deduce that �1 must also have no loop with inradius exponentially
close to 1, except with probability exponentially small in x . We conclude that it is
exponentially unlikely for there to be a loop of �1 surrounding B(0, 1) which ψ maps
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to a loop of �2 intersecting B(0, 1) or vice versa. Thus ψ(�1|B(z,1)+) = �2|B(z,1)+ ,
except with probability exponentially small in x .

The corresponding estimates for general z and r and domains D1 and D2 containing
B(z, r) follows from the conformal invariance of CLEκ .

Given the above estimates for any two proper simply connected domains which
contain a sufficiently large ball around the origin, it is not difficult to take a limit.
For some sufficiently large constant k0 (which depends on κ), we let �k be a CLEκ

in the domain B(0, ek), where k ≥ k0 is an integer. For each k, we couple �k+1
and �k as described above. With probability 1 all but finitely many of the couplings
have that �k+1|B(0,ek/2)+ = ψk(�k |B(0,ek/2)+) for a low-distortion conformal map
ψk , so suppose that this is the case for all k ≥ �. The conformal maps ψk (for
k ≥ �) approach the identity map sufficiently rapidly that for each m ≥ �, the infinite
composition · · · ◦ ψm+1 ◦ ψm is well defined and converges uniformly on compact
subsets to a limiting conformal map with distortion exponentially small in m. We
define �C|B(0,em/2)+ to be the image of �m |B(0,em/2)+ under this infinite composition.
These satisfy the consistency condition �C|B(0,exp(m1/2))+ ⊆ �C|B(0,exp(m2/2))+ for
m2 ≥ m1 ≥ �, so then we define �C = ⋃

m≥� �C|B(0,em/2)+ . For any other proper
simply connected domain D containing a sufficiently large ball around the origin, we
couple �D to ��log dist(0,∂D)� as described above, and with high probability it will be
close to �C in the sense described in the theorem.

It is evident from this construction of �C that it is rotationally invariant around 0.
Next we check that �C is invariant under transformations of the form z �→ Az + C
where A,C ∈ C and A �= 0. Note that A�C + C restricted to a ball B(0, r) is
arbitrarily well approximated by CLE on B(C, A2k) for sufficiently large k. But by the
coupling for simply connected proper domains, the CLEs on B(C, A2k) and B(0, 2k)
restricted to B(0, r) approximate each other arbitrarily well for sufficiently large k,
and by construction, �C restricted to B(0, r) is arbitrarily well approximated by CLE
on B(0, 2k) restricted to B(0, r) when k is sufficiently large. Thus full-plane CLE is
invariant under affine transformations.

Finally, if there weremore than one loopmeasure that approximates CLE on simply
connected proper domains in the sense of the theorem, then for a sufficiently large
ball the measures would be different within the ball. Since for some sufficiently large
proper simply connected domain D, CLE on D restricted to the ball would be well-
approximated by both measures, we conclude that full-plane CLE is unique. ��

10 Notation

We use the following notation.

• D is a simply connected proper domain in C, i.e. ∅ � D � C (Sect. 1)
• � denotes a CLEκ process on D (Sect. 1)
• Nz(ε) is the number of loops of � which surround B(z, ε) (Sect. 1)
• L j

z is the j th loop of � which surrounds z (Sect. 2)
• U j

z is the connected component of D\L j
z which contains z (Sect. 2)
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• Sz(ε) is the sum of the loop weights over the loops of � which surround B(z, ε)
((1.1) in Sect. 1)

• μ is the weight distribution on the loops (Sect. 1)
• GD(z, w) is the Green’s function for the Dirichlet Laplacian −� on D (Sect. 1)
• hz(ε) = Sz(ε) − E[Sz(ε)] (Sect. 1)
• Nz,w(ε) is the number of loops of � which surround both B(z, ε) and B(w, ε)

(Sect. 1)
• J∩

z,r is the index of the first loop of Lz which intersects B(z, r) ((2.1) in Sect. 2).
• J⊂

z,r is the index of the first loop ofLz which is contained in B(z, r) ((2.1) in Sect. 2).
• �z(ε) is the set of loops of � which surround B(z, ε) (Sect. 1)

• ◦
X = X − E[X ] for any integrable random variable X (Sect. 4)

• Gκ,ε
D (z, w) is the expected number of CLE loops surrounding z andw but not neither

B(z, ε) nor B(w, ε) (Sect. 4)
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Taylor conjecture on random walk. Acta Math. 186(2), 239–270 (2001). math/0107191

4. Fortuin, C.M., Kasteleyn, P.W.: On the random-cluster model. I. Introduction and relation to other
models. Physica 57, 536–564 (1972)

5. Gut, A.: Stopped Random Walks. Springer Series in Operations Research and Financial Engineering,
second edition. Springer, Berlin (2009)

6. Kager, W., Nienhuis, B.: J. Statist. Phys. 115(5–6), 1149–1229 (2004). math-ph/0312056
7. Kemppainen, A., Werner, W.: The nested simple conformal loop ensembles in the Riemann sphere

(2014). arXiv:1402.2433
8. Lawler, G.F.: Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs

#114. American Mathematical Society, Providence (2005)
9. Miller, J., Sheffield, S.: CLE(4) and the Gaussian free field (2014)

10. Miller, J., Watson, S.S., Wilson, D.: Extreme nesting in the conformal loop ensemble. Ann. Probab.
(2014, to appear). arXiv:1401.0217

11. Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math. (2) 161(2), 883–924 (2005).
math/0106036

12. Sheffield, S.: Exploration trees and conformal loop ensembles. Duke Math. J. 147(1), 79–129 (2009).
math/0609167

13. Schramm, O., Sheffield, S., Wilson, D.B.: Conformal radii for conformal loop ensembles. Commun.
Math. Phys. 288(1), 43–53 (2009). math/0611687

14. Sheffield, S.,Werner,W.:Conformal loop ensembles: theMarkovian characterization and the loop-soup
construction. Ann. Math. (2) 176(3), 1827–1917 (2012). arXiv:1006.2374

15. Tao, T.: An epsilon of room, I: real analysis. Graduate Studies in Mathematics #117. American Math-
ematical Society, Pages from year three of a mathematical blog (2010)

16. Taylor, M.E.: Partial Differential Equations I. Basic Theory. Applied Mathematical Sciences #115,
second edition. Springer, Berlin (2011)

17. Williams, D.: Probability with Martingales. Cambridge Mathematical Textbooks. Cambridge Univer-
sity Press, Cambridge (1991)

123

http://www.staff.science.uu.nl/~crain101/AS-2013/main.pdf
http://arxiv.org/abs/1006.5073
http://arxiv.org/abs/math/0107191
http://arxiv.org/abs/math-ph/0312056
http://arxiv.org/abs/1402.2433
http://arxiv.org/abs/1401.0217
http://arxiv.org/abs/math/0106036
http://arxiv.org/abs/math/0609167
http://arxiv.org/abs/math/0611687
http://arxiv.org/abs/1006.2374

	The conformal loop ensemble nesting field
	Abstract
	1 Introduction
	2 Basic CLE estimates
	3 Co-nesting estimates
	4 Regularity of the ε-ball nesting field
	5 Properties of Sobolev spaces
	6 Convergence to limiting field
	7 Step nesting
	8 Further questions
	Acknowledgments
	9 Appendix A: Rapid convergence to full-plane CLE
	10 Notation
	References




