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Abstract Heritability, the fraction of phenotypic varia-

tion explained by genetic variation, has been estimated for

many phenotypes in a range of populations, organisms, and

time points. The recent development of efficient genotyp-

ing and sequencing technology has led researchers to

attempt to identify the genetic variants responsible for the

genetic component of phenotype directly via GWAS. The

gap between the phenotypic variance explained by GWAS

results and those estimated from classical heritability

methods has been termed the ‘‘missing heritability prob-

lem’’. In this work, we examine modern methods for esti-

mating heritability, which use the genotype and sequence

data directly. We discuss them in the context of classical

heritability methods, the missing heritability problem, and

describe their implications for understanding the genetic

architecture of complex phenotypes.

Introduction

Since their debut in 2005 genome-wide associations studies

(GWAS) have identified thousands of single nucleotide

polymorphisms (SNPs) associated with hundreds of different

phenotypes (Hindorff et al. 2009). Despite this success, the

total faction of the phenotypic variation explained for most

phenotypes remains small relative to the published heritability

estimates, which are estimated using the trait covariance

among relatives (Eichler et al. 2010; Maher 2008; Manolio

et al. 2009). This ‘‘missing heritability problem’’ raises

questions about the methods used to estimate heritability as

well as the genetic architecture of complex phenotypes.

Many explanations for the sources of missing heritability

have been proposed including structural variations, gene–

environment interactions, epistatic interactions, parent of

origin effects, and errors in narrow-sense heritability esti-

mates (Eichler et al. 2010; Manolio et al. 2009; Zuk et al.

2012). Of particular interest is the distribution of causal

variants along the genome, their number, and their frequency

spectrum. GWAS are particularly suited to capture common

variants and so violation of the common disease common

variant model may lead to missing heritability. In Fisher’s

infinitesimal model, there are expected to be a large number

of rare variants associated with disease. The rare-allele

model proposes that rare variants of large effect account for a

significant fraction of phenotypic variation, and it has been

proposed that these can give rise to synthetic association in

common variants (Dickson et al. 2010; Gibson 2011).

Determining which combination of these hypotheses is

correct and where the majority of phenotypic variation lays

N. Zaitlen � P. Kraft (&)

Department of Epidemiology, Harvard School of Public Health,

Boston, MA 02115, USA

e-mail: pkraft@hsph.harvard.edu

N. Zaitlen � P. Kraft

Department of Biostatistics, Harvard School of Public Health,

Boston, MA 02115, USA

N. Zaitlen � P. Kraft

Broad Institute of Harvard and Massachusetts Institute

of Technology, Cambridge, MA 02142, USA

N. Zaitlen (&)

Program in Molecular and Genetic Epidemiology,

Harvard School of Public Health, Boston, MA 02115, USA

e-mail: nzaitlen@hsph.harvard.edu

P. Kraft

Program in Molecular and Genetic Epidemiology,

Harvard School of Public Health, 665 Huntington Avenue,

Building 2 Room 209, Boston, MA 02115, USA

123

Hum Genet (2012) 131:1655–1664

DOI 10.1007/s00439-012-1199-6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78071571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


has significant implications for the future success of asso-

ciation studies as well as the clinical utility of genetic risk

prediction. It is possible to decouple some of these proposed

genetic architectures without directly identifying the causal

variants themselves. For example, Wray et al. (2011) show

the potential for comparing heritability and sibling relative

risk estimates to determine the validity of a rare-variant

model (Gibson 2011; Wray and Goddard 2010).

Recently, Yang et al. (2010) proposed using linear-

mixed models (LMMs) to estimate a lower bound on the

total narrow-sense heritability estimation from GWAS data

as well determining how much of the phenotypic variation

is due to SNPs in LD with those on genotyping platforms.

The results of this approach have broad implications for the

genetic architecture of phenotypes as well as the future

success of GWAS.

In this work, we examine the problem heritability esti-

mation in the GWAS era and how it relates to the missing

heritability problem. We briefly review the classical

methods of heritability estimation and contrast them with

relatively recent use of genotype data to estimate the

component of heritability explained by common SNPs via

the LMM approach. We discuss the relative merits of the

different methods in terms of potential confounding factors

as well as what they tell us about the distribution of causal

variants and the potential returns of future GWAS. Finally,

we discuss the prospects for using LMM to predict human

traits, including disease risk.

Background

Heritability is a measure of the contribution of genetics to

phenotype. Wright and Fisher formalized the concept by

writing phenotypic variance as the sum of genetic variance

and environmental variance, r2
P ¼ r2

G þ r2
e . Broad sense

heritability H2 is the ratio of total genetic variance to

phenotypic variance H2 ¼ r2
G

r2
P

. This measure includes the

effects of gene–gene interactions (epistatic effects) r2
I ,

dominance effects r2
D, and additive effects r2

g such that

r2
G ¼ r2

g þ r2
D þ r2

I . Narrow-sense heritability h2 measures

just the additive contribution of genetic variation to phe-

notype h2 ¼ r2
g

r2
P

(Falconer 1989; Lynch and Walsh 1998).

In this work, we discuss estimates of narrow-sense

heritability h2 unless stated otherwise. This is done because

we focus on GWAS and the missing heritability problem.

Most traditional estimates of heritability using the corre-

lations among related individuals are presumed to estimate

h2, although these estimates can be biased. For example,

the classical estimate involving the regression of offspring

trait values on the mean parental values does not include

the dominance component of variance, but the epistatic

component does contribute to the estimate. The epistatic

component is typically (and perhaps incorrectly) assumed to

be 0 for identifiability purposes (Falconer 1989; Zuk et al.

2012). GWAS estimates of individual-marker effect sizes

are generally measured marginally, ignoring dominance and

interaction effects, so the ‘‘bottom-up’’ heritability estimates

from GWAS (defined below) are narrow-sense estimates.

The additive model

In a GWAS, we are given a set of Ns SNPs S ¼
s1; s2; . . .; sNs
f g genotyped on Ni individuals with pheno-

types Y ¼ y1; y2; . . .; yNi
. Each genotype has value (0, 1, 2)

and the genotypes of the jth individual are Gj ¼
g1j; g2j; . . .; gNsj with minor allele frequencies

p1; p2; . . .; pNs
. Let C be the set of Nc causal SNPs, which

along with environmental factors determine the phenotype

of each individual. The ability of GWAS to identify the

genetic contribution to trait variance will depend on the

proportion of SNPs in C that are in S or in linkage dis-

equilibrium with one or more SNPs in S.

In an additive model, the phenotype of each individual is

defined by a sum of linear effects

yj ¼ mþ
X

i2C

zijai þ ej ð1Þ

where zij ¼ gij�2piffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pi 1�pið Þ
p are the normalized genotypes, ai is

the effect size of SNP si, ej is the environmental contri-

bution, and Y is normalized to have variance 1. The envi-

ronmental contribution is assumed to be normally

distributed ej�N 0; r2
e

� �
, and ej and ek are independently

distributed for j = k.

Marginal GWAS ‘‘bottom-up’’ heritability estimation

The genetic variance in an additive model is computed by

the sum of the squared-effect sizes of the normalized

genotypes r2
g ¼

P
i a

2
i and the heritability is the ratio of the

genetic variance to the total phenotypic variance

h2 ¼ r2
g

r2
gþr2

e
¼ r2

g, where r2
g is environmental contribution to

phenotype and r2
g þ r2

e ¼ r2
Y ¼ 1.

Given a GWAS, one can compute an estimate of the

genetic variance r̂2
g using the effect size estimates from the

markers with a pre-specified genome-wide significance

level. This can be used to compute an estimate of the

heritability h2
GWAS ¼

r̂2
g

r2
Y

, which is defined as ‘‘bottom-up’’

heritability estimation by Zuk et al. (2012).

Unfortunately, the full set of casual variants and their

effect sizes are not known, so h2
GWAS will typically
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underestimate the total heritability. The winner’s curse

(Ioannidis 2007, 2008; Kraft 2008) and the inclusion of

false-positive markers in the bottom-up estimate of genetic

variance could in principle lead to an overestimate of

heritability. The difference between h2 and h2
GWASis known

as the ‘‘missing heritability’’. It is the additive genetic

variance not yet captured with GWAS or other methods of

identifying associated variants.

Classical ‘‘top-down’’ heritability estimation

The classical methods of heritability estimation are based

on an intuitive concept. Phenotypes that are highly corre-

lated among relatives in patterns consistent with Mendelian

inheritance are more heritable than those that are weakly

correlated among relatives. The formalization of this idea

by Fisher (1918) and Wright (1921) is the foundation of

heritability estimation.

Consider the correlation between the phenotype of two

individuals in the additive model above:

corðyj; ykÞ ¼ covðyj; ykÞ

¼ covð
X

i2C

zijai;
X

i2C

zikaiÞ ¼
r2

g

NC

X

i2C

covðzij; zikÞ
varðziÞ

¼ r2
gKCausal½j; k�:

KCausal is the genetic covariance matrix (Kang et al.

2010; Price et al. 2006; Yang et al. 2010) defined at the

causal SNPs. The entry for element j, k in the matrix is:

KCausal;jk ¼
1

NC

X

i2C

ðgij � 2p̂iÞðgik � 2p̂iÞ
2p̂ið1� p̂iÞ

:

Until recently, the genotypes of individuals were

unavailable and even now the set of causal variants is

unknown, so alternative means of estimating KCausal are

required. The classical and still widely used approach is to

collect sets of related individuals from known pedigrees.

The estimate of KCausal, jk is twice the kinship coefficient or

2Ujk. Here Ujk is the probability that an allele drawn at

random from j is identical by descent to a randomly drawn

allele from k, and can be calculated from the known

pedigree structure (Lange 2002). Many of the familiar

values for Ujk such as Ujk = � for full siblings assume that

founders share no alleles identical by descent, which may

not be true in the presence of inbreeding or population

substructure (Lange 2002; Powell et al. 2010). We call the

matrix estimated from these pedigree-based estimates KPed,

and it serves as an estimate of KCausal. Given this matrix,

the problem of heritability estimation is reduced to

estimating r̂2
g from the observed covariance of the

phenotypes of the related individuals.

It is worth stressing that the entries in KPed are the sums

of the expected cross products E[Zij 9 Zik], while the

actual covariance KCausal depends on the observed cross

products zij 9 zik. The actual covariance will vary around

its expected value for most relative pairs. Visscher et al.

(2006) proposed using an estimate of KCausal based on

observed genotype data as a more accurate method for

estimating heritability using related individuals. For a

sample of unrelated sibling pairs, the values of the entries

in KPed are � for siblings and 0 otherwise. It follows

(making the questionable assumption that the dominance,

epistatic, and shared environmental components of vari-

ance are 0) that r̂2
g is twice the average correlation of the

phenotype across the sib-pairs (Falconer 1989). If the

average correlation among the normalized height of sib-

lings in a population is 0.4 then the heritability estimate for

height is 0.8.

Pedigree-based linear-mixed model estimates

of heritability

When multiple classes of relationship are measured, as is

the case in extended pedigrees, one can take advantage of

all the relationships simultaneously via a LMM (Lange

2002; Shaw 1987), where the 1 9 Nsubjects phenotype

vector Y is distributed as a multivariate normal random

variable with mean M and variance–covariance matrix R.

The mean vector M captures the fixed effects of observed

covariates (e.g. sex, age, or principal components of

genetic variation). The variance–covariance matrix is:

R ¼ var
X

i2C

ziai

 !
þ var eð Þ ¼ KCausalr

2
g þ Ir2

e :

To estimate heritability via a LMM, the restricted

maximum likelihood (REML) estimate of r̂2
g is computed

and the heritability estimate is ĥ2 ¼ r̂2
E

r2
Y

. REML is used to

estimate the components of variance instead of maximum

likelihood to avoid a bias introduced by the fixed effects

(Shaw 1987). Since KCausal is not known, KPed serves as an

estimate. There are several algorithms for REML estimation

(Kang et al. 2010; Lange 2002; Shaw 1987), but most are

computationally expensive due to the cost of matrix

inversion. Lippert et al. (2011) recently developed a fast

method when the number of individuals exceeds the number

of markers. When only one type of relationship is available

(e.g. only sibs) then the REML estimator will give the same

estimate as the covariance-based approach described above.

There are many extensions to this LMM approach that

allow estimation of different components of heritability.

These include dominance effects (Lynch and Walsh 1998),

gene–gene interaction (Yang et al. 2011a), the shared
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genetic basis of multiple phenotypes (cross heritability)

(Boehnke et al. 1986; Deary et al. 2012; Lange and

Boehnke 1983; Macgregor et al. 2006; Price et al. 2011),

heritability from different genomic regions (Yang et al.

2011b), and the effects of shared environment (Lynch and

Walsh 1998).

Top-down heritability estimates are susceptible to a

range of confounding factors, which can bias estimates.

These include gene–environment correlations, selection,

non-random mating, and inbreeding (Lynch and Walsh

1998; Visscher et al. 2008). Recently, Zuk et al. (2012)

showed that certain types of epistatic interactions can

inflate estimates of narrow-sense heritability.

Heritability in the GWAS era

The availability of genotype data over large collections of

individuals has opened-up new approaches to estimating

heritability. These methods apply the same LMM method

described above, but replace the KPed estimate of KCausal

with estimates based on genotype data. We examine only

the simple additive estimate of heritability, but each of the

extensions listed above may be utilized for each estimator

of KCausal.

Heritability using realized IBD

When genetic data are collected over the set of individuals

in the study, it is possible to estimate the total fraction of

the genome shared identical by descent (IBD). Siblings for

example do not share exactly 50 % of their genome with

each other (Visscher et al. 2006). Using the genetic data to

estimate the fraction of genome shared, IBD gives another

means of estimating KCausal, which we call K̂IBD. Provided

that the IBD estimates are accurate, this matrix will be a

better estimate of KCausal than KPed and therefore require

fewer individuals to achieve a robust estimate of the

heritability.

To illustrate this approach, Visscher et al. (2007) used

the software package Merlin (Abecasis et al. 2002) to

estimate IBD for a collection of twins to generate K̂IBD

from 791 autosomal markers and estimate several compo-

nents of the heritability of height.

Heritability of common variants using observed

genetic covariance

Recently, LMMs have been applied to GWAS data in an

attempt to partition the ‘‘missing’’ heritability into variants

tagged by GWAS SNPs (mostly common) and those that

are not (mostly rare) (51). This use of the LMM links

modern statistical approaches for high-dimensional data

analysis (penalized regression) with classical models in

statistical genetics (de los Campos et al. 2010).

This LMM approach uses the same REML-based esti-

mate of r̂2
g given above, but the matrix used is an empirical

estimate of the genetic covariance (KGCV) instead of K̂IBD

or KPed (Yang et al. 2010, 2011a). This is similar to the

‘‘pseudo-heritability’’ estimate proposed by Kang et al.

(2010). The relationship matrix KGCV is computed in a

nearly identical way to KCausal, but because the set of

causal variants C is unknown, the full set of genotyped

SNPs in the GWAS is used directly as a proxy for KCausal.

This approach—which we refer to as the Yang–Visscher

or LMM-KGCV approach—relies on the equivalence

between the LMM,

yj ¼ aþ gj þ ej;

with cov(gj,gk) = KGCV,jk r2
g and cov(ej,ek) = 0, and the

random effects model,

yj ¼ aþ
X

i2S

bizij þ ej;

with the bi i.i.d. N(0, r2
g/Ns). This equivalency provides the

motivation for the claim that the LMM using KGCV esti-

mates the proportion of additive genetic variance tagged by

the GWAS markers. For unrelated individuals, causal

variants that are not correlated with any of the zij for i [ S

(e.g. many rare variants) do not contribute to the estimate

of r2
g.

Note that hidden relatedness between individuals would

bias r2
g since untagged causal variants would still tend to

have the same correlation structure (related to KIBD) as the

causal variants that are tagged thereby inflating the esti-

mate of the portion of variability explained by the mea-

sured SNPs. Moreover, epistatic effects may also confound

estimates of the additive genetic component r2
g if the

sample contains closely related individuals. For distantly

related individuals, such as those in most GWAS, the

effects of dominance and epistasis on heritability estimates

are much more attenuated.

The LMM just described is a special case of a general

class of regression models defined by any similarity matrix

K calculated from the GWAS data, with cov(gj,gk) = Kjk

r2
g (de los Campos et al. 2010). Other choices of K may

yield improved trait prediction, as they implicitly include

non-additive effects (dominance, epistasis). However,

precisely because the genetic variance includes non-addi-

tive components, the heritability estimates from these more

general models can be difficult to interpret.

One of the advantages of this LMM approach using

KGCV is that individuals may be selected randomly with

respect to their environmental exposures preventing
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confounding from shared environments that can affect

pedigree-based estimates. In addition, they can inform

researchers about the potential success of future GWAS

conducted on the phenotype of interest. The KGCV-based

estimates provide an upper bound on the total fraction of

phenotypic variance explained by future GWAS on the

same set of SNPs. They also provide a lower bound on the

total narrow-sense heritability of the phenotype.

The application of KGCV to heritability estimation was

proposed by Hayes et al. (2009) in the context of related

individuals. In this case, KKGV will serve as an estimate of

KIBD and therefore give an estimate of the total narrow-

sense heritability. The crucial difference in the Yang–

Visscher approach is the assumption that when the indi-

viduals are distantly related, the KGGV matrix provides no

information apart from that contained in the genotyped

SNPs. Thus the heritability estimate in this situation will be

the narrow-sense heritability due exclusively to the SNPs

in LD with those on the genotyping platform.

Violations of model assumptions

Each of the heritability estimation methods described

above make different assumptions about the model gener-

ating phenotype. The estimates of heritability may be

biased when these assumptions are broken.

While pedigree-based estimates of heritability have been

examined for decades, the Yang–Visscher approach is a

very recent development and there are many open ques-

tions about the factors that can affect these estimates of

heritability. Here we give several examples of such factors

and perform some simple experiments to examine their

effects. These are in no way meant to be exhaustive or

conclusive, but rather to inform the reader of potential

issues.

Violations of additivity

Zuk et al. (2012) show that when certain types of epistatic

(gene–gene) interactions exist the estimates of heritability

found from pedigree estimates, such as MZ versus DZ

twins, will be upwardly biased. In this situation, bottom-up

estimates will never reach the top-down estimate of heri-

tability. They propose that this is a possible element of the

‘‘missing heritability problem’’, and that the true narrow-

sense heritability maybe substantially lower than current

estimates for certain phenotypes (Zuk et al. 2012).

To examine this problem in the context of Yang–Vis-

scher heritability estimates, we simulated data sets using

the epistatic ‘‘limiting pathway’’ models of Zuk et al.

(2012), LP(1), LP(3), and LP(4). We simulated case–

control genotypes and phenotypes of 2,000 randomly

ascertained unrelated individuals with 200 causal variants

in each pathway, an effect size of 0.1, a minor allele

frequency of 0.5, and prevalence of 50 %. We computed a

bottom-up adjusted h2 estimate via linear regression as

well as Yang–Visscher estimate of heritability, using all

causal variants to estimate KGCV. The results are shown in

Table 1 and demonstrate that the Yang–Visscher approach

is not susceptible to confounding from epistatic interac-

tion under the LP model of interaction. If closely related

individuals were used then the Yang–Visscher estimate

would be upwardly biased from the epistatic component

of variance.

Thus, the LMM estimates of heritability from unrelated

individuals provide a benchmark to assess how much of the

total narrow-sense heritability currently known GWAS-

identified trait markers explain—a benchmark that is not

influenced by ‘‘phantom heritability’’ due to epistatic

interactions. The ratio of the bottom-up additive genetic

variance estimated using GWAS-identified markers to the

LMM estimate of the additive genetic variance estimates

the proportion of GWAS-identifiable markers that have

been identified to date.

Violations of exchangeability

The Yang–Visscher approach assumes a polygenic model

of disease in which many markers of small effect con-

tribute to variance in genetic risk. Specifically, it assumes

marker effect sizes are all drawn from the same normal

distribution, b�Nð0; r2
g=NsÞ. There are, however, many

diseases where there are outlier markers with strikingly

different effects. For example, GWAS have identified

dozens of markers associated with type 1 diabetes and

rheumatoid arthritis, most of which have very small effects

relative to the long-established risk variants in the MHC;

for both of these diseases, the variants in the MHC have

per-allele relative risks roughly three times larger than the

relative risks for the GWAS-identified risk variants (Barrett

et al. 2009; Stahl et al. 2010).

Table 1 Yang–Visscher and bottom-up estimates of heritability (and

their standard error over 1,000 replications) under three limiting

pathway models of phenotype

Model Yang–Visscher Bottom-up

LP(1) 0.630 (0.012) 0.631 (0.007)

LP(3) 0.398 (0.024) 0.394 (0.024)

LP(4) 0.333 (0.025) 0.333 (0.024)

For K [ 1 the pedigree-based top-down estimates of heritability will

be inflated. An LP(4) model with narrow-sense heritability of 36.4 %

will have an estimated heritability of 61.8 % by parent-offspring

regression (Zuk et al. 2012). The Yang–Visscher estimate is not

affected by this bias
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To examine the effect of such extreme variants, we

simulated 1,000 GWAS of 1,500 individuals with a single

causal variant. The genotypes at 1,000 marker loci

(including the causal locus) were generated by random

binomials with minor allele frequencies drawn uniformly

between 0.05 and 0.5. The true heritability of the pheno-

type was 0.5 and the average estimate over the 1,000

GWAS was 0.50, suggesting that violations of the infini-

tesimal model do not strongly effect estimates of

heritability.

Addition of non-causal variants

For many phenotypes, KGCV will contain a large number of

variants unlinked to any causal variants. To examine the

effect of these variants on the estimates of heritability, we

repeated the experiment above with 10 causal variants and

102, 103, and 5 9 103 additional independent (i.e. non-

causal) variants. The true heritability of the phenotype was

0.5 and the mean heritability across the 1,000 simulated

GWAS was 0.50 in all studies. However, the standard

deviations were 0.018, 0.025, and 0.067, showing that the

effect of additional variants is to increase standard error of

the heritability estimates. The results did not change

qualitatively for other values of h2. Other factors that affect

the standard error of heritability estimates include the study

sample size as well as the true heritability. Alternative

disease models, such as mixtures of infinitesimals, descri-

bed by Park et al. (2011) have not yet been investigated in

this context; the possibility that they lead to biased heri-

tability estimates remains open.

Sample size considerations

To investigate the precision of LMM estimates of h2 using

KGCV in real-world situations, we used GWAS data on

10,503 individuals from two European-ancestry cohorts,

the Nurses’ Health Study and Health Professionals Follow-

up Study. We simulated continuous phenotypes as a

function of 500 SNPs, according to Eq. 1, constraining the

SNP effects so that the resulting phenotype had the desired

heritability (h2 = 0.50, 0.25, 0.10). We also simulated a

binary phenotype using the liability threshold model, with

liability given by Eq. 1, and prevalence 10 %. We esti-

mated h2 using the LMM approach as implemented in

GCTA (Yang et al. 2011a), applied to a set of 151,019

markers (including the 500 causal variants) chosen to have

low linkage disequilibrium (r2 \ 0.2), varying the sample

size from 1,000 to 10,503.

Results from single replicates are shown in Table 2.

Precision increases roughly linearly with increasing log

sample size. For sample sizes under 2,000, the 95 % con-

fidence intervals are wide ([0.40), and, for modest

heritabilities (under 25 %, consistent with the observed

heritabilities for many complex traits), they include 0. This

suggests that accurate estimation of narrow-sense herita-

bilities will require large sample sizes, on the order of

5,000–10,000 or more, at least as big as those needed to

identify individual markers with modest effects. Published

studies using the LMM-KGCV approach to estimate the

narrow-sense heritability due to GWAS markers for con-

tinuous traits like height and body mass index used

between 4,000 and 11,500 subjects (Yang et al. 2010,

2011b). Care must be taken when combining studies to

reach such large sample sizes, as this may introduce pop-

ulation substructure and corresponding environmental

variation of non-genetic risk factors, potentially biasing

estimates of heritability.

Addition of markers in LD with the causal variants

The additive model assumes that all of the tested variants

are independent. In reality, there is extensive LD between

causal and non-causal variants in the genome. To examine

the potential for LD to affect heritability estimates, we

repeated the experiment above with 4 causal variants, and 1

additional causal variant repeated 100 times simulating

extensive LD for a particular SNP, and 104 non-causal

variants. The true heritability was 0.5 and the average

estimated heritability was 0.40 showing that LD patterns

can significantly affect heritability estimates. We note that

this is an extreme example meant to demonstrate the

potential for bias. Yang et al. (2010) simulated phenotypes

over real GWAS data (i.e. with real LD patterns) and found

estimates within two standard errors of the true heritability.

Table 2 LMM estimates of narrow-sense heritability using KGCV and

their standard errors for phenotypes simulated conditional on empir-

ical GWAS data (described in text, under ‘‘Sample size

considerations’’)

Sample size True h2

0.10 0.25 0.50

Continuous phenotype

1,000 0.000 (0.167) 0.228 (0.229) 0.773 (0.124)

1,999 0.141 (0.112) 0.207 (0.118) 0.567 (0.104)

3,993 0.079 (0.059) 0.302 (0.061) 0.631 (0.050)

7,989 0.104 (0.031) 0.0297 (0.031) 0.594 (0.027)

10,503 0.136 (0.024) 0.321 (0.025) 0.583 (0.021)

Binary phenotype

2,099 0.111 (0.111) 0.314 (0.125) 0.414 (0.108)

10,503 0.125 (0.069) 0.224 (0.070) 0.648 (0.075)

For binary phenotypes, heritabilities are on the liability scale, calcu-

lated using the transformation described in the section ‘‘Ascertain-

ment and case–control phenotypes’’
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Distant/cryptic relatedness in the study

Provided that the individuals in a GWAS are unrelated, the

matrix KGCV contains no information about SNPs out of

LD with the genotyped SNPs. If the study contains related

individuals, however, the LMM estimate of heritability will

contain some additional genetic variance due to variants

not tagged by the GWAS SNPs. This is because KGCV is an

unbiased estimate of KIBD, as we illustrate below. Since

there are no truly ‘‘unrelated’’ individuals, any GWAS will

contain a range of distantly related individuals. Yang et al.

(2011a) suggest removing individuals with KGCV [0.025

in the case of quantitative phenotypes and 0.05 for

dichotomous phenotypes.

We simulated 1,000 pairs of individuals that shared 0.5,

0.1, 0.05 and 0.025 of their genome IBD and compute

KGCV for each pair. We repeated this experiment using 104,

105, and 106 SNPs. The results are presented in Table 3. In

each case, the mean estimate of IBD is close to the true

IBD showing that the KGCV is a good estimate of KIBD. The

standard error is independent of the true IBD and decreases

as a function of the number of independent SNPs.

For distantly related individuals, the signal from IBD

will typically be small relative to the signal from the causal

variants. Here, a concern is confounding due to cryptic

relatedness, where more closely related individuals tend to

have similar trait values for non-genetic reasons (Kang

et al. 2010). The influence of low levels of IBD in the

Yang–Visscher approach remains an open question. It is

possible to test explicitly for inflation due to relatedness, by

simulating phenotypes over odd chromosomes and esti-

mating heritability over even chromosomes (Visscher et al.

2010).

Population substructure

Individuals from different populations have different minor

allele frequencies as well different environmental expo-

sures. In a case–control study, this can lead to significant

confounding if there is a difference in the phenotypic mean

between the populations, and is usually corrected with a

principal component adjustment. Browning and Browning

(2011) show that under certain extreme population differ-

ences, this can lead to biases in heritability estimates. Yang

et al. (2011b) show that using PC adjustment will mitigate

this inflation. They also propose to estimate the effects of

population stratification and cryptic relatedness by per-

forming heritability estimation over each chromosome.

This procedure has not yet been examined in detail in the

published literature.

Another type of population stratification arises when

there is a difference in the phenotypic variance (but not

necessarily mean phenotype) between the populations. In

this case, PCA will not adequately adjust for population

substructure leading to inflation in standard GWAS

(McPeek and Abney 2008). Furthermore, the interpretation

of heritability may ambiguous in this scenario, since each

of the sub populations will likely have different heritability

estimates.

Heritability is defined with respect to a population at a

particular time. The heritability of lung cancer will be

dramatically different between a population where some

people smoke and a population of only non-smokers. Thus

bottom-up GWAS heritability estimates and those from

published heritability studies can only be compared if they

come from the same population and are conducted at

similar times.

Imputation and rare variants

Currently the Yang–Visscher approach has been performed

using observed SNPs, genotyped using the same platform

(Yang et al. 2010, 2011b). Given the success of imputation

in the GWAS community, one of the open questions is the

possibility of leveraging external reference panels such as

the HapMap to determine if additional signal lies within the

additional SNPs genotypes in the panel. High-throughput

sequencing data are available with a large number of rare

variants. The proper way to include dense maps of common

markers and rare variants in heritability estimation—nota-

bly in light of the discussion of the impact of linkage dis-

equilibrium patterns, above—is an area of current research.

Ascertainment and case–control phenotypes

For binary traits, the percent of trait variance captured by

KGCV when analyzing a discontinuous 1-0 case–control

phenotype in the LMM framework is not directly

Table 3 The genetic covariance between pairs of individuals with a range of IBDs, estimate from Ns SNPs

Ns\IBD 0.025 0.05 0.1 0.25 0.5

1,000 0.025 (0.032) 0.05 (0.032) 0.10 (0.033) 0.25 (0.034) 0.50 (0.039)

10,000 0.025 (0.010) 0.05 (0.010) 0.10 (0.011) 0.25 (0.011) 0.50 (0.012)

100,000 0.025 (0.001) 0.05 (0.001) 0.10 (0.001) 0.25 (0.001) 0.50 (0.001)

GCV is an unbiased estimate of IBD and the variance of the estimate in parenthesis is function of the number of available SNPs
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comparable to commonly quoted heritabilities from some

family studies (e.g. MZ–DZ twin comparisons), which are

measures of the percentage of the underlying liability

captured by inherited factors (Dempster and Lerner 1949;

Visscher et al. 2008). Nor is there a simple link between

individual-locus odds ratios and bottom-up estimates of the

genetic variance and liability-scale heritability. There is a

simple relationship between the familial recurrence risk

and the additive genetic component of variance on the log

relative risk scale (Pharoah et al. 2002). Moreover, indi-

vidual-marker allele frequencies and relative risk estimates

from GWAS can be directly related to heritability on the

log relative risk scale (Pharoah et al. 2008). See Wray and

Goddard (2010) for a thorough discussion of the relation-

ship between individual-marker relative risks and herita-

bility measured on different scales.

For the LMM, the phenotypic variance captured by

KGCV depends on disease prevalence and sampling scheme.

By construction, the heritability of liability is independent

of prevalence. When estimating the heritability of case–

control phenotypes, the ascertainment strategy and preva-

lence of disease will affect the final heritability estimate.

To address this issue, it is possible to transform the disease

scale heritability estimate to a liability scale heritability

estimate, which accounts for both ascertainment and

prevalence (Dempster and Lerner 1949; Lee et al. 2011):

h2
liability ¼ h2

Obs

Fð1� FÞ
/ðU�1ðFÞÞ2

Fð1� FÞ
Pð1� PÞ

F is the prevalence, / is the normal pdf, U is the normal cdf

and P is the proportion of cases in the sample. The justification

for this elegant adjustment depends on a rather simple model

for ascertainment, namely, that selection for inclusion is

independent of all other covariates conditional on disease

status. This will not be the case in many practical situations

(e.g. matched case–control studies), where ascertainment

depends on other factors that are usually associated with

disease risk and may also be associated with genotype. The

impact of violations of this assumption is unclear.

Phenotypic prediction

The LMM using KGCV also offers a means of phenotypic

prediction using the best linear unbiased predictors or

BLUPs (Lynch and Walsh 1998). The expected trait value

for a new individual (who did not contribute to the data set

used to fit the LMM) is given by:

ŷ ¼ aþ ĝ ¼ aþ
X

i2S

b̂izi

This is similar to the ‘‘polygenic’’ models proposed by

Purcell et al. (2009) and Evans et al. (2009), in that the

predictor uses information contained in SNPs that do not

reach the genome-wide significance threshold. But where

the ‘‘polygenic model’’ performs feature selection only

building predictors using markers with single-SNP

(marginal) p values below some threshold (often much

larger than the stringent GWAS threshold), the LMM

approach builds predictors using all available SNPs

simultaneously. The LMM predictor is closely related to

ridge regression, a penalized regression procedure that

often outperforms variable selection procedures in terms of

minimizing prediction error in new data sets (Harrell 2001;

Hastie et al. 2001).

The accuracy of the LMM predictor is a function of

narrow-sense heritability, the number of markers included

in the LMM, the true genetic architecture, and the sample

size in the data set used to fit the LMM. The sample size

determines the accuracy with which bi can be estimated.

The squared correlation between the LMM predictor and

trait values in new observations is typically far smaller than

the heritability estimate from the LMM (the theoretical

maximum of the squared correlation); this is because of the

variability in the estimated bis (Daetwyler et al. 2008;

Visscher et al. 2010).

Conclusion

The Yang–Visscher approach to heritability estimation

provides a means of estimating the contribution of SNPs in

LD with those on genotyping platforms to the total phe-

notypic variation. In the context of GWAS, these estimates

answer questions about the genetic architecture of complex

phenotypes. The growing number of GWAS identified loci,

as well as their small effect sizes, has led to speculation

about genetic models of disease.

There has been significant recent debate about the suc-

cess or failure of GWAS (Eichler et al. 2010; Gibson 2011;

Visscher et al. 2012). This has in turn reinvigorated the

debate about the distribution of causal variants. Goldstein

demonstrated the possibility for rare variants to induce

synthetic associations (Dickson et al. 2010), and there have

been several recent works discussing the common disease

common variant, strong and weak rare variants, the infin-

itesimal, and other disease models (Gibson 2011).

There has also been speculation about the location of the

‘‘missing heritability’’ with discussions of parent of origin

effects, epistatic interactions, gene–environment interac-

tions, structural variation, and other cache’s of genetic

variation not well captured by current GWAS or their

analysis methods (Eichler et al. 2010; Visscher et al. 2012;

Zuk et al. 2012).

The work of Yang and Visscher discussed here as well

as other GWAS-based approaches (Lango Allen et al.
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2010; So et al. 2011a, 2011b; Yang et al. 2011c) provide

insights relevant to these questions. They estimate herita-

bility restricted to a certain class of SNPs (i.e. those in LD

with genotyped SNPs), are not confounded by many of the

factors biasing traditional methods of heritability estima-

tion, and are fundamentally different than bottom-up

methods. In principle, these procedures could also be used

to build phenotype prediction algorithms incorporating

markers beyond the small number identified at genome-

wide significance levels. However, very large sample sizes

will be needed to obtain accurate estimates and precise

prediction algorithms.
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