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Abstract

We study the Gross–Pitaevskii hierarchy on the spatial domain T3. By using an
appropriate randomization of the Fourier coefficients in the collision operator, we
prove an averaged form of the main estimate which is used in order to contract the
Duhamel terms that occur in the study of the hierarchy. In the averaged estimate,
we do not need to integrate in the time variable. An averaged spacetime estimate
for this range of regularity exponents then follows as a direct corollary. The range
of regularity exponents that we obtain is α > 3

4 . It was shown in our previous joint
work withGressman (J Funct Anal 266(7):4705–4764, 2014) that the range α > 1
is sharp in the corresponding deterministic spacetime estimate. This is in contrast
to the non-periodic setting, which was studied by Klainerman and Machedon
(Commun Math Phys 279(1):169–185, 2008), where the spacetime estimate is
known to hold whenever α ≥ 1. The goal of our paper is to extend the range of α in
this class of estimates in a probabilistic sense.We use the new estimate and the ideas
from its proof in order to study randomized forms of theGross–Pitaevskii hierarchy.
More precisely, we consider hierarchies similar to the Gross–Pitaevskii hierarchy,
but in which the collision operator has been randomized. For these hierarchies, we
show convergence to zero in low regularity Sobolev spaces of Duhamel expansions
of fixed deterministic density matrices. We believe that the study of the randomized
collision operators could be the first step in the understanding of a nonlinear form
of randomization.

1. Introduction

1.1. Setup of the Problem

In this paper, we study the effect of randomization in the context of the Gross–
Pitaevskii hierarchy on the three-dimensional torusT3. Let us recall that the Gross–
Pitaevskii hierarchy is an infinite system of linear PDEs that arises naturally in
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the derivation of the nonlinear Schrödinger equation. More precisely, the Gross–
Pitaevskii hierarchy on the spatial domain � is given by:{

i∂tγ
(k) + (��xk − ��x ′

k
)γ (k) = ∑k

j=1 B j,k+1(γ
(k+1))

γ (k)
∣∣
t=0 = γ

(k)
0 .

(1)

Here, (γ
(k)
0 )k is a fixed sequence of density matrices, that is of functions γ

(k)
0 :

�k × �k → C, and (γ (k))k = (γ (k)(t))k is a sequence of time-dependent density
matrices. The set � is a spatial domain, which we take to be either Rd or Td . We
say that the density matrix γ

(k)
0 has order k. The operators ��xk and��x ′

k
are defined

to be the Laplacian in the first and second set of k spatial variables respectively. In
other words:

��xk :=
k∑

j=1

�x j , ��x ′
k

:=
k∑

j=1

�x ′
j
.

The map B j,k+1 denotes the collision operator, which is precisely defined in Sec-
tion 2. Let us note that, in this paper, we will not assume any additional symmetry
properties of the solutions to (1).

The Gross–Pitaevskii hierarchy occurs in the study of Bose–Einstein condensa-
tion, which is a state of bosonic particles at temperatures which are close to absolute
zero. The particles at this low temperature have a tendency to occupy a one-particle
state, which corresponds to the solution of a nonlinear Schrödinger equation. In this
context, the nonlinear Schrödinger equation is called theGross–Pitaevskii equation
after the work of Gross [96] and Pitaevskii [139]. The aforementioned physical
phenomenon was predicted by Bose [20] and Einstein [72] in 1924–1925. Their
theoretical prediction was experimentally verified by the teams of Cornell and
Wieman [7] and Ketterle [65], who were jointly awarded the 2001 Nobel Prize
in Physics for this discovery.

One strategy in deriving theGross–Pitaevskii hierarchy and nonlinear Schrödin-
ger type equations was developed by Spohn [149]. In this approach, the hierarchy
(1) comes from a limit of the related BBGKY hierarchy, which in turn is obtained
from the N -body Schrödinger equation of a properly scaled N -body Hamiltonian.
Making this convergence rigorous takes quite a bit of effort. In [149], the result
obtained a rigorous derivation of the nonlinear Hartree equation iut + �u = (V ∗
|u|2)u for bounded convolution potentials V = V (x) on R

d . The fact that the
convolution potential is bounded allows one to obtain a direct derivation. Later,
this strategy was extended to deal with more singular convolution potentials. More
precisely, on R

3, the work of Spohn was subsequently extended to the case of
Coulomb potentials V (x) = ± 1

|x | by Bardos,Golse andMauser [11] and Erdos
andYau [81].Akey step in this extensionwas devoted to the study of the uniqueness
of solutions to the hierarchy (1). Let us note that an alternative approach to related
problems, based on Fock space techniques was simultaneously developed by Hepp
[100] and Ginibre and Velo [88,89].

In a sequence of monumental works, Erdos, Schlein and Yau [77–80] gave
a rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on
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R
3. In the aforementioned works, a significant step was to check the uniqueness

of solutions to (1). The authors prove this claim by the use of Feynman graph
counting techniques. In a subsequent work, Klainerman and Machedon [108]
gave an alternative proof of this claim, under slightly stronger assumptions. In
particular, the authors gave a combinatorial reformulation of the Feynman graph
expansion in the form of a boardgame argument. This technique allowed them
to give a proof of uniqueness without the use of Feynman diagrams, under the
assumption of an a priori bound on the solution. In [107], Kirkpatrick, Schlein,
and the second author applied these ideas to the two-dimensional periodic setting.
In particular, they obtained a rigorous derivation of the defocusing cubic nonlinear
Schrödinger equation onT2 from the dynamics of many-body quantum systems. In
our previous joint work with Gressman, [92], we proved a conditional uniqueness
result for the Gross–Pitaevskii hierarchy on T

3, which is the 3D analogue of the
uniqueness result used in [107] for regularity strictly greater than 1. In a recent
paper, Chen,Hainzl, Pavlović, and Seiringer [39] used the Quantum de Finetti
theorem and gave an alternative proof of the uniqueness result onR3 from [77]. An
extension of the above results to the context of general rectangular tori was given
in the first author’s joint work with Herr [102].

Let us note that the periodic problem was first considered in the work of Erdos,
Schlein, andYau [76] and Elgart, Erdos, Schlein, andYau [73]. In particular,
the authors study the Gross–Pitaevskii hierarchy on T

3 and obtain all the steps of
Spohn’s strategy except for uniqueness. In the subsequent work [148], the first au-
thor proved the uniqueness step needed in the analysis of [73,76] and thus obtained
a rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on
T
3 from the dynamics of many-body quantum systems. A more detailed discussion

about related works is given in Section 1.2.
In the above works, a key step in the proof of uniqueness was the proof of a

spacetime estimate of the type:∥∥S(k,α) B j,k+1 U (k+1)(t) γ
(k+1)
0

∥∥
L2([0,T ]×�k×�k )

�
∥∥S(k+1,α)γ

(k+1)
0

∥∥
L2(�k+1×�k+1)

(2)

for a fixed regularity exponent α and for a fixed time T ∈ (0,+∞]. Here, U (k)(t)
denotes the analogue of the free Schrödinger evolution for the operator i∂t +

(
��xk −

��x ′
k

)
acting on density matrices of order k and S(k,α) denotes the operator of taking

α fractional derivatives of density matrices of order k. A precise definition of both
operators is given in Section 2. We remark that in (2), the implied constant depends
on T .

The estimate (2) is used in the step in which one wants to contract the Duhamel
terms that occur in the study of (1). The use of this spacetime bound is what allows
one to reduce what is originally a very long Duhamel expansion. The range of
exponents of α for which one can prove (2) typically determines in which regularity
class one can prove uniqueness of solutions to (1), at least by using the general
method given in [108].

In [92], itwas proved that (2) holds onT3 forα > 1.As a result,we could prove a
conditional uniqueness result for (1) onT3 in a class of density matrices possessing



420 Vedran Sohinger & Gigliola Staffilani

α > 1 fractional derivatives and satisfying an a priori bound. We refer the reader to
[92] for a precise definition. It was also shown that the factorized solutions to (1),
which come from the NLS, belong to this class. The exact definition of factorized
solutions is given in Section 2.3.

By using a specific counterexample, we showed that (2) does not hold on T
3

when α = 1. We noted that, in the special case of factorized density matrices,
the estimate does hold when α = 1. The fact that on T

3 (2) does not hold in the
endpoint case α = 1 is in sharp contrast to theR3 case [108]. Our goal in this paper
is to explore how we may extend the range of α on T

3 in a probabilistic sense.
We note that the estimate (2) was also studied in its own right in the recent work

of Beckner [13]. In these works, the author gives several higher-dimensional gen-
eralizations in the non-periodic setting. The motivation for studying the spacetime
estimate in this context is to develop a method for understanding restriction to a
non-linear sub-variety [12].

In this paper, we fix the spatial domain to be � = T
3. Our first goal is to prove

an estimate of the type (2) for a larger range of α, in an averaged sense, by using
a randomization procedure, which is precisely defined in Definition 1.5. In partic-
ular, we randomize the Fourier coefficients by multiplying them by a sequence of
independent identically distributed standard Bernoulli random variables (meaning
that their expected value is equal to 0 and their standard deviation is equal to 1).
In the nonlinear dispersive equation literature, this idea was first applied in the
work of Bourgain [22–25] on almost-sure well-posedness theory for the nonlin-
ear Schrödinger equation in low regularities. These works build on a wide range
of techniques on randomization in nonlinear dispersive equations, which were first
developed in the work of Lebowitz, Rose and Speer [114], and Zhidkov [165].
A related approach for the local problem was recently developed by Burq and
Tzvetkov [33]. We note that the general idea in all of these works is to add ran-
domness into the problem in order to extend the range of regularity exponents for
which one can study the PDE. These and other relevant sources are explained in
more detail in Section 1.2.

By using an appropriate randomization procedure, we prove the following re-
sult:

Theorem 1. Let α > 3
4 be given. There exists a constant C0 depending only on α

such that for all k ∈ N and 1 ≤ j ≤ k, the following bound holds:

∥∥∥S(k,α) [B j,k+1]ω γ
(k+1)
0

∥∥∥
L2(�×T3k×T3k )

≤ C0

∥∥∥S(k+1,α)γ
(k+1)
0

∥∥∥
L2(T3(k+1)×T3(k+1))

. (3)

The operator [B j,k+1]ω is a randomized collision operator, for a fixedω belong-
ing to the probability space �. It is obtained from the collision operator B j,k+1 by
appropriately randomizing the Fourier coefficients by means of standard Bernoulli
random variables. A precise definition is given in (23)–(25) below.
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Using (3), and the unitarity of U (k)(t), it is possible to prove that, for all T > 0:∥∥S(k,α) [B j,k+1]ω U (k+1)(t) γ
(k+1)
0

∥∥
L2(�×[0,T ]×T3k×T3k )

≤
C0

√
T
∥∥S(k+1,α)γ

(k+1)
0

∥∥
L2(T3(k+1)×T3(k+1))

, (4)

whenever α > 3
4 . The constant C0 is the same as in (3). In particular, we see that

by (4), the range of regularity exponents is extended to α > 3
4 , if one is willing to

take the L2 norm in the probability space �. This is in contrast to the deterministic
setting in which it is known that one has to restrict to α > 1 [92]. Even though the
bound (4) is a direct extension of the known bound in the deterministic setting, in
our further analysis, we have to use the stronger bound given by (3). The bound
in (3) is the content of Theorem 3.1 below. The bound in (4) is the content of
Corollary 3.2.

By using Markov’s inequality and Corollary (4), we can deduce the following
large deviation bound:

For α > 3
4 , T > 0, k ∈ N, 1 ≤ j ≤ k, and λ > 0:

P

(∥∥S(k,α) [B j,k+1]ω U (k+1)(t) γ
(k+1)
0

∥∥
L2([0,T ]×�k×�k)

≥ λ
)

≤
C2
0 T

∥∥S(k+1,α)γ
(k+1)
0

∥∥2
L2(�k+1×�k+1)

λ2
. (5)

Here, C0 is again the constant from (3). The large deviation bound (5) is the content
of Corollary 3.3. This type of large deviation bound was shown to be useful in the
study of nonlinear dispersive equations. In the context of the GP hierarchy, one has
to apply similar estimates many times when estimating the Duhamel terms. In this
context, it is easier to apply an averaged estimate as in (3) and (4) than such a large
deviation bound.

In the context of the randomized collision operator [B j,k+1]ω, one is led to the
study of the randomized Gross–Pitaevskii hierarchy, which is given by:{

i∂tγ
(k) + (��xk − ��x ′

k
)γ (k) = ∑k

j=1[B j,k+1]ω(γ (k+1))

γ (k)
∣∣
t=0 = γ

(k)
0 .

(6)

As is noted in Section 4.1, the randomized Gross–Pitaevskii hierarchy (6) admits
factorized solutions. For a fixed ω ∈ �, the sequence of density matrices given by
(γ (k))k := (|φω〉〈φω|⊗k)k solves (6) whenever φω = T ωφ is the randomization of
φ that solves the nonlinear Schrödinger equation:

i∂tφ + �φ = |φ|2φ.

The precise definition of the operator T ω is given in (40) below. We note that the
existence of factorized solutions is an important property of the (deterministic)
Gross–Pitaevskii hierarchy (1).

In light of the existence of the factorized solutions of (6), we can view the ran-
domized collision operator as corresponding to a randomization in the nonlinearity.
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More precisely, in (43) in Section 4.1 below, we note that the function φω, from
which we build the factorized solution, solves the equation:

i∂tφ
ω + �φω = T ω

(
|T ωφω|2 · T ωφω

)
.

This is a nonlinear Schrödinger equation with a random nonlinearity. The random
nonlinearity is encoded in the random collision operator via the above construction
of factorized solutions to (6).

An interesting open problem would be to obtain a (non-deterministic) criterion
for uniqueness of solutions to (6) in a class which contains the natural energy space
of time-dependent density matrices. This is the class of (γ (k)(t)), for which there
exists a constant C > 0 such that for all k ∈ N, the following energy bound holds:

‖S(k,1)γ (k)(t)‖L2(�k×�k ) ≤ Ck

uniformly in time. Here, S(k,1) is the differentiation operator which is precisely
defined in (20). As a first step in this direction, one would be interested in studying
the Duhamel expansions corresponding to the homogeneous problem associated to
(6).

More precisely, in order to prove any type of uniqueness result for (6), one
would have to argue as in the deterministic setting and study the problem:{

i∂tγ
(k) + (��xk − ��x ′

k
)γ (k) = ∑k

j=1[B j,k+1]ω(γ (k+1))

γ (k)|t=0 = 0.

and one would have to find a criterion for (γ (k))k such that the Duhamel terms:

σ
(k)
n;ω

(tk) := (−i)n
∫ tk

0

∫ tk+1

0
· · ·∫ tn+k−1

0
U (k)(tk − tk+1) [B(k+1)]ω U (k+1)(tk+1 − tk+2)

[B(k+2)]ω · · · U (n+k−1)(tn+k−1 − tn+k)

[B(n+k)]ω γ (n+k)(tn+k) dtn+k · · · dtk+2 dtk+1 (7)

converge to zero in an appropriate norm as n → ∞. Here, we assume that k ∈ N and
tk ∈ R are fixed and we use the shorthand notation: [B(�+1)]ω := ∑�

j=1[B j,�+1]ω.

In the definition of σ
(k)
n;ω

, k denotes the order of the density matrix, n denotes the
length of the Duhamel expansion andω is a fixed parameter in the probability space
�. There are several difficulties in applying the technique used in the deterministic
setting. Arguing by analogy with the deterministic setting, one would want to apply
the spacetime estimate (4) in order to contract the Duhamel term. The main issue
is that, in (4), the density matrix γ

(k+1)
0 is not allowed to depend on ω. In the

expansion (7), there is dependence on ω in each collision operator [B(�+1)]ω for
� = k, . . . , n − 1. Moreover, the density matrix γ (n+k) depends, in principle, on ω

in a complicated way. In any case, it is not possible to apply the spacetime bound
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in order to contract the terms as was the case in the deterministic setting. This point
is explained in Section 6.1.

Oneway of dealingwith the difficulty of theω-dependence of all of the collision
operators [B(�+1)]ω is to modify the problem and to look at the independently ran-
domized Gross–Pitaevskii hierarchy, that is, given a sequence (ωk)k≥2 of elements
in the probability space �, we look at the hierarchy:{

i∂tγ
(k) + (��xk − ��x ′

k
)γ (k) = ∑k

j=1[B j,k+1]ωk+1(γ (k+1))

γ (k)|t=0 = γ
(k)
0 .

(8)

In other words, the randomizations in the collision operators at different levels are
now independent of each other. We symbolize this by denoting the randomization
parameters ωk+1 differently. The hierarchy (8) is a generalization of (6) in the
sense that it reduces to the latter hierarchy when all of the ωk+1 are mutually equal.
However, it is no longer true in general that (8) admits factorized solutions, see
Section 5.1.

When studying the homogeneous problem associated to (8), one is led to the
study of the following Duhamel terms:

σ
(k)
n;ωk+1,ωk+2,...,ωn+k

(tk) := (−i)n
∫ tk

0

∫ tk+1

0
· · ·∫ tn+k−1

0
U (k)(tk − tk+1) [B(k+1)]ωk+1 U (k+1)(tk+1 − tk+2)

[B(k+2)]ωk+2 · · · U (n+k−1)(tn+k−1 − tn+k)

[B(n+k)]ωn+k γ (n+k)(tn+k) dtn+k · · · dtk+2 dtk+1. (9)

We note that the superscript k denotes the order of the density matrix, the subscript
n denotes the length of the Duhamel expansion, and ωk+1, ωk+2, . . . , ωn+k are
independently chosen elements of the probability space �. In this form, it is still
the case that γ (n+k) has a complicated dependence on (ωk+1, ωk+2, . . . , ωn+k).

We deal with the last difficulty by fixing a deterministic sequence of time-
dependent density matrices (γ (k)(t))k satisfying the a priori bound

‖S(k,α)γ (k)(t)‖L2(T3k×T3k ) ≤ Ck
1 (10)

for some constant C1 > 0, which is independent of k and t . Here, we do not
assume that (γ (k))k solves (8). The a priori condition is natural in the sense that
it is satisfied globally in time for factorized solutions to (1) and (6) when α = 1,
and it is satisfied locally in time for factorized solutions when α > 1. The latter
observation can be deduced from [21]. Moreover, sequences of density matrices
satisfying such a priori bounds were shown to arise naturally in the study of the
Cauchy problem for the GP hierarchy in the recent work of Chen and Pavlović
[41–45].

We now define σ
(k)
n;ωk+1,ωk+2,...,ωn+k

analogously as in (9), keeping in mind that

the sequence (γ (k)(t))k is a fixed sequence of time-dependent density matrices
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which do not necessarily solve (8). We now fix n ∈ N and we look at γ̃ (k) for
k = 1, . . . , n given by:

γ̃ (1) := σ
(1)
n;ω2,ω3,ω4,ω5,..., ωn+1

γ̃ (2) := σ
(2)
n−1;ω3,ω4,ω5,..., ωn+1

γ̃ (3) := σ
(3)
n−2;ω4,ω5,..., ωn+1

...

γ̃ (n) := σ
(n)
1;ωn+1

.

The γ̃ (k) then solve, by construction:

{
i∂t γ̃

(k) + (��xk − ��x ′
k
)γ̃ (k) = ∑k

j=1[B j,k+1]ωk+1(γ̃ (k+1))

γ̃ (k)
∣∣
t=0 = 0,

for all k ∈ {1, 2, . . . , n − 1}. In other words, we obtain an arbitrarily long subset
of solutions to the full hierarchy (8) with zero initial data.

It is now possible to apply the estimate (3) in order to study the Duhamel terms
σ

(k)
n;ωk+1,ωk+2,...,ωn+k

. We can prove the following:

Theorem 2. Suppose that α > 3
4 and k ∈ N. There exists T > 0 depending only

on the constant C1 in (10) and on α such that:

sup
t∈[0,T ]

∥∥S(k,α)σ
(k)
n;ωk+1,ωk+2,...,ωn+k

(t)
∥∥

L2
(
�k+1×�k+2×···×�n+k ; L2(T3k×T3k )

) → 0

(11)

as n → ∞.

Moreover,

sup
t∈[0,T ]

∥∥S(k,α)σ
(k)
n;ωk+1,ωk+2,...,ωn+k

(t)
∥∥

L2
(∏

m≥2 �m ;L2(T3k×T3k )
) → 0 (12)

as n → ∞.

This result is proved as Theorem 5.2 in Section 5.2. As is noted in Remark 3.7, it
is possible to prove Theorem 2 when � = T

d , for d ≥ 1 provided that α > d
4 .

Throughout our paper, we mostly study the case � = T
3, since in [92] we were

able to describe the full range of regularity exponents which are admissible in the
estimate (4).We note that the norm in (12) is well-defined due to a result first proved
by work of Kakutani [106], which builds on the previous work by Kolmogorov
[111]. The significance of taking this norm, compared to the one in (11), is that, in
this way, we measure convergence in a space which is independent of n.

Let us emphasize that the time interval T in the above theorem is independent
of n. As we will see in the proof, it is the case that T ∼ 1

C1
. In other words, we

obtain uniform convergence to zero of the Duhamel terms as n → ∞ in a fixed
norm on a fixed time interval.
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As was remarked earlier, the spacetime estimate (4) is not directly applicable
in the study of the randomized Gross–Pitaevskii hierarchy (6). In this context, one
would like to prove an estimate of the form:∥∥S(n,α) U (n)(t1 − t2) [B±

j1,k1
]ω U (n+1)(t2 − t3) [B±

j2,k2
]ω · · ·

· · · U (n+�−1)(t� − t�+1) [B±
j�,k�

]ω γ
(n+�)
0

∥∥
L2(�×T3n×T3n)

≤ C
∥∥S(n+�,α)γ

(n+�)
0

∥∥
L2(T3(n+�)×T3(n+�))

(13)

for all sequences of densitymatrices (γ (k)
0 )k , and forn, � ∈ N, j1, . . . j�, k1, . . . , k� ∈

N, with 1 ≤ j1 < k1 ≤ n + �, . . . , 1 ≤ j� < k� ≤ n + � and t1, t2, . . . , t�+1 ∈ R.
The fact that (13) holds when n = 1 and α > 3

4 follows from (4). However,
it is shown in Section 6.1 that, for general density matrices, we cannot use the
randomization to obtain this type of bound. In this subsection, we note that the
pairing of the frequencies as a result of the randomization does not allow us to
close the estimate in the case n = 2 as it did in the case when n = 1. The argument
for n ≥ 3 similarly does not apply.

The good news is that the estimate (13) holds if we restrict the density matrices
to lie in an appropriate non-resonant class. This is similar to the idea of Wick-
ordering [24,61] and related ideas applied in [128] in the context of the nonlinear
Schrödinger equation. In fact, we will work in the non-resonant class N , which
is precisely defined in Section 6.4. We note that this class does not contain the
factorized solutions to (6). As we will see, it is an important matter to examine the
behavior of the constant C obtained in (13) in terms of n and �. The exact estimate
is given in Theorem 6.4 of Section 6.4.

We again consider a time-dependent deterministic sequence of density matrices
(γ (k)(t)). Unlike as in the previous case, we assume that, for each fixed t , the
sequence (γ (k)(t))k belongs to the non-resonant classN . As a part of the definition,
we assume that the sequence of density matrices satisfies an a priori bound as in
(10). Having chosen such a sequence (γ (k)), we define σ

(k)
n;ω

(t) as in (9). In this
way, we again obtain an arbitrarily long subset of solutions to the hierarchy (6).

We are now in the position to apply the randomized spacetime estimate to
the study of σ

(k)
n;ω

, that is of Duhamel expansions of order n of elements of the
non-resonant class N . In particular, we can prove:

Theorem 3. Suppose that α ≥ 0 and k ∈ N. There exists T > 0, depending only
on the constant C1 in the definition of the class N , α, and on k such that:

sup
t∈[0,T ]

∥∥S(k,α)σ
(k)
n;ω

(t)
∥∥

L2
(
�×T3k×T3k

) → 0 (14)

as n → ∞.

Remark 1.1. Let us observe that now, the range of regularity exponents has been
extended to α ≥ 0. This is a significant step in the direction of the understanding
of the low-regularity problem for Gross–Pitaevskii type hierarchies. Theorem 3 is
given below as Theorem 6.4.
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Remark 1.2. We note that, due to the presence of only one random parameter
ω ∈ �, the norm in (14) of Theorem 3 is simpler than the one in Theorem 2.

Remark 1.3. The analysis in Theorem3 extendswithout any changes to the general
case of � = T

d , for d ≥ 1.

Remark 1.4. We note that the results of Theorems 2 and 3 estimate the Duhamel
expansions similar to those obtained in the uniqueness analysis in the deterministic
setting, as in [41,42,92,107,108]. The results of Theorems 2 and 3 show that
these Duhamel expansions converge to zero in a class of density-matrices in a
low-regularity space with a random component.

In the subsequent work of the first author [147], it was shown that the full
randomized hierarchies (6) and (8) have local-in-time solutions for almost every
value of the random parameter. This is an existence result which was motivated
by truncation techniques used by Chen and Pavlović [44] in the deterministic
context. In [147], such solutions of (6) are obtained for regularities is α > 3

4 , and
solutions of (8) are obtained for regularitiesα ≥ 0. As is the case in the assumptions
of Theorem 3, the initial data for (8) in [147] needs to belong to an appropriate
non-resonant class.

1.2. Previously Known Results

In addition to the references mentioned above, there is a vast literature on the
connection between the derivation of NLS-type equations and hierarchies of the
type (1) and related problems. The derivation of a hierarchy similar to (1) com-
ing from the limit of N -body Schrödinger dynamics was obtained in [1,2,11,15–
17,45,48,51–57,74,84–87,124,162] in various different contexts. The first rate of
convergence result was obtained by Rodnianski and Schlein [145] and subse-
quent rate of convergence results have been obtained in [6,17,38,49,50,75,85,93–
95,110,115,121,124,137,138]. The Cauchy problem associated to a hierarchy as
in (1) has been studied in its own right in [41–44,46,47,59]. A new uncondi-
tional uniqueness result for the cubic Gross–Pitaevskii hierarchy on R

3, based on
the Quantum de Finetti theorem has recently been obtained by Chen, Hainzl,
Pavlović, and Seirenger in [39]. These techniques have been adapted in order
to show scattering results in the context of the Gross–Pitaevskii hierarchy in [40].
Low regularity extensions of this method have been obtained in [103], as well as
in the case of three-body interactions [104]. The periodic analogue of the methods
from [39] was an important step in [147]. Recently, the Quantum de Finetti was
also used in the study of the Chern–Simons–Schrödinger hierarchy in [58].

Important results related to the Gross–Pitaevskii hierarchy have been studied on
the level of the N -body Schrödinger equation in the series of works [117,119,120]
with an expository account given in [118].We refer the reader to the introduction of
[92] for a more precise discussion of the problem and of the references mentioned
above.Wewould also like to recall the connectionwith certain optical latticemodels
that have been studied in [4,5]. For a detailed introduction to the general problem,
we also refer the interested reader to the lecture notes by Schlein [146].
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An approach based on randomization has been useful in the study of low-
regularity solutions to nonlinear dispersive equations. In particular, randomization
techniques have been applied in the context where the low regularity techniques of
the high-low method as in the work of Bourgain [26] or the I-method, as in the
work of Colliander, Keel, Staffilani, Takaoka, and Tao [60] are known not
to work. As was mentioned in the introduction, this probabilistic approach was first
used by Bourgain [22–25] and it has its origins in previous work of Lebowitz,
Rose, and Speer [114], and Zhidkov [165]. The main idea is that global existence
can be studied by means of the existence of a Gibbs measure and its invariance
under the flow. The properly constructed Gibbs measure is supported away from
the set of initial data for which the above deterministic methods do not apply.

The Gibbs measure approach is only known to be applicable in the context in
which there exists a Hamiltonian structure. In a more general context, the idea of
a direct randomization of the Fourier coefficients without the use of an invariant
Gibbs measure has been shown to be useful. One randomizes the function f =∑

n cneinx by multiplying each Fourier coefficient cn with hn(ω), where hn(ω)

are independent, identically distributed standard random variables whose expected
value is zero. The precise definition is given in Definition 1.5 below.

In the context of nonlinear dispersive PDE, this idea was pioneered in the work
of Burq and Tzvetkov [33]. A key fact in this work is the fact that, due to the
randomization, one can obtain improved L p regularity in the initial data almost
surely. This is a phenomenon which was first noted in work of Rademacher [142]
and Paley and Zygmund [134–136]. Related results were also proved in the work
of Marcinkiewicz and Zygmund [123] and Khintchine, see [161]. We also note
the work [8], in which the authors study the special case of Gaussian random series
in which some of these observations can be deduced by alternative means. It is
noted in [33] that the randomization does not improve regularity on the Sobolev
scale almost surely. Hence, all of the gain has to be obtained due to the almost
sure gain in integrability. Let us remark that the idea of a gain in integrability due
to randomization is related to the more general phenomenon of hypercontractivity
[82,90,97,98,129].

In addition to the mentioned works, there is a wide range of results on the
application of randomization to nonlinear dispersive PDEs. We refer the interested
reader to the works [18,19,28–36,61,68–70,122,125,126,130–133,144,150–158,
163], as well as to the expository works [27,166] and to the references therein.
Furthermore, we note that the idea of randomization of the Fourier coefficients
without the use of an invariant measure has also been applied in the context of
the Navier-Stokes equations. The relevant works are [66,67,127,164]. By applying
this method, the authors were able to obtain existence results almost surely in
supercritical regimes.

Probabilistic methods have previously been applied in the context of the N -
body Schrödinger equation, but in a slightly different context. In the work [14], it
is proved that the fluctuations around the limiting dynamics given by the Hartree
equation satisfy a central limit theorem. This approach builds on previous central
limit theorems in a quantum setting [63,64,91,99,101,105,113].
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An alternative probabilistic approach was taken in [3]. Here, the authors con-
sider a many-body system of mutually repellent bosons and they derive an explicit
variational expression for the corresponding limiting free energy. In doing so, they
use the cycle structure of random paths which appear in the Feynman–Kac for-
mula. The main novelty of this paper is to recast the whole interacting system as
an expectation with respect to a marked Poisson process. Methods involving point
processes were previously applied in the study of Bose gases without interaction
in [83,143].

In [37], the authors analyze the fluctuations of the Bose–Einstein condensate
for a system of non-interacting bosons with a potential. The system is assumed to
modeled according to the canonical ensemble. In this context, the authors give a
rigorous proof of Bose–Einstein condensation with positive probability assuming
that the temperature is sufficiently low. The probability measure on the space of
configurations is the canonical Gibbs measure.

In a recent preprint Lewin, Nam, and Rougerie [116] show that the nonlinear
Gibbs measure associated to the nonlinear Schrödinger equation, can be obtained
from the corresponding many-body grand canonical quantum Gibbs states. This
result is shown in the one-dimensional case for the standard NLS, and in higher
dimensions for specific forms of the interaction. We note that related results on
lattices were also proved in [109].

Probabilistic techniques have been applied to the study of N -body Schrödinger
problems in the experimental literature aswell. In particular,wenote thework [112].
Here, the experiment is based on applying a randomized Monte Carlo method of
thermodynamic measurements of a unitary Fermi gas across the superfluid phase
transition. In this way, it is possible to validate the theory of strongly interacting
matter given by Bardeen, Cooper and Schrieffer [9,10,62]. It is also noted that
similar probabilistic methods can be applied in the study of other physical systems,
such as two-dimensional Bose and Fermi gases as well as fermions in optical
lattices. The precise formulation of the randomization method, that is the Bold
diagrammatic Monte Carlo (BDMC), was first developed in [140,141,159]. This
approach was also used in [160] in the context of formal summation of Feynman
graphs.

1.3. Ideas and Techniques used in the Proofs

Let us first recall the definition of the randomization of a function. Here� = T
d

is the spatial domain.

Definition 1.5. Given f ∈ L2(�), with Fourier series
∑

n cneinx and a sequence
of independent, identically distributed random variables with expected value zero
(hn(ω)), we define the function f ω by:

f ω :=
∑

n

hn(ω)cneinx , (15)

f ω is called the randomization of f .
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As was mentioned above, one of the big improvements obtained by randomiza-
tion is the gain of integrability, almost surely. More precisely, given a sequence of
independent identically distributed randomBernoulli or Gaussian random variables
(hn(ω)), centered at zero, one obtains that for all 1 < p < ∞:

∥∥∑
n

hn(ω)cn
∥∥

L p(�)
≤ C(p)

(∑
n

|cn|2
) 1

2

. (16)

We observe that this is a better bound than the bound C(p)
(∑ |cn|

)
, which imme-

diately follows from the triangle inequality. For a proof of (16), we refer the reader
to the proof of Lemma 4.2 in [33].

We can then use Fubini’s theorem, (16) with cn := f̂ (n) · einx and Plancherel’s
Theorem in order to deduce that:

‖ f ω‖L p(�×�) ≤ C(p)‖ f ‖L2 .

In this way, the randomization gives us a gain in integrability, almost surely.
It is instructive to recall the main idea of the proof of (16). One typically takes p

to be an even integer, since the other cases can be deduced by interpolation. Taking
p-th powers of the left-hand side in (16), we obtain a sum of terms of the type:

∫
�

hn1(ω) · · · hnk (ω) · hm1(ω) · · · hm�
(ω) · cn1 · · · cnk · cm1 · · · cm�

dp(ω)

for some k, � ∈ Nwith k+� = p. Since the randomvariables aremutually indepen-
dent and since they have expected value equal to zero, the above expression equals
to zero if an ni or and m j occurs exactly once in the set {n1, . . . , nk, m1, . . . , m�}.
Hence, each frequency must pair up with at least one of the other frequencies or
else the contribution equals zero. This observation reduces the original sum one is
considering in (16). The claim then follows by using Hölder’s inequality. We note
that this argument works in all dimensions.

In applications of randomization techniques to the study of nonlinear PDE,
which were mentioned above, one usually randomizes in the initial data. In partic-
ular, if one considers an NLS-type equation:

{
i∂t u + �u = N (u)

u
∣∣
t=0 = u0

for some power-type nonlinearity N (u), one typically takes the initial data to be
random. In other words, one considers u0 = φω, in the sense discussed in Defi-
nition 1.5 above. Here φ = φ(x) is a fixed deterministic function. As was noted
earlier, the function φω exhibits better integrability properties than the function φ,
on average. The key step is then to write:

u = eit�φω + v
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and to note that the function v satisfies the following Cauchy problem, with homo-
geneous initial data: {

i∂tv + �v = N (eit�φω + v)

v
∣∣
t=0 = 0.

(17)

In solving for v in (17), one uses a fixed point argument. One controls the terms
coming from eit�φω in a higher L p space. More precisely, one uses the gain of
integrability almost surely combined with a large deviation bound to note that the
corresponding L p norm of the linear part is bounded for a large set of ω ∈ �. A
quantitative estimate on themeasure of the good set ofω is given by a large deviation
bound, which is typically deduced by Markov’s inequality. One can apply all of
these facts and use Hölder’s inequality to note that the nonlinear term satisfies the
right estimate from which one can apply a fixed point argument, for ω belonging
to a good subset of �. An important step in this approach is to use the fact that, in
the expression N (eit�φω + v), the only first-order terms in v are multiplied with a
factor of eit�φω, which is bounded in a higher L p norm.

The above approach does not apply to the study of the Gross–Pitaevskii hier-
archy since the problem is now linear. Namely, let us consider the problem with
random initial data:{

i∂tγ
(k) + (��xk − ��x ′

k
)γ (k) = ∑k

j=1 B j,k+1(γ
(k+1))

γ (k)
∣∣
t=0 = γ

(k)
0,ω.

We now write:

γ (k) = U (k)(t) γ
(k)
0,ω + γ̃ (k).

The γ̃ (k) now solve the following problem with homogeneous initial data:{
i∂t γ̃

(k) + (��xk − ��x ′
k
)γ̃ (k) = ∑k

j=1 B j,k+1
(U (k+1)(t)γ (k+1)

0,ω + γ̃ (k+1)
)

γ̃ (k)
∣∣
t=0 = 0.

(18)

We note that the operator B j,k+1 is linear so the right-hand side in (18) equals:

k∑
j=1

B j,k+1
(U (k+1)(t)γ (k+1)

0,ω

) +
k∑

j=1

B j,k+1
(
γ̃ (k+1)).

In other words, the free evolution of the random part given by U (k+1)(t) γ
(k+1)
0,ω and

the remainder γ̃ (k+1) on the right-hand side are completely decoupled. As a result,
there is no small factor multiplying the term which one would want to estimate,
that is

∑k
j=1 B j,k+1

(
γ̃ (k+1)

)
.

Due to the phenomenon discussed above, we randomize in the collision opera-
tor, instead of in the initial data. This approach can be viewed as a first step in the
direction of a nonlinear form of randomization, since the collision operator on the
level of the Gross–Pitaevskii hierarchy corresponds to the nonlinearity on the level
of the nonlinear Schrödinger equation. A remark on what is possible to say when
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one randomizes in the initial data in the context of the Gross–Pitaevskii hierarchy
is given in Section 3.1.

An additional motivation for randomizing the collision operator is that doing
so helps us obtain a gain in integrability and thus prove a randomized version of
the spacetime estimate (2) for a larger class of α. More precisely [c.f. (21) and (22)
below], on the Fourier transform side, the collision operator involves a sum in the
frequencies as follows:(

B1,k+1γ
(k+1)
0

)̂(�ξk; �ξ ′
k)

=
∑

ξk+1,ξ
′
k+1∈Z3

γ̂0
(k+1)(ξ1 − ξk+1 + ξ ′

k+1, ξ2, . . . , ξk, ξk+1; ξ ′
1, . . . , ξ

′
k, ξ

′
k+1)

−
∑

ξk+1, ξ
′
k+1∈Z3

γ̂0
(k+1)(ξ1, . . . , ξk, ξk+1; ξ ′

1 − ξ ′
k+1+ξk+1, ξ

′
2, . . . , ξ

′
k, ξ

′
k+1).

Our goal is to multiply the summands in the above formula with appropriate
random coefficients in such a way that we can apply the techniques used in the
proof of (16) in the context of the spacetime estimate (2). The randomization given
in (23) and (24) below is the one which leads to the randomized spacetime bound
given by (3).

We recall that in [92], the proof of the spacetime estimate relied on the dispersive
effect of the free evolutionU (k+1)(t). In the randomized setting, we only use the fact
that this operator is unitary on L2-based spaces. It is the pairing of the frequencies
which ultimately gives us the gain. This is a common phenomenon in the study
of nonlinear dispersive equations by means of randomization. As a result of the
proof, we will be able to prove an estimate on a quantity which does not involve an
integral in time, as is seen in (3).

It is also possible that the range of α in (4) could be extended by using disper-
sive properties of U (k+1)(t) by using similar ideas as in [24]. We will not pursue
this approach in our paper. We remark that such an improvement could only be
applicable in estimates in which the norms involve integration in time. As we will
see, norms which do not involve integrals in time are more applicable to the study
of randomized Gross–Pitaevskii hierarchies.

As was noted above, the construction of the randomized collision operator
leads to the study of the randomized Gross–Pitaevskii hierarchy (6) and of the
independently randomized Gross–Pitaevskii hierarchy (8). The randomized Gross–
Pitaevskii hierarchy (6) shares a lot with properties of the regular Gross–Pitaevskii
hierarchy, such as the existence of factorized solutions and of the applicability of
the boardgame argument. As in the deterministic setting, we need to assume that
our density matrices are invariant under permutation of the spatial variables �xk and
�x ′

k in order to apply the boardgame argument. Due to the dependent randomization,
we will not be able to apply the randomized spacetime estimate (3) directly in this
context. More precisely, we can only apply the averaged spacetime estimate to one
Duhamel iteration, and as soon as we do at least two iterations of the Duhamel
principle, we can no longer directly use Theorem 3.1. The reason is that we would
have to estimate a quantity of the type:
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∥∥S(k,α)[B j,k+1]ωγ
(k+1)
0,ω

∥∥
L2(�×�k×�k)

where γ
(k+1)
0,ω depends on ω. The proof of Theorem 3.1 relies heavily on the fact

that γ
(k+1)
0 is independent of ω, which, in turn, allows us to deduce the pairing of

the frequencies.
One way of getting around this difficulty is to work with the independently

randomized GP hierarchy (8). However, in this case we have to be careful and
recall that it is not possible to apply the boardgame argument in this context. The
problem in applying the boardgame argument lies in the fact that, in the integrals
given by theDuhamel expansion, it is possible to interchange the tk and xk variables,
but it is not possible to interchange the ωk variables. Nonetheless, in the context of
the independently randomized Gross–Pitaevskii hierarchy, we can directly apply
the spacetime estimate (3) in order to show (11).

An important observation in the proof of (11) is that, in (3), we do not need
to put the free evolution U (k+1)(t) and a time integral inside of the norm in order
to obtain the estimate. As a result, we can just use the unitarity of Uk+1(t). An
important fact which we use is the gain of 1

n! in the integral identity:∫ tk

0

∫ tk+1

0
· · ·

∫ tn+k−1

0
dtn+k · · · dtk+2 dtk+1 = tn

k

n! . (19)

This gain was previously used in the study of the Gross–Pitaevskii hierarchy on R
in [42]. As a result, we can control the factorial number of Duhamel termswhich we
obtain in the expansion. Consequently, we can prove Theorem 5.2 with a quantity
T > 0, which is independent of n.

A possible approach in the context of the hierarchy (6) is to argue directly and
prove a good spacetime estimate for higher-order Duhamel expansions without
directly using (3). This reduces to a purely combinatorial problem of possible
pairings of the frequencies. However, as is shown in Section 6.1, it is not possible
to prove a good spatial estimate in the class of general density matrices by applying
the combinatorial method used to prove (3). In Section 6.4, an appropriate spatial
estimate is shown if one imposes an additional condition of non-resonance, similar
to [24,61,128]. In fact, by working in the non-resonant classes, we are able to prove
an estimate in a regime which allows us to go all the way down to the regularity
of L2, that is to α = 0. By studying the randomized Gross–Pitaevskii hierarchy in
this, we show (14).

1.4. Organization of the Paper

In Section 2, we recall and define the relevant notation. In particular, in Sec-
tion 2.1, we recall the definition of the Fourier transform and differentiation of
density matrices, whereas in Section 2.2, we recall the definition of the collision
operator and we give a precise definition of the randomized collision operator. The
concept of a factorized solution is reviewed in Section 2.3.

In Section 3, we prove the main randomized spacetime estimate in the strong
form given by (3). This is the content of Theorem 3.1. In Section 3.1, we explore a
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different formof randomization,where the initial data is now randomandweexplain
the difficulties of this approach in the context of the Gross–Pitaevskii hierarchy.

Section 4 is devoted to the study of the randomized Gross–Pitaevskii hierarchy.
More precisely, in Section 4.1, we explore the connection between the randomized
Gross–Pitaevskii hierarchy and the nonlinear Schrödinger equation. In Remark 4.1,
we comment on the boardgame argument in the context of the randomized Gross–
Pitaevskii hierarchy.

The independently randomized Gross–Pitaevskii hierarchy is precisely defined
in Section 5. In Section 5.1, we explain some of the aspects in which this hier-
archy is different from the (dependently) randomized Gross–Pitaevskii hierarchy
as well as from the deterministic Gross–Pitaevskii hierarchy. In the study of the
independently randomized Gross–Pitaevskii hierarchy, it is possible to apply the
randomized spatial estimate given by Theorem 3.1. This is done in Section 5.2.
As a result, we obtain convergence to zero of a sequence of Duhamel terms in a
low-regularity space containing a random component in Theorem 5.2.

We revisit the (dependently) randomized Gross–Pitaevskii hierarchy in Sec-
tion 6. In particular, in Section 6.1, we give an example showing that the methods
used to prove Theorem 3.1 do not apply to the study of higher-order Duhamel
expansions. In Section 6.2, we explicitly write out a Duhamel expansion of order
�. We also give a specific example of the expansion when � = 3 for illustration
purposes. In Section 6.3, we define a class N of non-resonant density matrices
and, and we henceforth study Duhamel expansions corresponding to the depen-
dently randomized Gross–Pitaevskii hierarchy of elements in this non-resonant
class. More precisely, we prove a randomized spatial estimate for Duhamel expan-
sions of arbitrary order starting from a density matrix in N in Section 6.4. As a
result, it is possible to deduce a convergence to zero of these Duhamel expansions
in a low-regularity space containing a random component. This result is given in
Theorem 6.4 of Section 6.5.

2. Notation

Let us first introduce some notation. Given two positive quantities A and B, we
write A � B if there exists some constant C > 0 such that A ≤ C B. If the quantity
C depends on q, we write C as C(q). We write A ≤ C(q)B also as A = Oq(B) or
as A �q B. If A �q B and B �q A, we write A ∼q B. In our paper, we sometimes
abbreviate the Gross–Pitaevskii hierarchy as the GP hierarchy.

2.1. Fourier Transform and Differentiation of Density Matrices

Throughout our paper, we fix the spatial domain � to be the three-dimensional
torus T3, unless it is otherwise specified. Given f ∈ L2(�) and ξ ∈ Z

3, we define
the Fourier transform of f evaluated at ξ by:

f̂ (ξ) :=
∫

�

f (x)e−i〈x,ξ〉 dx .
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Here, the quantity 〈·, ·〉 denotes the inner product on R
3.

When considering density matrices γ
(k)
0 : �k × �k → C, we use the same con-

vention as in [92] to define:(
γ

(k)
0

)̂(�ξk; �ξ ′
k

)
:=

∫
�k×�k

γ
(k)
0

(�xk; �x ′
k

)
e
−i ·∑k

j=1〈x j ,ξ j 〉+i ·∑k
j=1

〈
x ′

j ,ξ
′
j

〉
d�xk d�x ′

k

for �ξk = (ξ1, . . . , ξk), �ξ ′
k = (ξ ′

1, . . . , ξ
′
k) ∈ (Z3)k . In this way, the definition of the

Fourier transform of density matrices is consistent with the definition of factorized
solutions for the GP hierarchy (1). In what follows, we will usually write (γ

(k)
0 )̂

as γ̂0
(k) for simplicity of notation.When a density matrix involves more operations,

such as differentiation, we will use the first notation of the Fourier transform as in
(20) below.

The free evolution corresponding to i∂t + (
��xk − ��x ′

k

)
, acting on density ma-

trices of order k is defined as:

U (k)(t)γ (k)
0 := eit

∑k
j=1 �x j γ

(k)
0 e

−i t
∑k

j=1 �x ′
j .

By construction, it is then the case that:(
i∂t + (��xk − ��x ′

k
)
)
U (k)(t)γ (k)

0 = 0.

Given a regularity parameterα, we define the operator of differentiation of order
α on density matrices of order k by using the Fourier transform:(

S(k,α)γ
(k)
0

)̂(ξ1, . . . , ξk; ξ ′
1, . . . , ξ

′
k)

:= 〈ξ1〉α · · · 〈ξk〉α · 〈ξ ′
1〉α · · · 〈ξ ′

k〉α · γ̂0
(k)(ξ1, . . . , ξk; ξ ′

1, . . . , ξ
′
k). (20)

Here, we define the Japanese bracket to be

〈x〉 :=
√
1 + |x |2.

In other words, we can write:

S(k,α)γ
(k)
0 =

k∏
j=1

(1 − �x j )
α
2 (1 − �x ′

j
)

α
2 γ

(k)
0 .

2.2. The Collision Operator and the Randomized Collision Operator

Let us recall the definition of the collision operator B j,k+1 for k ∈ N and for
j ∈ {1, . . . , k}. The operator B j,k+1 acts on density matrices of order k + 1 and it
is defined by:

B j,k+1 = B+
j,k+1 − B−

j,k+1,

where:

B+
j,k+1

(
γ

(k+1)
0

)
(�xk; �x ′

k) :=
∫

�

δ(x j − xk+1)γ
(k+1)
0 (�xk, xk+1; �x ′

k, xk+1) dxk+1
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and

B−
j,k+1

(
γ

(k+1)
0

)
(�xk; �x ′

k) :=
∫

�

δ
(

x ′
j − xk+1

)
γ

(k+1)
0

(�xk, xk+1; �x ′
k, xk+1

)
dxk+1.

Hence, for example, when j = 1:

B1,k+1
(
γ

(k+1)
0

)
(�xk; �x ′

k) = γ
(k+1)
0 (�xk, x1; �x ′

k, x1) − γ
(k+1)
0 (�xk, x ′

1; �x ′
k, x ′

1).

The calculation for general j ∈ {1, . . . , k} is similar. In particular, we note that
B j,k+1 is a linear map which takes density matrices of order k + 1 to density
matrices of order k.

One can then compute that the Fourier transform of B+
1,k+1

(
γ

(k+1)
0

)
is given by:(

B+
1,k+1γ

(k+1)
0

)̂(�ξk; �ξ ′
k

)
=

∑
ξk+1, ξ

′
k+1∈Z3

γ̂0
(k+1) (ξ1 − ξk+1 + ξ ′

k+1, ξ2, . . . , ξk, ξk+1; ξ ′
1, . . . , ξ

′
k, ξ

′
k+1

)
.

(21)

Furthermore, the Fourier transform of B−
1,k+1γ

(k+1)
0 is given by:(

B−
1,k+1γ

(k+1)
0

)̂(�ξk; �ξ ′
k

)
=

∑
ξk+1, ξ

′
k+1∈Z3

γ̂0
(k+1) (ξ1, . . . , ξk, ξk+1; ξ ′

1 − ξ ′
k+1 + ξk+1, ξ

′
2, . . . , ξ

′
k, ξ

′
k+1

)
.

(22)

We note that in the calculation for B−
1,k+1 the ξk+1 and ξ ′

k+1 come with a different
sign, which is a consequence of our definition of the Fourier transform of a density
matrix. The calculation for general B±

j,k+1 is similar.
We now randomize the collision operator B j,k+1 in order to obtain the random-

ized collision operator [B j,k+1]ω. In order to define the latter operator, we use the
Fourier transform. Let us take (hξ )ξ∈Z3 to be a sequence of independent, identically
distributedBernoulli randomvariableswith expectation zero and standard deviation
1. We will use this notation from now on, unless we specify otherwise. Throughout
our paper, the probability space associated with this sequence of random variables
is denoted by (�,�, p), where � is the corresponding sigma-algebra and where
p is the probability measure. We will usually denote the probability space just by
�.

With the above notation, we define, for fixed ω ∈ � and for a fixed density
matrix γ

(k+1)
0 of order k + 1:([

B+
1,k+1

]ω

γ
(k+1)
0

)̂(�ξk; �ξ ′
k

)
:=

∑
ξk+1, ξ

′
k+1∈Z3

hξ1(ω) · hξ1−ξk+1+ξ ′
k+1

(ω) · hξk+1(ω) · hξ ′
k+1

(ω)

· γ̂0(k+1) (ξ1 − ξk+1 + ξ ′
k+1, ξ2, . . . , ξk, ξk+1; ξ ′

1, . . . , ξ
′
k, ξ

′
k+1

)
. (23)
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In other words, we are just randomizing a subset of frequencies in (21).
Analogously, we use (22) and we define [B−

1,k+1]ω by:([
B−
1,k+1

]ω

γ
(k+1)
0

)̂(�ξk; �ξ ′
k

)
:=

∑
ξk+1, ξ

′
k+1∈Z3

hξ1(ω) · hξ1−ξ ′
k+1+ξk+1

(ω) · hξk+1(ω) · hξ ′
k+1

(ω)

· γ̂0(k+1) (ξ1, . . . , ξk, ξk+1; ξ ′
1 − ξ ′

k+1 + ξk+1, ξ
′
2, . . . , ξ

′
k, ξ

′
k+1

)
. (24)

The quantity [B±
j,k+1]ω is defined similarly, when 1 ≤ j ≤ k. We can now

define the randomized collision operator as:

[B j,k+1]ω :=
[

B+
j,k+1

]ω −
[

B−
j,k+1

]ω

. (25)

By construction, it follows that [B j,k+1]ω = B j,k+1, if ω ∈ � is chosen such that
hξ (ω) = 1 for all ξ ∈ Z

3 or if hξ (ω) = −1 for all ξ ∈ Z
3.

We define the full randomized collision operator by:

[B(k)]ω :=
k∑

j=1

[B j,k+1]ω. (26)

As a convention, we will extend the definition of the above collision operators
which act on densitymatrices of order k+1 (that is B j,k+1 and

[
B j,k+1

]ω) to density
matrices σ (�) of order � > k + 1. This is done by acting only in the variables �xk+1
and �x ′

k+1. We will use this convention in the discussion in Section 6.2.

We will sometimes write a density matrix γ
(k)
0 in terms of the standard Fourier

basis of L2(�k × �k) as follows:

γ
(k)
0 =

∑
�r , jr ∈Z3

a(k+1)
�1,...,�k ; j1,..., jk

· b(k+1)
�1,...,�k ; j1,..., jk

. (27)

Here, a(k)
�1,...,�k ; j1,..., jk

= γ̂0
(k)(�1, . . . , �k; j1, . . . , jk) denotes the Fourier coeffi-

cient and b(k)
�1,...,�k ; j1,..., jk

(�xk+1; �x ′
k+1) = ei(x1·�1+···+xk ·�k)−i(x ′

1· j1+···+x ′
k · jk) denotes

the canonical Fourier basis element.

2.3. Factorized Solutions

Let us now precisely explain the notion of a factorized solution to the Gross–
Pitaevskii hierarchy (1). Suppose that the function φ = φ(x, t) is a solution to the
defocusing cubic nonlinear Schrödinger equation on �:{

i∂tφ + �φ = |φ|2φ
φ
∣∣
t=0 = φ0.

The Dirac bracket |·〉〈·| is defined as | f 〉〈g|(x, x ′) := f (x) · g(x ′), for functions
f, g : � → C. Then, using the definition of the collision operator above, it can be
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shown that the sequence (γ (k))k = (γ (k)(t))k of time-dependent density matrices
given by:

γ (k)
(
t, �xk; �x ′

k

) :=
k∏

j=1

φ(t, x j )φ
(

t, x ′
j

)
= |φ〉〈φ|⊗k (t, �xk; �x ′

k

)

solves (1) with the initial data γ
(k)
0 = |φ0〉〈φ0|⊗k . We define these to be the factor-

ized solutions of the GP hierarchy.

3. The Randomized Spacetime Estimate

In this section, we prove themain estimate for the randomized collision operator
defined in (25). As we will see, the randomization will let us extend the range of
regularity exponent. Let us recall, that in [92], itwas proved that for the deterministic
collision operator, for all α > 1, there exists C > 0 such that for all k ∈ N and for
all 1 ≤ j ≤ k: ∥∥S(k,α) B j,k+1 U (k+1)(t) γ

(k+1)
0

∥∥
L2([0,2π ]×�k×�k)

≤ C
∥∥S(k+1,α)γ

(k+1)
0

∥∥
L2(�k+1×�k+1)

.

The C depends on α, but is independent of j and k. The condition α > 1 is sharp
for general density matrices. If we took factorized density matrices, we saw that
we could take α = 1.

We now see how the range of α can be extended if we replace B j,k+1 by
[B j,k+1]ω. In doing so, we also have to add an � component to the norm on the
left-hand side. The main result of this section is the following stronger result:

Theorem 3.1. Let α > 3
4 be given. For all k ∈ N and for all 1 ≤ j ≤ k, the

following bound holds:∥∥S(k,α)[B j,k+1]ωγ
(k+1)
0

∥∥
L2(�×�k×�k)

≤ C0
∥∥S(k+1,α)γ

(k+1)
0

∥∥
L2(�k+1×�k+1)

.

The constant C0 > 0 depends on α, but it is independent of j, k.
In particular, for [B(k+1)]ω as defined in (26), it follows that:∥∥S(k,α) [B(k+1)]ωγ

(k+1)
0

∥∥
L2(�×�k×�k)

≤ C0 k
∥∥S(k+1,α)γ

(k+1)
0

∥∥
L2(�k+1×�k+1)

.

From Theorem 3.1, Fubini’s Theorem and from the unitarity of U (k+1)(t), we
can deduce:

Corollary 3.2. Let α > 3
4 be given. For all T > 0, k ∈ N and 1 ≤ j ≤ k, the

following bound holds:∥∥S(k,α) [B j,k+1]ω U (k+1)(t) γ
(k+1)
0

∥∥
L2(�×[0,T ]×�k×�k)

≤ C0
√

T
∥∥S(k+1,α)γ

(k+1)
0

∥∥
L2(�k+1×�k+1)

.
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Here, C0 > 0 is the constant from Theorem 3.1. Hence, we can deduce that:∥∥S(k,α) [B(k+1)]ω U (k+1)(t) γ
(k+1)
0

∥∥
L2(�×[0,T ]×�k×�k )

≤ C0 k
√

T
∥∥S(k+1,α)γ

(k+1)
0

∥∥
L2(�k+1×�k+1)

.

Corollary 3.2 gives a direct extension of the spacetime bound from [92] in the
randomized setting. In this setting, we see that we can prove a bound when the
regularity exponent satisfies α > 3

4 . This is an improvement over the result in the
deterministic setting. Let us remark that in the proof of the deterministic spacetime
bound in our previous joint workwithGressman, we encountered a sum of diagonal
terms which was bounded precisely when α > 3

4 . It was in the off-diagonal terms
that the regularity was lost. We refer the interested reader to [92] for more details.

By using Markov’s inequality and Corollary 3.2, we can deduce:

Corollary 3.3. For α > 3
4 , T > 0, k ∈ N, 1 ≤ j ≤ k, and λ > 0 the following

bound holds:

P

(∥∥S(k,α) [B j,k+1]ω U (k+1)(t) γ
(k+1)
0

∥∥
L2([0,T ]×�k×�k)

≥ λ
)

≤
C2
0 T

∥∥S(k+1,α)γ
(k+1)
0

∥∥2
L2(�k+1×�k+1)

λ2
.

Here, C0 > 0 is the constant from Theorem 3.1. Moreover,

P

(∥∥S(k,α) [B(k+1)]ω U (k+1)(t) γ
(k+1)
0

∥∥
L2([0,T ]×�k×�k)

≥ λ
)

≤
C2
0 k2 T

∥∥S(k+1,α)γ
(k+1)
0

∥∥2
L2(�k+1×�k+1)

λ2
.

Remark 3.4. Let us note that we are just considering the analogue of (16) when
p = 2 in the context of the Gross–Pitaevskii hierarchy. This already allows us to
improve the range of α from the deterministic case. As we will see, the calculations
when p = 2 are already quite involved. This is due to the fact that there are many
possible pairings in the proof of Theorem 3.1. It is possible that one can extend this
calculation to the case when p is an arbitrary even number, which would give us
an exponential upper bound on the right-hand side of the estimate in Corollary 3.3,
see [33]. The calculations for higher p would become extremely difficult. We will
not pursue this issue in our paper.

We note that Corollary 3.3 gives a large deviation bound for the quantity that
one is interested in looking at in the deterministic setting. As was noted in the
introduction, this is one of the key steps in the use of randomization techniques in
the analysis of nonlinear dispersive PDE. Since we would typically like to apply
the spacetime estimate many times, we will see that the averaged estimate given in
Corollary 3.2 will be easier to apply in the discussion that follows.

The proof of Theorem 3.1 is based on the pairing of the frequencies, similarly
as in the proof of (16), which was explained in the introduction. There are many
more cases to consider in our setting. In some of the cases, we use shorthand matrix
notation which is defined in Definition 3.5 below.
We now prove Theorem 3.1.
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Proof. It suffices to consider the special case when j = 1. The general case follows
by analogous arguments. Moreover, we will prove the bound in the theorem for the
operator [B+

1,k+1]ω. The bound for [B−
1,k+1]ω is proved in the same way, and we

thus obtain the claim for [B1,k+1]ω = [B+
1,k+1]ω − [B−

1,k+1]ω.
We compute:(

S(k,α)[B+
1,k+1]ωγ

(k+1)
0

)̂(�ξk; �ξ ′
k

)

=
k∏

j=1

〈ξ j 〉α · 〈ξ ′
j 〉α ·

( ∑
η1,η

′
1∈Z3

hξ1(ω) · hξ1−η1+η′
1
(ω) · hη1(ω) · hη′

1
(ω)

· γ̂0(k+1) (ξ1 − η1 + η′
1, ξ2, . . . , ξk, η1; ξ ′

1, . . . , ξ
′
k, η

′
1

) )

which by (27) equals

k∏
j=1

〈ξ j 〉α · 〈ξ ′
j 〉α ·

( ∑
η1,η

′
1∈Z3

hξ1(ω) · hξ1−η1+η′
1
(ω) · hη1(ω) · hη′

1
(ω)

· a(k+1)
ξ1−η1+η′

1,ξ2,...,ξk ,η1;ξ ′
1,...,ξ

′
k ,η

′
1)

)
.

Consequently:∣∣(S(k,α)[B+
1,k+1]ωγ

(k+1)
0 )̂(�ξk; �ξ ′

k)
∣∣2

=
k∏

j=1

〈ξ j 〉2α · 〈ξ ′
j 〉2α ·

( ∑
η1,η

′
1,η2,η

′
2∈Z3

hξ1(ω) · hξ1−η1+η′
1
(ω) · hη1(ω) · hη′

1
(ω)

·hξ1(ω) · hξ1−η2+η′
2
(ω) · hη2(ω) · hη′

2
(ω) · a(k+1)

ξ1−η1+η′
1,ξ2,...,ξk ,η1;ξ ′

1,...,ξ
′
k ,η

′
1

·a(k+1)
ξ1−η2+η′

2,ξ2,...,ξk ,η2;ξ ′
1,...,ξ

′
k ,η

′
2

)
.

Since we are using Bernoulli random variables, we note that h = h and h2 = 1.
Hence, the previous expression equals:

k∏
j=1

〈ξ j 〉2α · 〈ξ ′
j 〉2α ·

( ∑
η1,η

′
1,η2,η

′
2∈Z3

hξ1−η1+η′
1
(ω) · hη1(ω) · hη′

1
(ω) · hξ1−η2+η′

2
(ω)

·hη2(ω) · hη′
2
(ω) · a(k+1)

ξ1−η1+η′
1,ξ2,...,ξk ,η1;ξ ′

1,...,ξ
′
k ,η′

1
· a(k+1)

ξ1−η2+η′
2,ξ2,...,ξk ,η2;ξ ′

1,...,ξ
′
k ,η′

2

)
= 〈ξ1〉2α ·

( ∑
η1,η

′
1,η2,η

′
2∈Z3

hξ1−η1+η′
1
(ω) · hη1(ω) · hη′

1
(ω) · hξ1−η2+η′

2
(ω) · hη2(ω)

·hη′
2
(ω) · [〈ξ2〉α · · · · · 〈ξk〉α · 〈ξ ′

1〉α · · · · · 〈ξ ′
k〉α · a(k+1)

ξ1−η1+η′
1,ξ2,...,ξk ,η1;ξ ′

1,...,ξ
′
k ,η′

1

]
·[〈ξ2〉α · · · · · 〈ξk〉α · 〈ξ ′

1〉α · · · · · 〈ξ ′
k〉α · a(k+1)

ξ1−η2+η′
2,ξ2,...,ξk ,η2;ξ ′

1,...,ξ
′
k ,η′

2

] )
.
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By Plancherel’s Theorem in the x-variables, it follows that:

I := ∥∥S(k,α)[B+
1,k+1]ωγ

(k+1)
0

∥∥2
L2(�×�k×�k )

=

=
∑

ξ1,...,ξk ,ξ
′
1,...,ξ

′
k∈Z3

〈ξ1〉2α ·
⎛
⎝ ∑

η1,η
′
1,η2,η

′
2∈Z3

∫
�

hξ1−η1+η′
1
(ω) · hη1(ω) · hη′

1
(ω)

·hξ1−η2+η′
2
(ω) · hη2(ω) · hη′

2
(ω)

·[〈ξ2〉α · · · 〈ξk〉α · 〈ξ ′
1〉 · · · 〈ξ ′

k〉α · a(k+1)
ξ1−η1+η′

1,ξ2,...,ξk ,η1;ξ ′
1,...,ξ

′
k ,η

′
1

]

·[〈ξ2〉α · · · 〈ξk〉α · 〈ξ ′
1〉 · · · 〈ξ ′

k〉α · a(k+1)
ξ1−η2+η′

2,ξ2,...,ξk ,η2;ξ ′
1,...,ξ

′
k ,η

′
2

]
dp(ω)

⎞
⎠ .

This is the expression that we want to estimate. By the independence of the (hξ ),
and by the fact that they all have mean zero, it follows that each element in the
set {ξ1 − η1 + η′

1, η1, η
′
1, ξ1 − η2 + η′

2, η2, η
′
2} occurs at least twice in the list

(ξ1 − η1 + η′
1, η1, η

′
1, ξ1 − η2 + η′

2, η2, η
′
2).

Let’s call this property (*).
Since we are working with Bernoulli random variables, we note that, by the

triangle inequality:

I ≤
(*)∑

ξ1,...,ξk ,ξ
′
1,...,ξ

′
k ,η1,η

′
1,η2,η

′
2∈Z3[

〈ξ1〉α · 〈ξ2〉α · · · 〈ξk〉α · 〈ξ ′
1〉α · · · 〈ξ ′

k〉α · ∣∣a(k+1)
ξ1−η1+η′

1,ξ2,...,ξk ,η1;ξ ′
1,...,ξ

′
k ,η

′
1

∣∣][
〈ξ1〉α · 〈ξ2〉α · · · 〈ξk〉α · 〈ξ ′

1〉α · · · 〈ξ ′
k〉α · ∣∣a(k+1)

ξ1−η2+η′
2,ξ2,...,ξk ,η2;ξ ′

1,...,ξ
′
k ,η

′
2

∣∣].
(28)

Here,

“
(*)∑

ξ1,...,ξk ,ξ
′
1,...,ξ

′
k ,η1,η

′
1,η2,η

′
2∈Z3

”

denotes the sum over all ξ1, . . . , ξk, ξ
′
1, . . . , ξ

′
k, η1, η

′
1, η2, η

′
2 ∈ Z

3 satisfying the
condition (*) above. In particular, we see that we need to bound the sum in the
frequencies under the given constraint.

We now need to consider all of the possible cases separately. This requires a
combinatorial analysis of all the possible pairings. In order to simplify the notation,
we develop a matrix notation for the obtained sums. The notation is explained on
an example in Definition 3.5 and is used in order to analyze the subsequent cases.
Big Case I ξ1 − η1 + η′

1 = ξ1 − η2 + η′
2.

In this big case, we obtain that:

η′
1 + η2 = η1 + η′

2. (29)

We now need to consider several possibilities:
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Case IA {η1, η′
1, η2, η

′
2} has cardinality 2; each element in the list (η1, η

′
1, η2, η

′
2)

occurs exactly twice.
Let us observe that:

〈ξ1〉α � 〈ξ1 − η1 + η′
1〉α · 〈η1〉α · 〈η′

1〉α

and

〈ξ1〉α � 〈ξ1 − η2 + η′
2〉α · 〈η2〉α · 〈η′

2〉α.

We henceforth refer to such inequalities as the fractional Leibniz Rule.
It follows from (28) that:

I ≤
(*)∑

ξ1,...,ξk ,ξ
′
1,...,ξ

′
k ,η1,η

′
1,η2,η

′
2∈Z3

·
[
〈ξ1 − η1 + η′

1〉α · 〈ξ2〉α · · · 〈ξk〉α · 〈η1〉α · 〈ξ ′
1〉α · · · 〈ξ ′

k〉α · 〈η′
1〉α

·∣∣a(k+1)
ξ1−η1+η′

1,ξ2,...,ξk ,η1;ξ ′
1,...,ξ

′
k ,η

′
1

∣∣]
·
[
〈ξ1 − η2 + η′

2〉α · 〈ξ2〉α · · · 〈ξk〉α · 〈η2〉α · 〈ξ ′
1〉α · · · 〈ξ ′

k〉α · 〈η′
2〉α

·∣∣a(k+1)
ξ1−η2+η′

2,ξ2,...,ξk ,η2;ξ ′
1,...,ξ

′
k ,η

′
2

∣∣]·
Let us denote the quantity on the right-hand side by J .

It follows that the corresponding contribution to J is:

�
∑

ξ1,...,ξk ,ξ
′
1,...,ξ

′
k ,η1,η

′
1,η2,η

′
2∈Z3

Case I A[
〈ξ1 − η1 + η′

1〉α · 〈ξ2〉α · · · 〈ξk〉α · 〈η1〉α · 〈ξ ′
1〉α · · · 〈ξ ′

k〉α · 〈η′
1〉α ·∣∣a(k+1)

ξ1−η1+η′
1,ξ2,...,ξk ,η1;ξ ′

1,...,ξ
′
k ,η

′
1

∣∣][
〈ξ1 − η2 + η′

2〉α · 〈ξ2〉α · · · 〈ξk〉α · 〈η2〉α · 〈ξ ′
1〉α · · · 〈ξ ′

k〉α · 〈η′
2〉α ·∣∣a(k+1)

ξ1−η2+η′
2,ξ2,...,ξk ,η2;ξ ′

1,...,ξ
′
k ,η

′
2

∣∣].
Here, by:

“
∑

ξ1,...,ξk ,ξ
′
1,...,ξ

′
k ,η1,η

′
1,η2,η

′
2∈Z3

Case (I A)

”

we denote the sum over all frequencies which occur in Case (IA).
We need to consider two possibilities:

IA1 η1 = η2, η′
1 = η′

2.
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Weuse theCauchy–Schwarz inequality inη1, η
′
1, aswell as in ξ2, . . . , ξk, ξ

′
1, . . . , ξ

′
k

and we use Plancherel’s Theorem in order to deduce that the corresponding contri-
bution to J is:

�
∥∥S(k+1,α)γ

(k+1)
0

∥∥2
L2(�k+1×�k+1)

.

IA2 η1 = η′
2, η′

1 = η2.
We note that ξ1 − η1 + η′

1 = ξ1 − η2 + η′
2 implies that η1 = η′

1 = η2 = η′
2. Hence,{η1, η′

1, η2, η
′
2} has cardinality 1. This contradicts the assumption that this set has

cardinality 2 and hence this case does not occur.

IA3 η1 = η′
1, η2 = η′

2.
In this case, we need to estimate:

J̃ :=
∑

ξ1,...,ξk ,ξ
′
1,...,ξ

′
k ,η1,η2∈Z3

[
〈ξ1〉α · 〈ξ2〉α · · · 〈ξk〉α · 〈ξ ′

1〉α · · · 〈ξ ′
k〉α ·

∣∣a(k+1)
ξ1,ξ2,...,ξk ,η1;ξ ′

1,...,ξ
′
k ,η1

∣∣][
〈ξ1〉α · 〈ξ2〉α · · · 〈ξk〉α · 〈ξ ′

1〉α · · · 〈ξ ′
k〉α · ∣∣a(k+1)

ξ1,ξ2,...,ξk ,η2;ξ ′
1,...,ξ

′
k ,η2

∣∣]·
Now, we need to argue differently, since the fractional Leibniz Rule

〈ξ1〉α = 〈ξ1 − η1 + η′
1〉α � 〈ξ1〉α · 〈η1〉α · 〈η′

1〉α

does not give us a good upper bound. Therefore we leave the factor 〈ξ1〉α by itself.
We can then rewrite J̃ as:∑

ξ1,...,ξk ,ξ ′
1,...,ξ

′
k ,η1,η2∈Z3

〈η1〉−2α · 〈η2〉−2α ·
[
〈ξ1〉α · 〈ξ2〉α · · · 〈ξk〉α · 〈η1〉α · 〈ξ ′

1〉α · · · 〈ξ ′
k〉α · 〈η1〉α · ∣∣a(k+1)

ξ1,ξ2,...,ξk ,η1;ξ ′
1,...,ξ

′
k ,η1

∣∣][
〈ξ1〉α · 〈ξ2〉α · · · 〈ξk〉α · 〈η2〉α · 〈ξ ′

1〉α · · · 〈ξ ′
k〉α · 〈η2〉α · ∣∣a(k+1)

ξ1,ξ2,...,ξk ,η2;ξ ′
1,...,ξ

′
k ,η2

∣∣]·
Let us note that, since α > 3

4 , the sequence (〈q〉−2α)q∈Z3 belongs to �2(Z3).
Hence, we can use the Cauchy–Schwarz inequality in ξ1, . . . ξk, ξ

′
1, . . . , ξ

′
k, η1, η2

and Plancherel’s Theorem in order to deduce that:

J̃ �
∥∥S(k+1,α)γ

(k+1)
0

∥∥2
L2(�k+1×�k+1)

. (30)

Case IB {η1, η′
1, η2, η

′
2} has cardinality 2; one element in the list (η1, η

′
1, η2, η

′
2)

occurs three times.
We recall from (29) that η′

1 + η2 = η1 + η′
2. From this identity, it follows that if

one element in the list (η1, η
′
1, η2, η

′
2) occurs three times, then they all have to be

equal. In this way, we obtain a contradiction to the assumption that {η1, η′
1, η2, η

′
2}

has cardinality 2.
Case IC {η1, η′

1, η2, η
′
2} has cardinality 3.



Randomization and the Gross–Pitaevskii Hierarchy 443

We recall property (*), and the fact that in Big Case I , one has: ξ1 − η1 + η′
1 =

ξ1 − η2 + η′
2, from where it follows that each element in the list:

(η1, η2, η
′
1, η

′
2)

either occurs at least twice or it equals ξ1−η1+η′
1. In thisway,we get a contradiction

to the assumption that {η1, η′
1, η2, η

′
2} has cardinality 3. Namely, if {η1, η′

1, η2, η
′
2}

had cardinality 3, the two distinct elements of the list (η1, η′
1, η2, η

′
2) which occur

only once would both have to equal ξ1 − η1 + η′
1.

Case ID {η1, η′
1, η2, η

′
2} has cardinality 4.

In this case, we obtain a contradiction in the same way as in case IC).

Case IE {η1, η′
1, η2, η

′
2} has cardinality 1.

In this case, we note that:

ξ1 − η1 + η′
1 = ξ1 − η2 + η′

2 = ξ1

and

η1 = η′
1 = η2 = η′

2.

Hence, we need to estimate:∑
ξ1,...,ξk ,ξ

′
1,...,ξ

′
k ,η1∈Z3[

〈ξ1〉α · 〈ξ2〉α · · · 〈ξk〉α · 〈ξ ′
1〉α · · · 〈ξ ′

k〉α · ∣∣a(k+1)
ξ1,ξ2,...,ξk ,η1;ξ ′

1,...,ξ
′
k ,η1

∣∣][
〈ξ1〉α · 〈ξ2〉α · · · 〈ξk〉α · 〈ξ ′

1〉α · · · 〈ξ ′
k〉α · ∣∣a(k+1)

ξ1,ξ2,...,ξk ,η1;ξ ′
1,...,ξ

′
k ,η1

∣∣]·
We can use the Cauchy–Schwarz inequality in ξ1, . . . , ξk, ξ

′
1, . . . , ξ

′
k, η1 and

Plancherel’s Theorem to deduce that the above expression is, in absolute value

�
∥∥∥S(k+1,α)γ

(k+1)
0

∥∥∥2
L2(�k+1×�k+1)

.

Here, we only used the fact that α ≥ 0.
Consequently, we obtain the wanted bound in Big Case I.
In what follows, we may assume that:

ξ1 − η1 + η′
1 �= ξ1 − η2 + η′

2. (31)

By condition (*), it follows that ξ1 − η1 + η′
1 and ξ1 − η2 + η′

2 each get paired with
distinct elements of {η1, η′

1, η2, η
′
2}.

Big Case II η1 = η′
1.

In this Big Case, we obtain:

ξ1 − η1 + η′
1 = ξ1.

Furthermore, the condition (31) implies that:

η2 �= η′
2. (32)
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By using the condition (*), it follows that:

η2, η
′
2 ∈ {ξ1, η1, ξ1 − η2 + η′

2}.
We need to consider several cases:
Case IIA η2, η

′
2 ∈ {ξ1, η1}.

In case IIA), we need to consider several subcases:
IIA1 η2 = ξ1, η

′
2 = η1.

In this subcase, we know: ξ1 − η2 + η′
2 = ξ1 − ξ1 + η1 = η1.

In other words: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ1 − η1 + η′
1 = ξ1

ξ1 − η2 + η′
2 = η1

η1 = η′
1

η2 = ξ1

η′
2 = η1

.

It follows that we have to bound:∑
ξ1,...,ξk ,ξ ′

1,...,ξ
′
k ,η1∈Z3[

〈ξ1〉α · 〈ξ2〉α · · · 〈ξk〉α · 〈η1〉0 · 〈ξ ′
1〉α · · · 〈ξ ′

k〉α · 〈η1〉0 · ∣∣a(k+1)
ξ1,ξ2,...,ξk ,η1;ξ ′

1,...,ξ
′
k ,η1

∣∣][
〈η1〉0 · 〈ξ2〉α · · · 〈ξk〉α · 〈ξ1〉α · 〈ξ ′

1〉α · · · 〈ξ ′
k〉α · 〈η1〉0 · ∣∣a(k+1)

η1,ξ2,...,ξk ,ξ1;ξ ′
1,...,ξ

′
k ,η1

∣∣].
(33)

We bound the above expression in absolute value by using the Cauchy–Schwarz
inequality in ξ1, η1 and in ξ2, . . . , ξk, ξ

′
1, . . . , ξ

′
k to obtain the bound � ‖S(k+1,α)

γ
(k+1)
0 ‖2

L2(�k+1×�k+1)
.

In what follows, we note that the application of the Cauchy–Schwarz inequality in
ξ1, . . . , ξk, ξ

′
1, . . . , ξ

′
k is always straightforward.

Let us now develop some shorthand notation:

Definition 3.5. Let C be a list of variables in {ξ1, η1, η′
1, η2, η

′
2}. Furthermore, let

μ j ; j = 1, . . . , 6 be linear combinations of elements of the list C and let α j ; j =
1, . . . , 6 be elements of {0, α}. We define the quantity:

C ;
[〈μ1〉α1 〈μ2〉α2 〈μ3〉α3
〈μ4〉α4 〈μ5〉α5 〈μ6〉α6

]
to be the sumover the elements of the listC aswell as over ξ2, ξ3, . . . , ξk, ξ

′
1, ξ

′
2, . . . ,

ξ ′
k of: [

〈μ1〉α1 · 〈ξ2〉α · · · 〈ξk〉α · 〈μ2〉α2 · 〈ξ ′
1〉α · · · 〈ξ ′

k〉α · 〈μ3〉α3

·∣∣a(k+1)
μ1,ξ2,...,ξk ,μ2;ξ ′

1,...,ξ
′
k ,μ3

∣∣][
〈μ4〉α4 · 〈ξ2〉α · · · 〈ξk〉α · 〈μ5〉α5 · 〈ξ ′

1〉α · · · 〈ξ ′
k〉α · 〈μ6〉α6

·∣∣a(k+1)
μ4,ξ2,...,ξk ,μ5;ξ ′

1,...,ξ
′
k ,μ6

∣∣].



Randomization and the Gross–Pitaevskii Hierarchy 445

Remark 3.6. In other words, the entries of the first row of the matrix correspond
to the derivatives on the Fourier side applied to the first, (k +1)-st, and (2k +2)-nd
component of the factor of γ̂0

(k+1) which is given by:

a(k+1)
μ1,ξ2,...,ξk ,μ2;ξ ′

1,...,ξ
′
k ,μ3

= γ̂0
(k+1) (μ1, ξ2, . . . , ξk, μ2; ξ ′

1, . . . , ξ
′
k, μ3

)
.

Hence, we apply derivatives on the Fourier side to the ξ1, ξk+1, ξ
′
k+1 components

of this factor.
The second row of the matrix corresponds to the same derivatives of the factor

of γ̂0
(k+1)

, which is given by:

a(k+1)
μ4,ξ2,...,ξk ,μ5;ξ ′

1,...,ξ
′
k ,μ6

= γ̂0
(k+1) (

μ4, ξ2, . . . , ξk, μ5; ξ ′
1, . . . , ξ

′
k, μ6

)
.

As before, we apply derivatives on the Fourier side to the ξ1, ξk+1, ξ
′
k+1 components

of this factor.
In the definition, the variableswhichoccur before thematrix denote the variables

with respect to which we are summing. In this notation, we are excluding the
variables ξ2, . . . , ξk, ξ

′
1, ξ2, . . . , ξ

′
k , since we noted above that the application of

the Cauchy–Schwarz inequality in these variables is straightforward.

By using the the above definition, we can write the sum in (33) as:

ξ1, η1;
[〈ξ1〉α 〈η1〉0 〈η1〉0
〈η1〉0 〈ξ1〉α 〈η1〉0

]
. (34)

We see that, in subcase IIA1), we can apply the Cauchy–Schwarz inequality
in ξ1, η1 and obtain the wanted bound since these variables occur in the first and
in the second row of the matrix. With the above shorthand notation and with these
observations in mind, we continue the analysis of the possible cases.
IIA2 η2 = η1, η

′
2 = ξ1.

In this subcase, we know that:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ1 − η1 + η′
1 = ξ1

ξ1 − η2 + η′
2 = 2ξ1 − η1

η′
1 = η1

η2 = η1

η′
2 = ξ1.

Moreover, we use the fractional Leibniz rule in the second row in order to deduce
that:

〈ξ1〉α � 〈2ξ1〉α � 〈2ξ1 − η1〉α · 〈η1〉α · 〈ξ1〉0.
Consequently, arguing similarly to Case IA, and taking into account the shorthand
matrix notation, we need to consider:

ξ1, η1;
[ 〈ξ1〉α 〈η1〉0 〈η1〉0
〈2ξ1 − η1〉α 〈η1〉α 〈ξ1〉0

]
.
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We can now apply the Cauchy–Schwarz inequality in ξ1 and then in η1 to obtain
the wanted bound in this subcase.
Case IIB η2 = ξ1 − η2 + η′

2.

We recall by (32) that η′
2 �= η2, so η′

2 �= ξ1 − η2 + η′
2.

By the condition (*), it follows that:

η′
2 ∈ {ξ1, η1}.

We need to consider two possible subcases:
IIB1 η′

2 = ξ1.
We obtain that: η2 = ξ1 − η2 + ξ1, which implies: η2 = ξ1 = η′

2. This is a
contradiction, since we assumed that η2 �= η′

2.
IIB2 η′

2 = η1.
We recall that η2 = ξ1 − η2 + η′

2, hence it follows that:

η2 = ξ1 + η′
2

2
= ξ1 + η1

2
.

In this subcase, we know that:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ1 − η1 + η′
1 = ξ1

ξ1 − η2 + η′
2 = η2 = ξ1+η1

2

η′
1 = η1

η2 = ξ1+η1
2

η′
2 = η1.

We use the fractional Leibniz rule in the second row in order to observe that:

〈ξ1〉α �
〈ξ1
2

〉α
�
〈ξ1 + η1

2

〉α ·
〈η1
2

〉α
�
〈ξ1 + η1

2

〉α ·
〈ξ1 + η1

2

〉0 · 〈η1〉α.

Hence, we need to consider:

ξ1, η1;
[ 〈ξ1〉α 〈η1〉0 〈η1〉0〈

ξ1+η1
2

〉α 〈
ξ1+η1

2

〉0 〈η1〉α
]

.

We now obtain the wanted bound by first applying the Cauchy–Schwarz inequality,
first in ξ1, and then in η1.
Case IIC η′

2 = ξ1 − η2 + η′
2.

In this case, we obtain that ξ1 = η2. More precisely, we know that:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ1 − η1 + η′
1 = ξ1

ξ1 − η2 + η′
2 = η′

2

η′
1 = η1

η2 = ξ1.

We need to estimate:

ξ1, η1, η
′
2;
[〈ξ1〉α 〈η1〉0 〈η1〉0
〈η′

2〉0 〈ξ1〉α 〈η′
2〉0

]
.
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In this case, we cannot directly apply the Cauchy–Schwarz inequality in the vari-
ables η1, η

′
2 since the pairs of 〈η1〉0 and 〈η′

2〉0 occur in the same rows of the matrix.
Instead, we need to argue as in subcase IA3. We multiply and divide the (1, 2)
and (1, 3) entry of the matrix with 〈η1〉α . Furthermore, we multiply and divide the
(2, 1) and (2, 3) entry of the matrix by 〈η′

2〉α to deduce that we have to consider:

ξ1, η1, η
′
2; 〈η1〉−2α · 〈η′

2〉−2α ·
[〈ξ1〉α 〈η1〉α 〈η1〉α
〈η′

2〉α 〈ξ1〉α 〈η′
2〉α

]
. (35)

In this notation, we mean that we multiply the result obtained from the matrix by
〈η1〉−2α · 〈η2〉−2α and we then sum in ξ1, η1, η

′
2. (Let us emphasize that we do not

multiply each row of the matrix by 〈η1〉−2α · 〈η2〉−2α.) We now obtain the desired
bound in this subcase after we apply the Cauchy–Schwarz inequality in ξ1, η1, η

′
2.

In order to bound the sum in η1, η
′
2, we need to use the assumption that α > 3

4 as
in subcase IA3.
The bound in the big case when η1 = η′

1 now follows. The big case when η2 = η′
2

is analogous.
Big Case III η1 = η2.
By the previous analysis, we may assume:

ξ1 − η1 + η′
1 �= ξ1 − η2 + η′

2, η1 �= η′
1, η2 �= η′

2.

Since η1 = η2, we note that ξ1 − η1 + η′
1 �= ξ1 − η1 + η′

2, from where we deduce
that η′

1 �= η′
2. Consequently, condition (*) implies that:

η′
1 ∈ {ξ1 − η1 + η′

1, ξ1 − η2 + η′
2} = {ξ1 − η1 + η′

1, ξ1 − η1 + η′
2}.

We consider the following cases:
Case IIIA ξ1 − η1 + η′

1 = η′
1.

In this case, we obtain that ξ1 = η1. Hence:

ξ1 = η1 = η2

and

ξ1 − η2 + η′
2 = ξ1 − ξ1 + η′

2 = η′
2.

In the matrix notation, we need to estimate:

ξ1, η
′
1, η

′
2;
[〈η′

1〉0 〈ξ1〉α 〈η′
1〉0〈η′

2〉0 〈ξ1〉α 〈η′
2〉0

]
.

Similar to Case IIC, we cannot estimate this expression directly by using the
Cauchy–Schwarz inequality, but we need to write it as:

ξ1, η
′
1, η

′
2; 〈η′

1〉−2α · 〈η′
2〉−2α ·

[〈η′
1〉α 〈ξ1〉α 〈η′

1〉α〈η′
2〉α 〈ξ1〉α 〈η′

2〉α
]

(36)

which we can estimate by using the Cauchy–Schwarz inequality in ξ1, η
′
1, η

′
2 since

α > 3
4 . We note that in (36) we are using the analogous notational convention as

was defined in (35).
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Case IIIB ξ1 − η2 + η′
2 = η′

1.
In this case, we obtain:

η′
2 = η2 + η′

1 − ξ1 = η1 + η′
1 − ξ1.

We use the fractional Leibniz rule as:

〈ξ1〉α � 〈ξ1 − η1 + η′
1〉α · 〈η1〉α · 〈η′

1〉α

in the first row and as:

〈ξ1〉α � 〈ξ1 − η2 + η′
2〉α · 〈η2〉α · 〈η′

2〉α = 〈η′
1〉α · 〈η1〉α · 〈η1 + η′

1 − ξ1〉α

in the second row. Consequently, we need to estimate:

ξ1, η1, η
′
1;
[〈ξ1 − η1 + η′

1〉α 〈η1〉α 〈η′
1〉α〈η′

1〉α 〈η1〉α 〈η1 + η′
1 − ξ1〉α

]
.

We estimate this expression by first applying the Cauchy–Schwarz inequality in ξ1
and then applying the Cauchy–Schwarz inequality in η1, η

′
1 to obtain the desired

bound.
Big Case IV η′

1 = η′
2.

From the previous analysis, we may assume that:

ξ1 − η1 + η′
1 �= ξ1 − η2 + η′

2, η1 �= η2, η1 �= η′
1, η2 �= η′

2.

Hence, from condition (*), we obtain:

{η1, η2} = {ξ1 − η1 + η′
1, ξ1 − η2 + η′

2}.
We need to consider two cases:
Case IVA ξ1 − η1 + η′

1 = η1.
In this case, we obtain that:

η1 = ξ1 + η′
1

2
.

We also know that η2 = ξ1 − η2 + η′
2 and η′

1 = η′
2 and hence:

η2 = ξ1 + η′
2

2
= ξ1 + η′

1

2
.

It follows that:

η1 = η2 = ξ1 + η′
1

2
.

This gives us a contradiction since we assumed that η1 �= η2.
Case IVB ξ1 − η2 + η′

2 = η1.
Since η′

1 = η′
2, it follows that ξ1 − η2 + η′

1 = ξ1 − η2 + η′
2 = η1. Hence:

η2 = ξ1 − η1 + η′
1.
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We use the fractional Leibniz rule as:

〈ξ1〉α � 〈ξ1 − η1 + η′
1〉α · 〈η1〉α · 〈η′

1〉α

in the first row and as:

〈ξ1〉α � 〈ξ1 − η2 + η′
2〉α · 〈η2〉α · 〈η′

2〉α = 〈η1〉α · 〈ξ1 − η1 + η′
1〉α · 〈η′

1〉α

in the second row. Consequently, we need to estimate:

ξ1, η1, η
′
1;
[〈ξ1 − η1 + η′

1〉α 〈η1〉α 〈η′
1〉α〈η1〉α 〈ξ1 − η1 + η′

1〉α 〈η′
1〉α

]
.

We estimate this expression by first applying the Cauchy–Schwarz inequality in ξ1
and then in η1, η

′
1 and we obtain the desired bound.

Big Case V η1 = η′
2.

By the previous analysis, we may assume that:

ξ1 − η1 + η′
1 �= ξ1 − η2 + η′

2, η1 �= η2, η1 �= η′
1, η2 �= η′

2, η′
1 �= η′

2. (37)

We need to consider several cases:
Case VA η2 = η′

1.
In this case, we can use the fractional Leibniz rule as:

〈ξ1〉α � 〈ξ1 − η1 + η′
1〉α · 〈η1〉α · 〈η′

1〉α = 〈ξ1 − η1 + η2〉α · 〈η1〉α · 〈η2〉α

in the first row and as:

〈ξ1〉α � 〈ξ1 − η2 + η′
2〉α · 〈η2〉α · 〈η′

2〉α = 〈ξ1 − η2 + η1〉α · 〈η2〉α · 〈η1〉α

in the second row. Consequently, we need to estimate:

ξ1, η1, η2;
[〈ξ1 − η1 + η2〉α 〈η1〉α 〈η2〉α
〈ξ1 − η2 + η1〉α 〈η2〉α 〈η1〉α

]
.

We can estimate this expression by first applying the Cauchy–Schwarz inequality
in ξ1 and then in η1, η2 to obtain the desired bound.
The next case we need to consider is:
Case VB η2 �= η′

1.
From condition (*), the fact that η′

2 = η1, and from (37), it follows that in this case,
one has:

{η′
1, η2} = {ξ1 − η1 + η′

1, ξ1 − η2 + η′
2} = {ξ1 − η1 + η′

1, ξ1 − η2 + η1}.
We need to consider two subcases:
VB1 η′

1 = ξ1 − η1 + η′
1, η2 = ξ1 − η2 + η1.

From the first equality, it follows that ξ1 = η1. From the second equality, it follows
that η2 = ξ1+η1

2 . Consequently:

η2 = ξ1 = η1.

This gives us a contradiction since we are assuming that η1 �= η2.
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VB2 η′
1 = ξ1 − η2 + η1, η2 = ξ1 − η1 + η′

1.
We combine the two equalities to deduce that:

η′
1 = ξ1 − (ξ1 − η1 + η′

1) + η1 = 2η1 − η′
1

from where it follows that:

η′
1 = η1.

This gives us a contradiction since we are assuming that η′
1 �= η1.

The big case η′
1 = η2 is analogous.

Big Case VI ξ1 − η1 + η′
1 �= ξ1 − η2 + η′

2, η1 �= η′
1, η2 �= η′

2, η1 �= η2, η′
1 �= η′

2,

η1 �= η′
2, η′

1 �= η2.
This big case cannot satisfy the condition (*). Namely, ξ1−η1+η′

1 and ξ1−η2+η′
2

can pair up with at most two distinct elements of {η1, η′
1, η2, η

′
2}.

The claim now follows. ��
Let us now note:

Remark 3.7. If we consider the domain � = T
d , the proof of Theorem 3.1 carries

over and the condition on α becomes α > d
4 , since for such α, it is the case that

1
〈n〉2α ∈ �2(Zd). We will omit the details.

Remark 3.8. The above proof can be modified to apply in the case when the
(hξ )ξ∈Z3 are independent, identically distributed Gaussian random variables cen-
tered at zero. Since then it is no longer the case that h2 = 1, it is better to define
the randomized collision operator in a different way. The difference would be not
to include the factor of hξ1(ω) in (23) and (24). The proof of the estimate is analo-
gous now and we use the fact the quantity

∫
�

|hξ (ω)|6 dp(ω) is uniformly bounded
in ξ . The latter condition is used when we apply Hölder’s inequality in ω. In the
Gaussian case, it is necessary to apply Hölder’s inequality in ω since it is no longer
the case that |hξ (ω)| is uniformly bounded in ξ and ω. In this way, we can reduce
the estimate to bounding a sum in frequencies satisfying a constraint analogous to
(* ), as was the case for Bernoulli random variables. We will omit the details.

We have chosen to use the Bernoulli randomization in order relate the ran-
domization to the nonlinear Schrödinger equation. The link with the nonlinear
Schrödinger equation is explained in more detail in Section 4.1. In this context,
we see that it is essential to take Bernoulli random variables in the randomization.
Moreover, the explicit computation of the Duhamel iterates in Section 6.2 is based
on the fact that we are taking a Bernoulli randomization.

3.1. An Alternative Form of Randomization

It is possible to randomize in the initial data γ
(k+1)
0 instead of in the collision

operator B j,k+1 aswe did in (23). The former approachwas shown to be useful in the
study of nonlinear dispersive equations in the references noted in the introduction. In
the context of the GP hierarchy, this approach still applies, but it leads to additional
difficulties and it does not seem to be well suited to the problem.
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More precisely, given γ
(k+1)
0 as in (27), one defines a randomization map:

γ
(k+1)
0 �→ γ

(k+1)
0,ω . (38)

Thismap takes a deterministic object and gives us a randomobject. γ (k+1)
0 is defined

by:

γ
(k+1)
0,ω =

∑
�r , jr

h(k+1)
�1,...,�k+1; j1,..., jk+1

(ω) · a(k+1)
�1,...,�k+1; j1,..., jk+1

· b(k+1)
�1,...,�k+1; j1,..., jk+1

for h(k+1)
�1,...,�k+1; j1,..., jk+1

(ω) := ∏k+1
r=1 h�r (ω) · ∏k+1

r=1 h jr (ω). Here, we assume that
(h j ) is a sequence of independent, identically distributed standard real Bernoulli
random variables centered at zero. Since the random variables are all real, we can
write h(k+1)

�1,...,�k+1; j1,..., jk+1
(ω) := ∏k+1

r=1 h�r (ω) · ∏k+1
r=1 h jr (ω).

Having defined the randomization this way, it is possible to prove:

Theorem 3.9. For the randomization defined in (38), the following bound holds:∥∥S(k,α) B j,k+1γ
(k+1)
0,ω

∥∥
L2(�×�k×�k)

≤ C(α, k)
∥∥S(k+1,α)γ

(k+1)
0

∥∥
L2(�k+1×�k+1)

,

whenever α > 3
4 . The constant C = C(α, k) > 0 depends on both α and k.

The proof of Theorem 3.9 is similar to the proof of Theorem 3.1, and is based on
a pairing of frequencies analogous to the condition (*) in the proof of Theorem 3.1.
Due to the fact that one is randomizing in all of the frequencies in γ

(k+1)
0 , and not

just in those occurring in the collision, there are many more pairings to consider.
As a result, the analysis is more involved, although it follows the same principle as
the proof of Theorem 3.1. There are approximately three times as many cases to
check. In the end, the condition that one needs is again α > 3

4 . In the general case
of � = T

d , one needs to again assume that α > d
4 . We will omit the details.

Following the mentioned outline, it is possible to show that the k-dependence

in the constant C is of the order ∼α

√
(2k)!
2k k! , which is ∼ √

k! by Stirling’s formula.
The reason for this large constant is that the various frequencies can pair up in many
different ways, which was not the case in the proof of Theorem 3.1. More precisely,
when we take squares and integrate in ω, there are 2k frequencies which pair up in
∼ (2k)!

2k k! different ways. A similar phenomenon is encountered in Section 6.4, where
we keep precise track of the implied constant in the estimate.

If, instead of Bernoulli random variables, we take standard Gaussian random
variables centered at zero, then a version of Theorem 3.9 still holds. In this case,
the constant C has additional dependence on k, in addition to the

√
k! factor

which was noted earlier. This is due to the fact that we need to bound the quantity∫
�

|hξ (ω)|2(k+1) dp(ω), which is not uniformly bounded in k for (hξ ) a standard
Gaussian random variable centered at zero.

For a further discussion of this method of randomization, we refer the reader
to Remark 5.1. In particular, we note that the non-commutativity relation given by
(51) in thementioned remark implies that the boardgame argument is not applicable
in the model which one obtains by using this method of randomization. The precise
details are given in the remark.
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4. Properties of the Randomized Gross–Pitaevskii Hierarchy

In this section, we study the properties of the randomized Gross–Pitaevskii
hierarchy:{

i∂tγ
(k) + (��xk − � �x ′

k
)γ (k) = ∑k

j=1[B j,k+1]ω(γ (k+1))

γ (k)
∣∣
t=0 = γ

(k)
0 .

(39)

We see that, in this hierarchy, there is only one random parameter ω ∈ �. In other
words, we see that all of the collision operators are randomized according to the
same parameter, according to which all of the collisions are randomized. As a
result, we also sometimes call (39) the dependently randomized Gross–Pitaevskii
hierarchy in the discussion that follows. We note below that this hierarchy has a lot
of properties which carry over from the deterministic GP hierarchy.

4.1. Link with the Nonlinear Schrödinger Equation

In this subsection, we construct factorized solutions to (39). Aswewill see, they
will be obtained as tensor products of solutions to a nonlinear Schrödinger equation
with a random nonlinearity. In this way, we obtain a probabilistic analogue of the
discussion in Section 2.3. As a result, we can better understand the connection
between the deterministic and the randomized GP hierarchy.

In order to avoid notational difficulties of dependence on the randomization
parameter ω, we will give a more precise notation for the randomization map given
in (1.5). Namely, given ω ∈ �, we define the map T ω : L2(�) → L2(�) as
follows:

(T ω f )̂ (ξ ) := hξ (ω) · f̂ (ξ), ξ ∈ Z
3. (40)

We note that T ω is a linear operator. It corresponds to the map defined in (1.5).
Since we are using standard Bernoulli random variables, it follows that h2

ξ = 1.
Hence, we obtain that T ω is an involution:

T ω ◦ T ω = I d. (41)

Suppose that φ = φ(x, t) solves the Cauchy problem associated to the nonlinear
Schrödinger equation: {

i∂tφ + �φ = |φ|2φ
φ
∣∣
t=0 = φ0.

(42)

Applying the operator T ω to the above equation, it follows that:

i∂t

(
T ωφ

)
+ �

(
T ωφ

)
= T ω

(
|φ|2φ

)
.

By (41), it follows that:

i∂t

(
T ωφ

)
+ �

(
T ωφ

)
= T ω

(
|T ω(T ωφ)|2 · T ω(T ωφ)

)
.
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Consequently, the function ψ = ψ(ω) := T ωφ solves the equation:{
i∂tψ + �ψ = T ω

(
|T ωψ |2 · T ωψ

)
ψ |t=0 = T ωφ0.

(43)

In other words, the function ψ , which is a randomization of the solution of the
deterministic NLS (42), solves a randomized NLS-type equation. We can now use
the function ψω to find a factorized solution to the randomized Gross–Pitaevskii
hierarchy (39). In particular, if we take initial data γ

(k)
0 := |T ωφ0〉〈T ωφ0|⊗k , we

note that a solution to (39) is given by γ (k) := |T ωφ〉〈T ωφ|⊗k . This follows from
the definition of the operator T ω and from the definition of the Fourier transform
of [B j,k+1]ωγ

(k+1)
0 given in (25).

Remark 4.1. It can be shown that the boardgame argument in general applies in the
context of (39), as long as one works in a class of permutation symmetric density
matrices. This gives another connection of the randomized GP hierarchy with the
nonlinear Schrödinger equation. However, in our further analysis, we will study
densitymatrices in the class ofN given inDefinition 6.1 below, inwhich the objects
no longer have permutation symmetry. This symmetry is crucial in applications the
boardgame argument, so the combinatorial reduction does not apply in the class
in which we will be working. It is important to note that this is not a structural
feature of the hierarchy itself. We will henceforth not pursue the issue of applying
the boardgame argument in the context of (39).

5. A New Randomized Hierarchy

As was noted in the previous section, the randomized Gross–Pitaevskii hierar-
chy (39) shares a lot of properties with the deterministic Gross–Pitaevskii hierarchy.
However, due to the dependent randomization, it is not possible to directly apply the
randomized spacetime estimate from Theorem 3.1. In this section, we circumvent
this difficulty by modifying the problem. In particular, we consider the following
independently randomized Gross–Pitaevskii hierarchy:{

i∂tγ
(k) + (��xk − � �x ′

k
)γ (k) = ∑k

j=1[B j,k+1]ωk+1(γ (k+1))

γ (k)|t=0 = γ
(k)
0 .

(44)

The difference between the randomized GP hierarchy (39) and the hierarchy (44)
is the fact that, in the latter case, the randomization parameters ωk ∈ � are not
assumed to be equal. We can view this as a way of independently randomizing the
full collision operator B(k+1) = ∑k

j=1 B j,k+1 according to (23) and (24).
More precisely, for each k, we perform a sequence of independent Bernoulli

trials. In other words, for every frequency ξ ∈ Z
3, we choose hξ (ωk+1), which is 1

or −1, each with probability 1
2 . We then define [B j,k+1]ωk+1 according to (23) and

(24), where each hξ (ω) is replaced by hξ (ωk+1). We apply the above procedure at
each level of the hierarchy. This is in contrast to the (dependently) randomized GP
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hierarchy (39), where we perform a sequence of independent Bernoulli trials only
once to determine hξ (ω) for ξ ∈ Z

3, and we use the obtained random coefficients
at each level of the hierarchy.

In the context of (44), it is possible to apply the averaged spacetime estimate
from Theorem 3.1 to estimate the Duhamel expansion of the solution evolving
from zero initial data. We have to estimate these terms in a norm which involves an
average in all of the randomization parameters which occur in the expansion. The
precise estimate is given in Theorem 5.2.

5.1. Properties of the Hierarchy (44)

Before we state and give an application of Theorem 3.1 in Section 5.2, let us
briefly summarize some of the relevant properties of the hierarchy (44). Unlike
the (dependently) randomized GP hierarchy, the independently randomized GP
hierarchy has some properties which are different from the deterministic case. We
observe that the following holds:

5.1.1. No Obvious Factorized Solutions The hierarchy (44) no longer admits
obvious factorized solutions. We cannot in general find solutions γ (k) := |T ωk φ〉
〈T ωk φ|⊗k , where i∂tφ + �φ = |φ|2φ. The relation:(

i∂t + (��xk − ��x ′
k
)
)
|T ωk φ〉〈T ωk φ|⊗k

=
k∑

j=1

[B j,k+1]ωk+1
(
|T ωk+1φ〉〈T ωk+1φ|⊗(k+1)

)

only holds when ωk = ωk+1.

5.1.2. The Boardgame Argument Does Not Apply We will now show that the
boardgame argument from [108] does not apply in the context of (44). In order to
avoid repetition of the construction of the boargame argument, we refer the reader
to [108, Section 3]. The main idea of the current sub-section is the fact that the fact
that the ωk are chosen to be distinct permits us to apply the regrouping of terms as
in [108].

Given k, �, m, n ∈ Nmutually distinct such that 1 ≤ k ≤ �−1, 1 ≤ m ≤ n−1,
and given ω1, ω2 ∈ �, the following commutation relation can be shown for the
randomized collision operators:

[Bk,�]ω1 [Bm,n]ω2 = [Bm,n]ω2 [Bk,�]ω1 . (45)

Even though the commutation relation (45) holds for (44), the boardgame ar-
gument still does not apply. The main reason is the fact that in the derivation of the
boardgame argument [108], one can interchange the tk and xk variables inside of
the integrand. However, in the context of (44), it is not possible to interchange the
ωk parameters. Thus, integrands which were equal in the deterministic case (or in
the case that all of the ωk were equal), now become mutually distinct.



Randomization and the Gross–Pitaevskii Hierarchy 455

Let us examine this problem on a concrete example. We use the same example
given in the explanation of the boardgame argument in [108, equations (26) and

(27)]. In the following discussion, wewrite the operatorU (k)(t) explicitly as e it�(k)
± ,

with notation as in [108]. Let us start with the time-dependent densitymatrix γ (5) =
γ (5)(t, �x5; �x ′

5) which satisfies the permutation symmetry:

γ (5)
(

t, xσ(1), . . . , xσ(5); x ′
σ(1), . . . , x ′

σ(5)

)
= γ (5) (t, x1, . . . , x5; x ′

1, . . . , x ′
5

)
(46)

for all permutations σ ∈ S5. In the discussion that follows, we write γ (5)(t, �x5; �x ′
5)

just as γ (5)(t). We write �±,x j for the Laplace operator only in the x j variable. We

also use the following shorthand �
(k)
± := ��xk − ��x ′

k
.

With this notation in mind, we consider:

I1 :=
∫

t1≥t2≥t5≥t4≥t3
ei(t1−t2)�

(1)
± [B1,2]ω2 ei(t2−t3)�

(2)
± [B2,3]ω3 ei(t3−t4)�

(3)
±

[
B1,4

]ω4 ei(t4−t5)�
(4)
± [B4,5]ω5γ (5)(t5) dt2 dt3 dt4 dt5 (47)

and

I2 :=
∫

t1≥t2≥t5≥t3≥t4
ei(t1−t2)�

(1)
± [B1,2]ω2 ei(t2−t3)�

(2)
± [B1,3]ω3 ei(t3−t4)�

(3)
±

[B3,4]ω4 ei(t4−t5)�
(4)
± [B3,5]ω5 γ (5)(t5) dt2 dt3 dt4 dt5. (48)

We note that I1 and I2 are functions of t1, x1, x ′
1. The collision operators in the

integrand act by integrating out the dependence on x2, x ′
2, x3, x ′

3, x4, x ′
4, x5, x ′

5.
In the deterministic setting [108], it was shown that the analogues of the ex-

pressions I1 and I2 are mutually equal. As was noted above, the same is true in the
setting of the (dependently) randomized GP hierarchy. We now show that, in the
context of the independently randomized GP hierarchy, it is no longer the case that
I1 is equal to I2.

As in [108], an identity which follows from the commutation (45) is:

ei(t2−t3)�
(2)
± [B2,3]ω3 ei(t3−t4)�

(3)
± [B1,4]ω4 ei(t4−t5)�

(4)
±

= ei(t2−t4)�
(2)
± [B1,4]ω4 e−i(t3−t4)(�

(3)
± −�±,x3+�±,x4 ) [B2,3]ω3 ei(t3−t4)�

(4)
± .

(49)

In the following discussion, let kω2
1,2 formally denote the kernel of [B1,2]ω2 . We use

similar notation for the other collision operators. Let:

γ3,4 := γ (5) (t5, x1, x2, x3, x4, x5; x ′
1, x ′

2, x ′
3, x ′

4, x ′
5

)
and

γ4,3 := γ (5) (t5, x1, x2, x4, x3, x5; x ′
1, x ′

2, x ′
4, x ′

3, x ′
5

)
.

The symmetry assumption on γ (5) given by (46) guarantees that γ3,4 = γ4,3.
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If we use (49) and if we write out I1 in terms of the integral kernels, it follows that:

I1 =
∫

t1≥t2≥t5≥t4≥t3

∫
�4×�4

ei(t1−t2)�
(1)
± kω2

1,2 ei(t2−t4)�
(2)
± kω4

1,4

×e
−i(t3−t4)

(
�

(3)
± −�±,x3+�±,x4

)
kω3
2,3 ei(t3−t5)�

(4)
± kω5

4,5 γ4,3

×dx2 . . . dx5 dx ′
2 . . . dx ′

5 dt2 dt3 dt4 dt5.

We exchange (t3, x3, x ′
3) and (t4, x4, x ′

4) to deduce that this expression equals:∫
t1≥t2≥t5≥t3≥t4

∫
�4×�4

ei(t1−t2)�
(1)
± kω2

1,2 ei(t2−t3)�
(2)
± kω4

1,3 ei(t3−t4)�
(3)
±

kω3
2,4 ei(t4−t5)�

(4)
± kω5

3,5 γ3,4 dx2 . . . dx5 dx ′
2 . . . dx ′

5 dt2 dt3 dt4 dt5

which since γ3,4 = γ4,3 equals:∫
t1≥t2≥t5≥t3≥t4

∫
�4×�4

ei(t1−t2)�
(1)
± kω2

1,2 ei(t2−t3)�
(2)
± kω4

1,3 ei(t3−t4)�
(3)
±

kω3
2,4 ei(t4−t5)�

(4)
± kω5

3,5 γ4,3 dx2 . . . dx5 dx ′
2 . . . dx ′

5 dt2 dt3 dt4 dt5.

By definition, this is:∫
t1≥t2≥t5≥t3≥t4

ei(t1−t2)�
(1)
± [B1,2]ω2 ei(t2−t3)�

(2)
± [B1,3]ω4 ei(t3−t4)�

(3)
±

[B2,3]ω3 ei(t4−t5)�
(4)
± [B3,5]ω5γ (5)(t5) dt2 dt3 dt4 dt5

which does not equal

I2 =
∫

t1≥t2≥t5≥t3≥t4
ei(t1−t2)�

(1)
± [B1,2]ω2 ei(t2−t3)�

(2)
± [B1,3]ω3 ei(t3−t4)�

(3)
±

[B3,4]ω4 ei(t4−t5)�
(4)
± [B3,5]ω5 γ (5)(t5) dt2 dt3 dt4 dt5

unless ω3 = ω4. The fact that the deterministic analogue of I1 is equal to the
deterministic analogue of I2 is an instance of the procedure used in the regrouping
of terms in the boardgame argument [108]. As we see, this component of the
procedure no longer applies if we add the ωk dependence as above.

Remark 5.1. If we were to use the randomization mentioned in Section 3.1, we
would be led to the study of the following hierarchy:{

i∂tγ
(k) + (�xk − �x ′

k
)γ (k) = ∑k

j=1 Bω
j,k+1(γ

(k+1))

γ (k)
∣∣
t=0 = γ

(0)
k

(50)

for ω ∈ �. Let us explain the notation. The operator Bω
j,k+1 is defined as first

applying the operator B j,k+1 and then applying the randomization given by (38) in

Remark 3.7 to the result. In other words, for a fixed density matrix σ
(k+1)
0 :

σ
(k+1)
0 �→ B j,k+1(σ

(k+1)
0 ) �→ Bω

j,k+1(σ
(k+1)
0 ) = randomization of B j,k+1(σ

(k+1)
0 ).
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It can be shown that, for k, �, m, n ∈ N mutually distinct such that 1 ≤ k ≤ � − 1,
1 ≤ m ≤ n − 1, the analogue of the commutation relation (45) does not hold, that
is

Bω
k,� Bω

m,n �= Bω
m,n Bω

k,�. (51)

Hence, the boardgame argument does not apply in the study of (50).

5.2. An Application of the Randomized Spatial Estimate

In this subsection, we apply the estimate given by Theorem 3.1 to the inde-
pendently randomized Gross–Pitaevskii hierarchy (44). The main result is given in
Theorem 5.2 below. Throughout this subsection we assume that α > 3

4 .
Let usfixa deterministic sequenceof time-dependent densitymatrices (γ (k)(t))k

= (γ (k)(t, �xk; �x ′
k))k satisfying the following a priori bound:∥∥S(k,α)γ (k)(t)

∥∥
L2(�k×�k)

≤ Ck
1 (52)

uniformly in time for some C1 > 0 independent of k. We note that, for factorized
objects γ (k) = |ψ〉〈ψ |⊗k , the condition (52) reduces to

‖ψ(t)‖Hα ≤ √
C1. (53)

In the case α = 1, the condition (53) holds globally in time if ψ = φ for φ

solving the NLS equation: {
i∂tφ + �φ = |φ|2φ
φ|t=0 = φ0 ∈ Hα.

Since T ω is an isometry on Hα , it follows that the condition (53) also holds for
ψ = T ωφ, whenever ω ∈ �. If α > 1, then we obtain that the condition (53)
holds only locally in time for ψ = φ and ψ = φω. The latter fact can be deduced
from the arguments given in [21]. As we will see, this also will be enough for our
application.

Since we will not be applying the boardgame argument, we do not need to
assume that γ (k) satisfies the permutation symmetry property as in (46). In this
section, we write ωk ∈ �k instead of ω ∈ � in order to emphasize that the indices
are distinct. In other words, the different randomizations will be independent.
Given k, n ∈ N, tk > 0 and (ωk+1, ωk+2, . . . , ωn+k) ∈ �k+1×�k+2×· · ·×�n+k ,
we define σ

(k)
n;ωk+1,...,ωn+k

by:

σ
(k)
n;ωk+1,...,ωn+k

(tk)

:= (−i)n
∫ tk

0

∫ tk+1

0
· · ·

∫ tn+k−1

0
U (k)(tk − tk+1) [B(k+1)]ωk+1 U (k+1)(tk+1 − tk+2)

[B(k+2)]ωk+2 · · · U (n+k−1)(tn+k−1 − tn+k)

[B(n+k)]ωn+k γ (n+k)(tn+k) dtn+k · · · dtk+2 dtk+1. (54)
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Here, we recall that by (25):

[
B(�+1)

]ω =
�∑

j=1

[
B+

j,�+1

]ω −
�∑

j=1

[
B−

j,�+1

]ω =
�∑

j=1

[B j,�+1]ω.

This is the density matrix of order k which we obtain after n Duhamel iterations
in the hierarchy (44). In this notation, the superscript k denotes the order of the
density matrix and the subscript n denotes the length of the Duhamel expansion.
The ω j are the (fixed) randomization parameters in the probability space �.
More precisely, let us fix n ∈ N and (ω2, ω3, . . . , ωn+1) ∈ �2 ×�3 ×· · ·×�n+1.
Let us look at:

γ̃ (1) := σ
(1)
n;ω2,ω3,ω4,ω5,..., ωn+1

γ̃ (2) := σ
(2)
n−1;ω3,ω4,ω5,..., ωn+1

γ̃ (3) := σ
(3)
n−2;ω4,ω5,..., ωn+1

...

γ̃ (n) := σ
(n)
1;ωn+1

.

Then, by construction, we obtain that:

{
i∂t γ̃

(k) + (��xk − � �x ′
k
)γ̃ (k) = ∑k

j=1[B j,k+1]ωk+1(γ̃ (k+1))

γ̃ (k)
∣∣
t=0 = 0.

for all k ∈ {1, 2, . . . , n − 1}. In other words, we obtain an arbitrarily long subset
of solutions to the full hierarchy (44) with zero initial data.

Theorem 5.2. Suppose that α > 3
4 and k ∈ N. Consider σ

(k)
n;ωk+1,ωk+2,...,ωn+k

, de-
fined as in (54).
There exists T > 0 depending only on the constant C1 in (52) and on α such that:

sup
t∈[0,T ]

∥∥S(k,α)σ
(k)
n;ωk+1,ωk+2,...,ωn+k

(t)
∥∥

L2
(
�k+1×�k+2×···×�n+k ; L2(�k×�k)

) → 0

(55)

as n → ∞.

Moreover,

sup
t∈[0,T ]

∥∥S(k,α)σ
(k)
n;ωk+1,ωk+2,...,ωn+k

(t)
∥∥

L2
(∏

m≥2 �m ;L2(�k×�k)
) → 0 (56)

as n → ∞.
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Proof. We first prove (55). Throughout the proof, let us take T > 0 small which
will be precisely determined later and let us consider a fixed t = tk ∈ [0, T ]. We
compute:

S(k,α)σ
(k)
n;ωk+1,...,ωn+k

(tk)

= (−i)n
∫ tk

0

∫ tk+1

0
· · ·

∫ tn+k−1

0
S(k,α) U (k)(tk − tk+1)

[B(k+1)]ωk+1 U (k+1)(tk+1 − tk+2)

[B(k+2)]ωk+2 · · · U (n+k−1)(tn+k−1 − tn+k)

[B(n+k)]ωn+k γ (n+k)(tn+k) dtn+k · · · dtk+2 dtk+1.

Hence, we obtain by Minkowski’s inequality:∥∥∥S(k,α)σ
(k)
n;ωk+1,ωk+2,...,ωn+k

(tk)
∥∥∥

L2
(
�k+1×�k+2×···×�n+k ; L2(�k×�k )

)
≤
∫ tk

0

∫ tk+1

0
· · ·

∫ tn+k−1

0

∥∥∥S(k,α) U (k)(tk − tk+1) [B(k+1)]ωk+1 U (k+1)(tk+1 − tk+2)[
B(k+2)

]ωk+2 · · · U (n+k−1)(tn+k−1 − tn+k)

[B(n+k)]ωn+k γ (n+k)(tn+k)

∥∥∥
L2
(
�k+1×�k+2×···×�n+k ; L2(�k×�k )

) dtn+k · · · dtk+2 dtk+1.

(57)

We look at the integrand in the t-variables, that is at:∥∥∥S(k,α) U (k)(tk − tk+1) [B(k+1)]ωk+1 U (k+1)(tk+1 − tk+2)

[B(k+2)]ωk+2 · · · U (n+k−1)(tn+k−1 − tn+k)

[B(n+k)]ωn+k γ (n+k)(tn+k)

∥∥∥
L2
(
�k+1×�k+2×···×�n+k ; L2(�k×�k)

).
Byusing the unitarity ofU (k)(tk −tk+1), and the fact that this operator commutes

with S(k,α), the above expression equals:∥∥S(k,α) [B(k+1)]ωk+1 U (k+1)(tk+1 − tk+2) [B(k+2)]ωk+2 · · · U (n+k−1)

(tn+k−1 − tn+k)
[

B(n+k)
]ωn+k

γ (n+k)(tn+k)
∥∥

L2
(
�k+1×�k+2×···×�n+k ; L2(�k×�k)

).
We use the second bound from Theorem 3.1 to deduce that this expression is:

≤ C0 k
∥∥S(k+1,α)[B(k+2)]ωk+2 U (k+2)(tk+2 − tk+3) · · · U (n+k−1)(tn+k−1 − tn+k)

[B(n+k)]ωn+k γ (n+k)(tn+k)
∥∥

L2
(
�k+2×�k+3×···×�n+k ; L2(�k+1×�k+1)

). (58)

Here, C0 denotes the constant C from Corollary 3.2. We note that the last step is
justified since we are taking an L2 norm in all of the variables and hence we can
apply the randomized spacetime estimate in a “vector-valued” setting. We can see
this by squaring both sides, integrating and using Fubini’s theorem. Let us note that,
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in order to deduce the bound (58), we also used the unitarity of U (k+1)(tk − tk+1)

and the fact that this operator commutes with S(k+1,α).
Iterating this procedure, we obtain:∥∥∥S(k,α) U (k)(tk − tk+1) [B(k+1)]ωk+1 U (k+1)(tk+1 − tk+2)

[B(k+2)]ωk+2 · · · U (n+k−1)(tn+k−1 − tn+k)

[B(n+k)]ωn+k γ (n+k)(tn+k)

∥∥∥
L2
(
�k+1×�k+2×···×�n+k ; L2(�k×�k )

)
≤
(

C0k
)

·
(

C0(k + 1)
)

· · ·
(

C0(n + k)
)

·
∥∥∥S(n+k,α)γ (n+k)(tn+k)

∥∥∥
L2(�n+k×�n+k)

.

By using the a priori bound on γ (n+k) (given by the condition (52)), this is:

≤ (n + k)!
(k − 1)! · Cn+1

0 · Cn+k
1 . (59)

We can assume, without loss of generality thatC0 ≥ 1. In particular, we can assume
that Cn+1

0 ≤ Cn+k
0 . Hence, the expression in (59) is:

≤ (n + k)!
(k − 1)! · Mn+k (60)

for some M ∼ C0 · C1, which is independent of n and k. The following identity is
deduced by induction on n:∫ tk

0

∫ tk+1

0
· · ·

∫ tn+k−1

0
dtn+k · · · dtk+2 dtk+1 = tn

k

n! . (61)

The gain of n! in the denominator will be useful in the analysis which follows.
Namely, we can combine (57), (60) and (61) in order to deduce that:

sup
t∈[0,T ]

∥∥S(k,α)σ
(k)
n;ωk+1,ωk+2,...,ωn+k

(t)
∥∥

L2
(
�k+1×�k+2×···×�n+k ; L2(�k×�k)

)
≤ T n

n! · (n + k)!
(k − 1)! · Mn+k ≤ T n

n! · (n + k)! · Mn+k

= T n · (n + 1) · (n + 2) · · · (n + k) · Mn+k ≤ T n · (n + k)k · Mn+k

�k T n · nk · Mn · Mk �k T n · (2M)n · Mk = (
2MT

)n · Mk .

Here, we used the fact that nk = Ok(2n). We now choose T > 0 sufficiently small
such that 2MT < 1.

It follows that, for T chosen in this way:

sup
t∈[0,T ]

∥∥S(k,α)σ
(k)
n;ωk+1,ωk+2,...,ωn+k

(t)
∥∥

L2
(
�k+1×�k+2×···×�n+k ; L2(�k×�k)

)
→ 0 as n → ∞.



Randomization and the Gross–Pitaevskii Hierarchy 461

By construction T depends only on M . M in turn depends only onC1 and α. Hence,
T depends only on C1 and α. This proves the claim given in (55).

In order to prove (56), let us first state a non-trivial extension result from prob-
ability theory that allows us to make sense of the norm in which we are studying
the convergence.

Theorem 5.3. [106,111] Suppose that (�i , �i , pi )i∈I is an arbitrary, non-empty
family of probability spaces. Then, there exists a probability measure p on

∏
i∈I �i

such that, for all finite subsets F ⊆ I :

p
(⋂

i∈F

π−1
i (Ai )

)
=

∏
i∈F

pi (Ai ) (62)

whenever Ai ∈ �i for all i ∈ F. Here, for j ∈ I, π j : ∏i∈I �i → � j denotes the
projection map onto � j .
The obtained probability space is given by (

∏
i∈I �i ,B, p), where B is the Borel

field generated by sets of the form:⋂
i∈F

π−1
i (Ai )

for some finite subset F ⊆ I and Ai ∈ �i .

The first result of this type was proved in the work of Kolmogorov [111]
in the case in which each probability space is a [0, 1] with Lebesgue measure.
Kolmogorov’s proof uses the fact that, in this context, the obtained product is
topologically compact. The result in full generality was proved in the work of
Kakutani [106]. This is the version stated in Theorem 5.3. There are also related
results byDoob [71]. We use Theorem 5.3 in the case when I is a countable family.

By (62), it follows that:∥∥S(k,α)σ
(k)
n;ωk+1,ωk+2,...,ωn+k

(tk)
∥∥

L2
(
�k+1×�k+2×···×�n+k ; L2(�k×�k)

)
= ∥∥S(k,α)σ

(k)
n;ωk+1,ωk+2,...,ωn+k

×(tk)
∥∥

L2
(
�2×�3×···×�k×�k+1×···×�n+k×�n+k+1×�n+k+2×···; L2(�k×�k)

)
= ∥∥S(k,α)σ

(k)
n;ωk+1,ωk+2,...,ωn+k

(tk)
∥∥

L2
(∏

m≥2 �m ;L2(�k×�k )
).

Here, we used the fact that there is no dependence on ω2, ω3, . . . , ωk−1 and on
ωn+2, ωn+3, ... in S(k,α)σ

(k)
n;ωk+1,ωk+2,...,ωn+k

(tk). In particular, (55) implies that, for
T = T (C1, α) > 0,

sup
t∈[0,T ]

∥∥S(k,α)σ
(k)
n;ωk+1,ωk+2,...,ωn+k

(t)
∥∥

L2
(∏

m≥2 �m ;L2(�k×�k )
) → 0

as n → ∞. The second claim of the theorem now follows. ��
Remark 5.4. The analysis is the same, as well as the bound, if one considers neg-
ative times. In the discussion that follows, we consider non-negative times, for
simplicity of notation.
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Remark 5.5. The above proof gives us that T ∼α
1

C1
, where C1 is the constant in

(52).

Remark 5.6. The above discussion can be applied on T
d , whenever d ≥ 1, pro-

vided that α > d
4 .

6. The Randomized Gross–Pitaevskii Hierarchy Revisited

In this section, we study the randomized Gross–Pitaevskii hierarchy (39) in
more detail. In the discussion that follows, we assume that α ≥ 0. We note that all
of the results of this section apply to the spatial domain � = T

d for d ≥ 1.
The main result of this section is Theorem 6.4, which is the analogue of Theo-

rem5.2 in the dependently randomized setting. In this context, the level of regularity
is α ≥ 0. This should be compared to the assumption that α > 3

4 , which we had
to make when we were applying the spacetime estimate from Theorem 3.1 in the
study of the independently randomized GP hierarchy (44). Furthermore, since there
is only one random parameter involved, the random component is simpler than the
infinite product that we had to use in the independently randomized setting, and
hence the spaces in which wewill work will be simpler than those used in Section 5.

Let us recall that the (depdendently) randomized Gross–Pitaevskii hierarchy is
given by: {

i∂tγ
(k) + (��xk − � �x ′

k
)γ (k) = ∑k

j=1[B j,k+1]ω(γ (k+1))

γ (k)
∣∣
t=0 = γ

(k)
0 .

As before, we take homogeneous initial data γ
(k)
0 = 0 and we study Duhamel terms

of the type:

(−i)n
∫ tk

0

∫ tk+1

0
· · ·

∫ tn+k−1

0
U (k)(tk − tk+1) [B(k+1)]ω U (k+1)(tk+1 − tk+2)[

B(k+2)
]ω · · · U (n+k−1)(tn+k−1 − tn+k)

[B(n+k)]ω γ (n+k)(tn+k) dtn+k · · · dtk+2 dtk+1.

In this case, since the randomizations are no longer mutually independent, we
cannot apply the estimate from Theorem 3.1 except in the special case that n = 1.
We explain this difficulty in more detail now.

6.1. Difficulties Arising from Higher-Order Duhamel Expansions

If we try to extend the ideas from the proof of Theorem 3.1 to higher Duhamel
expansions, we see that the pairings of the frequencies are not enough in order to
deduce the needed estimate. In the following section, we will explain this point
on an example. Let us note that these arguments can be extended to the case of a
Duhamel expansion of length n ≥ 3. For simplicity, we will construct an example
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when the length of the expansion equals 2. This example will help us motivate a
special class of density matrices in Section 6.3.

We will show that it is, in general, not possible to use the pairings due to the
randomization in order to deduce that, for α > 3

4 :

∥∥S(1,α) U (1)(t1 − t2)
[

B+
1,2

]ω U (2)(t2 − t3)
[

B+
2,3

]ω

γ (3)
∥∥

L2
(
�×�×�

)
�
∥∥S(1,α)γ (3)

∥∥
L2(�3×�3)

.

In other words, it is not possible to deduce that:

∥∥S(1,α)
[

B+
1,2

]ω U (2)(t2−t3)
[

B+
2,3

]ω

γ (3)
∥∥

L2
(
�×�×�

) �
∥∥S(1,α)γ (3)

∥∥
L2(�3×�3)

.

The construction is as follows:

Example 1. Let us consider the case t2 − t3 = 0. We show that the pairings due to
the randomization do not allow us to prove:

∥∥S(1,α)
[

B+
1,2

]ω [
B+
2,3

]ω

γ (3)
∥∥

L2
(
�×�×�

) �
∥∥S(1,α)γ (3)

∥∥
L2(�3×�3)

. (63)

We compute:

([B+
1,2]ω [B+

2,3]ωγ (3)])̂(
ξ1; ξ ′

1

)
=

∑
η2,η

′
2

([B+
2,3]ωγ (3)])̂(

ξ1 − η2 + η′
2, η2; ξ ′

1, η
′
2

) · hξ1(ω) · hξ1−η2+η′
2
(ω)

·hη2(ω) · hη′
2
(ω)

=
∑

η2,η
′
2,η3,η

′
3

γ̂ (3) (ξ1 − η2 + η′
2, η2 − η3 + η′

3, η3; ξ ′
1, η

′
2, η

′
3

)
·hξ1(ω) · hξ1−η2+η′

2
(ω) · hη′

2
(ω) · hη2−η3+η′

3
(ω) · hη3(ω) · hη′

3
(ω). (64)

In the above sum, we used the fact that h2
η2

(ω) = 1.
Hence, we need to consider:

∑
ξ1,ξ

′
1

∑
η2,η

′
2,η3,η

′
3

η̃2,η̃
′
2,η̃3,η̃

′
3

〈ξ1〉α · 〈ξ ′
1〉α · γ̂ (3) (ξ1 − η2 + η′

2, η2 − η3 + η′
3, η3; ξ ′

1, η
′
2, η

′
3

) ·

〈ξ1〉α · 〈ξ ′
1〉α · γ̂ (3) (ξ1 − η̃2 + η̃′

2, η̃2 − η̃3 + η̃′
3, η̃3; ξ ′

1, η̃
′
2, η̃

′
3

) ·
hξ1−η2+η′

2
(ω) · hη2−η3+η′

3
(ω) · hη3(ω) · hη′

2
(ω) · hη′

3
(ω) ·

hξ1−η̃2+η̃′
2
(ω) · hη̃2−η̃3+η̃′

3
(ω) · hη̃3(ω) · hη̃′

2
(ω) · hη̃′

3
(ω).

In the above formula, we used the fact that h2
ξ1

(ω) = 1.
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It is simple to apply the Cauchy–Schwarz inequality in ξ ′
1. We will henceforth

consider the sum in the other variables. In particular, with the notation as in Defi-
nition 3.5, we need to consider:

ξ1, η2, η
′
2, η3, η

′
3, η̃2, η̃

′
2, η̃3, η̃

′
3; 〈ξ1〉2α

·
[〈ξ1 − η2 + η′

2〉0 〈η2 − η3 + η′
3〉0 〈η3〉0 〈η′

2〉0 〈η′
3〉0〈ξ1 − η̃2 + η̃′

2〉0 〈η2 − η̃3 + η̃′
3〉0 〈η̃3〉0 〈η̃′

2〉0 〈η̃′
3〉0

]

with the additional condition that we have a pairing of frequencies that comes from
the randomization. By the randomization, we can obtain the analogue of property
(*) from the proof of Theorem 3.1, that is we can deduce that each element in the
set:{
ξ1 − η2 + η′

2, η2 − η3 + η′
3, η3, η

′
2, η

′
3, ξ1 − η̃2 + η̃′

2, η̃2 − η̃3 + η̃′
3, η̃3, η̃

′
2, η̃

′
3

}
occurs at least twice in the list:(
ξ1 − η2 + η′

2, η2 − η3 + η′
3, η3, η

′
2, η

′
3, ξ1 − η̃2 + η̃′

2, η̃2 − η̃3 + η̃′
3, η̃3, η̃

′
2, η̃

′
3

)
.

The goal would be to distribute a factor of 〈ξ1〉α over the first and second row of
the matrix. Let us consider one pairing in which we see that this is not possible:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ1 − η2 + η′
2 = η2 − η3 + η′

3

ξ1 − η̃2 + η̃′
2 = η̃2 − η̃3 + η̃′

3

η3 = η̃3

η′
2 = η′

3

η̃′
2 = η̃′

3.

In this case, we note that:

ξ1 − η2 + η′
2 = η2 − η3 + η′

3 = η2 − η3 + η′
2.

Hence, it follows that:

ξ1 = 2η2 − η3.

We analogously obtain that:

ξ1 = 2η̃2 − η̃3 = 2η̃2 − η3.

Consequently:

η2 = η̃2.

Moreover,we can eliminate the sum in ξ1 since ξ1 = 2η2−η3.Hence, the expression
we need to bound is:

η2, η
′
2, η̃

′
2, η3; 〈2η2 − η3〉2α

·
[〈η2 − η3 + η′

2〉0 〈η2 − η3 + η′
2〉0 〈η3〉0 〈η′

2〉0 〈η′
2〉0〈η2 − η3 + η̃′

2〉0 〈η2 − η3 + η̃′
2〉0 〈η3〉0 〈η̃′

2〉0 〈η̃′
2〉0

]
.
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We change variables from η2 − η3 to η2 and the above sum becomes:

η2, η
′
2, η̃

′
2, η3; 〈2η2 + η3〉2α ·

[〈η2 + η′
2〉0 〈η2 + η′

2〉0 〈η3〉0 〈η′
2〉0 〈η′

2〉0〈η2 + η̃′
2〉0 〈η2 + η̃′

2〉0 〈η3〉0 〈η̃′
2〉0 〈η̃′

2〉0
]

.

At this point, we are supposed to distribute the two factors of 〈2η2 + η3〉α . We can
do this by using the fractional Leibniz rule in the first row as:

〈2η2 + η3〉α � 〈η2 + η′
2〉α · 〈η2 + η′

2〉α · 〈η3〉α · 〈η′
2〉α · 〈η′

2〉α,

which follows from the fact that:

2η2 + η3 = (
η2 + η′

2

) + (
η2 + η′

2

) + η3 − η′
2 − η′

2.

Similarly, we use the fractional Leibniz rule in the second row as:

〈2η2 + η3〉α � 〈η2 + η̃′
2〉α · 〈η2 + η̃′

2〉α · 〈η3〉α · 〈η̃′
2〉α · 〈η̃′

2〉α.

In particular, it suffices to estimate:

η2, η
′
2, η̃

′
2, η3;

[〈η2 + η′
2〉α 〈η2 + η′

2〉α 〈η3〉α 〈η′
2〉α 〈η′

2〉α〈η2 + η̃′
2〉α 〈η2 + η̃′

2〉α 〈η3〉α 〈η̃′
2〉α 〈η̃′

2〉α
]

.

It is possible to estimate the sum in η2 and in η3 first by using the Cauchy–Schwarz
inequality in these variables. If we want to estimate the sum in η′

2 or in η̃′
2, we need

to lose derivatives in these variables and it is not possible to sum otherwise. This is
due to the fact that the variables η′

2 and η̃′
2 occur in the same row of the matrix.

In particular, we can use the previous method to estimate the sum from above by:

�
∥∥S(3,α+ 3

4+ε)γ (3)
∥∥2

L2(�3×�3)
.

Hence, in the case of the second Duhamel iteration, we cannot argue as in the Case
IA3 in the proof of Theorem3.1. The reasonwhy this is the case is that the frequency
η2 does not appear in the sum (64). We are thus forced to use the fractional Leibniz
rule in all of the variables.

Consequently, it is not possible to prove an estimate of the form (63) for the second
Duhamel iteration in the class of general density matrices by using the pairings
which come from the randomization. In what follows, we will explicitly write out
the Duhamel expansion of arbitrary length. We will then use this formula to prove
a randomized spacetime bound for a specific class of density matrices.

6.2. The Precise Form of the Duhamel Expansion Term

In this subsection,we explicitlywrite out the full formof theDuhamel expansion
which occurs in the study of the randomized Gross–Pitaevskii hierarchy (39). In
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this expansion, we will again use the fact that the randomization is obtained by
using standard Bernoulli random variables. We will use this explicit formula in
the proof of the randomized spacetime estimates in non-resonant classes given in
Propositions 6.2 and 6.2 in the following two subsections.

The explicit expansion is obtained as follows. Let us fix n, � ∈ N and j1, . . . j�,
k1, . . . , k� ∈ N, with j1 < k1 ≤ n + �, . . . , j� < k� ≤ n + � and t1, t2, . . . , t�+1 ∈
R. We show that, for all sequences (γ (m))m of density matrices, the following
identity holds:(

U (n)(t1 − t2) [B±
j1,k1

]ω U (n+1)(t2 − t3) [B±
j2,k2

]ω · · ·
· · ·U (n+�−1)(t� − t�+1) [B±

j�,k�
]ω γ (n+�)

)̂(ξ1, . . . , ξn; ξ ′
1, . . . , ξ

′
n) =

∗∑
η1,...,ηn+�

η′
1,...,η

′
n+�

ei(t1−t2)(··· ) · ei(t2−t3)(··· ) · · · ei(t�−t�+1)(··· )

·γ̂ (n+�)(η1, . . . , ηn+�; η′
1, . . . , η

′
n+�) ·

·
∏

1≤ j≤n
ξ j ∈A

{
hξ j (ω) · h

η
j,1
1

(ω) · h
η

j,1
2

(ω) · · · h
η

j,1
N j

(ω)
}

·
∏

1≤ j≤n
ξ ′

j ∈B

{
hξ ′

j
(ω) · h

η
j,2
1

(ω) · h
η

j,2
2

(ω) · · · h
η

j,2
M j

(ω)
}
. (65)

Here, we need to explain the notation:
We say that ξ j ∈ A for some 1 ≤ j ≤ n if a collision operator [B±

j,k]ω was
applied to this frequency. In other words, ξ j ∈ A if the frequency ξ j does not
appear in the list (η1, . . . , ηn+�; η′

1, . . . , η
′
n+�). Analogously, we say that ξ ′

j ∈ B
if a collision operator [B±

j,k]ω was applied to this frequency. The sets A and B are
uniquely determined by the collision operators that we are applying.

Moreover,

∗∑
η1,...,ηn+�

η′
1,...,η

′
n+�

(· · · )

denotes the sum over η1, . . . , ηn+�, η
′
1, . . . , η

′
n+� which satisfy the following con-

straints:

(i) The set
{
η1, . . . , ηn+�, η

′
1, . . . , η

′
n+�

}
can be written as the union of:

⎛
⎜⎜⎜⎝

⋃
1≤ j≤n
ξ j ∈A

{
η

j,1
1 , . . . , η

j,1
N j

}
⎞
⎟⎟⎟⎠ ∪

⎛
⎜⎜⎜⎜⎝

⋃
1≤ j≤n
ξ ′

j ∈B

{
η

j,2
1 , . . . , η

j,2
M j

}
⎞
⎟⎟⎟⎟⎠
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(these are the new frequencies which we obtain after applying the collision
operators) and:

{
ξ1, . . . , ξn, ξ ′

1, . . . , ξ
′
n

} \ (A ∪ B).
(These are the frequencies on which we do not apply the collision operators
and which remain the same.)

(ii) Each ξ j ∈ A can be written as:

ξ j = ±η
j,1
1 ± η

j,1
2 ± · · · ± η

j,1
N j

.

(iii) Each ξ ′
j ∈ B can be written as:

ξ ′
j = ±η

j,2
1 ± η

j,2
2 ± · · · ± η

j,2
M j

.

The choice of± above is uniquely determined by the collision operators that we are
applying. The choice of collision operators also uniquely determines the quantities
N j and M j for j = 1, . . . , n.

To summarize, in
∗∑
, we are summing over all the frequency configurations

which satisfy the above conditions. Let us note that the (· · · ) in ei(t j −t j+1)(··· )
denotes a real-valued function in the frequencies. Consequently, the exponential
has modulus one and hence does not affect the subsequent estimates. Finally, in
the above calculations and all of its subsequent applications, we will always fix a
choice of signs for each [B±

j,k]ω.
Before we proceed, let us give an explicit example of the expansion (65):

Example 2. We suppose that n = 2, � = 3. For simplicity of notation, let us
analyze the case when t1 = t2 = t3 = t4 = 0. As was noted earlier, in the general
case, we would multiply all the terms by factors of modulus 1. Let us consider the
collision operators [B+

1,2]ω, [B−
2,3]ω, [B−

4,5]ω.
In particular, we consider:

(
[B+

1,2]ω[B−
2,3]ω[B−

4,5]ωγ (5)
)̂(ξ1, ξ2; ξ ′

1, ξ
′
2)

=
∑
ξ3,ξ

′
3

(
[B−

2,3]ω[B−
4,5]ωγ (5)

)̂(
ξ1 − ξ3 + ξ ′

3, ξ3, ξ2; ξ ′
1, ξ

′
3, ξ

′
2

) · hξ1(ω)

·hξ1−ξ3+ξ ′
3
(ω) · hξ3(ω) · hξ ′

3
(ω)

=
∑

ξ3,ξ
′
3,ξ4,ξ

′
4

(
[B−

4,5]ωγ (5)
)̂(

ξ1 − ξ3 + ξ ′
3, ξ3, ξ4, ξ2; ξ ′

1, ξ
′
3 − ξ ′

4 + ξ4, ξ
′
4, ξ

′
2

) ·

hξ1(ω) · hξ1−ξ3+ξ ′
3
(ω) · hξ3(ω) · hξ ′

3
(ω) · hξ ′

3
(ω) · hξ ′

3−ξ ′
4+ξ4

(ω) · hξ4(ω) · hξ ′
4
(ω).
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Since h2
ξ ′
3
(ω) = 1, this expression equals:

∑
ξ3,ξ

′
3,ξ4,ξ

′
4

(
[B−

4,5]ωγ (5)
)̂(

ξ1 − ξ3 + ξ ′
3, ξ3, ξ4, ξ2; ξ ′

1, ξ
′
3 − ξ ′

4 + ξ4, ξ
′
4, ξ

′
2

) ·

hξ1(ω) · hξ1−ξ3+ξ ′
3
(ω) · hξ3(ω) · hξ ′

3−ξ ′
4+ξ4

(ω) · hξ4(ω) · hξ ′
4
(ω)

=
∑

ξ3,ξ
′
3,ξ4,ξ

′
4,ξ5,ξ

′
5

γ̂ (5) (ξ1 − ξ3 + ξ ′
3, ξ3, ξ4, ξ2, ξ5; ξ ′

1, ξ
′
3

−ξ ′
4 + ξ4, ξ

′
4, ξ

′
2 − ξ ′

5 + ξ5, ξ
′
5

) ·
hξ1(ω) · hξ1−ξ3+ξ ′

3
(ω) · hξ3(ω) · hξ ′

3−ξ ′
4+ξ4

(ω) · hξ4(ω) · hξ ′
4
(ω) ·

hξ ′
2
(ω) · hξ ′

2−ξ ′
5+ξ5

(ω) · hξ5(ω) · hξ ′
5
(ω).

Hence, we take A := {ξ1} and B := {ξ ′
2} and we note that:

ξ1 = (
ξ1 − ξ3 + ξ ′

3

) + ξ3 + ξ4 − (
ξ ′
3 − ξ ′

4 + ξ4
) − ξ ′

4

ξ ′
2 = −ξ5 + (

ξ ′
2 − ξ ′

5 + ξ5
) + ξ ′

5.

In the notation from (65), we hence take:

η
1,1
1 := ξ1 − ξ3 + ξ ′

3, η
1,1
2 := ξ3, η

1,1
3 := ξ4, η

1,1
4 := ξ ′

3 − ξ ′
4 + ξ4, η

1,1
5 := ξ ′

4

η
2,2
1 := ξ5, η

2,2
2 := ξ ′

2 − ξ ′
5 + ξ5, η

2,2
3 := ξ ′

5.

Consequently, we can write:

(
[B+

1,2]ω[B−
2,3]ω[B−

4,5]ωγ (5)
)̂(ξ1, ξ2; ξ ′

1, ξ
′
2)

=
∑

η
1,1
1 +η

1,1
2 +η

1,1
3 −η

1,1
4 −η

1,1
5 = ξ1

−η
2,2
1 +η

2,2
2 +η

2,2
3 = ξ ′

2

γ̂ (5)
(
η
1,1
2 , η

1,1
2 , η

1,1
3 , ξ2, η

2,2
1 ; ξ ′

1,

η
1,1
4 , η

1,1
5 , η

2,2
2 , η

2,2
3

)
·

hξ1(ω) · h
η
1,1
1

(ω) · h
η
1,1
2

(ω) · h
η
1,1
3

(ω) · h
η
1,1
4

(ω) · h
η
1,1
5

(ω) ·
hξ ′

2
(ω) · h

η
2,2
1

(ω) · h
η
2,2
2

(ω) · h
η
2,2
3

(ω).

This is the expansion given in (65).

We now prove the identity (65) in the general case by induction on �. Both the
base case � = 1 and the inductive step follow from the form of the randomized
collision operator. In particular, we note the following two identities, for r ∈ N and
for j < k ≤ r + 1:
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(1) Identity for [B+
j,k]ω.(

U (r)(t)[B+
j,k]ωγ (r+1)

ω

)̂( �μr ; �μ′
r )

=
∑
λ,λ′

eit (−|μ j −λ+λ′|2−|λ|2−|�μr |2+|μ j |2+|�μ′
r |2+|λ′|2) ·

γ̂ (r+1)
ω (μ1, . . . , μ j−1, μ j − λ + λ′, μ j+1, . . . , μk−1, λ, μk+1, . . . , μr ;

μ′
1, . . . , μ

′
k−1, λ

′, μ′
k+1, . . . , μ

′
r ) ·

hμ j (ω) · hμ j −λ+λ′(ω) · hλ(ω) · hλ′(ω). (66)

Here, the subscript ω in γ
(r+1)
ω denotes ω dependence in the density matrix

(through factors of hξ (ω)). We note in the above formula, that μ j is no longer
taken to be a frequency in γ̂ω

(r+1), but the random factor hμ j (ω) corresponding
to μ j still occurs. It is important to analyze this factor.
We observe that the following two cases can occur:
(a) hμ j (ω) appears in γ̂ω

(r+1); In this case we use the identity h2
μ j

(ω) = 1

and we cancel the factor of hμ j (ω) in γ̂ω
(r+1) with the factor of hμ j (ω) in

(66). Consequently, the term hμ j (ω) corresponding to μ j does not appear
in the random part at this stage.

(b) hμ j (ω) does not appear in γ̂ω
(r+1); In this caseμ j = ξ� for some1 ≤ � ≤ r

and the factor hξ�
(ω) corresponding to ξ� appears in the random part at

this stage. We say that ξ� ∈ A.
In either case, we have the following relation between the frequencies of the
left and right-hand side of (66)

μ j = (μ j − λ + λ′) + λ − λ′. (67)

(2) Identity for [B−
j,k]ω.

For γ
(r+1)
ω as before, we note that:

(
U (r)(t)[B−

j,k]ωγ (r+1)
ω

)̂( �μr ; �μ′
r )

=
∑
λ,λ′

eit (−|�μr |2−|λ|2+|μ′
j +λ−λ′|2+|λ′|2+|�μ′

r |2−|μ j |2) ·

γ̂ (r+1)
ω (μ1, . . . , μk−1, λ, μk+1, . . . , μn;μ′

1, . . . , μ
′
j−1, μ

′
j + λ − λ′,

μ′
j+1, . . . , μ

′
k−1, λ

′, μ′
k+1, . . . , μ

′
n) ·

hμ′
j
(ω) · hμ′

j +λ−λ′(ω) · hλ(ω) · hλ′(ω). (68)

As before, two cases can occur:
(a) hμ′

j
(ω) appears in γ̂

(r+1)
ω ; In this case, we use the fact that h2

μ′
j
(ω) = 1

and we deduce as before that the term hμ′
j
(ω) corresponding to μ′

j does
not appear in the random part at this stage.
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(b) hμ′
j
(ω) does not appear γ̂ω

(r+1); In this case, we note that μ′
j = ξ ′

� for

some 1 ≤ � ≤ n. Consequently, the factor hξ ′
�
(ω) corresponding to ξ ′

�

appears in the random part at this stage. We say that ξ ′
� ∈ B.

We furthermore note the following relation between the frequencies occuring
on the left and right-hand side of (68):

μ′
j =

(
μ′

j − λ + λ′) − λ + λ′. (69)

The identity (65) now follows by induction and by the use of (66) and (68). The
construction of the η

j,1
� and η

j,2
� is based on the relations (67) and (69).

Similarly as before, we denote by:

∗∑
η̃1,...,η̃n+�

η̃′
1,...,η̃

′
n+�

the sum over η̃1, . . . , η̃n+�, η̃
′
1, . . . , η̃

′
n+� with the analogous constraints satisfied

when the η and η′ variables are replaced by the η̃ and η̃′ variables. In otherwords, for
the same choice of collision operators and for the samedefinition of setsA andB and
numbers N j and M j as before, we are summing over η̃1, . . . , η̃n+�, η̃

′
1, . . . , η̃

′
n+�

such that:

(i) The set
{
η̃1, . . . , η̃n+�, η̃

′
1, . . . , η̃

′
n+�

}
can be written as the union of:( ⋃

1≤ j≤n
ξ j ∈A

{
η̃

j,1
1 , . . . , η̃

j,1
N j

}) ∪
( ⋃
1≤ j≤n
ξ ′

j ∈B

{
η̃

j,2
1 , . . . , η̃

j,2
M j

})

(these are the new frequencies which we obtain after applying the
collision operators) and:{

ξ1, . . . , ξn, ξ ′
1, . . . , ξ

′
n} \ (A ∪ B).

(These are the frequencies on which we do not apply the collision
operators and which remain the same.)

(ii) Each ξ j ∈ A can be written as:

ξ j = ±η̃
j,1
1 ± η̃

j,1
2 ± · · · ± η̃

j,1
N j

.

(iii) Each ξ ′
j ∈ B can be written as:

ξ ′
j = ±η̃

j,2
1 ± η̃

j,2
2 ± · · · ± η̃

j,2
M j

.

From (65), we deduce that:∣∣∣(S(n,α) U (n)(t1 − t2) [B±
j1,k1

]ω U (n+1)(t2 − t3) [B±
j2,k2

]ω · · ·

· · · U (n+�−1)(t� − t�+1) [B±
j�,k�

]ω γ (n+�)
)̂(ξ1, . . . , ξn; ξ ′

1, . . . , ξ
′
n)

∣∣∣2
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= 〈ξ1〉2α · · · 〈ξn〉2α · 〈ξ ′
1〉2α · · · 〈ξ ′

n〉2α

·
∗∑

η1,...,ηn+�

η′
1,...,η

′
n+�

∗∑
η̃1,...,η̃n+�

η̃′
1,...,η̃

′
n+�

ei(t1−t2)(··· ) · ei(t2−t3)(··· ) · · · ei(t�−t�+1)(··· ) ·

γ̂ (n+�)(η1, . . . , ηn+�; η′
1, . . . , η

′
n+�) · γ̂ (n+�)(η̃1, . . . , η̃n+�; η̃′

1, . . . , η̃
′
n+�)

·
∏

1≤ j≤n
ξ j ∈A

{
hξ j (ω) · h

η
j,1
1

(ω) · h
η

j,1
2

(ω) · · · h
η

j,1
N j

(ω)
}

·
∏

1≤ j≤n
ξ ′

j ∈B

{
hξ ′

j
(ω) · h

η
j,2
1

(ω) · h
η

j,2
2

(ω) · · · h
η

j,2
M j

(ω)
}

·
∏

1≤ j≤n
ξ j ∈A

{
hξ j (ω) · h

η̃
j,1
1

(ω) · h
η̃

j,1
2

(ω) · · · h
η̃

j,1
N j

(ω)
}

·
∏

1≤ j≤n
ξ ′

j ∈B

{
hξ ′

j
(ω) · h

η̃
j,2
1

(ω) · h
η̃

j,2
2

(ω) · · · h
η̃

j,2
M j

(ω)
}

= 〈ξ1〉2α · · · 〈ξn〉2α · 〈ξ ′
1〉2α · · · 〈ξ ′

n〉2α

·
∗∑

η1,...,ηn+�

η′
1,...,η

′
n+�

∗∑
η̃1,...,η̃n+�

η̃′
1,...,η̃

′
n+�

ei(t1−t2)(··· ) · ei(t2−t3)(··· ) · · · ei(t�−t�+1)(··· )

γ̂ (n+�)(η1, . . . , ηn+�; η′
1, . . . , η

′
n+�) · γ̂ (n+�)(η̃1, . . . , η̃n+�; η̃′

1, . . . , η̃
′
n+�)

·
∏

1≤ j≤n
ξ j ∈A

{
h

η
j,1
1

(ω) · h
η

j,1
2

(ω) · · · h
η

j,1
N j

(ω)
}

·
∏

1≤ j≤n
ξ ′

j ∈B

{
h

η
j,2
1

(ω) · h
η

j,2
2

(ω) · · · h
η

j,2
M j

(ω)
}

·
∏

1≤ j≤n
ξ j ∈A

{
h

η̃
j,1
1

(ω) · h
η̃

j,1
2

(ω) · · · h
η̃

j,1
N j

(ω)
}

·
∏

1≤ j≤n
ξ ′

j ∈B

{
h

η̃
j,2
1

(ω) · h
η̃

j,2
2

(ω) · · · h
η̃

j,2
M j

(ω)
}
. (70)

Here, we used the fact that h2
ξ j

(ω) = h2
ξ ′

j
(ω) = 1. Let us note that the factors

ei(t j −t j+1)(··· ) in (65) and in (70) are not necessarily the same. In what follows, we
will only use the fact that these factors have modulus equal to 1.
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From (70) and Plancherel’s theorem, it follows that:∥∥∥S(n,α)U (n)(t1 − t2) [B±
j1,k1

]ω U (n+1)(t2 − t3) [B±
j2,k2

]ω

· · ·U (n+�−1)(t� − t�+1) [B±
j�,k�

]ω γ (n+�)
∥∥∥2

L2(�×�n×�n)

=
∫

�

{ ∑
ξ1,...,ξn

ξ ′
1,...,ξ

′
n

〈ξ1〉2α · · · 〈ξn〉2α · 〈ξ ′
1〉2α · · · 〈ξ ′

n〉2α

·
∗∑

η1,...,ηn+�

η′
1,...,η

′
n+�

∗∑
η̃1,...,η̃n+�

η̃′
1,...,η̃

′
n+�

ei(t1−t2)(··· ) · ei(t2−t3)(··· ) · · · ei(t�−t�+1)(··· )

γ̂ (n+�)(η1, . . . , ηn+�; η′
1, . . . , η

′
n+�) · γ̂ (n+�)(η̃1, . . . , η̃n+�; η̃′

1, . . . , η̃
′
n+�)

·
∏

1≤ j≤n
ξ j ∈A

{
h

η
j,1
1

(ω) · h
η

j,1
2

(ω) · · · h
η

j,1
N j

(ω) · h
η̃

j,1
1

(ω) · h
η̃

j,1
2

(ω) · · · h
η̃

j,1
N j

(ω)
}

·
∏

1≤ j≤n
ξ ′

j ∈B

{
h

η
j,2
1

(ω) · h
η

j,2
2

(ω) · · · h
η

j,2
M j

(ω) · h
η̃

j,2
1

(ω) · h
η̃

j,2
2

(ω) · · · h
η̃

j,2
M j

(ω)
}}

dp(ω).

(71)

This is the quantity that we would like to estimate.

6.3. A Special Class of Density Matrices

In this subsection, we study a special class of density matrices (γ (m))m in
which we can prove an upper bound for the expression in (71). We note that by
the results in Section 6.1, we cannot estimate this quantity using pairing of fre-
quencies due to randomization in the general class of density matrices, even in
the case when � = 2. As we will see below, we will be able to prove an upper
bound on (71) if we impose additional non-resonance conditions. This is remi-
niscent of the ideas in [23,61,128]. The precise bound is given in Proposition 6.2
below.

More precisely, we consider:

Definition 6.1. Let N denote the class of all density matrices (γ (m))m such that:

(i) For all m ∈ N and for all (ξ1, . . . , ξm, ξ ′
1, . . . , ξ

′
m) ∈ (Z3)m × (Z3)m ,

γ̂ (m)(ξ1, . . . , ξm; ξ ′
1, . . . , ξ

′
m) = 0

unless

|ξ1| > |ξ2| > · · · > |ξm | > |ξ ′
1| > |ξ ′

2| > · · · |ξ ′
m |.
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(ii) There exists C1 > 0 independent of m such that for all m ∈ N:

∥∥S(m,α)γ (m)
∥∥

L2(�m×�m)
≤ Cm

1 .

We call the classN the class of non-resonant density matrices. Let us note that
the elements in N are not symmetric in the sense that it is not in general true that
for all m ∈ N, (x1, . . . , xm, x ′

1, . . . , x ′
m) ∈ �m × �m , σ ∈ Sm :

γ (m)
(

xσ(1), . . . , xσ(m); x ′
σ(1), . . . , x ′

σ(m)

)
= γ (m)

(
x1, . . . , xm; x ′

1, . . . , xm
)
.

Furthermore,weobserve that the classN is non-empty.Wecan construct an element
of N by taking a density matrix satisfying the condition (ii) and by then setting
all of the Fourier coefficients not satisfying the constraint from (i) to equal zero.
Finally, let us note that the classN does not contain the factorized objects studied
earlier. In the analysis that follows, we see that the ordering in condition (i) on
the sizes of the frequencies ξ1, . . . , ξm, ξ ′

1, . . . ξ
′
m could be replaced by any other

(fixed) ordering of the elements of {1, 2, . . . , 2m}.
The rest of this section is devoted to the study of the randomized Gross–Pitaevskii
hierarchy in the non-resonant class N .

6.4. The Randomized Estimate in the Class N

We use the randomization in (71) in order to deduce that each element of:

S :=

⎛
⎜⎜⎜⎝

⋃
1≤ j≤n
ξ j ∈A

{
η

j,1
1 , . . . , η

j,1
N j

}
⎞
⎟⎟⎟⎠ ∪

⎛
⎜⎜⎜⎜⎝

⋃
1≤ j≤n
ξ ′

j ∈B

{
η

j,2
1 , . . . , η

j,2
M j

}
⎞
⎟⎟⎟⎟⎠

gets paired with at least one element of:

S̃ :=

⎛
⎜⎜⎜⎝

⋃
1≤ j≤n
ξ j ∈A

{
η̃

j,1
1 , . . . , η̃

j,1
N j

}
⎞
⎟⎟⎟⎠ ∪

⎛
⎜⎜⎜⎜⎝

⋃
1≤ j≤n
ξ ′

j ∈B

{
η̃

j,2
1 , . . . , η̃

j,2
M j

}
⎞
⎟⎟⎟⎟⎠ .

We recall that, by definition of the class N , the elements of each of the sets S and
S̃ are mutually distinct. Since #S = #S̃ , it follows that each element of S gets
paired with exactly one element of S̃ and vice versa. Let us recall the fractional
Leibniz rule, which states that for all α ≥ 0, there exists C3 > 0 such that, for all
x, y ∈ R

3:

〈x + y〉α ≤ C3〈x〉α · 〈y〉α. (72)
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The constant C3 depends on α. We iteratively use the fractional Leibniz rule and
the fact that there is a bijection between S and S̃ to deduce that, for α ≥ 0:∥∥S(n,α) U (n)(t1 − t2) [B±

j1,k1
]ω U (n+1)(t2 − t3) [B±

j2,k2
]ω

· · · U (n+�−1)(t� − t�+1) [B±
j�,k�

]ω γ (n+�)
∥∥2

L2(�×�n×�n)

≤ C 2(n+�)
3

∗∗∑
η1,...,ηn+�,η

′
1,...,η

′
n+�

η̃1,...,η̃n+�,η̃
′
1,...,η̃

′
n+�

〈η1〉α · · · 〈ηn+�〉α · 〈η′
1〉α · · · 〈η′

n+�〉α

·〈η̃1〉α · · · 〈η̃n+�〉α · 〈η̃′
1〉α · · · 〈η̃′

n+�〉α
·∣∣γ̂ (n+�)(η1, . . . , ηn+�; η′

1, . . . , η
′
n+�)

∣∣ · ∣∣γ̂ (n+�)(η̃1, . . . , η̃n+�; η̃′
1, . . . , η̃

′
n+�)

∣∣.
(73)

More precisely, we use conditions (ii) and (iii) from the definitions of the sets
{η1, . . . , ηn+�, η

′
1, . . . , η

′
n+�} and {η̃1, . . . , η̃n+�, η̃

′
1, . . . , η̃

′
n+�} in the sums:

∗∑
η1,...,ηn+�

η′
1,...,η

′
n+�

(· · · )

and

∗∑
η̃1,...,η̃n+�

η̃′
1,...,η̃

′
n+�

(· · · )

andwe apply the estimate (72) at most 2(n+�) times to obtain the factor ofC 2(n+�)
3

in the bound. Here,

∗∗∑
η1,...,ηn+�,η

′
1,...,η

′
n+�

η̃1,...,η̃n+�,η̃
′
1,...,η̃

′
n+�

denotes the sum

∗∑
η1,...,ηn+�

η′
1,...,η

′
n+�

∗∑
η̃1,...,η̃n+�

η̃′
1,...,η̃

′
n+�

with the additional constraint that there exists a bijective pairing between the sets
S and S̃, which was noted earlier. We also use the fact that |ei(t j −t j+1)(··· )| = 1 for
all j = 1, . . . , �. Finally, for frequencies ξ j /∈ A and ξ ′

k /∈ B, we use the fact that
〈ξ j 〉α ≥ 1 and 〈ξ ′

k〉α ≥ 1.
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If (γ (m))m ∈ N , we can use condition (i) in the definition N in order to deduce
that the only possible pairing is given by:

η1 = η̃1, η2 = η̃2, . . . , ηn+� = η̃n+�

η′
1 = η̃′

1, η
′
2 = η̃′

2, . . . , η
′
n+� = η̃′

n+�.

Consequently, the right-hand side of the expression in (73) equals:

C 2(n+�)
3

∑
η1,...,ηn+�

η′
1,...,η

′
n+�

〈η1〉2α · · · 〈ηn+�〉2α · 〈η′
1〉2α · · · 〈η′

n+�〉2α

∣∣γ̂ (n+�)(η1, . . . , ηn+�; η′
1, . . . , η

′
n+�)

∣∣2 = C 2(n+�)
3 ‖S(n+�,α)γ (n+�)‖2L2(�n+�×�n+�)

.

We hence deduce the following result:

Proposition 6.2. Suppose that α ≥ 0. Then, there exists C2 > 0, depending only
on α such that for all (γ (m))m ∈ N , for all n, � ∈ N; j1, . . . j�, k1, . . . , k� ∈ N,
with j1 < k1 ≤ n + �, . . . , j� < k� ≤ n + � and t1, t2, . . . , t�+1 ∈ R, the following
bound holds: ∥∥S(n,α)U (n)(t1 − t2) [B±

j1,k1
]ω U (n+1)(t2 − t3) [B±

j2,k2
]ω

· · ·U (n+�−1)(t� − t�+1) [B±
j�,k�

]ω γ (n+�)
∥∥

L2(�×�n×�n)

≤ C n+�
2 ‖S(n+�,α)γ (n+�)‖L2(�n+�×�n+�).

Proof. The result immediately follows from the above discussion if we take C2 to
equal the constant C3 from the estimate (72).

Remark 6.3. We observe that we are only using condition (i) in the definition of
the class N .

6.5. An Application of the Randomized Estimate to the Study of the Dependently
Randomized GP Hierarchy

We now apply the randomized estimate from Proposition 6.2 to the study of
the randomized Gross–Pitaevskii hierarchy (39). We argue similarly as before and
we fix (γ (m)(t))m to be a time-dependent sequence inN . Here, we assume that the
constant C1 from part (ii) of the definition of N is uniform in t . In this case, we
say that (γ (m)(t))m belongs to N uniformly in time.
Given k, n ∈ N, tk > 0 and ω ∈ �, we define σ

(k)
n;ω

by:

σ
(k)
n;ω

(tk)

:= (−i)n
∫ tk

0

∫ tk+1

0
· · ·

∫ tn+k−1

0
U (k)(tk − tk+1) [B(k+1)]ω U (k+1)(tk+1 − tk+2)[

B(k+2)
]ω · · · U (n+k−1)(tn+k−1 − tn+k)

[B(n+k)]ω γ (n+k)(tn+k) dtn+k · · · dtk+2 dtk+1. (74)
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This is the k-density matrix which we obtain after n Duhamel iterations in the
hierarchy (39). In this notation, the superscript k denotes the number of particles
and the subscript n denotes the length of the Duhamel expansion. Furthermore,
ω ∈ � is a fixed randomization parameter.
Given (σ

(k)
n;ω

)n,k , we define:

γ̃ (1) := σ
(1)
n;ω

γ̃ (2) := σ
(2)
n−1;ω

γ̃ (3) := σ
(3)
n−2;ω

...

γ̃ (n) := σ
(n)
1;ω

.

By construction, it follows that:{
i∂t γ̃

(k) + (��xk − � �x ′
k
)γ̃ (k) = ∑k

j=1[B j,k+1]ω(γ̃ (k+1))

γ̃ (k)
∣∣
t=0 = 0

for all k ∈ {1, 2, . . . , n −1}. In other words, we obtain an arbitrarily long subset of
solutions to the full randomizedGross–Pitaevskii hierarchy (39) with homogeneous
initial data. Let us note that the property of belonging to the classN is not necessarily
preserved under the evolution of (39). However, we do would not need to use this
fact since we are studying the behavior of the fixed Duhamel expansions defined
in (74).

We will now state the main result of this section:

Theorem 6.4. Suppose that α ≥ 0 and k ∈ N. Consider σ
(k)
n;ω

, defined as in (74)

for (γ (m)(t))m ∈ N , uniformly in time.
There exists T > 0, depending only on C1 and α such that:

sup
t∈[0,T ]

∥∥S(k,α)σ
(k)
n;ω

(t)
∥∥

L2
(
�×�k×�k

) → 0 as n → ∞.

Proof. Let us take t = tk ∈ [0, T ] and we compute:

S(k,α)σ
(k)
n;ω

(tk) =

(−i)n
∫ tk

0

∫ tk+1

0
· · ·

∫ tn+k−1

0
S(k,α) U (k)(tk − tk+1) [B(k+1)]ω U (k+1)(tk+1 − tk+2)[

B(k+2)
]ω · · · U (n+k−1)(tn+k−1 − tn+k) [B(n+k)]ω γ (n+k)(tn+k) dtn+k · · · dtk+2 dtk+1.

Hence, by Minkowski’s inequality:∥∥S(k,α)σ
(k)
n;ω

(tk)
∥∥

L2
(
�×�k×�k

)
≤
∫ tk

0

∫ tk+1

0
· · ·

∫ tn+k−1

0

∥∥S(k,α) U (k)(tk − tk+1) [B(k+1)]ω U (k+1)(tk+1 − tk+2)[
B(k+2)

]ω · · · U (n+k−1)(tn+k−1 − tn+k) [B(n+k)]ω γ (n+k)(tn+k)
∥∥

L2
(
�×�k×�k

)
dtn+k · · · dtk+2 dk+1.
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Since we are working in the classN of asymmetric non-resonant density matrices,
we cannot apply the boardgame argument. Hence, we write out the full collision
operators in terms of the individual collision operators. More precisely, we note
that the integrand can be bounded from above by a sum of (n+k)!

(k−1)! terms of the type
estimated by Proposition 6.2. We then use Proposition 6.2 to estimate the whole
expression from above by:∫ tk

0

∫ tk+1

0
· · ·

∫ tn+k−1

0
C n+k
2 · (n + k)!

(k − 1)!
·∥∥S(n+k,α)γ (n+k)(tn+k)

∥∥
L2(�n+k×�n+k)

dtn+k · · · dtk+2 dtk+1.

Byusing the apriori assumption (ii) onγ (n+k)(tn+k), that is the fact that (γ (m)(t))m ∈
N , uniformly in time, it follows that this quantity is:

≤
∫ tk

0

∫ tk+1

0
· · ·

∫ tn+k−1

0
C n+k
2 · (n + k)!

(k − 1)! · C n+k
1 dtn+k · · · dtk+2 dtk+1,

which by (61) is:

≤ T n

n! · C n+k
2 · (n + k)!

(k − 1)! · C n+k
1 .

From the previous analysis, it follows that there exists M ∼ C1 · C2, independent
of n and k, such that:

sup
t∈[0,T ]

∥∥S(k,α)σ
(k)
n;ω

(t)
∥∥

L2
(
�×�k×�k

) ≤ T n

n! · Mn+k · (n + k)!
(k − 1)! .

Arguing analogously as in the proof of Theorem 5.2, this quantity is:

�k
(
2MT

)n · Mk .

We now choose T sufficiently small such that 2MT < 1 and we deduce that:

sup
t∈[0,T ]

∥∥S(k,α)σ
(k)
n;ω

(t)
∥∥

L2
(
�×�k×�k

) → 0 as n → ∞.

By construction T depends only on C1 and on C2. Since C2 depends only on α, it
follows that T depends only on C1 and α. The claim now follows.

Remark 6.5. As in the proof of Theorem 5.2, we can deduce that T ∼α
1

C1
, for the

constant C1 in the definition of the class N .
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127. Nahmod, A., Pavlović, N., Staffilani, G.: Almost sure existence of global weak
solutions for super-critical Navier–Stokes equations. SIAM J. Math. Anal. 45(6), 3431–
3452 (2013)

128. Nahmod, A., Staffilani, G.: Randomization in nonlinear pde and the supercritical
periodic quintic NLS in 3D (preprint) (2013). arXiv:1308.1169

129. Nelson, E.: The free Markoff field. J. Funct. Anal. 12, 211–227 (1973)
130. Oh, T.: Gibbs measures and almost sure global well-posedness for coupled KdV sys-

tems. Differ. Integr. Equ. 22(7-8), 637–668 (2009)
131. Oh, T.: Invariance of the white noise for KdV. Commun. Math. Phys. 292(1), 217–236

(2009); Erratum: “Invariance of the white noise for KdV” (in preparation)
132. Oh, T.: Invariance of the Gibbs measure for the Schrödinger–Benjamin–Ono System.

SIAM J. Math. Anal. 41(1), 2207–2225 (2009)
133. Oh, T., Sulem, C.: On the one-dimensional cubic nonlinear Schrodinger equation

below L2. Kyoto J. Math. 52(1), 99–115 (2012)
134. Paley, R.E.A.C., Zygmund, A.: On some series of functions 1. Proc. Camb. Philos.

Soc. 26, 337–357 (1930)
135. Paley, R.E.A.C., Zygmund, A.: On some series of functions 2. Proc. Camb. Philos.

Soc. 26, 458–474 (1930)
136. Paley, R.E.A.C., Zygmund, A.: On some series of functions 3. Proc. Camb. Philos.

Soc. 28, 190–205 (1932)
137. Pickl, P.: Derivation of the time dependent Gross–Pitaevskii equation with external

fields. J. Stat. Phys. 140(1), 76–89 (2010)
138. Pickl, P.: A simple derivation of mean field limits for quantum systems. Lett. Math.

Phys. 97(2), 151–164 (2011)
139. Pitaevskii, L.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454

(1961)
140. Prokof’ev, N., Svistunov, B.: Bold diagrammaticMonte Carlo technique:When the

sign problem is welcome. Phys. Rev. Lett. 99, 250201 (2007)
141. Prokof’ev, N., Svistunov, B.: Bold diagrammatic Monte Carlo: A generic sign-

problem tolerant technique for polaron models and possibly interacting many-body
problems. Phys. Rev. B 77, 125101 (2008)

142. Rademacher, H.: Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen.
Math Ann. 87, 112–138 (1922)

143. Rafler, M.: Gaussian loop- and Pólya processes: a point process approach. Ph.D.
thesis, University of Potsdam (2009)

http://arxiv.org/abs/1308.1169


484 Vedran Sohinger & Gigliola Staffilani

144. Richards, G.: Invariance of theGibbsmeasure for the periodic quartic gKdV (preprint)
(2012). arXiv:1209.4337

145. Rodnianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards
mean field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)

146. Schlein, B.: Derivation of effective evolution equations from microscopic quantum
dynamics, chapter. In: D. Ellwood, I.Rodnianski, G. Staffilani, J.Wunsch (eds.)
Clay Mathematics Proceedings of Evolution Equations, vol. 17, p. 572, 2013

147. Sohinger, V.: Local existence of solutions to Randomized Gross–Pitaevskii hierar-
chies. Trans. Am. Math. Soc (preprint) (2014). arXiv:1401.0326 (to appear)

148. Sohinger, V.: A rigorous derivation of the defocusing cubic nonlinear Schrödinger
equation from the dynamics of many-body quantum systems. Annales Institut Henri
Poincaré C, Analyse Non-Linéaire (preprint) (2014). arXiv:1405.3003 (to appear)

149. Spohn, H.: Kinetic equations from Hamiltonian Dynamics. Rev. Mod. Phys. 52(3),
569–615 (1980)

150. de Suzzoni, A.-S.: Invariant measure for the cubic wave equation on the unit ball of
R
3. Dyn. Partial Differ. Equ. 8(2), 127–147 (2011)

151. de Suzzoni, A.-S.: On the use of normal forms in the propagation of random waves
(preprint) (2013). arXiv:1307.0619

152. de Suzzoni, A.-S.: Invariant measure for the Klein–Gordon equation in a non periodic
setting (preprint) (2014). arXiv:1403.2274

153. de Suzzoni, A.-S., Tzvetkov, N.: On the propagation of weakly nonlinear random
dispersive waves. Arch. Ration. Mech. Anal. 212(3), 849–874 (2014)

154. Thomann, L.: Random data Cauchy problem for supercritical Schrödinger equations.
Ann. Inst. H. Poincaré 26(6), 2385–2402 (2009)

155. Thomann, L., Tzvetkov, N.: Gibbs measure for the periodic derivative nonlinear
Schrödinger equation. Nonlinearity 23(11), 2771–2791 (2010)

156. Tzvetkov, N.: Invariant measures for the nonlinear Schrödinger equation on the disc.
Dyn. Partial Differ. Equ. 3(2), 111–160 (2006)

157. Tzvetkov, N.: Invariant measures for the defocusing nonlinear Schrödinger equation.
Ann. Inst. Fourier (Grenoble) 58(7), 2543–2604 (2008)

158. Tzvetkov, N.: Construction of a Gibbs measure associated to the periodic Benjamin–
Ono equation. Probab. Theory Rel. Fields 146, 481–514 (2010)

159. Van Houcke, K., Kozik, E., Prokof’ev, N., Svistunov, B.: In: Landau, D.P.,
Lewis, S.P., SchuttlerH.B. (eds.) Computer Simulation Studies in Condensed Mat-
ter Physics XXI. Springer, 2008

160. VanHoucke, K.,Werner, F.,Kozik, E., Prokof’ev, N., Svistunov, B.,Ku,M.J.H.,
Summer, A.T.,Cheuk, L.W., Schirotzek, A.,Zwierlein, M.W.: Feynman diagrams
versus Fermi-gas Feynman emulator. Nat. Phys., 8, May (2012)

161. Wolff, T.H.: Lectures on harmonic analysis. University Lecture Series, vol. 29. Amer-
ican Mathematical Society, Providence, RI (2003)

162. Xie, Z.: Derivation of a nonlinear Schrödinger equation with a general power-type
nonlinearity (preprint) (2013). arXiv:1305.7240

163. Xu, S.: Invariant Gibbs measure for 3D NLW in infinite volume (preprint) (2014).
arXiv:1405.3856

164. Zhang, T., Fang, D.: Random data Cauchy theory for the incompressible three di-
mensional Navier–Stokes equations. Proc. AMS 139(8), 2827–2837 (2011)

165. Zhidkov, P.E.: An invariantmeasure for the nonlinear Schrödinger equation. (Russian)
Dokl. Akad. Nauk SSSR 317(3), 543–546 (1991); translation in Soviet Math. Dokl.
43(2), 431–434

166. Zhidkov, P.E.: Korteweg–de Vries and Nonlinear Schrödinger Equations: Qualitative
Theory. Lecture Notes in Mathematics, vol. 1756. Springer, Berlin, 2001

http://arxiv.org/abs/1209.4337
http://arxiv.org/abs/1401.0326
http://arxiv.org/abs/1405.3003
http://arxiv.org/abs/1307.0619
http://arxiv.org/abs/1403.2274
http://arxiv.org/abs/1305.7240
http://arxiv.org/abs/1405.3856


Randomization and the Gross–Pitaevskii Hierarchy 485

Departement Mathematik,
Eidgenössische Technische Hochschule Zürich,

Office G49.1, Rämistrasse 101,
8092 Zürich, Switzerland.

e-mail: vedran.sohinger@math.ethz.ch
URL: http://www.math.ethz.ch/∼vedrans

and

Department of Mathematics,
Massachusetts Institute of Technology,

Building E17, Office 330, 77 Massachusetts Avenue,
Cambridge, MA 01239-4301,

USA.
e-mail: gigliola@math.mit.edu

URL: http://math.mit.edu/∼gigliola/

(Received October 1, 2013 / Accepted March 17, 2015)
Published online April 4, 2015 – © Springer-Verlag Berlin Heidelberg (2015)


	Randomization and the Gross--Pitaevskii Hierarchy
	Abstract
	1 Introduction
	1.1 Setup of the Problem
	1.2 Previously Known Results
	1.3 Ideas and Techniques used in the Proofs
	1.4 Organization of the Paper

	2 Notation
	2.1 Fourier Transform and Differentiation of Density Matrices
	2.2 The Collision Operator and the Randomized Collision Operator
	2.3 Factorized Solutions

	3 The Randomized Spacetime Estimate
	3.1 An Alternative Form of Randomization

	4 Properties of the Randomized Gross--Pitaevskii Hierarchy
	4.1 Link with the Nonlinear Schrödinger Equation

	5 A New Randomized Hierarchy
	5.1 Properties of the Hierarchy (44)
	5.1.1 No Obvious Factorized Solutions
	5.1.2 The Boardgame Argument Does Not Apply

	5.2 An Application of the Randomized Spatial Estimate

	6 The Randomized Gross--Pitaevskii Hierarchy Revisited
	6.1 Difficulties Arising from Higher-Order Duhamel Expansions
	6.2 The Precise Form of the Duhamel Expansion Term
	6.3 A Special Class of Density Matrices
	6.4 The Randomized Estimate in the Class mathcalN
	6.5 An Application of the Randomized Estimate to the Study of the Dependently Randomized GP Hierarchy

	Acknowledgments
	References




