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Abstract: For any sub-extremal Kerr spacetime with non-zero angular momentum, we
find an open family of non-zero masses for which there exist smooth, finite energy, and
exponentially growing solutions to the corresponding Klein–Gordon equation. If desired,
for any non-zero integer m, an exponentially growing solution can be found with mass
arbitrarily close to |am|

2Mr+
. In addition to its direct relevance for the stability of Kerr as

a solution to the Einstein–Klein–Gordon system, our result provides the first rigorous
construction of a superradiant instability. Finally, we note that this linear instability
for the Klein–Gordon equation contrasts strongly with recent work establishing linear
stability for the wave equation.
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1. Introduction

The Kerr spacetime (M, ga,M ) is a two parameter family of asymptotically flat, sta-
tionary, and axisymmetric solutions to the vacuum Einstein equations Ric(g) = 0. As a
precursor to establishing the conjectured non-linear stability of Kerr, there has been much
study of the linear stability problem for various equations on a fixed Kerr background.
In this paper we will study the Klein–Gordon equation:

(
�g − μ2

)
ψ = 0.

Here μ ≥ 0 is the mass of the scalar field ψ . In contrast to previous works on the wave
equation (μ = 0) showing linear stability, we will produce an open family of masses for
which the Klein–Gordon equation exhibits linear instability, i.e., for these masses there
exists smooth, finite energy solutions which grow exponentially in time.

Recall that in the domain of outer communication we can parameterize the Kerr
spacetime with Boyer–Lindquist coordinates (t, r, θ, φ) ∈ R×(M+

√
M2 − a2,∞)×S

2

where the metric takes the form

ga,M = −
(

1 − 2Mr

ρ2

)
dt2 − 4Mar sin2 θ

ρ2 dt dφ +
ρ2

�
dr2 + ρ2 dθ2 + sin2 θ

�

ρ2 dφ2,

r± := M ±
√

M2 − a2,

� := r2 − 2Mr + a2 = (r − r+)(r − r−),
ρ2 := r2 + a2 cos2 θ,

� := (r2 + a2)2 − a2 sin2 θ�.

Our main result is

Theorem 1.1. Fix a Kerr spacetime (M, ga,M ) with M > 0 and 0 < |a| < M. Then
there exists an open family of masses μ with εμ > 0 and a non-zero, smooth, and finite
energy solution ψ to the corresponding Klein–Gordon equation

(
�g − μ2

)
ψ = 0
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such that for every (t, r, θ, φ) ∈ R × (M +
√

M2 − a2,∞)× S
2

eεμt
∣∣∂αψ(0, r, θ, φ)∣∣ �α

∣∣∂αψ(t, r, θ, φ)∣∣ for all multi-indices α. (1.1)

These statements should be understood with respect to Boyer–Lindquist coordinates.
For every non-zero integer m, μ can be chosen arbitrarily close to |am|

2Mr+
. In particular,

μ can be made arbitrarily small as a → 0.

Remark. For convenience, we have stated our theorem in Boyer–Lindquist coordinates;
however, these coordinates break down on the future event horizon H+ (see Sect. 1.2.1).
Nevertheless, it will be easy to see that along H+ the solutions constructed are also
exponentially growing with respect to the regular t∗ coordinate; see the discussion in
Sect. 2.2.

Theorem 1.1 may suggest that the Kerr spacetime is non-linearly unstable as a so-
lution to the Einstein–Klein–Gordon system.1 Additionally, our result provides the first
rigorous construction of a superradiant instability. Informally put, superradiance can
occur in a black hole spacetime when there does not exist a globally defined Killing
vector field which is both timelike or null at infinity and timelike or null on the horizon.
For such spacetimes “energy” may radiate out of the black hole and, depending on the
particular dynamics under consideration, lead to a superradiant instability.

To make these ideas more concrete, let’s focus on the Klein–Gordon equation and
begin by briefly recalling the energy-momentum tensor formalism (see [1] for a proper
introduction). Let g denote the (Lorentzian) metric on our spacetime and ∇ denote
covariant differentiation. For any function ψ we define the energy-momentum tensor

Tαβ := Re
(∇αψ∇βψ

) − 1

2
gαβ

(
|∇ψ |2 + μ2 |ψ |2

)
. (1.2)

For any vector field X we define a corresponding 1-form, called a “current,” by

JX
α := TαβXβ. (1.3)

The key identity is

∇αJX
α = Re

((
∇α∇αψ − μ2ψ

)
(Xψ)

)
+

1

2
Tαβπαβ. (1.4)

Here π denotes the deformation tensor of X :

παβ := ∇αXβ + ∇βXα.

This vanishes if and only if X is Killing. In particular, if ψ solves the Klein–Gordon
equation and X is Killing, we find that JX

α is divergence free. In this case, for any two
homologous hypersurfaces�1 and�2, the divergence theorem gives a conservation law:

∫

�1

JX
α nα�1

=
∫

�2

JX
α nα�2

. (1.5)

1 The Einstein–Klein–Gordon system for a spacetime (M, g) and massive scalar field ψ is

Ricαβ(g)− 1

2
R(g)gαβ = 8πTαβ (g, ψ) ,

(
�g − μ2

)
ψ = 0.

Here R(g) is the scalar curvature, and Tαβ is the energy-momentum tensor (1.2).
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Here n�i denotes the (future oriented) normal to the hypersurface �i , and the integrals
are with respect to the natural volume forms (the ones that make the divergence theorem
true). For the identity (1.5) to be useful, we need some positivity of JX

α nα�i
. One may

show (see [1]) that JX
α nα�i

is a positive definite non-degenerate quadratic form in ψ and
its derivatives at a point x0 if and only if X and n�i are timelike and future directed at x0.
If we allow the quadratic form to be degenerate, then we may allow X and n�i to also
be null. The significance of superradiance for stability problems should now be clear.

Of course, the canonical example of a spacetime admitting superradiance is Kerr.2

The geometry of Kerr is reviewed in Sect. 1.2; for now, let us simply recall that there is
a unique (up to normalization) Killing vector field which is future directed and timelike
at infinity and that this vector field is spacelike on (almost all of) the horizon. If we let
T denote this vector field and� denote the unique (up to normalization) future directed
Killing vector field which vanishes along the axis of symmetry, then the null generator
of the horizon H+ is

L := T + ω+�,

where ω+ := a
2Mr+

is the “angular velocity” of the black hole. One then finds that the
energy density along the horizon for a solution ψ to the Klein–Gordon equation is

JT
α Lα = Re

(
TψLψ

) = Re

(
Tψ

(
Tψ +

a

2Mr+
�ψ

))
. (1.6)

When the black hole possesses non-zero angular momentum (a 	= 0) it is clearly possible
for this quantity to be negative, and thus, in principle, energy can radiate out of the black
hole.

Our exponentially growing solutions will be superradiant bound states,3 i.e., the
energy flux will be negative along the horizon, and the solution will spatially decay
exponentially fast so that no energy is radiated away to infinity. For such solutions the
energy coming out of the black hole cannot escape; this is what provides the mechanism
for the exponential growth. For technical reasons we will first construct bound state
solutions which have exactly zero energy flux on the horizon. As one expects, these
solutions will neither grow nor decay. Then, a perturbation argument will produce the
exponentially growing solutions.

1.1. Linear stability of the wave equation. The wave equation is simply the Klein–
Gordon equation with μ = 0. It is instructive to contrast our instability result for the
Klein–Gordon equation with previous work showing that the wave equation is linearly
stable. Due to the difficulties of superradiance and the complicated trapping structure
of Kerr, the most basic boundedness and decay statements for the wave equation on the
Kerr spacetime remained unresolved until the quite recent [17] (we should also mention

2 Note that any spacetime of the form (R× M,−dt2 + gM ), with (M, gM ) a Riemannian manifold, admits
a globally defined timelike Killing vector field corresponding to time translation. Thus, superradiance is a
truly Lorentzian phenomenon.
After the Kerr spacetime, the next most interesting examples from the instability point of view are perhaps
“small” Kerr-AdS black holes [11,12].

3 Recall that it only makes sense to consider bound state solutions when the mass of the scalar field is
non-zero.
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the previous [25] and [26]). This breakthrough followed a lot of earlier work restricted
to Kerr spacetimes with |a| 
 M , e.g. [2,14–16,33,42,43], and [35].

The instability result of this paper serves to the emphasize the subtle effects su-
perradiance can have on the linear stability problem and helps to “explain” why even
establishing boundedness for the wave equation on Kerr is difficult. In particular, since
the Klein–Gordon equation decays faster than the wave equation on Minkowski space,
one may have expected that the Klein–Gordon equation would be easier to control.
However, as |a| → 0 (where superradiance is weaker and one expects the problem to
get easier) we have produced exponentially growing and finite energy solutions with
arbitrarily small mass. Thus, any argument used for the wave equation must break down
for Klein–Gordon equations with arbitrarily small mass. On a more conceptual level,
we see that as one passes into the relativistic world, new obstructions to boundedness,
not just decay, arise in the superradiant bounded-frequency regime.

Of course, the sub-extremal Kerr spacetime is far from the only background on which
to study the wave or Klein–Gordon equations; in fact, it is quite interesting to explore
how changing the black hole geometry affects the subtle interplay between trapping,
superradiance, and the redshift. In the sequence of works [29,30], and [31], Holzegel and
Holzegel–Smulevici established a logarithmic upper and lower bound on the decay rate
for the wave and Klein–Gordon equations on non-superradiant Schwarzschild/Kerr-AdS
spacetimes.4 The slow decay rate is directly traceable to a stable trapping phenomenon.
In a series of papers [4–7], and [3] Aretakis has studied the wave equation on various
extreme black holes,5 where there is a loss of the redshift due to the vanishing surface
gravity of the horizon. One of the most striking results obtained is that even within the
context of axisymmetric solutions to the wave equation on extremal Kerr, for which there
is no superradiance, second derivatives of the solution blow up along the horizon.6 Taken
together with the results of this paper, these various “instabilities” serve to emphasize
the miraculous properties of the wave equation on sub-extremal Kerr.

1.2. The geometry of Kerr: the ergoregion and superradiance. In this section we shall
briefly review the relevant aspects of the geometry of Kerr. For a true introduction to
the Kerr spacetime we recommend [45] and [37]. The lecture notes [16] provide a good
introduction to the interaction between the geometry of Kerr and the behavior of linear
waves.

1.2.1. Coordinate systems. Outside the black hole, the Kerr metric in Boyer–Lindquist
coordinates (t, r, θ, φ) ∈ R × (r+,∞)× S

2 is given by

g = −
(

1 − 2Mr

ρ2

)
dt2 − 4Mar sin2 θ

ρ2 dt dφ +
ρ2

�
dr2 + ρ2 dθ2 + sin2 θ

�

ρ2 dφ2,

r± := M ±
√

M2 − a2,

� := r2 − 2Mr + a2 = (r − r+)(r − r−),
ρ2 := r2 + a2 cos2 θ,

� := (r2 + a2)2 − a2 sin2 θ�.

4 Here non-superradiant means that there exists a global timelike Killing vector field. In particular, it is
possible to immediately rule out solutions of the type constructed in this paper.

5 The extreme Kerr spacetime occurs when |a| = M .
6 Interestingly, it was also shown that the solutions itself decays in time.
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There are two free parameters M and a. The first parameter M is the mass of the black
hole, and aM is the angular momentum. The 1-parameter family where a = 0 is known
as the “Schwarzschild” spacetime. Some non-zero mass M of the spacetime will be fixed
throughout the paper, so the term “mass” will always refer to μ. For various reasons
relating to the global geometry of Kerr, physically relevant Kerr spacetimes must satisfy
|a| ≤ M [45]. In this paper, we shall study sub-extremal Kerr, which corresponds to
0 < |a| < M .7 This assumption guarantees that r± both exist and are distinct.

Though Boyer–Lindquist coordinates are often convenient, they break down when
r = r+. We shall thus introduce another coordinate system. Let us define two functions
t(r) and φ(r) on (r+,∞) up to a constant by

dt

dr
:= r2 + a2

�

dφ

dr
:= a

�
.

Then we define Kerr-star coordinates (t∗, r, θ, φ∗) by

t∗(t, r) := t + t(r)

φ∗(φ, r) := φ + φ(r).

In these coordinates the metric becomes

g = −
(

1 − 2Mr

ρ2

)
(dt∗)2 − 4Mar sin2 θ

ρ2 dt∗ dφ∗ + 2 dt∗ dr

+ρ2 dθ2 + sin2 θ
�

ρ2 (dφ
∗)2 − 2a sin2 θ dr dφ∗.

Note that we can now allow (t∗, r, θ, φ∗) ∈ R × (0,∞)× S
2. The future event horizon

is defined to be the null hypersurface {r = r+}. This is the boundary of the black hole.
We call the region {r > r+} the “domain of outer communication.” Lastly, we note that
in their common domain, ∂t in Boyer–Lindquist coordinates is equal to ∂t∗ in Kerr-star
coordinates. A similar statement applies to ∂φ and ∂φ∗ .

1.2.2. The ergoregion and superradiance. On Minkowski space, the Killing vector field
T := ∂t is everywhere timelike. Combining this with the energy-momentum formalism
[1] immediately implies that ||ψ(t)||2

Ḣ1
x

+
∣∣∣∣ψ̇(t)∣∣∣∣2

L2
x

+μ2||ψ(t)||2
L2

x
is constant in time.

As in Minkowksi space, in Kerr we set T := ∂t . One finds that T is the unique (up to
normalisation) Killing vector field which is future directed and timelike for all large r .
Unfortunately, when

�− a2 sin2 θ < 0

then T is spacelike. This region is known as the ergoregion. Due to the ergoregion,
the conserved quantity associated to T has no definite sign. Even more disturbing than
this loss of a “free” boundedness statement is the Penrose process [13,38,45]. This is a

7 One expects that the instability result of this paper also holds on extremal Kerr where |a| = M ; however,
the relevant equations have a different structure at the horizon which precludes drawing any immediate
conclusions from the sub-extremal case.
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thought experiment where a test particle exploits the ergoregion to extract energy from
the black hole. In the introduction we have already explained how to see this energy
extraction at the level of the Klein–Gordon equation (1.6).

It is important to keep in mind that superradiance cannot occur if either a or �ψ
vanishes. Lastly, we would like to emphasize that the problems of the ergoregion and
superradiance occur for the wave equation. Hence, the presence of these two features
alone certainly does not imply linear instability.

1.3. Precise statement of results. We will rigorously construct finite energy solutions to
the Klein–Gordon equation

(
�g − μ2

)
ψ = 0

on sub-extremal Kerr which grow exponentially. These growing solutions will be “mode
solutions” of the form

ψ(t, r, θ, φ) := e−iωt eimφSκml(θ)R(r) (1.7)

where ω ∈ C, m ∈ Z, l ∈ Z≥|m|, and κ := a2
(
ω2 − μ2

)
. Here (t, r, θ, φ) are Boyer–

Lindquist coordinates where, as is well known, the Klein–Gordon equation separates.
The functions Sκml and R must satisfy appropriate ordinary differential equations and
boundary conditions (see Sect. 2) so that ψ solves the Klein–Gordon equation, extends
smoothly to the horizon (where Boyer–Lindquist coordinates break down), and has finite
energy (and finite higher order energies) along asymptotically flat Cauchy hypersurfaces
which intersect the future event horizon. For our mode solution to grow with time, we
must have Im(ω) > 0. Such solutions are called “unstable modes.” We say that these
modes “lie in the upper half-plane.” Mode solutions with ω ∈ R will be called “real
modes.” We say that these modes “lie on the real axis.” It will be convenient to refer
to the tuple (ω,m, l, μ) as the “parameters” of the mode. Lastly, we observe that (1.6)
implies that a mode solution exhibits superradiance if and only if

amRe (ω)− 2Mr+ |ω|2 > 0. (1.8)

We can now state our main result:

Theorem 1.2. Fix a sub-extremal Kerr spacetime with mass M and angular momentum
aM. Let m ∈ Z and ωR(0) ∈ R satisfy am − 2Mr+ωR(0) = 0 and am 	= 0. Then, for
each l ∈ Z≥|m| and sufficiently small δ > 0, there exists μ(0) > |ωR(0)|, real analytic
ωR(ε), and real analytic μ(ε) such that for every −δ < ε < δ, there exists a mode
solution with parameters (ωR(ε) + iε,m, l, μ(ε)). As l → ∞, μ(0) will converge to
ωR(0). Lastly, these unstable modes must all be superradiant8

|am| − 2Mr+

√
ω2

R(ε) + ε2 > 0 (1.9)

and lose mass as they become unstable

∂μ

∂ε
(0) < 0.

8 One may easily check that (1.9) is stronger than (1.8) via the inequality x2+y2

|x | ≥
√

x2 + y2.
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Here is a picture of the values {ω(ε)} ∈ C traced out by the various 1-parameter
families of modes associated to a fixed l:

The reader should keep in mind that we have not produced any estimates for the lengths
of these curves.

For each choice of m ∈ Z\{0}, there is a countable family of intervals of masses μ
associated to growing solutions (indexed by l). These intervals will have an accumulation
point at |am|

2Mr+
. The following picture may be useful for visualization:

Lest the reader be misled, we emphasize that we do not have any estimates for how
large these intervals are, and (despite the picture) we have not proven that we can find

ε > 0 such that the interval
( |am|

2Mr+
,

|am|
2Mr+

+ ε
)

is entirely made up of unstable masses.

However, in light of the arguments in Sect. 5 we would certainly conjecture that this last
statement is true.

The construction of the exponentially growing modes is achieved by perturbing modes
corresponding to realω. Thus, before proving Theorem 1.2, we will undertake an analysis
of modes corresponding to real ω. For these modes we have two main results. The first
is an existence result (already contained in Theorem 1.2). The second shows that the
assumptions on the frequency parameters from Theorem 1.2 are necessary.

Theorem 1.3. Suppose there exists a mode solution with parameters (ω,m, l, μ) such
that ω ∈ R and μ2 > ω2. Then the following statements are true.

(1) We have am − 2Mr+ω = 0.
(2) We have am 	= 0.
(3) There exists a function C(ω,m, l) such that ω2 < μ2 < ω2 + C(ω,m, l) and

lim
l→∞ C(ω,m, l) = 0.

We will close the section with two remarks. First, we note that we can rephrase the
condition am − 2Mr+ω = 0 more geometrically. Let L be a null generator of the
horizon, e.g. T + a

2Mr+
�. Then

am − 2Mr+ω = 0 ⇔ Lψ = 0 ⇔ No energy flux along the horizon

Thus, our real mode solutions are simply solutions to the Klein–Gordon equation with
exactly vanishing energy flux along the horizon.

Second, an appropriately modified version of Theorem 1.3 also holds if ω2 > μ2.
Instead of requiring finite energy, one should enforce the outgoing condition

R ∼ ei
√
ω2−μ2r∗

r
at ∞.
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Here r∗ is defined up to a constant by

dr∗

dr
= r2 + a2

�
.

Though we will not pursue this here, one can rule out such solutions by modifying the
arguments of [41].

1.4. Previous works on mode solutions. To the best of the author’s knowledge, there are
no previous rigorous constructions of growing solutions for the Klein–Gordon equation.
However, there are a few results which rule out growing modes in certain parameter
ranges. In [10] Beyer showed that no unstable modes can exist if

μ ≥ |am|
2Mr+

√
1 +

2M

r+
.

In [16] it is noted that if a is small, andμ is small relative to a and m, then the techniques
developed by Dafermos and Rodnianski in [14] can be used to show that no unstable
modes exist. Finally, unstable modes for the wave equation were ruled out in the ground-
breaking mode stability work of Whiting [47].

Though they will not directly concern us here, it is worth mentioning that there is a
large literature devoted to studying quasi-normal modes. These modes have Im(ω) < 0
and satisfy different boundary conditions than the ones considered in this paper. One
expects these to contain a great deal of precise information about the decay of scalar
fields. See [28] for a review of the role of quasi-normal modes in the physics litera-
ture. For a sample of the mathematical study of quasi-normal modes and corresponding
applications (to black hole spacetimes), we recommend [8,9,19–21,27,29,34,44,46]
and the references therein.

1.5. Black-hole bombs and the physics literature. Soon after the discovery of superra-
diant wave scattering [48], the authors of [39] speculated about placing a mirror around
a black hole which would reflect superradiant frequencies. They argued that this would
create a positive feedback loop and result in a “black-hole bomb.” Naturally, one is led
to wonder if this superradiant instability can arise in a more physically natural fashion.
A key breakthrough came in 1976 when Damour, Deruelle, and Ruffini observed that
a good candidate is the Klein–Gordon equation with non-zero mass [18]. A few years
later, Zouros and Eardley [49] and Detweiler [22] developed more involved heuristics,
all leading to the same conclusion. In particular, in [49] a connection was drawn between
unstable modes for the Klein–Gordon equation and the existence of bound Keplerian
orbits outside the ergoregion. Furthermore, they gave some approximations for the in-
stability rates. Various extensions/refinements, numerical and otherwise, of these results
continue to appear in the physics literature, e.g. [23,24], and the references therein.
Many of the studies of unstable modes in the physics literature rely on the WKB ap-
proximation ([22] is an exception). Even if these WKB arguments were made rigorous,
they would only become accurate as l → ∞. Since our techniques are variational, no
large parameter is necessary, and we produce a much more complete picture. We also
remark that it is expected that small Kerr-AdS black holes should exhibit superradiant
instabilities [11,12].
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2. Mode Solutions

Before discussing the proofs of the theorems, we will provide a brief review of mode
solutions and the corresponding boundary conditions.

2.1. The radial and angular ODEs. As mentioned above, we work in Boyer–Lindquist
coordinates and consider solutions of the form

ψ(t, r, θ, φ) := e−iωt eimφSκml(θ)R(r)

where ω ∈ C, m ∈ Z, l ∈ Z≥|m|, and κ := a2
(
ω2 − μ2

)
. The purpose of the κ and l

index will soon become clear. Our potential solution ψ will actually satisfy the Klein–
Gordon equation if there exists λκml ∈ C such that Sκml and R satisfy the following
equations:

1

sin θ

d

dθ

(
sin θ

d Sκml

dθ

)
−

(
m2

sin2 θ
− a2

(
ω2 − μ2

)
cos2 θ

)
Sκml + λκml Sκml = 0,

(2.1)

�
d

dr

(
�

d R

dr

)
− VμR = 0, (2.2)

Vμ := −(r2 + a2)2ω2 + 4Mamrω − a2m2 +�
(
λκml + a2ω2 + μ2r2

)
.

We will refer to (2.1) as the angular ODE and (2.2) as the radial ODE, and we allow
Sκml and R to be complex.

We would like to impose boundary conditions so that ψ extends smoothly to the
whole spacetime and has finite energy. First of all, we must have m ∈ Z. Next, when ω
is real, one can show that imposing the condition that eimφSκml(θ) extends to S

2 leads to a
regular Sturm–Liouville problem. Hence, for fixed κ ∈ R and m ∈ Z, we find a countable
family of solutions Sκml with a corresponding countable collection of eigenvalues λκml
which accumulate at ∞. We index the Sκml in such a way that in the a = 0 case, the Sκml
are simply spherical harmonics Sml with eigenvalues λκml = λml = l(l +1) (l ≥ |m|). In
fact, by comparison with spherical harmonics it is not difficult to see that κ ∈ R implies

λκml + a2ω2 ≥ |m| (|m| + 1) . (2.3)

In order to construct unstable modes we will need to consider κ ∈ C\R. Thus, in
Appendix B we will show that for fixed m and l, the eigenvalue λκ0ml can be embedded in
a holomorphic curve of eigenvaluesλκml for κ sufficiently close to κ0. The corresponding
Sκml will also depend holomorphically on κ .

2.2. Boundary conditions. We are left with the question of boundary conditions for R.
First we need to require that R extends to the horizon. Since Boyer–Lindquist coordinates
break down on the horizon, we will need to change to Kerr-star coordinates (Sect. 1.2.1).
We now ask if

ψ(t∗, r, φ∗, θ) = e−iω(t∗−t(r))eim
(
φ∗−φ(r))Sκml(θ)R(r)

extends smoothly to r = r+. This will happen if we can write

R(r) = e−i
(
ωt(r)−mφ(r)

)
f (r) (2.4)
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where f extends smoothly to r+. Let’s define

ξ := i(am − 2Mr+ω)

r+ − r−
.

It is easy to see that (2.4) is equivalent to

R(r) = (r − r+)
ξ ρ(r) (2.5)

for some function ρ smooth at r+. The local theory in Appendix C.1 will show that this
gives a one dimensional space of solutions to the radial ODE. Recall that we defined an
r∗ coordinate up to a constant by

dr∗

dr
:= r2 + a2

�
.

Then, assuming ω is real and Eq. (2.5) holds, we will have

d R

dr∗ = ξ(r+ − r−)
2Mr+

R + O(r − r+) ⇒
d R

dr∗ + i

(
ω − am

2Mr+

)
R = O(r − r+). (2.6)

Lastly, we will also needψ to have finite energy along asymptotically flat hypersurfaces.
Hence, for large r we must require

∫ ∞

r++1

(
|R|2 +

∣∣∣∣
d R

dr

∣∣∣∣
2
)

r2 dr < ∞. (2.7)

Let’s put this all together in a definition.

Definition 2.1. We say that a function f (r) : (r+,∞) → C “satisfies the boundary
conditions of a mode solution” if

(1) f (r) = (r − r+)
ξρ(r) for a function ρ smooth at r+.

(2)
∫ ∞

r++1

(
|R|2 +

∣∣ d R
dr

∣∣2
)

r2 dr < ∞.

Remark. The discussion in Appendix C will imply that when ω ∈ R and ω2 > μ2, the
condition (2.7) will never be satisfied by a solution R of the radial ODE; in particular,
this definition is clearly not a reasonable one for studying modes “on the real axis” for
the wave equation. We will always work in the regime ω2 < μ2 where there do exist
solutions of the radial ODE satisfying (2.7).

3. Proof of Theorem 1.3: Restrictions on Mode Solutions Corresponding to Real ω

We will start with the proof of Theorem 1.3 since it is simpler than and motivates the
hypotheses of Theorem 1.2. We have placed some more technical aspects of the argument
in the Appendix.
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3.1. Part 1. Let R be a solution to the radial ODE with parameters (ω,m, l, μ) such
that ω ∈ R\{0}, μ2 > ω2, and R satisfies the boundary conditions of a mode. We wish
to show that

am − 2Mr+ω = 0.

As reviewed in Appendix C, an asymptotic analysis of the radial ODE shows that all
solutions are either exponentially growing or exponentially decaying at infinity. Since
our mode solution must have finite energy (2.7), we conclude that R is exponentially
decaying at infinity.

Next, let’s define the energy current,

QT := Im

(
�

d R

dr
R

)
.

The radial ODE implies that

d QT

dr
= 0.

Since R must decay exponentially at infinity, we have QT (∞) = 0. Hence, using the
horizon boundary condition (2.6), we get

0 = QT (r+) = (2Mr+)Im

(
d R

dr∗ (r+)R(r+)

)
= (am − 2Mr+ω) |R(r+)|2 .

Thus, either am − 2Mr+ω = 0 or R(r+) = 0. However, R(r+) = 0 implies that R is
identically 0 (Appendix C). We conclude that am − 2Mr+ω = 0.

3.2. Part 2. Again we let R be a solution to the radial ODE with parameters (ω,m, l, μ)
such that ω ∈ R\{0},μ2 > ω2, and R satisfies the boundary conditions of a mode. From
the previous section we know that we must have

am − 2Mr+ω = 0.

We now wish to show that

am 	= 0.

Using am − 2Mr+ω = 0, we may write

Vμ = −(r2 + a2)2ω2 + 4M2ω2r+(2r − r+) +�
(
λκml + a2ω2 + r2μ2

)
. (3.1)

We now argue by contradiction. If 2Mr+ω = am = 0, then

Vμ = �
(
λ0ml + r2μ2

)
= �

(
l (l + 1) + r2μ2

)
≥ 0.

Now consider the function

f (r) := Re

(
�

d R

dr
R

)
.

Since our mode solution must be exponentially decreasing at infinity, we see that f (∞) =
0. The boundary conditions at the horizon imply that f (r+) = 0. Hence,

0 =
∫ ∞

r+

d f

dr
dr =

∫ ∞

r+

(
�

∣∣∣∣
d R

dr

∣∣∣∣
2

+
Vμ
�

|R|2
)

dr.

This contradicts the non-triviality of R.
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3.3. Part 3. We still let R be a solution to the radial ODE with parameters (ω,m, l, μ)
such that ω ∈ R\{0},μ2 > ω2, and R satisfies the boundary conditions of a mode. From
the previous two sections we know that

am − 2Mr+ω = 0,

am 	= 0.

We wish to show that there exists a function C(ω,m, l) such that

ω2 < μ2 < ω2 + C(ω,m, l).

Starting from (3.1), using ω2 = a2m2

4M2r2
+

, and (2.3), one finds

dVμ
dr

(r+) = −4r+

(
r2

+ + a2
)
ω2 + 8M2ω2r+ + (r+ − r−)

(
λκml + a2ω2 + r2

+μ
2
)

= 8Mr+ω
2 (M − r+) + (r+ − r−)

(
λκml + a2ω2 + r2

+μ
2
)

= (r+ − r−)
(

−a2m2

Mr+
+ λκml + a2ω2 + r2

+μ
2
)

≥ (r+ − r−)
(

|m| (|m| + 1)− a2m2

Mr+
+ r2

+μ
2
)
> 0.

In the third equality we used that 2 (M − r+) = − (r+ − r−), and in the last line we
used that a < M < r+. Away from r+, increasing μ strictly increases Vμ, and as long
as μ2 > ω2 the potential converge to ∞ as r → ∞; hence, we may conclude that there
exists C(ω,m, l) such that

μ2 > ω2 + C(ω,m, l) ⇒ Vμ ≥ 0.

Now the proof concludes exactly as in Sect. 3.2.
In order to establish that

lim
l→∞ C(ω,m, l) = 0,

we just need Proposition B.3 which states

∂λκml

∂μ
> 0,

and the Sturm–Liouville theory fact that

lim
l→∞ λκml = ∞.

4. Proof of Theorem 1.2: Construction of Mode Solutions

Now we will prove Theorem 1.2. As in the previous section, we have placed some more
technical aspects of the argument in the Appendix.
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4.1. Outline of proof. Before beginning the proof we will give a brief outline. As men-
tioned in the introduction, we start by constructing real mode solutions. The key technical
insight is a variational interpretation of real mode solutions. The variational problem will
posses a degeneracy, but this will turn out to be a minor technical problem. Next, we will
perturb our real mode solution into the upper complex half-plane by slightly varying
ω and μ. This argument relies on observing that mode solutions are in a one to one
correspondence with zeros of a certain holomorphic function of ω and μ. Given this, an
appropriate application of the implicit function will conclude the argument. Lastly, we
analyze how a mode in the upper half-plane can cross the real axis. The upshot will be
that as long as we are in a bound state regime (μ2 > ω2), a mode must become superra-
diant (Proposition 4.6) and lose mass (Proposition 4.8) as it enters the upper half-plane.
Putting everything together will conclude the proof of Theorem 1.2.

4.2. Existence of real mode solutions. We begin with construction of modes corre-
sponding to real ω. In light of Theorem 1.3 we shall fix a choice of ω, m, and l such that
am − 2Mr+ω = 0 and ω 	= 0. In the rest of this section all constants may depend on ω,
m, and l.

4.2.1. A variational interpretation of real mode solutions First, we shall need to review
the local theory for the radial ODE. As recalled in Appendix C, when am −2Mr+ω = 0,
a local basis around r+ of solutions to the radial ODE is given by

{ϕ1, log(r − r+)ϕ2 + ϕ3}
where the ϕi are all analytic near r+, ϕ1(r+) = 1, ϕ2(r+) = 1, and ϕ3(r+) = 0. Our to
be constructed solution R should be a non-zero multiple of ϕ1. As we already observed
during the proof of Theorem 1.3, the finite energy requirement (2.7) and the local theory
from Appendix C implies that near infinity R must be exponentially decreasing. It will
be useful to further observe that the local analysis shows that if a solution of the radial
ODE is not exponentially decreasing, then it is exponentially increasing.

Next, we explore the graph of Vμ
�

. Using the formula (3.1) and the assumption ω2 =
a2m2

4M2r2
+

, one may derive

Vμ
�

= − a2m2

4M2r2
+

(
� + 4Mr +

4M2(r − r+)

r − r−

)
+ λκml + a2ω2 + r2μ2. (4.1)

In particular, combining this with (2.3) and the inequality a < M < r+ gives

Vμ
�
(r+) = −a2m2

Mr+
+ λκml + a2ω2 + r2

+μ
2

≥ −a2m2

Mr+
+ |m| (|m| + 1) + r2

+μ
2 ≥ m2

(
1 − a2

Mr+

)
+ r2

+μ
2 > 0.

Furthermore, it is easy to see that

Vμ
�

= r2
(
μ2 − ω2

)
+ O(r) as r → ∞,
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Thus, there exists r+ < rA(μ
2) < rB(μ

2) < ∞ such that Vμ can only be non-
negative on (rA, rB).9 Furthermore, we can take rA increasing in μ2 and rB decreasing
in μ2. Below, in Lemma 4.3 we will see that for μ2 sufficiently close to ω2, Vμ does in
fact get very negative in (rA, rB). This suggests that we could look for bound states of
the radial ODE by minimizing the functional

Lμ( f ) :=
∫ ∞

r+

(
�

∣∣∣∣
d f

dr

∣∣∣∣
2

+
Vμ
�

| f |2
)

dr

over functions of unit L2 norm. Note that any solution f of the radial ODE with
Lμ( f ) < ∞ will automatically satisfy the correct boundary conditions (at r = r+
and r = ∞). This is the crucial way that the am − 2Mr+ω = 0 assumption enters
the construction. The degeneration of the radial ODE at r+ poses some difficulties for
a direct variational analysis of Lμ. Nevertheless, we will be able to overcome this by
working with regularized versions of Lμ. In Sect. 4.2.2 we will prove the following two
propositions.

Proposition 4.1. For every μ sufficiently close to but larger than ω, there exists a non-
zero fμ satisfying the boundary conditions of a mode solution and a constant νμ ≤ 0
such that

�
d

dr

(
�

d fμ
dr

)
− Vμ fμ + νμ� fμ = 0.

Furthermore, νμ can be taken to be increasing in μ2.

Proposition 4.2. There exists μ0 and corresponding fμ0 such that νμ0 = 0.

The fμ0 is the solution we seek.
We will close the section with a preparatory lemma. Recall that we have fixed ω, m,

and l which are assumed to satisfy am − 2Mr+ω = 0 and ω ∈ R\{0}. Define

A :=
{
μ > 0 : μ2 > ω2 and ∃ f ∈ C∞

0 with Lμ( f ) < 0
}
.

Lemma 4.3. Let μ be sufficiently close to but larger than ω. Then we will have

μ ∈ A.

Proof. For every fixed f , Lμ( f ) is continuous inμ. Thus, it is sufficient to find a smooth
f with compact support such that

Lω( f ) < 0.

First, we note that near infinity

Vω
�

= −2Mω2r + O(1).

Hence, for f supported in (A,∞) with A large, we write

Lω( f ) =
∫ ∞

A

((
r2 + O(r)

) ∣∣∣∣
d f

dr

∣∣∣∣
2

−
(

2Mω2r + O(1)
)

| f |2
)

dr.

9 Note that this structure is absent in a study of the wave equation (μ = 0).
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Since ω 	= 0, if we set f to be equal to r−3/4 on a sufficiently large compact set K and
0 outside a slight enlargement of K , it is clear that we can make Lω( f ) as negative as
we please. ��

We remark that this lemma is the only place where we shall use theω 	= 0 hypothesis.

4.2.2. Analysis of the variational problem It will be useful to consider the following
regularization of Lμ:

L(ε)μ ( f ) :=
∫ ∞

r++ε

(
�

∣∣∣∣
d f

dr

∣∣∣∣
2

+
Vμ
�

| f |2
)

dr.

Lemma 4.4. Ifμ2 > ω2, then there exists f (ε)μ ∈ H1
0 (r+ +ε,∞)with unit L2(r+ +ε,∞)

norm such that L(ε)μ achieves its infimum over H1
0 (r+ + ε,∞) functions of unit L2(r+ +

ε,∞) norm on f (ε)μ .

Proof. If omitted, all integration ranges are over (r+ + ε,∞). Recall that in Sect. 4.2.2
we showed that Vμ

�
is increasing in μ2, is non-negative near r+, and goes to infinity as

r → ∞. More specifically, we established

Vμ
�
(r+) � μ2,

Vμ
�

= r2
(
μ2 − ω2

)
+ O(r) as r → ∞.

Hence, we can find r+ < B0 < B1, C0 > 0, and C1 > 0 only depending10 on an lower
bound for μ2 such that

∫ (
�

∣∣∣∣
d f

dr

∣∣∣∣
2

+ C0r21[B0,B1]c

(
μ2 − ω2

)
| f |2

)
dr ≤ C1

∫ B1

B0

| f |2 dr + L(ε)μ ( f ). (4.2)

From this it is clear that

ν(ε)μ := inf
{
L(ε)μ ( f ) : f ∈ C∞

c and || f ||L2 = 1
}
> −∞.

Let
{

f (ε)n,μ

}∞
n=1

be a sequence of smooth functions, compactly supported in (r++ε,∞),

with
∣∣∣
∣∣∣ f (ε)n,μ

∣∣∣
∣∣∣
L2

= 1, such that

L(ε)μ
(

f (ε)n,μ

)
→ ν(ε)μ .

The bound (4.2) implies that
∣∣∣
∣∣∣ f (ε)n,μ

∣∣∣
∣∣∣

H1
is uniformly bounded. We now apply Rellich

compactness to produce a f (ε)μ ∈ H1
0 such that a re-labeled subsequence of

{
f (ε)n,μ

}

converges to f (ε)μ weakly in H1 and strongly in L2 on compact subsets of (r+,∞).

10 Remember that we have fixed ω, m, and l and that all constants in this section may depend on these.
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We claim that no mass is lost in the limit, i.e. || f (ε)μ ||L2 = 1. Suppose not. Then, for

any compact set K , there will exist infinitely many of the f (ε)n,μ’s such that
∣∣∣
∣∣∣ f (ε)n,μ

∣∣∣
∣∣∣
L2([r+,∞)\K )

≥ α > 0.

It is easy to see from (4.2) that this will give a contradiction if K is sufficiently large.
Using the boundedness of weak limits and the strong L2 convergence, we then get

ν(ε)μ ≤ L(ε)μ
(

f (ε)μ

)
≤ lim inf

n→∞ L(ε)μ
(

f (ε)n,μ

)
= ν(ε)μ .

This implies that L(ε)μ achieves its minimum on f (ε)μ . ��
Now we are ready to prove proposition 4.1.

Proof. First we observe that
{
ν
(ε)
μ

}
ε>0

is bounded and decreasing in ε. Set νμ =
limε→0 ν

(ε)
μ . Lemma 4.3 implies that μ ∈ A which in turn implies that νμ < 0. For

any interval K = (
r+ + 1

n , n
)

with n large, (4.2) implies that

sup
ε>0

∣∣∣
∣∣∣ f (ε)μ

∣∣∣
∣∣∣

H1(K )
< ∞,

inf
ε>0

∣∣∣
∣∣∣ f (ε)μ

∣∣∣
∣∣∣
L2(K )

> 0.

After an application of Rellich compactness and passing to a subsequence, we may find
a non-zero fμ ∈ H1 that is a weak H1 and strong L2

loc limit of f (ε)μ .

Using the Euler–Lagrange equations associated to L(ε)μ , we find

�
d

dr

(
�

d fμ
dr

)
− Vμ fμ + νμ� fμ = 0.

On any compact subset K of (r+,∞), boundedness of weak limits and the L2
loc conver-

gence of the f (ε)μ imply that

∫

K

(
�

∣∣∣∣
d fμ
dr

∣∣∣∣
2

+
Vμ
�

∣∣ fμ
∣∣2

)
≤ νμ.

Hence,
∫ ∞

r+

�

∣∣∣∣
d fμ
dr

∣∣∣∣
2

dr < ∞. (4.3)

Near r+ the local theory from Appendix C implies that

fμ = Aϕ1 + B (log(r − r+)ϕ2 + ϕ3)

for some constants A and B and non-zero analytic functions ϕi . However, if B 	= 0,
then

∫ ∞

r+

�

∣∣∣∣
d fμ
dr

∣∣∣∣
2

dr = ∞.
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Hence, B = 0. Near infinity the local theory from Appendix C implies that fμ is as-
ymptotic to a linear combination of an exponentially growing solution and an exponen-
tially decaying solution. The bound (4.3) clearly implies that fμ is in fact exponentially
decaying. Thus, fμ satisfies the boundary conditions of a mode solution. ��

Finally, we can prove proposition 4.2.

Proof. First we will show that νμ is continuous for μ ∈ A. Let us normalize each f (ε)μ

so that
∣∣∣
∣∣∣ f (ε)μ

∣∣∣
∣∣∣
L2

= 1. We have

ν(ε)μ1
= L(ε)μ1

(
f (ε)μ1

)
= L(ε)μ2

(
f (ε)μ1

)
+

∫ ∞

r++ε

Vμ1 − Vμ2

�

∣∣∣ f (ε)μ1

∣∣∣
2

dr

≥ ν(ε)μ2
−

∣∣∣μ2
1 − μ2

2

∣∣∣
∫ ∞

r++ε
r2

∣∣∣ f (ε)μ1

∣∣∣
2

dr.

Reversing the roles of μ1 and μ2 gives
∣∣∣ν(ε)μ1

− ν(ε)μ2

∣∣∣ ≤
∣∣∣μ2

1 − μ2
2

∣∣∣
∫ ∞

r++ε
r2

(∣∣∣ f (ε)μ1

∣∣∣
2

+
∣∣∣ f (ε)μ2

∣∣∣
2
)

dr

≤
∣∣∣μ2

1 − μ2
2

∣∣∣
(

C +
∫ ∞

r++ε
r21[B0,B1]c

(∣∣∣ f (ε)μ1

∣∣∣
2

+
∣∣∣ f (ε)μ2

∣∣∣
2
)

dr

)

≤ C ′
∣∣∣μ2

1 − μ2
2

∣∣∣ .

In these inequalities we have used (4.2),
∣∣∣
∣∣∣ f (ε)μ

∣∣∣
∣∣∣
L2

= 1, and the fact that the ν(ε)μi are

negative. Since the constant C ′ is independent of ε, we may take ε to 0.
By Lemma 4.3 A 	= ∅. Hence, we may set

μ0 := sup A.

It is clear that for any μ ∈ A, we cannot have Vμ strictly positive on (r+,∞). Thus
μ0 < ∞. Since νμ is increasing in μ, we may extend νμ continuously so that νμ0

exists. We will of course have νμ0 ≤ 0. Suppose that νμ0 < 0. Then, one may easily
show that μ0 ∈ A, and hence we can run the existence argument above to construct a
corresponding fνμ0

. Next, by continuity we could slightly increase μ0 to μ′
0 ∈ A, run

the existence argument again, and conclude that νμ′
0
< 0. This of course contradicts the

definition of μ0. We conclude that νμ0 = 0.
It remains to show that there exists a corresponding fμ0 . From the local theory in

Appendix C, for every μ and ν, we have a unique solution R̃(r, μ, ν) to

�
d

dr

(
�

d R̃

dr

)
− Vμ R̃ + ν�R̃ = 0

which satisfies R̃(r+, μ, ν) = 1. At infinity there will be a local basis of solutions
spanned by ρ̃1(r, μ, ν) and ρ̃2(r, μ, ν) where ρ̃1 is exponentially increasing, ρ̃2 is ex-
ponentially decreasing, and both depend analytically on r , μ, and ν. Lastly, we have
analytic reflection and transmission coefficients Ã(μ, ν) and B̃(μ, ν) defined by

R̃(r, μ, ν) = Ã(μ, ν)ρ̃1(r, μ, ν) + B̃(μ, ν)ρ̃2(r, μ, ν).
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As μ ↑ μ0 we have Ã(μ, νμ) = 0. It follows that Ã(μ0, 0) = 0. We may then set

fμ0(r) := R̃(r, μ0, 0).

��

4.3. Construction of the exponentially growing modes. In this section our goal is to
perturb the real modes into the complex upper half-plane with an appropriate application
of the implicit function theorem. Using the previous section we may start with a solution
R to the radial ODE satisfying the boundary conditions of a mode and with frequency
parameters (ωR(0),m, l, μ(0)) such that ωR(0) ∈ R and μ2(0) > ω2

R(0). For any ω =
ωR + iωI and μ sufficiently close to ωR(0) and μ(0) respectively, the local theory from
Appendix C will give us two linearly independent solutions to the radial ODEρ1(r, ω, μ)
and ρ2(r, ω, μ) such that ρ1 is exponentially increasing at infinity, ρ2 is exponentially
decreasing at infinity, and both depend holomorphically on ω and analytically on μ.
Furthermore, the local theory around r+ tells us that, up to normalizing properly, for each
ω = ωR + iωI and μ we have a unique local solution R(r, ω, μ) around r+ satisfying
the correct boundary condition. We have

R(r, ω, μ) = A(ω,μ)ρ1(r, ω, μ) + B(ω,μ)ρ2(r, ω, μ). (4.4)

As shown in Appendix C, A and B are holomorphic in ω and μ. Finding a mode
solution is equivalent to finding a zero of A. We have picked our parameters so that
A (ωR(0), μ(0))) = 0. Let’s write A = AR + i AI . Next, we note that an application of
the implicit function theorem will produce our unstable modes if we can establish

det

( ∂AR
∂ωR

∂AR
∂μ

∂AI
∂ωR

∂AI
∂μ

)
(ωR(0), μ(0)) 	= 0.

In order to do this, we shall return to the energy current

QT = Im

(
�

d R

dr
R

)
.

Recall that in Sect. 3 we saw
d QT

dr
= 0,

QT (r+) = am − 2Mr+ωR .

We have used the normalization |R(r+)|2 = 1 in the second statement. Next, let’s write
QT in terms of ρ1 and ρ2.

QT = |A|2�Im

(
dρ1

dr
ρ1

)
+�Im

(
A

dρ1

dr
Bρ2

)
+�Im

(
B

dρ2

dr
Aρ1

)

+ |B|2�Im

(
dρ2

dr
ρ2

)
.

Before examining this at infinity, let us note the precise asymptotics of the ρi as recalled
in Appendix C.

ρ1 ∼ e

√
μ2−ω2

Rr
r
−1+

M(2ω2
R−μ2)√

μ2−ω2
R ,
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ρ2 ∼ e
−

√
μ2−ω2

Rr
r
−1− M(2ω2

R−μ2)√
μ2−ω2

R .

Furthermore, it’s easy to see from the construction of the ρi that they are both real valued.
Now let’s compute QT (∞). Since the ρi are real, the first and last terms clearly vanish.
The exponential powers cancel in the middle terms, and we find

QT (∞) =
√
μ2 − ω2

RIm
(

AB
) −

√
μ2 − ω2

RIm
(
B A

) = 2
√
μ2 − ω2

RIm
(

AB
)
.

We conclude that

am − 2Mr+ωR = 2
√
μ2 − ω2

RIm
(

AB
)
. (4.5)

Since A(ωR(0), μ(0)) = 0, taking derivatives of (4.5) implies that

−2Mr+ = 2
√
μ2(0)− ω2

R(0)Im

(
∂A

∂ωR
(ωR(0), μ(0)) B (ωR(0), μ(0))

)
,

0 = 2
√
μ2(0)− ω2

R(0)Im

(
∂A

∂μ
(ωR(0), μ(0)) B (ωR(0), μ(0))

)
.

Since B (ωR(0), μ(0)) 	= 0, these two equations imply that the vectors
(
∂AR
∂ωR

, ∂AI
∂ωR

)
and(

∂AR
∂μ
, ∂AI
∂μ

)
are linearly independent at (ωR(0), μ(0)) if and only if ∂A

∂μ
(ωR(0), μ(0)) 	=

0, i.e.

det

( ∂AR
∂ωR

∂AR
∂μ

∂AI
∂ωR

∂AI
∂μ

)
(ωR(0), μ(0)) 	= 0 ⇔ ∂A

∂μ
(ωR(0), μ(0)) 	= 0.

It remains to establish

Lemma 4.5.

∂A

∂μ
	= 0.

Proof. For the sake of contradiction, suppose that ∂A
∂μ
(ωR(0), μ(0)) = 0. Differentiating

(4.4) gives

∂R

∂μ
(r, ωR(0), μ(0)) = ∂B

∂μ
(ωR(0), μ(0))ρ2(r, ωR(0), μ(0))

+B(ωR(0), μ(0))
∂ρ2

∂μ
(r, ωR(0), μ(0)).

This implies that ∂R
∂μ

is exponentially decreasing at infinity. The analysis from appendices

A and C implies that ∂R
∂μ

is smooth at r+.11 Differentiating the radial ODE with respect

to μ, multiplying by R, and integrating gives
∫ ∞

r+

(
∂

∂r

(
�
∂2 R

∂r∂μ

)
− Vμ
�

∂R

∂μ

)
R dr =

∫ ∞

r+

(
2μr2 +

∂λκml

∂μ

)
|R|2 dr. (4.6)

11 Recall that, as discussed in Appendix C, R is smooth at r+ when am − 2Mr+ = 0.
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Integrating by parts twice on the left hand side will produce no boundary terms since
both R and ∂R

∂μ
are exponentially decreasing at infinity and �(r+) = 0. Thus we have

∫ ∞

r+

(
∂

∂r

(
�
∂2 R

∂r∂μ

)
− Vμ
�

∂R

∂μ

)
R dr

=
∫ ∞

r+

∂R

∂μ

(
∂

∂r

(
�
∂R

∂r

)
− Vμ
�

R

)
dr = 0.

We have used that R is a solution of the radial ODE in the last equality. Plugging this
into (4.6) then gives

∫ ∞

r+

(
2μr2 +

∂λκml

∂μ

)
|R|2 dr = 0.

Since Proposition B.3 from the Appendix says that

∂λκml

∂μ
> 0,

we conclude that R vanishes, a contradiction. ��

4.4. Modes crossing the real axis. In this section we shall investigate how a mode can
“cross” the real axis. Let’s introduce a little more notation. From the analysis of the previ-
ous section we have a family of solutions R(r, ε) to the radial ODE satisfying the bound-
ary conditions of a mode with parameters (ω(ε),m, l, μ(ε)) where ω(ε) = ωR(ε) + iε.
Implicitly we have also been using the existence of a family λκml of eigenvalues to the
angular ODE (see Proposition B.1). These functions are all defined for |ε| 
 1. In what
follows we will often omit the ε’s and we shall assume 0 < ωR(ε) < μ(ε). Using
the symmetry of the equations under (ω,m) �→ (−ω,−m) one may check that this
assumption implies no loss of generality. The function R will satisfy

∂

∂r

(
�
∂R

∂r

)
− Vμ
�

R = 0,

R ∼ (r − r+)
i(am−2Mr+ω)

r+−r− at r+,

R ∼ e−r
√
μ2−ω2

r
−1− M(2ω2−μ2)√

μ2−ω2 at r = ∞,

Vμ := −(r2 + a2)2ω2 + 4Mamrω − a2m2 +�
(
λ + a2ω2 + μ2r2

)
.

We also have

1

sin θ

∂

∂θ

(
sin θ

∂S

∂θ

)
−

(
m2

sin2 θ
− a2

(
ω2 − μ2

)
cos2 θ

)
S + λS = 0

where S(·, ε) : θ ∈ (0, π) → C is given boundary conditions which make it regular at
θ = 0, π (see Appendix B). Note that we have suppressed the κ , m, and l indices from
Sκml and λκml .
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From Theorem 1.3 we know that

ωR(0) = am

2Mr+
. (4.7)

We wish to investigate the signs of ∂ωR
∂ε
(0) and ∂μ

∂ε
(0). The condition 4.7 corresponds

to our mode solution being exactly on the threshold of superradiance. This makes sense
because when ε = 0 the solution neither grows nor decays with time. For ε > 0 the
mode solution will grow with time. Hence, we expect the mode to become superradiant
(1.8).

This leads us to

Proposition 4.6. If ε > 0 we must have

ω2
R(ε) + ε2 <

(
am

2Mr+

)2

.

In particular

∂ωR

∂ε
(0) ≤ 0.

Proof. We now introduce a variant of the microlocal energy current QT :

Q̃T := Im

(
�
∂R

∂r
ωR

)
.

For ε > 0 we have

Q̃T (∞) = Q̃T (r+) = 0

∂ Q̃T

∂r
= −ε�

∣∣∣∣
∂R

∂r

∣∣∣∣
2

+ Im

(
Vμω

�

)
|R|2 ⇒

∫ ∞

r+

(
ε�

∣∣∣∣
∂R

∂r

∣∣∣∣
2

− Im

(
Vμω

�

)
|R|2

)
dr = 0.

We have

Im
(−Vμω

) = ε
(
(r2 + a2)2 |ω|2 − a2m2 +�r2μ2

)
−�Im

((
λ + a2ω2

)
ω

)
.

Proposition B.2 from the Appendix gives

−Im
((
λ + a2ω2

)
ω

)
> 0.

Furthermore, Im
(−Vμω

)
is increasing in r . Thus, R 	= 0 implies that

Im
(−Vμω

)
(r+) < 0 ⇔

ω2
R(ε) + ε2 <

(
am

2Mr+

)2

.

��
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Proposition 4.7.

∂μ

∂ε
(0) ≥ 0 ⇒ Re

(
∂λ

∂ε

)
(0) ≥ 0.

Proof. Let’s set

Sε := ∂S

∂ε
.

At ε = 0 we have

1

sin θ

∂

∂θ

(
sin θ

∂Sε
∂θ

)
−

(
m2

sin2 θ
− a2

(
ω2 − μ2

)
cos2 θ

)
Sε + λSε

= −
(

2a2 cos2 θ

(
ωR

(
∂ωR

∂ε
+ i

)
− μ

∂μ

∂ε

)
+
∂λ

∂ε

)
S.

Using Appendix A one may check that Sε is regular at θ = 0, π . Multiplying by S and
integrating by parts implies

∫ π

0

(
2a2 cos2 θ

(
ωR

(
∂ωR

∂ε
+ i

)
− μ

∂μ

∂ε

)
+
∂λ

∂ε

)
|S|2 sin θ dθ = 0.

Using Proposition 4.6 we conclude that

∂μ

∂ε
(0) ≥ 0 ⇒ Re

(
∂λ

∂ε

)
(0) ≥ 0.

��
Finally, we examine ∂μ

∂ε
(0).

Proposition 4.8.

∂μ

∂ε
(0) < 0.

Proof. Let’s set

Rε := ∂R

∂ε
.

We have

∂

∂r

(
�
∂Rε
∂r

)
− Vμ
�

Rε = ∂

∂ε

(
Vμ
�

)
R. (4.8)

Now we want to multiply by R and integrate by parts. However, we have to be careful with
regards to R′

εs boundary conditions. At infinity Rε may easily be seen to be exponentially
decreasing, but at r+ the proper condition is more subtle. By construction

(r − r+)
−i(am−2Mr+ω(ε))

r+−r− R(r, ε) =: G(r, ε)
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is analytic in r and ε near (r+, 0). At ε = 0 we have

(r − r+)
−i(am−2Mr+ω)

r+−r− Rε

− 2Mr+

r+ − r−

(
1 − i

∂ωR

∂ε

)
(r − r+)

−i(am−2Mr+ω)
r+−r− log(r − r+)R = ∂G

∂ε

⇒ Rε(r, 0) = 2Mr+

r+ − r−

(
1 − i

∂ωR

∂ε

)
log(r − r+)R(r, 0) +

∂G

∂ε
(r, 0).

Now we multiply (4.8) by R, take the real part, and integrate by parts. We end up with

−2Mr+ |R(r+)|2 =
∫ ∞

r+

Re

(
∂

∂ε

(
Vμ
�

))
|R|2 dr

=
∫ ∞

r+

�−1
(

2ωR
∂ωR

∂ε

(
−�2 + (a2 − 4Mr)�− 4M2r(r − r+)

))
|R|2 dr

+
∫ ∞

r+

(
Re

(
∂λ

∂ε

)
+ 2r2μ

∂μ

∂ε

)
|R|2 dr.

Now Proposition 4.7 finishes the proof. ��

5. Following the Unstable Modes in the Upper Half Plane

Following our construction of unstable modes near the real axis, it is natural to ask if one
can continue to decreaseμ and produce more unstable modes. We will not explore this in
detail in this paper, but we will briefly describe the expected behavior. One believes that
one can vary μ and produce a 1-parameter (at least continuous) family of modes with
frequency parameters (ω(μ), μ,m, l).12 As long as these modes are in the upper half
plane, Proposition 4.6 shows that they will remain superradiant. Hence, if and when they
cross the real axis, they will satisfy |ω| ≤ |am|

2Mr+
. Now, note that Proposition 4.8 implies

that in the bound state regime (μ2 > ω2), an unstable mode can cross the real axis only
by increasing the mass. Hence, as long as we decrease μ and maintain μ > |am|

2Mr+
, the

curve of modes cannot cross the real axis, and, by continuity, we conclude that these
modes would have to remain unstable.

Acknowledgements. I would like to thank Igor Rodnianski, Mihalis Dafermos, Gustav Holzegel, and Jonathan
Luk for useful conversations and for advice on the exposition.

Appendix A. Linear ODEs with Regular Singularities

Let’s recall some facts about linear ODEs in the complex plane.

Lemma A.1. Consider the complex ODE

d2 H

dz2 + f (z, λ)
d H

dz
+ g(z, λ)H = 0. (A.1)

12 A potential approach is to more directly exploit the underlying analyticity, see [40] and [28] for ideas
along these lines.
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We will assume that there exists { f j (λ)}, {g j (λ)}, r , and open U ⊂ C such that for

z ∈ Br (z0) and every compact K ⊂ U there exists
{

F (K )j

}
and

{
G(K )

j

}
such that

∣∣ f j (λ)
∣∣ ≤ F (K )j and

∣∣g j (λ)
∣∣ ≤ G(K )

j when λ ∈ K ,
∞∑
j=0

G(K )
j (z − z0)

j and
∞∑
j=0

F (K )j (z − z0)
j converge absolutely,

{ f j (λ)} and {g j (λ)} are holomorphic in λ ∈ U,

(z − z0) f (z, λ) =
∞∑
j=0

f j (λ)(z − z0)
j and (z − z0)

2g(z) =
∞∑
j=0

g j (λ)(z − z0)
j .

If these hypotheses hold we say that z0 is a regular singularity. Set

Q(α, λ) := α(α − 1) + f0(λ)α + g0(λ).

The indicial equation is

Q(α, λ) = 0.

We suppose that a holomorphic α(λ) has been chosen such that

Q(α(λ), λ) = 0 and min
j∈Z+

|Q(α(λ) + j, λ)| = A(λ) > 0.

Then there exists a unique solution to (A.1) of the form

h(z, λ) = (z − z0)
α(λ)ρ(z, λ)

such that ρ(z0, λ) = 1. Furthermore, ρ is holomorphic for z ∈ Br (z0) and λ ∈ U.

Proof. One can extract a proof of this from the discussion of regular singularities in [36].
For the sake of completeness we will give the needed slight extension here. Without loss
of generality we may set z0 = 0. We begin by looking for a formal solution of the form

h(z, λ) = zα(λ)
∞∑
j=0

ρ j (λ)z
j

where we set ρ0(λ) = 1. Formally plugging this into (A.1) we find (see [36])

Q ((α(λ), λ)) = 0,

Q (α(λ) + j, λ) ρ j (λ) = −
j−1∑
k=0

(
(α(λ) + k) f j−k(λ) + g j−k(λ)

)
ρk(λ) for j ≥ 1.

Since Q(α(λ), λ) = 0 by hypothesis, the first equation is satisfied. Furthermore, by
assumption Q(α(λ) + j, λ) 	= 0 for any j . Hence, the second equation determines
ρ j (λ) recursively. This establishes the uniqueness of ρ. It remains to check that the
series converges appropriately. We will do this by majorizing the series. Let us pick
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an arbitrary compact set K ⊂ U and r0 < r . After applying Cauchy’s estimate to the
holomorphic functions

∑
j F (K )j z j and

∑
j G(K )

j z j , we may find a constant CK so that

∣∣ f j (λ)
∣∣ ≤ CK r− j

0 and
∣∣g j (λ)

∣∣ ≤ CK r− j
0 for λ ∈ K .

Let β(λ) be the other root of Q(·, λ), and set n(λ) := |α(λ)− β(λ)|. Since Q(α(λ) +
k, λ) = k(k +α(λ)−β(λ)), our hypotheses imply that α(λ)−β(λ) 	∈ Z≤0. Next, define
b j (λ) by

b j (λ) = ∣∣ρ j (λ)
∣∣ for j ≤ n,

j ( j − |α(λ)− β(λ)|)b j (λ) = CK

j−1∑
k=0

(|α(λ)| + k + 1) bk(λ)r
k− j
0 for j > n.

It is easy to check by induction that
∣∣ρ j (λ)

∣∣ ≤ b j (λ) for all j . For sufficiently large j ,
one finds that

r0 j ( j − |α(λ)− β(λ)|)b j (λ)− ( j − 1)( j − 1 − |α(λ)− β(λ)|)b j−1(λ)

= CK (|α(λ)| + j)b j−1(λ).

Now the ratio test implies that the series
∑∞

j≥0 b j (λ)z j converges in the ball of radius r0.

Hence, by the comparison test,
∑∞

j=0 ρ j (λ)z j converges in the same ball. Since r0 was

arbitrary, we find that for every λ ∈ K ,
∑∞

j=0 ρ j (λ)z j converges and is holomorphic in

z ∈ Br (0). Next we may freeze z ∈ Br (0) and consider ρ(z, λ) = ∑∞
j=0 ρ j (λ)z j as a

function of λ. For every compact K ⊂ U , our proof has shown that ρ(z, ·) is a uniform
limit of holomorphic functions. Hence, ρ(z, λ) is holomorphic for λ ∈ U . ��

Appendix B. The Angular ODE

In this section we will establish the needed facts about the eigenvalues of the angular
ODE. We assume throughout this section that m 	= 0.

Recall that κ := a2(ω2 − μ2). Then the angular ODE is

1

sin θ

d

dθ

(
sin θ

d S

dθ

)
−

(
m2

sin2 θ
− κ cos2 θ

)
S + λS = 0.

We have suppressed the κ , m, and l indices.

Proposition B.1. Suppose that for some fixed κ0 ∈ R we have an eigenvalueλ0. Then, for
κ sufficiently close to κ0, we can uniquely find a holomorphic curve λ(κ) of eigenvalues
for the angular ODE with parameter κ such that λ0 = λ(κ0).

Proof. Let’s change variables to x := cos θ . Then the angular ODE becomes

d

dx

(
(1 − x2)

d S

dx

)
−

(
m2

1 − x2 − κx2
)

S + λS = 0 with x ∈ (−1, 1).

An asymptotic analysis (Appendix A) at x = ±1 shows that any solution must be
asymptotic to a linear combination of (1 ∓ x)|m|/2 and (1 ∓ x)−|m|/2 as x → ±1. If S
is an eigenfunction we clearly must have

S ∼ (1 ± x)|m|/2 as x → ±1.
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For any κ and λ we can uniquely define a solution S(θ, κ, λ) by requiring that

S(θ, κ, λ)(1 + x)−|m|/2 is holomorphic at x = −1,(
S(·, κ, λ)(1 + ·)−|m|/2) (x = −1) = 1.

(B.1)

We then have holomorphic functions F(κ, λ) and G(κ, λ) such that

S(θ, κ, λ) ∼ F(κ, λ)(1 − x)−|m|/2 + G(κ, λ)(1 − x)|m|/2 as x → 1.

Since λ0 is an eigenvalue, we have F(κ0, λ0) = 0. We will be able to uniquely define
our curve λ(κ) for κ near κ0 via an application of the implicit function theorem if we
can verify that

∂F

∂λ
(κ0, λ0) 	= 0.

For the sake of contradiction, assume that

∂F

∂λ
(κ0, λ0) = 0.

Set

Sλ := ∂S

∂λ
.

By differentiating (B.1) and using that F and ∂F
∂λ

vanish at (κ0, λ0), one may easily check
that Sλ still satisfies the boundary conditions of an eigenfunction. It will also satisfy

d

dx

(
(1 − x2)

d Sλ
dx

)
−

(
m2

1 − x2 − κ0x2
)

Sλ + λ0Sλ = −S.

Multiplying both sides of this equation by S, integrating over (0, π), and then integrating
by parts will imply that

∫ π

0
|S|2 sin θ dθ = 0.

This is clearly a contradiction. ��
Proposition B.2.

ωI > 0 ⇒ Im
((
λ + a2ω2

)
ω

)
< 0.

Proof. Multiplying the angular ODE by ωS, integrating by parts, and taking imaginary
parts gives

ωI

∫ π

0

(∣∣∣∣
d S

dθ

∣∣∣∣
2

+

(
m2

sin2 θ
+ a2 |ω|2 sin2 θ + a2μ2 cos2 θ

)
|S|2

)
sin θ dθ

= −
∫ π

0
Im

((
λ + a2ω2

)
ω

)
|S|2 sin θdθ.

��
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Proposition B.3. When ω is real, we have

∂λ

∂μ
> 0.

Proof. Let

Sμ := ∂S

∂μ
.

We have

1

sin θ

d

dθ

(
sin θ

d Sμ
dθ

)
−

(
m2

sin2 θ
− a2(ω2 − μ2) cos2 θ

)
Sμ + λSμ

=
(

2a2μ cos2 θ − ∂λ

∂μ

)
S.

Multiplying the equation by S, integrating by parts, and taking the real part gives
∫ π

0

(
2a2μ cos2 θ − ∂λ

∂μ

)
|S|2 sin θ dθ = 0.

��

Appendix C. Local Theory for the Radial ODE

C.1. The horizon. Let’s apply the theory from Appendix A to the radial ODE. Recall
that we earlier set

xi = i(am − 2Mr+ω)

r+ − r−
.

First we consider the case where am − 2Mr+ω 	= 0. In this case the indicial equation
has two distinct roots which do not differ by an integer. Hence a local basis of solutions
to the radial ODE around r+ will be given by

{
(r − r+)

ξρ1(r), (r − r+)
−ξ ρ2(r)

}

where each ρi (r) is holomorphic near r+ and is normalized to have ρi (r+) = 1. Our mode
analysis from Sect. 2.2 showed that a mode solution must be of the form A(r −r+)

ξρ1(r)
for some A ∈ C. Hence, for everyω andμ so that λ is defined, we have a unique solution
to the radial ODE of the form

(r − r+)
ξρ(r, ω, μ) (C.1)

where ρ(r, ω, μ) is analytic in r , holomorphic in ω, analytic in μ, and ρ(r+, ω, μ) = 1.
Let us remark that if a mode solution with real ω and am − 2Mr+ω 	= 0 vanishes at r+,
it must vanish identically.

Now let’s consider what happens if am − 2Mr+ω = 0. In this case the indicial
equation has a double root at α = 0 and Lemma A.1 only produces one solution near
r+. One must then consider solutions which have a logarithmic singularity at r+. The
standard theory (see [36]) then implies that a local basis of solutions is given by

{ϕ1(r), log(r − r+)ϕ2(r) + ϕ3(r)}
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where the ϕi are all holomorphic near r+, ϕ1(r+) = 1, ϕ2(r+) = 1, and ϕ3(r+) = 0. It
will be important to note that Lemma A.1 implies that ϕ1 is embedded in the family of
local solutions C.1.

Lastly, it will be useful for the bound state analysis to note that everything said in
this section so far applies verbatim to the equation

�
d

dr

(
�

d R

dr

)
− VμR − ν�R = 0 for ν ∈ R.

C.2. Infinity. The local existence theorems quoted in this section can be found in chapter
7 of [36]. Let us note that the radial ODE can be written as

d R2

dr2 +
∂r�

�

d R

dr
− Vμ
�2 R = 0

⇒ d R2

dr2 +

(
2

r
+ O(r−2)

)
d R

dr
+

(
(ω2 − μ2) +

2M(2ω2 − μ2)

r
+ O(r−2)

)
R = 0.

Let’s write ω = ωR + iωI . We will need to construct a local basis at infinity that depends
holomorphically on ω and analytically on μ.

Lemma C.1. For all ω and μ with μ2 − ω2 	∈ (−∞, 0] there is a unique ρ1(r, ω, μ)
which solves the radial ODE and satisfies

ρ2(r, ω, μ) = e−
√
μ2−ω2r r

−1− M(2ω2−μ2)√
μ2−ω2 + O

(
e−

√
μ2−ω2r r

−2− M(2ω2−μ2)√
μ2−ω2

)
.

Furthermore, ρ2 depends holomorphically on ω and μ. The square root is defined by
making a branch cut along the negative real numbers.

Proof. One can more or less extract a proof of this from the discussion of irregular
singularities in Chapter 7 section 2 of [36]. For the sake of completeness we will give
the needed slight extension. We let C denote a sufficiently large constant which can be
taken holomorphic in μ and ω. One may find a formal solution to the radial ODE of the
form

L(r, ω, μ) := e−
√
μ2−ω2r r

−1− M(2ω2−μ2)√
μ2−ω2

∞∑
j=0

a j (ω,μ)

z j

where a0 = 1 and the a j are holomorphic in ω and μ. See Chapter 7 section 1 of [36]
for the computations behind this. Let’s set

Ln(r, ω, μ) := e−
√
μ2−ω2r r

−1− M(2ω2−μ2)√
μ2−ω2

n−1∑
j=0

a j (ω,μ)

z j
.

Then

d2 Ln

dr2 +
∂r�

�

d Ln

dr
− Vμ
�2 Ln = e−

√
μ2−ω2r r

−1− M(2ω2−μ2)√
μ2−ω2 Bn(r, ω, μ)
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where Bn(r, ω, μ) ≤ Cr−n−1. Let’s look for a solution ρ2 of the form

ρ2(r, ω, μ) = Ln(r, ω, μ) + ε(r, ω, μ).

We must have

d2ε

dr2 +
∂r�

�

dε

dr
− Vμ
�2 ε = −e−

√
μ2−ω2r r

−1− M(2ω2−μ2)√
μ2−ω2 Bn

⇔ d2ε

dr2 +
(
ω2 − μ2

)
ε

= −e−
√
μ2−ω2r r

−1− M(2ω2−μ2)√
μ2−ω2 Bn − ∂r�

�

dε

dr
+

(
Vμ
�2 +

(
ω2 − μ2

))
ε.

Let’s set

K (r, t) := e
√
μ2−ω2(r−t) − e−

√
μ2−ω2(r−t)

2
√
μ2 − ω2

.

Variation of parameters gives

ε(r, ω, μ) =
∫ ∞

r
K (r, t)

(
e−

√
μ2−ω2t t

−1− M(2ω2−μ2)√
μ2−ω2 Bn(t)

−
(

Vμ(t)

�2(t)
+ ω2 − μ2

)
ε(t) +

∂t�(t)

�(t)

dε

dr
(t)

)
dt.

We may solve this by iterating in the usual fashion. Set h0(r, ω, μ) = 0 and

h j+1(r, ω, μ)

=
∫ ∞

r
K (r, t)

(
e−

√
μ2−ω2t t

−1− M(2ω2−μ2)√
μ2−ω2 Bn −

(
Vμ(t)

�2(t)
+ ω2 − μ2

)
h j (t)

+
∂t�(t)

�(t)

dh j

dr
(t)

)
dt.

It is easy to see that

|h1(r, ω, μ)| +

∣∣∣∣
dh1

dr
(r, ω, μ)

∣∣∣∣

≤ Ce−
√
μ2−ω2r r

−1− M(2ω2−μ2)√
μ2−ω2

rn

(
n +

M(2ω2 − μ2)√
μ2 − ω2

)−1

.

Then, with induction one can show that

∣∣h j+1 − h j
∣∣ (r, ω, μ) +

∣∣∣∣
dh j+1

dr
− dh j

dr

∣∣∣∣ (r, ω, μ)

≤ C j e−
√
μ2−ω2r r

−1− M(2ω2−μ2)√
μ2−ω2

rn

(
n +

M(2ω2 − μ2)√
μ2 − ω2

)− j

.
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For ω and μ in a sufficiently small compact set and sufficiently large n, the h j (r, ω, μ)
will converge uniformly in r , ω, and μ. ��

It is of course easy to pick a second holomorphic family of solutions ρ1(r, ω, μ) that
is linearly independent of ρ2. One can show (Chapter 7 of [36]) that we must then have

ρ2(r, ω, μ) ∼ e−
√
μ2−ω2r r

−1− M(2ω2−μ2)√
μ2−ω2 ,

ρ1(r, ω, μ) ∼ e
√
μ2−ω2r r

−1+ M(2ω2−μ2)√
μ2−ω2 .

Lastly, we note that a similar discussion can be carried out for the equation

�
d

dr

(
�

d R

dr

)
− VμR + ν�R = 0.

C.3. Reflection and transmission coefficients. Let’s fix some set of frequency parameters
with μ2 − ω2

R 	∈ (−∞, 0]. Above we constructed ρ(r, ω, μ) holomorphic in ω and μ
so that (r − r+)

ξρ(r, ω, μ) gives a solution to the radial ODE with the correct boundary
condition at r+. We can then introduce reflection and transmission coefficients A(ω,μ)
and B(ω,μ):

R(r, ω, μ) := (r − r+)
ξρ(r, ω, μ) = A(ω,μ)ρ1(r, ω, μ) + B(ω,μ)ρ2(r, ω, μ).

Let W (·, ·) denote the Wronskian. Then

A = W (R, ρ2)

W (ρ1, ρ2)
.

Thus A is holomorphic inω and analyticμ. Similarly, B is holomorphic inω and analytic
in μ.
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