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1. Introduction

Given a symmetrizable Kac–Moody algebra g with a Cartan subalgebra h and
an irreducible non-critical highest weight g-module L D L.�/, one constructs
the associated integral Kac–Moody algebra g� as follows. Let �re � h� be the
set of real roots of g and let

�re.�/ D f˛ 2 �re j 2.� C �; ˛/=.˛; ˛/ 2 Zg
be the set of integral real roots. Then �re.�/ is the set of real roots of a Kac–
Moody algebra g� with the same Cartan subalgebra h. An important result of
representation theory is the following relation between the characters of highest
weight g-module L and the (non-critical) highest weight g�-module L D L.�C
� � �/:

(1) Re� ch L.�/ D Re� ch L.� C � � �/;

where R and R denote the Weyl denominators, and � and � denote the Weyl
vectors (see [F], [KT1], [KT2] and references there).

In the case when the g�-module L.� C � � �/ is integrable, its character
is given by the Weyl–Kac character formula [K2], hence (1) gives an explicit
formula for ch L.�/.

A g-module is called relatively integrable if the g�-module L.� C � � �/

is integrable; and it is called admissible if, in addition, the Q-span of the set of
roots of g� coincides with Q�. In particular, if � D � � �, we obtain from (1)
that the character is given by a product:

(2) ch L.� � �/ D e���R�1R:
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For example, if g is an affine Lie algebra with symmetric Cartan matrix, then
there exist admissible � of rational level k, provided that kCh_ � h_=u, where
h_ is the dual Coxeter number and u is the denominator of k [KW2]. In this case
the character ch L.�/, suitably normalized, is a ratio of theta functions, which
is a modular function.

The main problems discussed in this paper are whether for a finite-dimen-
sional basic Lie superalgebra or an associated (untwisted or twisted) affine Lie
superalgebra g, similar results hold. This is a class of Lie superalgebras, which
is the closest to symmetrizable Kac–Moody algebras. Of course, there are also
Kac–Moody superalgebras, associated to symmetrizable generalized Cartan ma-
trix, which have no real isotropic roots. For them the Weyl–Kac character for-
mula is proved in the same way as in Lie algebra case, and the relation (1) can be
derived using Enright functors [IK]. Therefore we exclude these superalgebras
from consideration.

Given an irreducible highest weight g-module L D L.�/, we construct
in §7.2 a natural generalization of the set of integral real roots for the Lie su-
peralgebra g and the corresponding integral Lie superalgebra g� (which is also
basic or affine, or a sum of such superalgebras), and we prove formula (1) in
some cases. In particular, we prove formula (2), see Corollary 11.2.6. We be-
lieve that (1) holds for arbitrary �, but there are not enough techniques to prove
this, mainly due to the lack of translation functors (used in [F] in the Lie alge-
bra case), and the lack of Enright functors, associated to isotropic simple roots
([KT1] and [KT2] use them in the Lie algebra case, where all simple roots are
non-isotropic). So far, in full generality formula (1) is proved only for finite-
dimensional g of type A.m; n/, see [CMW].

It would be natural to call an irreducible highest weight module L over
the Lie superalgebra g integrable if it is integrable as a g0-module. For finite-
dimensional g, this definition is adequate, because it is equivalent to dim L <

1. However, for affine g, such non one-dimensional integrable irreducible high-
est weight modules exist only if the Dynkin diagram of g0 is connected, see
[KW4]. For that reason, in the affine case, it is natural to study �-integrable
modules, where � is a subset of the set of simple roots …0 of g0, namely the
g-modules L for which all root spaces g�˛; ˛ 2 � , act locally nilpotently. The
definition of (�-)relative integrability and admissibility of L is the same as in
the Lie algebra case.

We call a g-module integrable (both for g basic and affine) if L is integrable
with respect to the “largest” component of g0. For example, if g is the non-
twisted affine Lie superalgebra, associated to a simple finite-dimensional Lie
superalgebra Pg with a non-degenerate Killing form � (then Pg is automatically
basic), a g-module L is called integrable if it is �-integrable for � D f˛ 2 …0 j
�.˛; ˛/ > 0g. (This conicides with the definition of integrability of the affine
Lie algebra modules [K3].) The choice of � in the definition of integrability



138 M. Gorelik and V.G. Kac

for an arbitrary (possibly twisted) affine Lie superalgebra is explained in §3.1.3.
The study of integrable modules over affine Lie superalgebras is very important
for applications to modular invariance of modified characters [KW5]–[KW7].
Note that if dim g < 1, then not only the finite-dimensional g-modules are
integrable, unless g is of type A or C .

Let L.�/ be either an integrable module over a finite-dimensional basic Lie
superalgebra g, or an integrable module of non-critical level over an affine Lie
superalgebra g, and let � be the set of roots of g. Let �?

�C�
be the set of roots

of g, orthogonal to � C �, and choose a maximal linearly independent subset
S in �?

�C�
, which spans an isotropic subspace. Assume that S satisfies the

KW-condition, namely S can be included in a set … of simple roots of �.
A natural analogue of the Weyl–Kac character formula for integrable highest
weight modules over Kac–Moody algebras is the following KW-formula, pro-
posed in [KW3], §3, for basic g, and in [KW4], §9, for affine g:

(3) j�Re� ch L.�/ D
X

w2W 0

sgn.w/w
� e�C�Q

ˇ2S .1 C e�ˇ /

�

for some positive integer j�, where W 0 is a certain subgroup of the Weyl group
W .

In §4 of the present paper we prove the KW-formula with j� D 1 and W 0 D
W.�/, in the case when QS is a maximal isotropic subspace in Q� and the
choice of the pair … � S is “good”, provided that either g is basic, or g is affine
with h_ 6D 0 or is equal to A.n; n/.1/ (in the case � D 0 this was proved in [G1],
[G2], [R]). The choice of the pair … � S is “good” if .˛; ˛/ � 0 for all ˛ 2 …

and S contains all “branching” nodes of … (if they exist), as defined in §3.3.1.
Using odd reflections, we show that the KW-formula holds for many other (but
not all) pairs … � S . Recall that h_ is the half of the eigenvalue of the Casimir
operator on basic g (which is 0 if and only if � D 0), and it is called the dual
Coxeter number of any twisted affine superalgebra, associated to g.

Incidentally, using a different character formula for level 1 osp.M; N /.1/-
modules, obtained in [KW4], we thereby derive in §4.5 an interesting identity
for mock theta functions.

In §5 we prove the KW-formula for all irreducible finite-dimensional mod-
ules (satisfying the KW-condition) over a basic Lie superalgebra g, except for a
few cases when g is of type D.m; n/1. This formula has been previously verified
only for g of type A.m; n/, see [CHR], using the earlier work [S1], [S2], [B],
[SZ] on computation of finite-dimensional characters of gl.m; n/. There have

1 After this paper has been completed, we learned about the paper of S.-J. Cheng and
J.-H. Kwon “Kac–Wakimoto character formula for orthosymplectic Lie superalgebra” [CK],
where the KW-formula is established by different methods for all irreducible finite-dimensional
osp.m; n/-modules, satisfying the KW-condition, including the cases we were unable to settle.
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been a number of earlier papers, where the KW-formula was verified in the case
#S D 1, see [BL], [J1], [J2], [JHKT], [KW3].

In §6 we prove a result similar to (3), see (26), for “strongly integrable”
maximally atypical g-modules in the case when g is affine and h_ 6D 0. There
are fewer strongly integrable g-modules than the integrable ones, but here we
do not require that the pair … � S is “good”. We also prove formula (26) for
the non-critical vacuum (but not all strongly integrable) modules over affine
superalgebras with h_ D 0.

In §11 we study another extremal case — when S is empty. Such g-modules
L D L.�/ are called typical and it was proven in [K2] that the usual Weyl
character formula holds for them if dim g < 1 and dim L.�/ < 1. We prove
that formula (3) with S D ; holds if we let W 0 be the “integral” subgroup
W.L/ of W , provided that L is relatively integrable. In other words, we prove
that in this case both conjectural formulas (1) and (3) hold. We also verify (1)
in a few other instances of typical and of relatively integrable modules. As a
corollary, we obtain the character formula for all relatively integrable modules
over A.0; n/.1/ and C.n/.1/.

Note, however, that while we expect that (1) always holds, and that (3) holds
for all irreducible finite-dimensional modules (satisfying the KW-condition)
over basic g (cf. §5), we do not expect (3) to hold in full generality, except
when QS is a maximal isotropic subspace of Q�, i.e., the module is maximally
atypical.

We also prove formulas (1) and (3) for all admissible g-modules when g�

is of small rank, see §9, 11 and 12. In particular, we obtain the character for-
mula for all relatively integrable B.1; 1/.1/-modules, and also for all admissible
A.1; 1/.1/-modules, associated to integrable vacuum A.1; 1/.1/-modules.

Our proofs use the ideas from [KT1], [KT2], and [G1], [G2].
In the present paper we prove all character formulas for affine superalge-

bras g (except for those with h_ D 0) used in [KW5], [KW6] to show that
for g D A.1; 0/.1/, A.1; 1/.1/, and B.1; 1/.1/ the, modified in the spirit of
Zwegers [Z], normalized supercharacters of maximally atypical admissible g-
modules of given level span SL.2; Z/-invariant space, and used in [KW7] to
show that such modular invariance holds for maximally atypical integrable g-
modules over an arbitrary (non-twisted) affine superalgebra g ¤ A.n; n/.1/.

The results of this paper were reported at the conferences in Uppsala in
September 2012, in Rome in December 2012, in Taipei in May 2013, and in
Rio de Janeiro in June 2013.

2. Preliminaries

Throughout the paper the base field is C and g is either a basic Lie superalge-
bra with a non-degenerate invariant bilinear form .�; �/, or the associated to it
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and its finite order automorphism, preserving .�; �/, symmetrizable affine Lie
superalgebra. Recall that a basic Lie superalgebra g is either a simple finite-
dimensional Lie algebra or one of the simple finite-dimensional Lie superalge-
bras sl.m; n/ .m 6D n/; psl.n; n/ .n � 2/; osp.m; n/; D.2; 1; a/; F.4/; G.3/ or
gl.m; n/ [K1], and that the associated affine Lie superalgebras are constructed
in the same way as in [K3]. Recall that the Killing form � of g is non-degenerate
if and only if g D sl.m; n/ .m 6D n/, osp.m; n/ (m is odd, or m is even and
n 6D m � 2 � 2), F.4/; G.3/; this is equivalent to the property that the dual
Coxeter number (D 1

2
eigenvalue of the Casimir operator on g) is non-zero.

Recall that the dual Coxeter number associated to the Killing form is always a
non-negative rational number, see [KW3]. This number is also called the dual
Coxeter number of the associated affine superalgebra.

It is well known that for any affine Lie superalgebra the dual Coxeter number
is equal to .�; ı/, where � is the Weyl vector and ı is the primitive imaginary
root.

The invariant bilinear form extends from the basic Lie superalgebra to the
associated affine Lie superalgebra and is denoted again by .�; �/.

Recall that one often uses the following notations: A.m; n/ D sl.mC1; nC
1/ or gl.m C 1; n C 1/ for m 6D n, A.n; n/ D psl.n; n/ or gl.n; n/, B.m; n/ D
osp.2m C 1; 2n/, C.n/ D osp.2; 2n/, D.m; n/ D osp.2m; 2n/ .m > 1/. The
associated affine Lie superalgebra, twisted by an automorphism of g of order r ,
is denoted by g.r/. We will often write � D A.m; n/ to indicate that � is the
root system of A.m; n/, or … D A.m; n/ to indicate that … is a subset of simple
roots for the root system of type A.m; n/.

Recall that we get all affine Lie superalgebras by picking an automorphism
in each connected component of the group of automorphisms of g. (The affine
Lie superalgebra depends only on this connected component; however, unlike
in the Lie algebra case, some of the affine Lie superalgebras corresponding to
different connected components may be isomorphic.)

Let h be a Cartan subalgebra of g. As in the Lie algebra case, g has the root
space decomposition with respect to h. Let � � h� be the set of roots. Denote
by �0 and �1 the subsets of even and odd roots. The restriction of .�; �/ to
h is non-degenerate, hence it induces a bilinear form on h�. One can show that
�0 is a union of a finite number of root systems of affine Lie algebras with the
same primitive imaginary root ı.

We define ˛_ D 2˛=.˛; ˛/ if ˛ 2 � is a non-isotropic root; for isotropic
˛ 2 � we set ˛_ D ˛. Notice that .�; ˛_/ does not depend on the normalization
of .�; �/ if ˛ is non-isotropic.

The Weyl group W of � is the subgroup of GL.h�/, generated by reflections
r˛ in non-isotropic roots ˛, where r˛� D � � 2.�; ˛/˛=.˛; ˛/. One knows that
W coincides with the Weyl group of �0 and that W � D � (cf. [K3], Chapter
3).
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Let Q WD Z� and Q0 WD Z�0 be the corresponding root lattices.

2.1. Subsets of positive roots in �

Given a real valued additive function � on Q, which is positive on ı and does
not vanish on elements of �, we have the corresponding subsets of positive roots
�C and �C

0
(on which � is positive).

For different choices of � the subsets of even positive roots may be different,
but they can be transformed to each other by the Weyl group. Throughout the
paper we will fix one of them, �C

0
, and consider only the subsets of positive

roots �C in �, which contain �C
0

. This choice fixes a triangular decomposition
of g, compatible with the triangular decomposition of g0, corresponding to �C

0
.

Recall that, given a subset of positive roots �C (containing �C
0

) and an odd
simple root ˇ 2 �C with .ˇ; ˇ/ D 0, we can construct a new subset of positive
roots (containing �C

0
) by an odd reflection rˇ :

(4) rˇ .�C/ D .�C n fˇg/ [ f�ˇg:

2.1.1. Proposition [S4]

(a) Any two subsets of positive roots in � (containing �C
0

) can be obtained
from each other by a finite sequence of odd reflections.

(b) For a simple root ˛ 2 �C
0

there exists a subset of positive roots, for which
˛ or ˛

2
is a simple root.

2.1.2. Let �C be a subset of positive roots in �, and denote by … the subset
of its simple roots; we shall often write �C D �C.…/. One has rˇ �C D
�C.…0/, where

…0 WD f˛ 2 … j ˛ 6D ˇ; .˛; ˇ/ D 0g [ f˛ C ˇ j ˛ 2 …; .˛; ˇ/ 6D 0g [ f�ˇg:
Then we can choose a Weyl vector �… 2 h�, such that the following two

properties hold for each subset … of simple roots:

(i) 2.�…; ˛/ D .˛; ˛/; if ˛ 2 …;
(ii) �rˇ… D �… C ˇ; if ˇ 2 …; .ˇ; ˇ/ D 0.

Indeed, choose a set of positive roots and let … be its subset of simple roots;
pick an arbitrary Weyl vector �…, satisfying (i). Define (cf. Proposition 2.1.1
(a)):

�rˇ1
���rˇs … WD �… C ˇ1 C � � � C ˇs:
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Then (ii) obviously holds and (i) is straightforward to check. Finally, this is
well-defined since the equality

(5) rˇ1
� � � rˇs

… D r�1
� � � r�t

…

forces the equality ˇ1 C � � � C ˇs D 	1 C � � � C 	t . Indeed, let us show by
induction that

�C.rˇ1
� � � rˇs

…/ D .�C.…/ n S/ [ .�S/;

where S is obtained from a multiset fˇ1; : : : ; ˇsg by removing all pairs of
opposite roots (i.e., the pairs of the form .ˇ; �ˇ/). Moreover, if rˇ1

� � � rˇs
…

is defined, then S is a set (each element appears once) and S � �C.…/.
This can be proven by induction on s. For s D 1 this follows from (4); if
r

ǰ C1
� � � rˇ1

… is defined, then ǰ C1 lies in r
ǰ

� � � rˇ1
… and, in particular, in

�C.r
ǰ

� � � rˇ1
…/ D .�C.…/ n S/ [ .�S/ by the induction hypothesis. This

means that ǰ C1 62 S and

�C.r
ǰ C1

� � � rˇ1
…/ D ...�C.…/ n S/ [ .�S// n f ǰ C1g/ [ f� ǰ C1g:

If � ǰ C1 62 S , then

�C.r
ǰ C1

� � � rˇ1
…/ D .�C.…/ n .S [ f ǰ C1g// [ .�.S [ f ǰ C1g//;

and, if � ǰ C1 2 S , then

�C.r
ǰ C1

� � � rˇ1
…/ D .�C.…/ n .S n f� ǰ C1g// [ .�.S n f� ǰ C1g//;

as required.
Now (5) implies

.�C.…/ n S/ [ f�Sg D .�C.…/ n T / [ f�T g;
where S (resp., T ) is the set obtained from the set fˇ1; : : : ; ˇsg (resp., f	1; : : : ;

	tg) by removing all pairs of opposite roots. This gives S D T so ˇ1C� � �Cˇs D
	1 C � � � C 	t , as required.

2.1.3. Let QC WD Z�0�C.D Z�0…/ and QC
0

WD Z�0�C
0

, where Z�0S de-
note the semigroup of linear combinations of elements from S with coefficients
from Z�0. The set QC depends on the set �C of positive roots, and to empha-
size this dependence we shall write QC D QC.…/, but the set QC

0
does not

(since we fixed �C
0

).
We consider the corresponding partial orderings on h�. The first one is 
 �

� if 
 � � 2 QC
0

, and the second one is 
 �… � if 
 � � 2 Z�0… (it depends
on …). Given S � h�, an element � 2 S is called maximal (resp., …-maximal)
if � � 
 (resp., � �… 
) for all 
 2 S .
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Note that the partial ordering �… can be extended to a total ordering �…;tot
as follows. Fix a total ordering on the basis … [ fƒ0g D f	1; : : : ; 	mg of h�
and the lexicographic order on C. Then 
 D P

i ai	i �…;tot � D P
i bi	i if

.a1; : : : ; am/ � .b1; : : : ; bm/ in the lexicographic order.

2.2. The algebra R

We introduce the algebra R D R.…/ as in [G1], [G2]. The new part is §2.2.1
and §2.2.7–2.2.9.

Let V be the vector space over Q of all formal sums (possibly infinite) Y DP
�2h� b�e� ; b� 2 Q, and define the support of Y by

supp Y WD f
 j b� 6D 0g:
Let R.…/ be the subspace of V , consisting of finite linear combinations of

the elements of the form
P

�2Z�0… b�e��� , where � 2 h�. The space R.…/

has an obvious structure of a unital commutative algebra, induced by e�e� D
e�C� ; e0 D 1. Moreover, R.…/ is a domain. This is clear since for any Y 2
R.…/, its support supp Y has a unique maximal element in the total ordering
�…;tot and the maximal element in supp Y Y 0 is equal to the sum of maximal
elements in supp Y and in supp Y 0.

For each … define a topology on V by the set of open neighborhoods V�,
consisting of Y 2 V such that supp Y �…;tot �. This makes R.…/ a topological
algebra. We idenfity the convergent infinite sums of elements of R.…/ with
their limits.

2.2.1. Let
Vfin WD fY 2 V j supp Y is finiteg:

This is a subalgebra of all algebras R.…/. Hence

(6) VfinR.…/ � R.…/:

Note also that V is a Vfin-module (but not an algebra). Introduce the equiva-
lence relation � on V by: X � X 0 if there exists Y 2 Vfin such that XY D X 0Y .
Note that if X 2 R.…/; X 0 2 R.…0/ and Y 2 Vfin, then XY D X 0Y 2
R.…/ \ R.…0/ by (6). Since R.…/ is a domain, the equivalence of its two
elements X; X 0 2 R.…/ implies X D X 0.
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2.2.2. Action of the Weyl group. The Weyl group W acts on V in the obvious
way:

w
�X

�

b�e�
�

WD
X

�

b�ew� :

Obviously, Vfin is W -invariant, but R D R.…/ is not. For a subgroup W 0 � W

introduce the following subalgebra of the algebra R:

RW 0 WD fY 2 R j wY 2 R for each w 2 W 0g:

2.2.3. Infinite products. A product of the form

(7) Y D
Y
˛2A

.1 C a˛e�˛/d˛ ;

where A � � is such that the set A n �C.…/ is finite, and a˛ 2 Q, d˛ 2 Z�0,
can be naturally viewed as an element of R. Since �C.…/ n �C.…0/ is a finite
set (by Proposition 2.1.1 (a)), the element Y lies in all algebras R.…0/. Hence
the set Y of all such products is a multiplicative subset of each of the algebras
R.…/.

For any w 2 W the product

wY WD
Y
˛2A

.1 C a˛e�w˛/d˛ ;

is of the above form, since the set w�C n�C D �.w�� \�C/ is finite. Hence
Y is a W -invariant multiplicative subset of RW (for each …).

Consider the localization RW 0 ŒY �1� of the algebra RW 0 by the multiplica-
tive subset Y . Let '… W RW 0 ŒY �1� ! R be an algebra homomorphism, de-
fined by expanding in a geometric progression for ˇ 2 �C, a 2 Q n f0g:

'…

� e�

1 C ae�ˇ

�
D e�.1 � ae�ˇ C a2e�2ˇ � � � � /I

'…

� e�

1 C aeˇ

�
D 1

a
'…

� e��ˇ

1 C a�1e�ˇ

�
:

This homomorphism defines an embedding of RW 0 ŒY �1� in R.

2.2.4. We extend the action of W 0 from RW 0 to RW 0 ŒY �1� by setting
w.Y �1X/ WD .wY /�1.wX/ for each X 2 RW 0 ; Y 2 Y . Let Y be as in (7).
Then

(8) supp Y � �0 � QC; where �0 WD �
X

f˛2An�Cja˛ 6D0g
d˛˛:
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2.2.5. Let W 0 be a subgroup of W . For Y 2 RŒY �1� we say that Y is W 0-
invariant (resp., W 0-skew-invariant) if wY D Y (resp., wY D sgn.w/Y ) for
each w 2 W 0.

Note that Y WD P
� a�e� 2 R is a W 0-skew-invariant element of RW 0 if

and only if aw� D sgn.w/a�. In particular, if Y is a W 0-skew-invariant element
of RW 0 , then W 0 supp.Y / D supp.Y /.

We will use the following fact: if Y 2 RW 0 is W 0-skew-invariant and � C
supp Y consists of non-critical weights, then supp Y is the union of regular W 0-
orbits, where regularity means that the elements of this orbit have trivial stabi-
lizers. This is an immediate corollary of the fact that for an affine Lie algebra
the W -orbit of each weight of non-zero level contains either maximal or min-
imal element and the stabilizer of this element in W is generated by simple
reflections; as a result the stabilizer of any weight of non-zero level is gener-
ated by reflections. Since for such a reflection r˛ we have r˛Y D �Y , we have
r˛� D � ) � 62 supp Y .

Let Y WD P
� a�e� be any element of RW 0 . We claim that ifP

w2W 0 sgn.w/ w.Y / 2 R, then
P

w2W 0 sgn.w/ w.Y / is a W 0-skew-invariant
element of RW 0 . Indeed,

P
w2W 0 sgn.w/ w.Y / D P

� b�e� , where
b� D P

w2W 0 sgn.w/aw� , so bw� D sgn.w/b� , as required.

2.2.6. For each set of simple roots …0 introduce the following products

R0 WD
Y

˛2�
C

0

.1 � e�˛/; R.…0/1 WD
Y

˛2�C.…0/\�1

.1 C e�˛/:

One readily sees (by Proposition 2.1.1 (a)) that R0; R.…0/1 2 Y . We view
R0; R.…0/1 and

R.…0/ WD R0

R.…0/1

as elements in R.…/, as in §2.2.3. One readily sees that R.…0/e�…0 2 R.…/

does not depend on …0, so we write simply Re� (keeping in mind that this
is an element of R.…/ for particular …). By §2.2.3, all these elements are
equivalent (for different …). Since R0; R.…0/1 2 Y � RW , the element Re�

lies in RW ŒY �1�. Clearly, r˛.R.…0/e�…0 / D �R.…0/e�…0 for a non-isotropic
root ˛ 2 …0. From Proposition 2.1.1 (b), we conclude that Re� is a W -skew-
invariant element of RW ŒY �1�.

If … is fixed, we denote by R1 WD R.…/1; R WD R.…/ the corresponding
elements in R.

If g is finite-dimensional, or one of affine Lie superalgebras A.0; n/.1/;

B.0; n/.1/; C.n/.1/, or A.0; 2n�1/.2/; C.nC1/.2/; A.0; 2n/.4/, then we can in-
troduce a Weyl vector �0 satisfying .�0; ˛_/ D 1 for each ˛ 2 …0. Then R0e�0
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is a W -skew-invariant element of RW , so R1e�0�� is a W -invariant element of
RW .

If g is an affine Lie superalgebra and �0 is not connected, then the Weyl
vector �0 does not exist. However, for each connected component � ¨ …0

there exists a Weyl vector �� satisfying .�� ; ˛_/ D 1 for each ˛ 2 � ; note that
R0e�� is a W.�/-skew-invariant element of RW.�/ and R1e�0�� is a W.�/-
invariant element of RW.�/.

2.2.7. Poles. For an odd isotropic root ˛ 2 … we say that X 2 R.…/ has a
pole of order k at ˛ if k is minimal such that

.1 C e�˛/kX 2 R.r˛…/:

For example, R has a pole of order 1 at each odd isotropic root ˛ 2 ….
Another important example appears in the next lemma.

2.2.8. Consider Y 2 Y (see §2.2.3) of the form Y WD Q
ˇ2J .1 C e�ˇ /, where

J � � is a finite set and, for each ˇ 2 �1, J \ f˙ˇg contains at most one
element. Recall conventions of §2.2.3 and view Y �1 as an element in R.…/,
which we denote by Y �1.…/.

Let W 0 � W be a subgroup generated by simple reflections and let � 2
h� n f0g be such that the orbit W 0� has a unique maximal element. For each
subset W 00 � W 0 we introduce the following notation

FW 00

� e�Q
ˇ2J .1 C e�ˇ /

�
WD

X
w2W 00

sgn.w/ ew�
Y
ˇ2J

.1 C e�wˇ /�1:

From the lemma below it follows that FW 00. e�Q
ˇ2J .1Ce�ˇ/

/ lies in R.…/ (i.e.,

the corresponding partial sums converge in R.…/, cf. §2.2) and that these ele-
ments are equivalent for different choices of ….

Lemma. Let W 0 � W be a subgroup generated by simple reflections; for each
w 2 W 0 fix xw 2 Q. Write W 0 D W 0

f
	 W 0

aff , where W 0
f

is finite and W 0
aff is

the product of affine Weyl groups. Let � 2 h� n f0g be such that .�; ˛_/ 2 Z for
each ˛ 2 …0 such that r˛ 2 W 0, and that .�; ı/=.˛; ˛/ � 0 for each ˛ 2 …0

such that r˛ 2 W 0
aff .

(a) For each … the element

X.…/ WD
X

w2W 0

xwew�.wY /�1.…/

lies in R.…/.



Characters of (relatively) integrable modules 147

(b) All elements X.…/ are equivalent (with respect to the relation introduced
in §2.2.1).

(c) For each odd isotropic root ˛ 2 … the element X.…/ has a pole of order
at most one at ˛. Moreover, X.…/ has a pole of order zero at ˛ if W 0.J / \
f˙˛g D ;.

Proof. The assumptions on � imply that the orbit W 0� contains a unique max-
imal element. We may (and will) assume that � is maximal in its orbit that is
� � w� 2 Z�0…0 for any w 2 W 0.

For a fixed set of simple roots …, we denote by ht… �, the height of � DP
˛2… k˛˛, the number ht… � D P

˛2… k˛.
Note that X.…/ is an infinite sum of elements in R.…/; for (a) we have to

show that the partial sums converge (cf. §2.2). From (8) we obtain

supp.ew�.wY /�1.…// � w� � Z�0…:

In order to prove that X.…/ 2 R.…/, it is enough to verify that for each r the
set

Hr.�/ WD fw 2 W 0 j ht.� � w�/ � rg
is finite.

Recall that (see e.g. [K3], Chapter 3) for an affine Lie algebra the stabilizer of
any element 
 which is maximal in its Weyl group orbit is generated by simple
reflections; thus this stabilizer is either finite or coincides with W itself (in this
case 
 D 0). Hence StabW 0� is finite.

Let ˛1; : : : ; ˛r be the simple reflections (˛i 2 …0) which generate W 0. Since
� is maximal in its W 0-orbit, the value .�; ˛_

i / is a non-negative integer. An easy
argument (see, for instance, Lemma 1.3.2 in [G2]) shows that for each reduced
expression w D r˛i1

� � � r˛ir
,

ht.� � w�/ � #fj j .�; ˛_
ij

/ 6D 0g:
Now the fact that Hr is finite follows as in Lemma 2.4.1 (i) in [G2].

(b) Since any two subsets of positive roots are connected by a finite chain of
odd reflections, it is enough to verify that

(9) X.…/.1 C e� / D X.r�…/.1 C e� / 2 R.…/ \ R.r�…/:

Indeed, by the assumption on J , the intersection wJ \ f˙	g contains at most
one element. If the intersection is empty, then ew�.wY /�1.…/ D
ew�.wY /�1.…0/ 2 R.…/ \ R.…0/, see §2.2.3. If the intersection wJ \ f˙	g
is non-empty, then ew�.wY /�1.…/.1 C e� / D e�0

.Y 0/�1.…/, where

Y 0 D
Y

ˇ2wJ nf˙�g
.1 C e�ˇ /
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and �0 D w� if �	 2 wJ , �0 D w� C 	 if 	 2 wJ . Since X.…/ 2
R.…/; X.r�…/ 2 R.r�…/, the sum X.…/.1 C e� / (resp., X.r�…/) is a well-
defined element in R.…/ (resp., in R.r�…/) and since all summands .1 C
e� /w. e�

1Ce�ˇ / lie in R.…/ \ R.r�…/, we obtain (9). This proves (b) and (c).
�

Remark. For � 6D 0 the conditions

(i) the orbit W 0� has a unique maximal element in the �-ordering;
(ii) h�; ˛_i 2 Z for each ˛ 2 …0 such that r˛ 2 W 0;

are equivalent if W 0 is finite. In the case when W 0 is infinite, (i) is equivalent to
(ii)C(iii), where

(iii) .�0; ı/=.˛; ˛/ > 0 for each ˛ 2 …0 such that r˛ 2 W 0
aff .

2.2.9. Lemma. Let ˛ 2 … be an isotropic root. Assume that X D P
x�e�

2 R.…/; X 0 D P
x0

�e� 2 R.r˛…/ are equivalent and that X has a pole of
order � 1 at ˛. Then for each � 2 h� one has

(10) 8k 2 Z x�Ck˛ � x0
�Ck˛ D .�1/k.x� � x0

�/:

Moreover, x� D x0
� if .supp X/ \ f� C Z˛g is finite.

Proof. Since X has a pole of order � 1 at ˛, one has .1 C e�˛/X 2 R.r˛…/.
Since X; X 0 are equivalent, the elements .1 C e�˛/X; .1 C e�˛/X 0 2 R.r˛…/

are equivalent and so .1 C e�˛/X D .1 C e�˛/X 0.
Recall that V is a Vfin-module; for Y D P

y�e� 2 V one has

.1 C e�˛/Y D 0 H) y� C y��˛ D 0 for all �:

This gives (10).
Finally, note that x0

��k˛
D 0 for k 
 0, because X 0 2 R.r˛…/ and �˛ 2

r˛…. If supp X \ f� C Z˛g is finite, then x��k˛ D 0 for k 
 0 and thus
x� � x0

� D x��k˛ � x0
��k˛

D 0, as required. �

3. Root systems of basic and affine Lie superalgebras

In this section we give some (mostly known) properties of Dynkin diagrams
of basic and affine Lie superalgebras which are used in the main text. We call
a Dynkin diagram of an indecomposable affine (resp., basic) Lie superalgebra
affine (resp., finite) type Dynkin diagram. We identify a set of simple roots …

with the vertices of its Dynkin diagram.
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In this section g is an indecomposable affine or basic Lie superalgebra with
a set of simple roots … and a symmetrizable Cartan matrix A. We denote by �

the root system of g.
Throughout §3–6, unless otherwise stated, we use the following normaliza-

tion of the invariant bilinear form .�; �/. If the dual Coxeter number is non-
zero, we normalize the form by the condition h_ 2 Q>0. If g D D.n C
1; n/; D.n C 1; n/.1/ or D.2; 1; a/; D.2; 1; a/.1/; a 2 Q, we normalize the
form by the condition .˛; ˛/ 2 Q>0 for some ˛ 2 DnC1 or ˛ 2 D2 D
A1 	 A1; if the dual Coxeter number is zero and g 6D D.n C 1; n/; D.n C
1; n/.1/; D.2; 1; a/; D.2; 1; a/.1/; a 2 Q, we normalize the form by the con-
dition .˛; ˛/ 2 Q>0 for some ˛ 2 � (note that in this case all connected
components of …0 have the same number of elements).

3.1. Affine Lie superalgebras

3.1.1. Lemma. Let … be a set of simple roots of an indecomposable affine Lie
superalgebra and let ı be the minimal imaginary root. Then ı D P

˛2… x˛˛,
where each coefficient x˛ 6D 0.

Proof. Take ˛ 2 … such that x˛ D 0. Since � is affine, � C rı D � for some
r > 0, so rı � ˛ 2 �. One has

rı � ˛ D
X

ˇ2…;ˇ 6D˛

rxˇ ˇ � ˛;

that is rxˇ � 0 for each ˇ. Then rı 2 ��C, a contradiction. �

3.1.2. Finite parts. For each …0 � … the set Z…0 \ � is the set of roots of
a Kac–Moody superalgebra with the Cartan matrix A0, which is the submatrix
of A, corresponding to …0. Using Lemma 3.1.1, we conclude that any proper
subdiagram of a connected Dynkin diagram of affine type is of finite type, i.e.,
if … is a set of simple roots of an indecomposable affine Lie superalgebra, then
for any proper subset …0 � … the root system Z…0 \ � is finite (and is the root
system of a certain basic Lie superalgebra).

Let X be an affine Dynkin diagram. We call a connected subdiagram PX ,
obtained from X by removing one node, a finite part of X . By above, PX is of
finite type. We call a root subsystem P� a finite part of affine root system � if P�
admits a set of simple roots P… which is finite part of a set of simple roots for �.
The finite parts of affine root systems are described in §13.2.
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3.1.3. Definitions. Let g be an affine Lie superalgebra with the root system
�. Let P� be a finite part of � (see §3.1.2). An irreducible vacuum module is a
module L.�/ such that .�; P�/ D 0. Note that if … is a set of simple roots of �

and P… is a finite part of …, and .�; P…/ D 0, then L.�/ is a vacuum module.
Let g be a basic or affine Lie superalgebra. For each subset � � …0 we say

that a g-module N is �-integrable if h acts diagonally on N and for each ˛ 2 �

the root spaces g˙˛ act locally nilpotently on N .
Note that if N is �-integrable, then for each w 2 W.�/ one has dim N� D

dim Nw� , so ch N is a W.�/-invariant element of V , see §2.2 for notation. In
particular, if N is a �-integrable irreducible highest weight module, then ch N

is a W.�/-invariant element of RW.�/, see §2.2.2.
Let g be an affine Lie superalgebra, let Pg be a finite part of g, and let P…0

be the subset of simple roots for Pg0 D g0 \ Pg. We say that a g-module N is
integrable if N is �-integrable for � D f˛ 2 …0 j .˛; ˛/ 2 Q>0g.

Note that � is independent of our normalization of .�; �/ if h_ 6D 0, but
� changes if we change the sign of .�; �/ if h_ D 0. In all cases, except for
D.2; 1; a/.1/, � is a connected component of …0.

3.2.

The sets of simple roots of basic Lie superalgebras which consist of isotropic
roots are the following (n � 1):

(11)

A.n; n/ f"1 � ı1; ı1 � "2; : : : ; ın�1 � "n; "n � ıng;
A.n C 1; n/ f"1 � ı1; ı1 � "2; : : : ; "n � ın; ın � "nC1g;
D.n; n/ fı1 � "1; "1 � ı2; : : : ; ın � "n; ın C "ng;
D.n C 1; n/ f"1 � ı1; ı1 � "2; : : : ; "n � ın; ın � "nC1; ın C "nC1g;

and for D.2; 1; a/ it is as for D.2; 1/. The invariant bilinear form (satisfy-
ing §3.1.3) can be chosen in such a way that the vectors "i ; ıj are mutually
orthogonal and 1 D k"ik2 D �kıj k2, except for the case D.n; n/, where
1 D �k"ik2 D kıj k2.

We claim that the sets of simple roots of indecomposable affine Lie superal-
gebras which consist of isotropic roots are the following (n � 1):

(12)

A.n; n/.1/ fı � "1 C ın; "1 � ı1; ı1 � "2; : : : ; ın�1 � "n;

"n � ıng;
D.n C 1; n/.1/ fı � "1 � ı1; "1 � ı1; ı1 � "2; : : : ; "n � ın;

ın � "nC1; ın C "nC1g;
A.2n � 1; 2n � 1/.2/ fı � "1 � ı1; "1 � ı1; ı1 � "2; : : : ; "n � ın;

"n C ıng
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and for D.2; 1; a/.1/ it is as for D.2; 1/.1/.
This can be explained as follows. If … consists of isotropic roots and �.…/

is affine, then g has zero dual Coxeter number and g has a finite part which
appears in (11). Using the tables in §13.2 we conclude that this holds only for
g listed in (12). It is easy to see that for these algebras all Dynkin diagrams
consisting of isotropic roots are as in (12).

Another result that we are going to use is the following.

3.2.1. Lemma. Let ˇ; ˇ0 2 … be isotropic roots with .ˇ; ˇ0/ 6D 0. If .ˇ; ˛/ 6D 0

for some non-isotropic ˛ 2 …, then .ˇ; ˇ0/=.˛; ˛/2 2 Q>0.

Proof. Since ˇ Cˇ0 2 rˇ …, we have ˇ Cˇ0 2 …0. Normalize the form in such
a way that k˛k2 D 2. Then .˛; ˇ0/ 2 Z�0; .˛; ˇ/ 2 Z<0, so .˛; ˇ Cˇ0/ 2 Z<0.
Since ˇ C ˇ0 2 …0, we have .˛; .ˇ C ˇ0/_/ D 2.˛; ˇ C ˇ0/=kˇ C ˇ0k2 2 Z<0,
so kˇ C ˇ0k2 D 2.ˇ; ˇ0/ 2 Q>0. �

3.2.2. Let … be a connected Dynkin diagram which contains a non-isotropic
node, let Iso be its subdiagram consisting of isotropic nodes, and let …0 be a
connected component of Iso. Note that …0 appears in (11). Since … is con-
nected, …0 contains a node ˇ 2 …0 which is connected to a node in … n …0.
By Lemma 3.2.1, ˇ can be described as follows. For A.n C 1; n/; A.n; n/, ˇ is
one of the ending nodes; for D.nC1; n/; D.n; n/; n > 1, ˇ is the first node. For
D.2; 1; a/, ˇ 2 … is such that .ˇ; ˇ1/=.ˇ; ˇ2/ 2 Q>0, where … D fˇ; ˇ1; ˇ2g;
such ˇ is unique and exists only if a 2 Q. In particular, …0 of type D.2; 1; a/

with a 62 Q cannot be a connected component of Iso.

3.3. Choice of …; S; �

Let … be a set of simple roots for � which satisfies the following property:
k˛k2 2 Q�0 for each ˛ 2 …. Recall that such … exists for all root systems
except for A.2k; 2k/.4/; D.k C 1; k/.2/: for each non-twisted (resp., twisted)
affine � the example of such … appears in the end of [G2] (resp., [R]), where
such … was used for a proof of the denominator identity.

We consider g 6D D.2; 1; a/; D.2; 1; a/.1/ with a 62 Q. Set

� WD f˛ 2 …0 j k˛k2 > 0g:
Recall that the defect of a finite type root system � is the dimension of

maximal isotropic subspace in Q�; for A.m � 1; n � 1/; B.m; n/; D.m; n/ the
defect is equal to min.m; n/; for other cases of non Lie algebras it is one. It
is well-known that it is equal to the maximal number of mutually orthogonal
isotropic simple roots for some choice of …, a set of simple roots of �.
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From §13.2 it follows that for affine root system � all its finite parts have
the same defect and that the maximal number of mutually orthogonal isotropic
simple roots for � is equal to the defect of its finite part. We call this number the
defect of the affine superalgebra. A subset S � … is called maximal isotropic if
QS is isotropic and dim QS is equal to the defect.

3.3.1. We say that an isotropic node ˇ 2 … is “branching” if the connected
component of Iso which contains ˇ is of the type D.k C 1; k/ with k � 1

and ˇ is the “branching” node in this connected component or if the connected
component is a triangle (consisting of isotropic nodes) and ˇ is a node in this
triangle which is connected to the rest of the diagram … (such node is unique).
Note that … contains at most two “branching” nodes.

If … is not the set of simple roots of D.2; 1; a/, D.2; 1; a/.1/; D.nC1; n/.1/

consisting of isotropic nodes, we let S � … be a maximal subset of mutually or-
thogonal isotropic simple roots, which contains all “branching” isotropic nodes
of … (if they exist). For example, if … D D.nC1; n/ consists of isotropic roots
(see (11)), then S D f"i �ıign

iD1 is “good”. This is what we are called a “good”
choice of S � … in the introduction. In the exceptional case … D D.2; 1; a/,
consisting of isotropic nodes, we take S D fˇg, where ˇ 2 … is such that
.ˇ; ˛_/ > 0 for ˛ 2 � (such ˇ is unique, since � D A1 	 A1).

3.3.2. Remark. Let …0 be a connected component of Iso. Using §3.2.2 one
easily sees that � 0 WD � \ �.…0/ and S 0 WD S \ …0 is a “good” choice of �; S

in the sense of §3.3.1 for …0.

3.3.3. Examples. For example, for A.m; n/.1/; m > n, we have � D fı �
"1 C "m; "1 � "2; : : : ; "m�1 � "mg and we have the following “good” choice of
… (satisfying k˛k2 � 0 for each ˛ 2 …):

… D fı � "1 C "m; "1 � ı1; : : : ; ın � "nC1; "nC1 � "nC2; : : : ; "m�1 � "mgI
and for A.n; n/.1/ a “good” choice of … is

… WD fı � "1 C ın; "1 � ı1; ı1 � "2; : : : ; "n � ıng;
so that � D fı�"1 C"n; "1 �"2; : : : ; "n�1 �"ng; with “good” S D f"i �ıign

iD1
in both cases.

For B.2; 1/.1/ � D fı � "1 � "2; "1 � "2; "2g. The only “good” … is

… D fı � "1 � ı1; "1 � ı1; ı1 � "2; "2g:
Since ı1 � "2 is a “branching” node, only S D fı1 � "2g is “good”.

For B.2; 2/.1/ � D fı � 2ı1; ı1 � ı2; 2ı2g. The only “good” … is

… D fı � "1 � ı1; "1 � ı1; ı1 � "2; "2 � ı2; ı2g:
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Note that Iso Š D.2; 2/, so there are no “branching” nodes; thus any S is good
(there are two choices of S : f"i � ıig2

iD1; fı � "1 � ı1; "2 � ı2g).
For D.n; n/ one has � D fıi �ıiC1gn�1

iD1 [f2ıng. There are two “good” …’s.
For the one, consisting of isotropic roots (see (11)), there are two choices for S :
S D fıi �"ign

iD1 and S D fıi �"ign�1
iD1 [fın �"ng; both choices are “good” (by

definition this diagram does not contain a “branching” node). Another “good”
… is

… D f"1 � ı1; ı1 � "2; "2 � ı2; 2ı2g:
In this case the only choice of S is f"i � ıig2

iD1 and it is “good” (… does not
have “branching” nodes).

For D.3; 1/ one has � D f"1 �"2; "2 �"3; "2 C"3g. We have several “good”
…’s. For instance, for

… D f"1 � "2; "2 � ı1; ı1 � "3; ı1 C "3g
Iso is a triangle, so the node "2 � ı1 is branching. Thus only S D f"2 � ı1g is
“good”. Another … is

… D f"1 � ı1; ı1 � "2; "2 � "3; "2 C "3g;
both choices of S : S D f"1 � ı1g and S D fı1 � "2g are “good”.

For D.4; 2/ one has � D f"1 � "2; : : : ; "3 � "4; "3 C "4g. For the following
“good” …:

… D f"1 � ı1; ı1 � "2; "2 � ı2; ı2 � "3; "3 � "4; "3 C "4g;
there are two choices for S : S D f"i � ıig2

iD1 and S D fıi � "iC1g2
iD1; both

choices are “good”. For the following “good” …:

… D f"1 � "2; "2 � ı1; ı1 � "3; "3 � ı2; ı2 � "4; ı2 C "4g;
there are three choices for S and only S D f"2 � ı1; "3 � ı2g is “good”, since
"3 � ı2 is a “branching” node.

Considering the corresponding affine diagrams for D.4; 2/.1/, we see that
ı1 � "2 becomes “branching” in the first diagram, so only S D fıi � "iC1g2

iD1
remains “good”; in the second case there are no new “branching” points so
S D f"2 � ı1; "3 � ı2g remains “good”.

For D.5; 2/.1/ with a “good” …:

… D fı � "1 � ı1; "1 � ı1; ı1 � "2; "2 � "3; "3 � "4; "4 � ı2; ı2 � "5; ı2 C "5g
there are two “branching” points ı1 �"2; "4 �ı2, so only S D fı1 �"2; "4 �ı2g
is “good”.
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For F.4/ there are six choices of …, four of them are good and only one of
“good” …’s has a “branching” node. For F.4/.1/ there are two non-isomorphic
“good” …’s: a “kite”-type

… D
n
ı � "1 � "2; "2 � "3;

�ı1 C "1 � "2 C "3

2
;
ı1 � "1 C "2 C "3

2
;

ı1 C "1 � "2 � "3

2

o

where the only “good” S is S D f.�ı1 C "1 � "2 C "3/=2g and a “hill”-type

… D
n
ı � "1 � "2;

�ı1 C "1 C "2 � "3

2
; "3;

ı1 � "1 C "2 � "3

2
; "1 � "2

o
;

where both choices of S are “good”.
For G.3/ there are three “good” …’s and all S in these …’s are “good”. For

G.3/.1/ there are two “good” …’s:

… D fı C "1 � "2; �ı1 C "2; ı1 � "3; "3g
without “branching” nodes (so both choices of S are “good”), and

… D fı C "1 � ı1; �"1 � ı1; ı1 � "2; "2 � "3g
with S D fı1 � "2g.

3.3.4. Lemma. Let … 6D A.2n � 1; 2n � 1/.2/; A.2n; 2n/.4/; D.n C 1; n/.r/

.r D 1; 2/ and let S; � be as above.

(i) For each ˛ 2 … with k˛k2 D 0 one has ˛ 2 S or ˛ C ˇ 2 � for some
ˇ 2 S .

(ii) If w 2 W.�/ is such that w� D � and wS � �C, then w D Id.

Proof. (i) In the light of §3.3.2, it is enough to verify (i) for the case, when …

contains only isotropic roots, that is … is either A.n; n/.1/ or appears in (11). It
is easy to check that the claim holds in each case.

(ii) Consider first the case when … contains only isotropic roots.
Recall that for S D f"i � ıign

iD1 for D.n C 1; n/. For A.n; n/; D.n; n/;

A.n; n/.1/ the choice of S is unique up to an automorphism of the Dynkin dia-
gram …, so we take S D f"i � ıign

iD1 for A.n; n/; D.n C 1; n/; A.n; n/.1/ and
S D fıi � "ign

iD1 for D.n; n/.
For A.n; n/, A.n; n/.1/ the group W stabilizes

P
ˇ2S ˇ. Therefore wS �

�C forces wˇ D ˇ for each ˇ 2 S , so w"i D "i ; wıi D ıi for each i D
1; : : : ; n. This gives w D Id.

For D.n; n/, the group W.�/ acts by signed permutations on fıign
iD1, and

the condition wS � �C gives for each i D 1; : : : ; n that wıi D ıj for j � i .
Thus w D Id.
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For D.n C 1; n/, the group W.�/ acts by signed permutations with even
number of sign changes on the set f"ignC1

iD1 , and the condition wS � �C gives
for each i D 1; : : : ; n that w"i D "j for j � i . Thus w D Id.

For A.n C 1; n/, the group W.�/ permutes f"ignC1
iD1 and S is of the form

f"i �ıigk
iD1[fıi �"iC1gn

iDkC1
for some k D 0; : : : ; n. The condition wS � �C

gives for each i D 1; : : : ; k (resp., i D k C 1; : : : ; n C 1) that w"i D "j for
j � i (resp., j � i). This implies w D Id.

Finally consider the case D.2; 1; a/. Write … D fˇ; ˇ1; ˇ2g with S D fˇg.
Recall that � D fˇ C ˇ1; ˇ C ˇ2g and .ˇ C ˇ1; ˇ C ˇ2/ D 0. Since rˇ … D
f�ˇ; ˇ C ˇ1; ˇ C ˇ2g, for each w 2 W.�/ one has w.�ˇ/ D �ˇ C a1.ˇ C
ˇ1/ C a2.ˇ C ˇ2/ for some a1; a2 2 Z�0 and a1 D a2 D 0 only for w D Id.
Hence wˇ 2 �C forces w D Id, as required.

Now consider the general case. Let X be the set of connected components
of Iso; for each connected component …0 choose � 0 WD �.…0/ \ � , see §3.3.2.
We claim that

(13) StabW.�/� D
Y

� 02X

W.� 0/:

Indeed, since k˛k2 � 0 for each ˛ 2 …, one has .�; ˛/ � 0 for each ˛ 2
�C. This gives .�; ˛_/ � 0 for each ˛ 2 � , so the stabilizer of � in W.�/

is generated by the reflections fr˛ j ˛ 2 �; .�; ˛/ D 0g. Clearly, .�; ˛/ D 0

for ˛ 2 �C means that ˛ 2 ZIso. Since ˛ 2 � , we obtain ˛ 2 � 0 for some
…0 2 X . This establishes (13).

Now take w 2 StabW.�/�. If w 6D Id, then there exists …0 2 X such that the
projection of w to W.� 0/ is not Id. Denote this projection by w0. Recall that the
set S \…0 is a maximal isotropic set in …0. By above, there exists ˇ 2 .S \…0/
such that w0ˇ 2 ��C. Clearly, wˇ D w0ˇ, so wˇ 2 ��C for some ˇ 2 S .
This proves (ii). �

4. KW-character formula for maximally atypical modules when h_ 6D 0

Let g be either a basic finite-dimensional Lie superalgebra, except for D.2; 1; a/

with a 62 Q, or an affine Lie superalgebra with non-zero dual Coxeter number
h_, or A.n; n/.1/, with a subset of simple roots … such that k˛k2 2 Q�0 for
each ˛ 2 … (see §3 for the normalization of .�; �/). Set � WD f˛ 2 …0 j
.˛; ˛/ > 0g.

In this section we prove the KW-formula for the maximally atypical (i.e.,
#S D defect.g/) �-integrable g-modules, which admit a “good” choice of S �
…. These include, in particular, the integrable vacuum modules over the affine
Lie superalgebras with non-zero dual Coxeter number and over A.n; n/.1/.
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4.1. Main result

Except for the case described in the next sentence, we let S � … be a maximal
set of mutually isotropic orthogonal simple roots, which contains all “branch-
ing” isotropic nodes, if they exist (recall that an isotropic node ˇ 2 … is
“branching” if the connected component of Iso which contains ˇ is of the type
D.k C 1; k/ with k � 1 and ˇ is the “branching” node in this connected
component, see §3.3.1). If … D D.2; 1; a/ consists of isotropic roots, we take
S D fˇg, where ˇ 2 … is such that .ˇ; ˛_/ > 0 for ˛ 2 � (such ˇ is unique,
since � D A1 	 A1).

Let L.�/ be a non-critical �-integrable g-module with the property .�; ˇ/ D
0 for each ˇ 2 S . We claim that, for the above “good” choice of S , ch L is given
by the KW-formula:

(14) Re� ch L.�/ D
X

w2W.�/

sgn.w/
ew.�C�/Q

ˇ2S .1 C e�wˇ /
:

The condition that L.�/ is �-integrable implies .�; ˛/ � 0 for each ˛ 2 � .
Combining with .�; ˇ/ D 0 for ˇ 2 S , we obtain, using Lemma 3.3.4 (i), that
.�; ˛/ � 0 for each ˛ 2 …. In particular, if g 6D A.n; n/.1/, the condition that �

is non-critical is superfluous.
If g D A.m; n/.1/ with m 6D n, the conditions on � are equivalent to .�; ˛/ 2

Z�0 for each ˛ 2 …, .�; ˇ/ D 0 for each ˇ 2 S . For g D A.n; n/.1/ the
additional condition is � 62 Zı.

4.2. Other choices of … � S

Let … be any set of simple roots containing a maximal set of mutually orthog-
onal isotropic roots S (#S D defect.g/), and L D L.�; …/ is a �-integrable
module with .�; S/ D 0. Beyond the cases when the pair … � S is “good”
formula (14) holds in the following cases of non-exceptional g:

� A.m; n/; B.m; n/; A.m; n/.1/ for any m; n;
� B.m; n/.1/; A.2n; 2m � 1/.2/; D.m; n/; D.m; n/.1/ for m � n;
� A.2m; 2n/.4/; D.m C 1; n/.2/ for m 6D n;
� B.m; n/.1/; A.2n; 2m � 1/.2/ for m > n C 1 if the affine root ˛0 is such that

k˛0k2 > 0.

In order to prove this we will show in §4.2.1 below that the g-module L

is isomorphic to the g-module L.�; …0/, where …0 contains a maximal set of
mutually orthogonal isotropic roots S 0 such that .…0; S 0/ is good and .�; S 0/ D
0.

By the same method one can show that for G.3/.1/ formula (14) holds for
“good” pairs S � …, described in §3.3.3, and for … D fı C "1 � "2; "2 �
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"3; "3 � ı1; ı1g (S is unique). In particular, (14) holds for any S if k˛0k2 > 0

(see §13.2.4 for the list of all …’s).
In the case F.4/.1/ formula (14) holds for the “good” pairs S � … described

in §3.3.3 (for the “kite”-type … if S is the “branching” node and for the “hill”-
type … if S is any isotropic node).

4.2.1. If formula (14) holds for the pair .…; S/, then it remains valid for the
pair .r˛…; r˛S/, where ˛ 2 S , see Lemmas 2.2.8, 5.7.1. Let us show that using
the reflections with respect to the roots in S we can transform the pair … � S

to a “good” pair.
For each affine � 6D D.m; n/.1/ we choose P� 6D D.k; l/ which contains S

(see §13.2.1); for D.m; n/.1/ we take P� D D.m; n/ containing S . If � is finite
we set P� WD �.

Consider P… D … \ P�. It is convenient to use the arc diagrams introduced
in [GKMP]; these are dots and crosses diagrams described in §5.6 (dots corre-
sponds to "i ’s and crosses to ıi ’s) where a dot and a cross is connected by an arc
if the corresponding root lies in S . For P… D A.m; n/; B.m; n/; D.m; n/, the arc
diagram has m dots, n crosses and min.m; n/ arcs; since S � P…, all arcs con-
nect neighboring elements and different arcs have no common vertices. Since
there are min.m; n/ arcs each cross is connected to a dot if m � n (resp., each
dot is connected to a cross if m � n). The odd reflection .…; S/ ! .r˛…; r˛S/,
where ˛ 2 S , corresponds to the interchanging of the vertices of the arcs cor-
responding to ˛; we call this “arc reflection”. The condition that k˛k2 � 0

for each ˛ 2 P…0 means that the corresponding arc diagram does not con-
tain two neighboring crosses (resp., dots) for m > n (resp., m � n), and,
in addition, for B.m; n/; D.m; n/; m > n the last symbol is a dot, and for
B.m; n/; n � m; D.m; n/; n > m, the last symbol is a cross.

If the arc diagram . P…; S/ contains the same number of dots and crosses, then
using the arc reflections we can obtain the diagram . P…0; S 0/ with alternating
symbols (i.e., dots or crosses) which ends by any symbol; we choose this symbol
to be a cross (resp., a dot) for � 6D A.2n; 2n�1/.2/ (resp., for � 6D A.2n; 2n�
1/.2/). If the arc diagram . P…; S/ contains more crosses than dots we can obtain
an arc diagram . P…0; S 0/ without neighboring dots, which starts and ends by
crosses; we construct a similar arc diagram . P…0; S 0/ if there are more dots than
crosses. Let …0 be the corresponding set of simple roots for � (…0 D P…0 if �

is finite and …0 D P…0 [ f˛0
0g if � is affine). Let us show that the pair .…0; S 0/

is “good” if � 6D B.m; n/.1/ or A.2n; 2m � 1/.2/ for m > n C 1. Indeed, by
above, k˛k2 > 0 for each ˛ 2 P…. Moreover, P…0 does not have a branching node
(this holds for all diagrams A.m; n/; B.m; n/ and for D.m; n/ if the last symbol
is cross). Thus . P…0; PS 0/ is “good”.

Now we may assume that � is affine. Let �l ; �r correspond respectively to
the first and to the last symbol in P…0: �l D "1 (resp., �r D "m) if the first
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(resp., the last) symbol is a dot and �l D ı1 (resp., �r D ın) otherwise. If
� D A.m; n/.1/ with m � n, then �l D "1 and ˛0 D �l � �r , so k˛0k2 � 0.
For P… D B.m; n/ with n > m one has �l D ı1, so ˛0 D ı � 2ı1 (resp.,
˛0 D ı � ı1) for � D B.m; n/.1/ (resp., for for � D A.2m; 2n/.4/, D.m C
1; n/.2/); thus k˛0k2 > 0. For P… D B.m; n/ with m > n one has �l D "1 and
˛0 D ı � 2"1 (resp., ˛0 D ı � "1) for � D A.2m; 2n � 1/.2/ (resp., for for
� D A.2m; 2n/.4/, D.mC1; n/.2/); thus k˛0k2 > 0. In all these cases …0 does
not contain branching nodes, so .…; S/ is “good”.

For B.n; n/.1/; D.n; n/.1/; A.2n; 2n � 1/.2/ for the resulting …0 one has
Iso D D.n; n/, which does not contain “branching” nodes; hence .…0; S 0/ is
“good”.

For D.m; n/.1/ with n > m the arc diagram P… D D.m; n/ starts and ends by
crosses, so ˛0

0 D ı � 2ı1 and …0 does not have branching nodes. Thus .…0; S 0/
is good.

Consider the remaining cases B.m; n/.1/, A.2n; 2m � 1/.2/ with m > n C 1

with k˛0k2 > 0. The condition k˛0k2 > 0 means that the first two symbols
in the arc diagram of P… are dots, so using the arc reflections we can obtain a
diagram . P…0; S 0/ without neighboring crosses which also starts with two dots
and ends by a dot. Then k˛0

0k2 > 0. The diagram P…0 does not contain branching
nodes; by adding a non-isotropic node ˛0

0 to P… we do not create new “branch-
ing” nodes, so .…0; S 0/ is good.

4.3. Proof of (14) for a good pair … � S

We rewrite formula (14) in the form

Re� ch L.�/ D
X

w2W.�/

sgn.w/ Yw ; where Yw WD w
� e�C�Q

ˇ2S .1 C e�ˇ /

�
:

By Lemma 2.2.8,
P

w2W.�/ sgn.w/ Yw 2 R. One has

(15) supp Yw � w.� C �/ C
� X

fˇ2S jwˇ2��g
wˇ

�
� Z�0…:

Since L.�/ is �-integrable, .�; ˛_/ 2 Z�0 for each ˛ 2 � . It is easy to
deduce from Proposition 2.1.1 that r˛� 2 � � � for each ˛ 2 � . Note that
.�; ˛/ � 0 for each ˛ 2 �C (because k˛k2 � 0 for each ˛ 2 …), so r˛� 2
� � �C for each ˛ 2 � . Therefore w.� C �/ 2 � C � � Z�0…, so

supp
� X

w2W.�/

sgn.w/Yw

�
� � C � � Z�0…:

Clearly, supp.Re� ch L.�// � � C � � Z�0….
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Let us show that

(16) .� C � � Z�0S/ \ supp.Yw/ D ; for w 2 W.�/; w 6D Id:

Indeed, assume that the intersection is non-empty. Then, by (15), w 2
StabW.�/.�C�/ and for each ˇ 2 S one has either wˇ 2 �C or �wˇ 2 Z�0S .
If �wˇ 2 Z�0S , then ˇ � wˇ 2 ZS , so kˇ � wˇk2 D 0; but ˇ � wˇ 2 Z� ,
thus ˇ D wˇ. Therefore w 2 StabW.�/.�C�/ and wS � �C. By Lemma 3.3.4
(ii), w D Id, as required.

We conclude that the coefficient of e�C� in
P

w2W.�/ sgn.w/ Yw is 1; clear-
ly, the coefficient of e�C� in Re� ch L.�/ is also 1. Let

Z WD Re� ch L.�/ �
X

w2W.�/

sgn.w/w
� e�C�Q

ˇ2S .1 C e�ˇ /

�
:

Suppose that Z 6D 0. By above,

supp.Z/ � � C � � Z�0…; � C � 62 supp.Z/:

Recall that the Casimir element acts on a Verma module M.�/ by a scalar
.�; � C 2�/. The Casimir elements acts on M.�/ by the same scalar as on
M.�/ if � C � 2 supp.Re� ch L.�//. Thus k
k2 D k� C �k2 for each 
 2
supp.Re� ch L.�//. On the other hand, it is easy to see that k
k2 D k� C �k2

for each 
 2 supp Yw . Thus k
k2 D k� C �k2 for each 
 2 supp.Z/.
Let � C � � � be a maximal element in supp.Z/ with respect to the order

�… (see §2.1.3). We have

k� C � � �k2 D k� C �k2; � 2 Z�0…; � 6D 0:

4.3.1. By §2.2.6, R0e�� is a W.�/-skew-invariant element of RW.�/.
Since L.�/ is �-integrable, ch L.�/ is a W.�/-invariant element of RW.�/,
see §3.1.3. Thus

R0e�� ch L.�/ D R1e�� ��.Re� ch L.�//

is a W.�/-skew-invariant element of RW.�/. By §2.2.6, R1e�� �� is a W.�/-
invariant element of RW.�/, so

R1e�� ��
X

w2W.�/

sgn.w/
ew.�C�/Q

ˇ2S .1 C e�wˇ /

D
X

w2W.�/

sgn.w/ ew.�C�� /
Y

ˇ2�
C

1
nS

.1 C e�wˇ /:
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By §2.2.3, e�C��
Q

ˇ2�
C

1
nS

.1 C e�ˇ / 2 RW.�/, so, by §2.2.5, the sum in the

right-hand side is a W.�/-skew-invariant element of RW.�/.
We conclude that R1e�� ��Z is a non-zero W.�/-skew-invariant element

of RW.�/. Clearly, � � � C �� is a maximal element in its support. Hence
.���C�� ; ˛_/ is a positive integer for each ˛ 2 � (positive, since ���C��

is a maximal element in the support of a skew-invariant element of RW.�/, and
integer, since .�; ˛_/ 2 Z�0). Therefore

.� � �; ˛/ � 0 for each ˛ 2 �:

4.3.2. By Lemma 3.3.4, for any 	 2 … one has 	 2 � [ S , or 2	 2 � , or
	 D ˛ � ˇ; ˛ 2 �; ˇ 2 S . Define a linear map p W Z�0… ! 1

2
Z�0� which is

zero on S and the identity on � . Recall that .� C �; S/ D .S; S/ D 0. We have
2.� C �; �/ D .�; �/, so 2.� C �; p.�// D .2� � p.�/; p.�//, which implies

2.� C � � �; p.�// D �kp.�/k2:

Since .�; ˛/; .� � �; ˛/ � 0 for each ˛ 2 � , the left-hand side is non-negative.
Hence kp.�/k2 � 0. Since p.�/ 2 1

2
Z�0� , we obtain p.�/ D 0 if � is

finite, and p.�/ D sı if � is affine. In the latter case 2.� C �; p.�// D .2� �
p.�/; p.�// gives 2.�C�; sı/ D 0. Since � is non-critical, s D 0, so p.�/ D 0.
Hence � 2 ZS n f0g.

4.3.3. By (16), for � 2 ZS , the coefficient of e�C��� in Yw is equal to zero
if w 6D Id. One readily sees that L.�/��� D 0 for each 
 2 ZS; 
 6D 0. Thus
the coefficient of e�C��� in Re� ch L is equal to the coefficient of e�C��� in
e�C�

Q
ˇ2S .1 C e�ˇ /�1 D YId. Hence the coefficient of e�C��� in Z is equal

to zero, a contradiction. This gives Z D 0 and establishes the KW-formula. �

4.4.

Remark. Let g be of the type A.0; n/.1/ or C.n/.1/. Note that �0 is indecom-
posable, so � D …0; W.�/ D W . Let L D L.�; …/ be a �-integrable module.
If L is typical, i.e., .� C �; ˇ/ 6D 0 for all ˇ 2 �1, then ch L is given by the
Weyl–Kac character formula Re� ch L D P

w2W sgn.w/ew.�C�/. If L is atyp-
ical, then there exists …0 such that L D L.�0; …0/ and .�0C�0; ˇ0/ D 0 for some
ˇ0 2 …0, see the next paragraph. By above, ch L is given by the KW-character
formula Re� ch L D P

w2W sgn.w/ew.�0C�0/=.1 C e�wˇ 0

/. This formula was
proven earlier in [S4].

Let us show that .� C �; ˇ/ D 0 for some ˇ 2 �1 forces the existence of
…0 such that L D L.�0; …0/ and .�0 C �0; ˇ0/ D 0 for some ˇ0 2 …0. Indeed,
it is easy to show that for this g for any odd root ˇ there exists …00 such that
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ˇ 2 …00. Recall that …00 can be obtained from … by a chain of odd reflections
rˇ1

; : : : ; rˇs
. Writing …0 WD …; �0 WD �i and …j D r

ǰ
…j �1 (so …00 D

…sC1), we introduce �j by L D L.�j ; …j /. Then �j C �j D �j �1 C �j �1,
(where �j is the Weyl vector for …j ) if .�j �1 C �j �1; ǰ / 6D 0. Therefore,
if .�j �1 C �j �1; ǰ / 6D 0 for j D 1; : : : ; s, then �sC1 C �sC1 D � C �,
and taking …0 WD …00 D …sC1 we obtain .�0 C �0; ˇ/ D 0 and ˇ 2 …00. If
.�j �1 C �j �1; ǰ / D 0 for some j , then we take …0 WD …j �1 and ˇ0 WD ǰ

( ǰ 2 …j �1 by the definition of an odd reflection).

4.5. A new identity

In [KW4] a product character formula was obtained for the osp.m; n/.1/-mod-
ule V1 WD L.ƒ0/. The bilinear form in this case is normalized there by k"ik2 D
1 D �kıj k2. If M � N C 2, this normalization coincides with our normaliza-
tion. On the other hand, we have established in this section the KW-character
formula for V1. Comparing these formulas, we obtain a new identity, see below.

4.5.1. Let g D osp.m; n/.1/; M � N C 2. Consider a set of simple roots

… D fı � ."1 C ı1/; "1 � ı1; ı1 �"2; : : : ; "n � ın; ın �"nC1; "nC1 �"nC2; : : :g:
The set … has an involution 
 which exchanges the first two roots (via "1 7!
ı � "1) and fixes the rest. This involution induces an involution 
 of g. Consider
the vacuum g-module V1 and its twisted by 
 module V 	

1 . By [KW4], these are
all integrable (i.e., �-integrable) g-modules of level 1.

One has V1 D L.ƒ0/, where .ƒ0; ı/ D 1; .ƒ0; "i / D .ƒ0; ıj / D 0, and
V 	

1 D L.ƒ0 C "1/. Formula (14) gives

Re� ch V1 D
X

w2W.�/

sgn.w/
ew.ƒ0C�/Qn

iD1.1 C e�w."i Cıi //
;

Re� ch V 	
1 D

X
w2W.�/

sgn.w/
ew.ƒ0C"1C�/

.1 C e�w.ıC"1Cı1//
Qn

iD2.1 C e�w."i Cıi //
;

where W.�/ is the Weyl group of soM (Bm if M D 2m C 1, and Dm if M D
2m).

On the other hand, formula (7.5) from [KW4] gives

Re�.ch V1 ˙ ch V 	
1/

DReƒ0C�
1Y

kD1

.1 ˙ qk�1=2/p.M /
Qm

iD1.1 ˙ e"i qk�1=2/.1 ˙ e�"i qk�1=2/Qn
j D1.1 � eıj qk�1=2/.1 � e�ıj qk�1=2/

;
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where q D e�ı , N D 2n, and either p.M / D 0; M D 2m; osp.m; n/ D
D.m; n/, or p.M / D 1; M D 2m C 1; osp.m; n/ D B.m; n/.

Comparing the last character formula with the previous two, gives a product
formula for some mock theta functions (as defined in [KW5]).

5. KW-character formula for finite-dimensional modules

We say that a highest weight module L satisfies the KW-condition, if for some
set of simple roots … one has L D L.�; …/ and … contains a subset S , which
spans a maximal isotropic subspace in Q�?

�C�
(where �?

�C�
D f˛ 2 � j

.� C �; ˛/ D 0g). Sometimes we say that L satisfies the KW-condition for …

(or for .…; S/).
Note that dim Q�?

�C�
is the invariant of L (if L D L.�; …/ D L.�0; …0/,

then dim Q�?
�C�

D dim Q�?
�0C�0), see [KW3], Corollary 3.1.

Throughout this section g is a basic Lie superalgebra g and L is a finite-
dimensional irreducible (hence highest weight) g-module, which satisfies the
KW-condition for some .…; S/, and r WD dim Q�?

�C�
. Note that #S D r �

defect.g/. We assume that r > 0 (otherwise L is typical and Re� ch L DP
w2W sgn.w/ ew.�C�/, by [K2], [KW3]).
Recall that KW-formula (3) has the form

(17) j�Re� ch L D
X

w2W

sgn.w/
ew.�C�/Q

ˇ2S .1 C e�wˇ /
;

where j� 6D 0. In this section we prove this formula for finite-dimensional
modules, satisfying the KW-condition, in all cases except for g D D.m; n/

with S D fık � "mg or S D f"m � ıkg with k < n. For C.n/ the formula was
proved in §4.

The coefficient j� is equal to rŠ for A.m; n/, 2r rŠ for B.m; n/, to 1 for C.n/,
to 2r rŠ or 2r�1 rŠ for D.m; n/, and to 2 for the exceptional Lie superalgebras,
cf. (19) and §5.2.1 below.

5.1. Outline of the proof

Let us explain the outline of the proof. In §5.2 we deduce (17) from (14) for
.…; S/ satisfying the assumptions of §4.1, and then, using Lemma 5.7.1, we
deduce (17) for any .…; S/ for the exceptional Lie superalgebras. In §5.4 we
establish (17) under the assumption that .�; ˛_/ � 0 for all ˛ 2 …0 (this
assumption holds for some subsets of simple roots, if g is A.m � 1; n � 1/

or D.m; n/). For B.m; n/ we establish (17) for some special subsets of simple
roots in §5.5. Then, in §5.7–5.9, we explain why for A.m � 1; n � 1/ (resp.,
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B.m; n/) the KW-formula for any .…0; S 0/ is equivalent to the KW-formula for
.…; S/ as in §5.4 (resp., in §5.5), and why this holds for D.m; n/ except for the
cases, when S D fık � "mg or S D f"m � ıkg with k < n.

For D.m; n/ one of the simplest cases, when we have not established the
KW-formula, is D.3; 2/ with … D f"1 � "2; "2 � "3; "3 � ı1; ı1 � ı2; 2ı2g and
� D 4"1 C 4"2 � "3 C ı1.

5.2. Case of maximal atypicality

Let r(D #S) be equal to the defect of g. Assume that …; S satisfy the assump-
tions of §4.1. Take � D f˛ 2 …0 j k˛k2 > 0g for � 6D D.nC1; n/; D.2; 1; a/,
� D DnC1 for D.n C 1; n/, and � D D2 D A1 	 A1 for D.2; 1; a/. Then,
by (14),

Re� ch L D FW.�/

� e�C�Q
ˇ2S .1 C e�ˇ /

�
;

see §2.2.8 for notation. Write W D W.�/ 	 W.…0 n �/. Since L is finite-
dimensional, the left-hand side of this formula is W -skew-invariant. Then

(18)

jW.…0 n �/jRe� ch L D FW.…0n�/.Re� ch L/

D FW.…0n�/FW.�/

� e�C�Q
ˇ2S .1 C e�ˇ /

�

D FW

� e�C�Q
ˇ2S .1 C e�ˇ /

�
:

This establishes KW-formula (17) for this case with

(19) j� D jW.…0 n �/jI
note that W.…0 n �/ is the smallest factor in the presentation of W.…0/ as the
direct product of Coxeter groups.

In particular, for � D 0 we obtain the denominator identity (for such …; S).
Note that � is the “largest part” of …0 in the following sense: …0 n � is

a connected component of …0 with the property jW.�/j � jW.…0 n �/j (for
A.n; n/; B.n; n/; D.2; 1; a/ the choice of � is not unique).

5.2.1. The coefficient j� for a non-exceptional Lie superalgebra can be obtained
as follows: it is not hard to show (see §5.8) that … contains a connected subdi-
agram …0 of defect r with the property .�; ˛/ D 0 for ˛ 2 …0; moreover, …0
is of “the same type” as … (if … D A.m; n/, then …0 D A.m0; n0/, etc.). Write
W.…0

0/ D W1 	 W2, where W1; W2 are the Weyl groups of the components
of …0

0 (connected components if …0 6D D.2; 1/). If we choose W2 such that
jW1j � jW2j, then j� D jW2j. If … D A.m; n/ (resp., B.m; n/; D.m; n/), then
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…0 D A.m0; n0/ (resp., B.m0; n0/; D.m0; n0/), with r D min.m0; n0/. There-
fore for A.m; n/ (resp., for B.m; n/) one has j� D jW.Ar/j D rŠ (resp.,
j� D 2r rŠ). For D.m; n/ one has either …0 D D.m0; r/ for m0 > r and j� D
jW.Cr/j D 2r rŠ, or …0 D D.r; n0/ for n0 � r and j� D jW.Dr/j D 2r�1 rŠ.

5.2.2. Now let g be an exceptional Lie superalgebra and let L D L.�; …/ be a
finite-dimensional g-module, satisfying the KW-conditionfor .…; S/. We claim
that the KW-formula holds and j� D 2. Note that g has defect one, so r D 1,
that is S D fˇg for some ˇ 2 ….

Indeed, by above, if …; S satisfy the assumptions of §4.1, then the KW-
formula holds (this was also proved previously, see [KW2]) and j� D jW.…0 n
�/j D 2. Assume that g 6D D.2; 1; a/ with a 62 Q and …; S do not satisfy the
assumptions of §4.1. It is easy to check that in this case ˇ is the only isotropic
root in … and that .rˇ …; S D f�ˇg/ satisfy the assumptions of §4.1. In par-
ticular, the KW-formula holds for .rˇ …; S 0 D f�ˇg/. By Lemma 5.7.1, this
implies the KW-formula for .…; fˇg/.

Now let g D D.2; 1; a/ for irrational a (this case is not covered by §4). It
is easy to see that, in this case, the trivial module is the only finite-dimensional
atypical module. KW-formula for the trivial module is the denominator identity,
which, clearly, does not depend on a; it holds for rational a, hence it holds in
general.

This establishes KW-formula (17) with j� D 2 for the exceptional Lie su-
peralgebras.

5.3.

Denote by j� the coefficient of e�C� in FW . e�C�Q
ˇ2S .1Ce�ˇ/

/. Set

Z WD j�Re� ch L � FW

� e�C�Q
ˇ2S .1 C e�ˇ /

�
:

The KW-formula is equivalent to j� 6D 0 and Z D 0.
If Z 6D 0, we denote by �0 a maximal element in supp Z. The arguments

of §4.3.1 show that

(20) .�0 � �; ˛_/ � 0 for each ˛ 2 …0:

5.3.1. Lemma. supp Z � W.� C � � ZS/:

Proof. Clearly, supp. ew.�C�/Q
ˇ2S .1Ce�ˇ/

/ � W.� C � � ZS/.

Let us show that supp Re� ch L � W.� C � � ZS/.
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In the light of Proposition 7.3.1 (in §7), it is enough to verify that for y 2
W; � 2 ZS and an isotropic root ˇ, if .y.� C � � �/; ˇ/ D 0, then y.� C � �
�/ � ˇ D y0.� C � � �0/ for some y0 2 W; �0 2 ZS .

We start with the case y D Id, so .� C � � �; ˇ/ D 0. If .S; ˇ/ D 0, then
.� C �; ˇ/ D 0 and, by the KW-condition, ˇ 2 ZS . Therefore the claim holds
for y0 D Id; �0 D � C ˇ. Now let .S; ˇ/ 6D 0, that is .ˇ; ˇ0/ 6D 0 for some
ˇ0 2 S . Since g˙ˇ generate a copy of sl.1; 1/ � g, either ˇ C ˇ0 or ˇ � ˇ0
is a root, i.e., ˛ WD ˇ � xˇ0 2 �0 for x D 1 or x D �1. Since � C � � � is
orthogonal to S and to ˇ0, it is orthogonal to ˛. One has r˛ˇ D xˇ0, so

� C � � � � ˇ D � C � � � � xr˛ˇ0 D r˛.� C � � � � xˇ0/:
Thus the claim holds for y0 D r˛; �0 D � C xˇ.

Now take an arbitrary y 2 W . Then .y.� C � � �/; ˇ/ D 0 implies .� C
� � �; y�1ˇ/ D 0. By above, � C � � � � y�1ˇ D w.� C � � �0/ for some
w 2 W; �0 2 ZS . Then y.� C � � �/ � ˇ D yw.� C � � �0/, as required. �

5.4. Case A.m � 1; n � 1/ and D.m; n/; r > 1, or D.m; n/; S D fˇg, where
ˇ D ˙."m � ın/

In Corollary 5.8.2 below we show that the KW-formula for any .…0; S 0/ is
equivalent to the KW-formula for .…; S/ such that .�; ˛_/ � 0 for each ˛ 2
…0. For such .…; S/ we prove the formula below, proving thereby the KW-
formula for .…0; S 0/.

5.4.1. Let g be A.m � 1; n � 1/ or D.m; n/. We shall assume that

(21) 8˛ 2 …0 .�; ˛_/ � 0:

We will prove the KW-formula under this assumption, by showing that j� 6D 0

and Z D 0.

5.4.2. Since L is finite-dimensional, .�; ˛_/ � 0 for each ˛ 2 …0. Assump-
tion (21) implies that � C � is maximal in its W -orbit and StabW .� C �/ D
W.…0

0/, where

…0
0 WD f˛ 2 …0 j .� C �; ˛/ D 0g D f˛ 2 …0 j .�; ˛/ D .�; ˛/ D 0g:

Take ˛ 2 …0
0. Since � is not exceptional, .�; ˛/ D 0 implies ˛ D ˇ C

ˇ0, where ˇ; ˇ0 2 … are isotropic, see Lemma 5.6.4. In this case, .ˇ; ˛_/ D
.ˇ0; ˛_/ D 1. If .�; ˇ/ 6D 0, then L D L.�; …/ D L.��ˇ; rˇ …/ and .�; ˛/ D
0 gives .� � ˇ; ˛_/ D �1, which is impossible, since L is finite-dimensional.
Therefore .�; ˇ/ D 0; similarly, .�; ˇ0/ D 0. We conclude that …0

0 is spanned
by …0, where

…0 WD f˛ 2 … j .�; ˛/ D .�; ˛/ D 0g
(more precisely, …0

0 is a set of simple roots for �.…0/0).
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5.4.3. Since � C � is maximal in its W -orbit, using (15) we obtain

supp Z � � C � � Z�0…:

Suppose that Z 6D 0 and let �0 be a maximal element in supp Z. Then �0 D
� C � � 
0 for some 
0 2 Z�0….

Let us show that 
0 2 ZS . By Lemma 5.3.1, �0 WD w.� C � � �/ with
w 2 W; � 2 ZS . Combining (20) and (21), we get .�0; ˛_/ � 0 for each
˛ 2 …0. Thus �0 D w.� C � � �/ is maximal in its W -orbit. Since � C � � �

lies in this orbit, we have � C � � � D �0 � 
 for some 
 2 Z�0…0. Thus
� D 
 C 
0, where � 2 ZS , 
 2 Z�0…0 and 
0 2 Z�0…. Since S is a set of
mutually orthogonal isotropic roots, 
 D 0 and 
0 D �, as required.

5.4.4. Denote by P W V ! V the projection sending
P

�2h� a�e�C��� toP
�2ZS a�e�C��� . Since �0 2 �C��ZS , it is enough to verify that P.Z/ D 0.
If w 62 W.…0

0/, then w.� C �/ D .� C �/ � 	 , where 	 2 Z�0…0, 	 6D 0.
By (15), this implies P.Yw/ D 0. Hence

P
�
FW

� e�C�Q
ˇ2S .1 C e�ˇ /

��
D P

�
FW.…0

0/

� e�C�Q
ˇ2S .1 C e�ˇ /

��
:

Since .�; ˛/ D 0 for each ˛ 2 …0, …0 consists of isotropic roots. Clearly,
S is a maximal set of mutually orthogonal isotropic roots in …0 (otherwise,
.S; ˇ/ D 0 for some ˇ 2 …0, which contradicts the KW-condition). In particu-
lar, from the denominator identity ((18) for � D 0) for …0 one has

FW.…0
0/

� e�C�Q
ˇ2S .1 C e�ˇ /

�
D j.…0/R.…0/e�C�;

where j.…0/ 6D 0.
Since …0 � … is orthogonal to �, the highest weight vector in L.�/ gener-

ates the trivial module over the corresponding to …0 subalgebra, and so L.�/���

D 0 for each 
 2 Z…0; 
 6D 0. Therefore P.e� ch L/ D 1. Since S � … we
have

P.Re� ch L/ D P.R.…0/e�C�/:

Then

P.Z/ DP
�
j�Re� ch L � FW

� e�C�Q
ˇ2S .1 C e�ˇ /

��

D.j� � j.…0//P.R.…0/e�C�/:

The coefficient of e�C� in the left-hand side is zero and in the right-hand
side is j� � j.…0/. Hence j� D j…0 6D 0 and P.Z/ D 0, as required. This
completes the proof of the KW-formula under the assumption (21).
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5.5. Case B.m; n/

In this case there is no … such that .�; ˛_/ � 0 for each ˛ 2 …0.
We will show below that the KW-formula for any .…0; S 0/ is equivalent to

the KW-formula for .…; S/ such that .�; ˛_/ � 0 for all except one root in …0

(which is either "m or 2ın). Moreover, by (25), f˛ 2 � j .� C �; ˛/ D 0g is
spanned by

…0 WD f˛ 2 … j .� C �; ˛/ D 0g:
Since .�; ˛_/ � 0 for each ˛ 2 …0, …0 consists of isotropic roots.

5.5.1. Consider the case when ˛mCn D "m (for ˛mCn D ın we interchange "’s
and ı’s). Then ˛mCn�1 D ın � "m.

Normalize .�; �/ by k"ik2 D 1. Then .�; "i / � 0 � .�; ıj / for each i; j .
Since r > 1, the KW-condition implies that .�; "n/ D .�; ım/ D 0 and that …0

is connected (and contains ın � "m). Then

…0 WD …0 [ f˛mCng
is a connected subdiagram containing ˛mCn. Recall that S is a maximal set
of mutually orthogonal isotropic roots in …0, so …0 is B.t; r/ for t D r or
t D r C 1, and .�; "m�i / D .�; ın�j / D 0 for 0 � i � r � 1.

Write W.…0
0/ D WC 	 W�, where W� is the group of signed permutations

of fın�igr�1
iD0 and WC is the group of signed permutations of f"m�igt�1

iD0. We
denote by St ; Sr the subgroups of unsigned permutations in the corresponding
groups, and by w� the longest element in W� (w�ıi D �ıi for i > n � r).

5.5.2. Since .�C�; ˛_/ � 0 for ˛ 2 …0 nf2ıng, �C� is maximal in W.Bm/	
Sn-orbit (where Sn is the subgroup of unsigned permutations in W.Cn/ � W ).

One has
.� C �; "m�i / D .� C �; ın�j / D 1

2
;

so w�.� C �/ is maximal in its W -orbit. Since �0 is spanned by …0, we have

(22)
.� C �; ıi / D 1

2
for n � r < i � nI

.� C �; ıj / < �1

2
for 1 � i � n � r:

In particular, StabW .� C �/ is St 	 Sr � W.…0
0/.
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5.5.3. Let Z WD 2rrŠRe� ch L � FW . e�C�Q
ˇ2S .1Ce�ˇ/

/.
Let us show that

(23) supp Z � � C � � .Z�0… n f0g/:
Let �0 be the Weyl vector of …0. Note that …0; S satisfy the assumptions

of §4.1, so (18) for B.t; r/ gives

FW.…0
0/

� e�0

Q
ˇ2S .1 C e�ˇ /

�
D 2rrŠ FWC

� e�0

Q
ˇ2S .1 C e�ˇ /

�
:

The term in the left-hand side is obviously W.…0
0/-skew-invariant, so

FW.…0
0/

� e�0

Q
ˇ2S .1 C e�ˇ /

�
D sgn.w�/2rrŠFWC

�
w�

� e�0

Q
ˇ2S .1 C e�ˇ /

��
:

Recall that sgn.w�/ D 1. Since � and � � �0 are W.…0
0/-invariant, using the

denominator identity (see (18)) for B.t; r/, we obtain

(24)

FW

� e�C�Q
ˇ2S .1 C e�ˇ /

�

D FW=W.…0
0/

�
e�C���0

FW.…0
0/

� e�0

Q
ˇ2S .1 C e�ˇ /

��

D 2rrŠ FW=W.…0
0/

�
e�C���0

FWC

�
w�

� e�0

Q
ˇ2S .1 C e�ˇ /

���

D 2rrŠ F.W=W.…0
0//�WC

�
w�

� e�C�Q
ˇ2S .1 C e�ˇ /

��
;

where W=W.…0
0/ is a set of coset representatives.

Hence

FW

� e�C�Q
ˇ2S .1 C e�ˇ /

�
D 2rrŠ

X
w2.W=W.…0

0//�WC

sgn.ww�/ Yww�
;

where Yw WD ew.�C�/Q
ˇ2S .1Ce�wˇ/

.

Write W D W.Bm/	W.Cn/. Then .W=W.…0
0//	WC D .W.Cn/=W�/	

W.Bm/. Consider the Bruhat order � on W.Cn/. The following claim can be
easily proven by induction on the Bruhat order:

8y 2 W.Cn/ 9z 2 W� such that yz � w�:

Using this claim we choose the set of representatives in W.Cn/=W� consisting
of the elements which are larger than w� (with respect to the Bruhat order).
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Since w�.� C �/ is maximal in its W -orbit, we get ww�.� C �/ � � C � for
each w 2 .W.Cn/=W�/ 	 W.Bm/.

Take w 2 .W.Cn/=W�/ 	 W.Bm/. Using (15) we obtain

supp Yww�
� � C � � Z�0…;

so supp Z � �C� �Z�0…. Moreover, since StabW .�C�/ is equal to St 	Sr ,
we conclude that � C � 2 supp Yw forces w D w�x for x 2 WC. Com-
bining (24) and (18) for B.t; r/, we conclude that the coefficient of e�C� in
FW .e�C�

Q
ˇ2S .1 C e�ˇ // is equal to 2r rŠ. Hence � C � 62 supp Z. This

establishes (23).

5.5.4. Suppose that Z 6D 0. Let �0 WD �C��
0 be maximal in supp Z. By (23),

0 2 Z�0…. By Lemma 5.3.1, �0 D w.� C � � �/ for w 2 W; � 2 ZS .

Recall that .�0 ��; ˛_/ � 0 for ˛ 2 …0. One has kıik2 D �1 and .�; ın/ D
1
2

; therefore .�0; ıi / � 1
2

for each i and the maximal element in W -orbit of �0
is of the form

�00 WD �0 C
X

fi j.�0��;ıi /D0g
ıi :

Since .�0 � �; ıj � ıj C1/ � 0, the set D WD fıi j .�0 � �; ıi / D 0g is either
empty or of the form fıj ; ıj C1; : : : ; ıng. Assume that ın�r 2 D. Then ıi 2 D

for n�r � i � n; for such i one has .�; ıi / D ˙1
2

, so .�0; ıi / D ˙1
2

. Therefore
.� C � � �; wıi / D ˙1

2
. Recall that for j � n � r one has .�; ıj / D 0 and

.�C�; ıj / < �1
2

by (22). Hence for each i D n� r; : : : ; n one has wıi D ˙ıj ,
where n � r < j � n, a contradiction. We conclude that

�00 D �0 C
nX

iDs

ıi ; where n � r < s � n:

Since �00 is maximal in W �0 D W.� C � � �/, we have

� C � � � D �00 � 
 D �0 C
nX

iDs

ıi D � C � � 
0 C
nX

iDs

ıi ;

for some 
 2 Z�0…. Then


 C 
0 D � C
nX

iDj

ıi 2 Z�0…0

and 
; 
0 2 Z�0…. Hence 
; 
0 2 Z�0…0, that is �0 � � D � � 
0 for 
0 2
Z�0…0.

Recall that …0 is B.t; r/. Therefore Q…0 D Q…0
0. For each ˛ 2 …0

0 one has
.�0 � �; ˛_/ � 0; since .�; ˛/ D 0 we obtain .
0; ˛_/ � 0. By Theorem 4.3
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in [K3], if A is a Cartan matrix of a semisimple Lie algebra and v is a vector
with rational coordinates, then Av � 0 implies v > 0 or v D 0. Therefore

0 2 �Q�0�C.…0/0. Since 
0 2 Z�0…0, 
0 D 0, which contradicts (23).

This proves the KW-formula if … is such that .�; ˛_/ � 0 for all except one
root in …0.

5.6. Dots and crosses diagrams

Let g be A.m � 1; n � 1/ D gl.m; n/; B.m; n/ or D.m; n/.
For a set of simple roots … we denote by Iso the subdiagram of Dynkin

diagram consisting of isotropic nodes. We call a set of r mutually orthogonal
isotropic simple roots dense if S is contained in a connected subdiagram con-
sisting of 2r � 1 isotropic roots.

We will show that if L satisfies the KW-condition for some pair, then L D
L.�; …/ satisfies the KW-condition for a pair .…; S/, such that Iso is connected
and S is dense (plus some additional conditions for B.m; n/ and D.m; n/), and
the KW-formula for the former pair is equivalent to the KW-formula for .…; S/.

5.6.1. In this section we encode subsets of simple roots for the root system �.g/

by diagrams described in [GKMP]. We recall this construction below.
Recall that the standard basis of h� consists of "i with i D 1; : : : ; m and ıj

with j D 1; : : : ; n, which are mutually orthogonal. We can normalize the form
.�; �/ in such a way that k"ik2 D 1 for each i and kıj k2 D �1 for each j .

Set
E WD f"igm

iD1; D WD fıj gn
j D1; B D E [ D :

We call two elements v1; v2 2 B elements of the same type if kv1k2 D kv2k2

(i.e., fv1; v2g � E or fv1; v2g � D) and elements of different types otherwise.
Fix a total order > on B D f�1 > � � � > �mCng and define the corresponding

set of simple roots ….B; >/ as follows:

g ….B; >/

A.m � 1; n � 1/ f�i � �iC1gmCn�1
iD1

B.m; n/ f�i � �iC1gmCn�1
iD1 [ f�mCng

D.m; n/ f�i � �iC1gmCn�1
iD1 [ f2�mCng if �mCn 2 D

f�i � �iC1gmCn�1
iD1 [ f�mCn�1 C �mCng if �mCn 2 E

We encode a subset … of simple roots for the root system �.g/ by the or-
dered set B, which is pictorially represented by an ordered sequence of dots
and crosses, the former corresponding to vertices in E and the latter to vertices
in D .
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For instance, the sequence � � 	 	 encodes f"1 �"2; "2 � ı1; ı1 � ı2g for
A.1; 1/, f"1�"2; "2�ı1; ı1�ı2; ı2g for B.2; 2/ and f"1�"2; "2�ı1; ı1�ı2; 2ı2g
for D.2; 2/.

For each u; v 2 B, u � v is a root. We call u; v the ends of ˛ D u � v.
The root u � v is isotropic if u; v are of different types and is simple if u; v are
neighbors.

A simple odd reflection rv�w with v; w 2 B corresponds to the switch
of consecutive vertices v; w in the ordered sequence (v and w should be of
different types).

For v; w 2 B denote by Œv; w� the (ordered) set of elements of B lying
between v and w, namely, if v > w, then Œv; w� D fu 2 B j v � u � wg and
by �v; wŒ the set Œv; w� n fv; wg.

Let Œv; w� be any interval and jŒv; w�\E j D k; jŒv; w�\D j D l . We denote
by ….Œu; v�/ the corresponding set of simple roots of A.k; l/-type: if Œv; w� D
fu1 > u2 > � � � > usg, then ….Œu; v�/ WD fu1 � u2; : : : ; us�1 � usg. Note that
each permutation of dots and crosses in Œv; w� correspond to a sequence of odd
reflections and thus to a choice of another set of simple roots in A.k; l/.

Let WŒv;w
 be the Weyl group of ….Œu; v�/ (the subgroup of W consisting of
(non-signed) permutations of Œv; w�\E and of Œv; w�\D), so WŒv;w
 Š Sk 	Sl .

We say that Œv; w� is balanced if ….Œv; w�/ has a maximal possible number
of mutually orthogonal isotropic roots; in other words, if Œv; w� consists of k1

dots and k2 crosses, then Œv; w� is balanced if it contains min.k1; k2/ disjoint
pairs consisting of neighboring vertices of different types.

Any 
 2 h� can be written in the form 
 D P
u2B yuu for some scalars yu;

we define the restriction of 
 to Œv; w� by the formula


Œu;v
 WD
X

u2Œv;w


yuu:

We say that 
Œu;v
 is trivial if .
; ˛/ D 0 for all ˛ 2 ….Œv; w�/; it means that
A.k; l/-module of highest weight 
Œu;v
 is one-dimensional (where ….Œv; w�/ is
a set of simple roots for A.k; l/).

A set S of mutually orthogonal simple isotropic roots is represented by a set
of disjoint pairs consisting of neighboring vertices of different types. It can be
encoded by the set of these vertices, which we denote by supp S . Note that S is
dense if supp S � B form an interval consisting of the elements of alternating
types.

5.6.2. For the cases A.m�1; n�1/ and B.m; n/, using the description of Borel
subalgebras in [K1], it is not difficult to show that any set of positive roots for g
(satisfying �C.…/ \ �0 D �C

0
) is of the form ….B; >/ for some total order

> on B.
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Consider the case D.m; n/. Recall that D.m; n/ has an autormorphism 
D
(induced by a Dynkin diagram automorphism of Dm) which preserves h and
satisfies 
D.ıi / D ıi for 1 � i � n, 
D."i / D "i for 1 � i � m � 1 and

D."m/ D �"m. Any set of positive roots for D.m; n/ is of the form ….B; >/

or 
D.….B; >// for some total order > on B. If ınC"m 2 S , then ın˙"m 2 …

and 
D.…/ D …. Thus either .…; S/ or .
.…/; 
.S// are such that … D ….B;

>/ and S is of the form S D fui � vigr
iD1, ui ; vi 2 B. Therefore, using 
D , we

can (and will) assume that … D ….B; >/ and S is of this form.

5.6.3. Summarizing, we consider … D ….B; >/, which is encoded by a se-
quence of m dots and n crosses, and S � … is encoded by supp S , which is a
subset of B, consisting of r pairs of neihboring dots and crosses.

5.6.4. Lemma. If ˛ 2 …0 is such that .�; ˛/ D 0, then ˛ D ˇ C ˇ0, where
ˇ; ˇ0 2 … are isotropic.

Proof. Mark each element of u 2 B by the number .�; u/. If u > v are neigh-
boring in B, then .�; u/ D .�; v/ if u; v are of different types and .�; u/ �
.�; v/ D kuk2 otherwise.

If u � v 2 …0 for u; v 2 B, then u; v are of the same type and there are no
other elements of these type between them. This means that .�; u/ � .�; v/ D
.1 � t/kuk2, where t is the number of elements in �u; vŒ.

Take ˛ 2 …0 such that .�; ˛/ D 0.
If ˛ D u � v, then, by above, �u; vŒ consists of one element, say w, and

u; w are of different types. Hence u � w; v � w are isotropic simple roots and
u � v D .u � w/ C .w � v/ as required. This establishes the claim for A.m; n/.

For B.m; n/ the last mark is equal to ˙1=2, so all marks are not integral. If
˛ 6D u � v for u; v 2 B, then ˛ D u or ˛ D 2u for some u 2 B, and thus
.�; ˛/ 6D 0.

For D.m; n/ the last mark is zero if the last element is a dot and is �1

otherwise. If ˛ 6D u � v for u; v 2 B, then ˛ D 2ın, or ˛ D "m�1 C "m. If
˛ D 2ın, then (since ın is represented by the last cross), .�; ın/ D t 01, where t 0
is the number of dots after the last cross. Hence .�; ˛/ D 0 forces t 0 D 1, that is
ın ˙ "m 2 …, which gives 2ın D .ın � "m/ C .ın C "m/, as required. Consider
the remaining case ˛ D "m�1 C "m. By above, .�; "m�1 � "m/ D 1 � t , where
t is the number of elements in �"m�1; "mŒ. Note that "m is the last dot in B, so
.�; "m/ D �t 0, where t 0 is the number of crosses after "m. Then 0 D .�; "m�1 C
"m/ D 1 � t � 2t 0, so t 0 D 0 and t D 1. This means that "m�1 � ın; ın ˙ "m

are isotropic simple roots, and "m�1 C "m D ."m�1 � ın/ C .ın C "m/ is the
required presentation. �
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5.7. Equivalence of the KW-formulas

Let L D L.�; …/ be a finite-dimensional g-module, satisfying the KW-condi-
tion for .…; S/.

In Lemma 5.7.1 we show that if ˇ 2 … is isotropic and .ˇ; S/ D 0, then L

satisfies the KW-condition for .rˇ …; rˇ S/ and the corresponding KW-formulas
are equivalent (one has rˇ S D S if ˇ 62 S and rˇ S D .S n fˇg/ [ f�ˇg
if ˇ 2 S). In particular, we can permute dots and crosses in any interval Œu; v�

such that Œu; v�\supp S D ;; then L satisfies the KW-condition for the resulting
…0 and the original S , and the corresponding KW-formulas are equivalent.

In Lemma 5.7.2 we assume that .B; >/ contains an interval Œu; v� such
that supp S � Œu; v� and .�; u � u0/ D 0 for each u0 2 Œu; v�. Let the or-
dered set .B;0 >/ be obtained from .B; >/ by some permutation of dots and
crosses in Œu; v� in such a way that with the new ordering this interval is bal-
anced (with a maximal set of mutually orthogonal isotropic roots S 0). In this
case L D L.�; …0/ and L satisfies the KW-condition for .…0; S 0/, where …0 D
….B;0 >/; moreover, the corresponding KW-formulas are equivalent.

5.7.1. Lemma. Let L D L.�; …/ be a finite-dimensional g-module which sat-
isfies the KW-condition for .…; S/. Let ˇ 2 … be an isotropic root orthogonal
to all elements of S .

(i) The KW-condition holds for .…0; S 0/ WD .rˇ …; rˇ S/.
(ii) Let L D L.�0; …0/ and �0 be the Weyl vector for …0.

Then

FW

� e�C�Q
ˇ2S .1 C e�ˇ /

�
2 R.…/; FW

� e�0C�0

Q
ˇ2S 0.1 C e�ˇ /

�
2 R.…0/

are equivalent.
In particular, formulas (17) for .S; …/ and .S 0; …0/ are equivalent.

Proof. The proof of (i) is straightforward. For (ii) set

X WD FW

� e�C�Q
ˇ2S .1 C e�ˇ /

�
2 R.…/;

X 0 WD FW

� e�0C�0

Q
ˇ2S 0.1 C e�ˇ /

�
2 R.…0/:

Note that X; X 0 are finite sums; for each isotropic root ˇ1 2 … (resp., ˇ1 2
…0), X (resp., X 0) has a pole of order � 1 at ˇ1.

If ˇ 62 S , then S D S 0; moreover, the KW-condition implies that .� C
�; ˇ/ 6D 0, so � C � D �0 C �0. Hence X; X 0are the expansions of the same
element in R.…/ and in R.…0/, so they are equivalent.
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If ˇ 2 S , then � D �0 and so

e�0C�0

Q
ˇ2S 0.1 C e�ˇ /

D e�C�Q
ˇ2S .1 C e�ˇ /

:

Then again X; X 0 are the expansions of the same element and they are equiva-
lent. �

5.7.2. Lemma. Let L D L.�; …/ satisfy the KW-condition for .…; S/ and
let … D ….B; >/. Assume that Œu; v� 2 .B; >/ is such that supp S � Œu; v�

and �Œu;v
 is trivial. Let the ordered set .B;0 >/ be obtained from .B; >/ by
permuting some dots and crosses in Œu; v�: we denote the resulting interval in
.B;0 >/ by Œu0; v0� (Œu; v� D Œu0; v0� as non-ordered sets). Then

(i) L D L.�; …0/, where …0 WD ….B;0 >/.
(ii) If Œu0; v0� is balanced, then L satisfies the KW-condition for .…0; S 0/, where

S 0 is a maximal set of mutually orthogonal isotropic roots in ….Œu0; v0�/.
Moreover, the KW-formula for .…; S/ is equivalent to the KW-formula for

.…0; S 0/.

Proof. Let ….Œu; v�/ D A.k; l/, where k � l . Then (i) follows from the fact the
one-dimensional A.k; l/-module has the same highest weight for any choice of
simple roots.

For (ii) assume that Œu0; v0� is balanced and S 0 is a maximal set of mutually
orthogonal isotropic roots in ….Œu0; v0�/. Then S 0 contains k elements. Since L

satisfies the KW-condition, Œu; v� is balanced and S contains k elements. Since
.�; ˛/ D 0 for each ˛ 2 ….Œu; v�/, one has .�; ˛/ D 0 for each ˛ 2 S 0. Hence
L satisfies the KW-condition for .…0; S 0/.

It remains to show that the KW-formulas are equivalent.
Denote by W=WŒu;v
 a set of coset representatives. Note that � � �Œu;v
 and

� � �Œu;v
 are W.Œu; v�/-stable. Since the denominator identity for A.k; l/ holds
for .….Œu; v�/; S/ and for .….Œu0; v0�/; S 0/, we have

FW

� e�C�Q
ˇ2S .1 C e�ˇ /

�

DFW=WŒu;v�
FWŒu;v�

� e�C�Q
ˇ2S .1 C e�ˇ /

�

DFW=WŒu;v�

�
e���Œu;v�C���Œu;v�FWŒu;v�

� e�Œu;v�C�Œu;v�Q
ˇ2S .1 C e�ˇ /

��

DFW=WŒu;v�

�
e���Œu;v�C���Œu;v�FWŒu;v�

� e�Œu;v�C�00

Q
ˇ2S 0.1 C e�ˇ /

��
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DFW

� e�C���Œu;v�C�00

Q
ˇ2S 0.1 C e�ˇ /

�
;

where �00 is the Weyl vector for ….Œu0; v0�/. Recall that ….Œu0; v0�/ can be ob-
tained from ….Œu; v�/ by a sequence of odd reflections rˇ1

: : : rˇt
. Then �00 D

�Œu;v
 C Pt
iD1 ˇi . Since …0 is obtained from … by the same sequence of odd

reflections, we have �0 D � � �Œu;v
 C �00 is the Weyl vector for …0.
We conclude that FW . e�C�Q

ˇ2S .1Ce�ˇ/
/ 2 R.…/ and FW . e�C�0Q

ˇ2S0 .1Ce�ˇ/
/ 2

R.…0/ are equivalent elements. The assertion follows. �

5.8. Properties of …; S

For each u 2 B set yu WD .�; u/.
Let u > v 2 B and kuk2 D kvk2. Then u � v 2 …0 and, since L.�; …/ is

finite-dimensional, .�; .u � v/_/ D .�; u � v/kuk2 � 0. This gives yukuk2 �
yvkvk2. Moreover, since the irreducible A.1; 0/-module of the highest weight
a"1 � bı1 C a"2 is finite-dimensional only for b D a, we obtain that yu D yv

forces yw D yu for each w 2 Œu; v� (yw is constant for w 2 Œu; v�).
Let uS (resp., vS ) be the largest (resp., smallest) element in supp S . Take

u0; v0 such that uS �u0; vS �v0 2 S . Recall that uS ; u0 and vS ; v0 are neighbors
of different types and yuS

D yu0 ; yvS
D yv0 . By above, yw is constant for

w 2 ŒuS ; vS �. Since ŒuS ; vS � contains elements of different types, the set fw 2
B j yw D yuS

g is an interval (containing ŒuS ; vS �). Denote this interval by
Œu; v� (u � uS > vS � v). Then .�; ˛/ D 0 for each ˛ 2 ….Œu; v�/. In
particular, Œu; v� is balanced and S � ….Œu; v�/ is a maximal set of mutually
orthogonal isotropic roots.

For B.m; n/, finite-dimensionality of L implies ywkwk2 � 0 for each w 2
B. This gives yu D 0 and thus yw D 0 for each w < u. Hence v is the minimal
element in B and �Œu;v
 D 0.

5.8.1. For D.m; n/, finite-dimensionality of L implies ywkwk2 � 0 for each
w 2 B n f"mg and jy"i

j � jy"m
j for i < m. In particular, if .�; uS / 6D 0, then

r D 1 S D fık � "mg or S D f"m � ıkg. If .�; uS / D 0, then .�; u/ D 0 for
each u 2 supp S , and, as for B.m; n/, we obtain that v is the minimal element
in B and �Œu;v
 D 0. Note that Œu; v� contains at least r elements of each type,
so "m; ın 2 Œu; v�.

We assume for the rest of §5 that either .�; uS / D 0 or S D fa.ın � "m/g,
where a D ˙1. Thus we exclude the case .�; uS / 6D 0 and S D fa.ık � "m/g
with k < n .
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5.8.2. Lemma. Let the g-module L D L.�; …/ satisfy the KW-condition for
.…; S/, where Iso is connected and S is dense. Set �0 WD .� C �; uS /.

(i) One has .� C �; ˛_/ � 0 if ˛ 2 …0 and ˛ D u � v for u; v 2 B;
(ii) The multiset f.� C �; u/gu2B contains 2r or 2r C 1 copies of �0 and all

other elements are distinct. The set fx 2 B j .� C �; x/ D �0g form an
interval Œu0; v0�, which contains ŒuS ; vS �.

Remark. Note that ŒuS ; vS � contains 2r elements and Œu0; v0� contains 2r or
2r C 1 elements.

Proof. Take u 2 ŒuS ; vS �. From §5.8 one has .�; u/ D .�; uS /; since S is
dense one has .�; u/ D .�; uS /. Therefore .� C �; u/ D .� C �; uS /.

Let u; v 2 B be of the same type and u > v. Since Iso is connected, .�; .u�
v/_/ � 0 and if .�; .u � v/_/ D 0, then .�; w/ is constant for w 2 Œu; v� (so,
Œu; v� consists of the elements of alternating types). By §5.8 the same holds for
�. This proves (i) and, moreover, shows that .�C�; u/ D .�C�; v/ implies that
� and � are constant on Œu; v�. If Œu; v�nŒuS ; vS � contains more than one element,
then it contains two neghboring elements u0; v0 of different types. However,
.� C �; u0 � v0/ D 0 and .u0 � v0; S/ D 0, which contradicts the KW-condition.
Hence Œu; v� n ŒuS ; vS � contains at most one element (in particular, u or v lies
in ŒuS ; vS �). This proves (ii). �

Corollary. Let L D L.�; …/ satisfy the KW-condition for .…; S/, where Iso
is connected and S is dense. If … is A.m � 1; n � 1/, or if … is D.m; n/ with
ın � "m 2 …, then

.�; ˛_/ � 0 for each ˛ 2 …0:

5.9. Choice of .…; S/

Finally, we show that for A.m; n/; B.m; n/ and D.m; n/, if a finite-dimensional
g-module L satisfies the KW-condition for . Q…; QS/, and, for D.m; n/ the as-
sumption of §5.8.1 is fulfilled, then the KW-formula is equivalent to the KW-
formula for .…; S/, where Iso is connected, S is dense, and, for D.m; n/,
ın � "m 2 ….

5.9.1. Let Œu; v� be the interval constructed in the second paragraph in §5.8.
Using Lemma 5.7.2 we can rearrange dots and crosses in Œu; v� such that the
resulting interval Œu0; v0�; u0 > v0, is balanced. We do this in such a way that the
interval has first a segment of the elements of same type and then a segment of
elements of alternating types; for D.m; n/ we choose the minimal element to be
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"m. We choose S 0 such that supp S 0 consists of the last 2r elements in Œu0; v0�;
then S 0 is dense and v0 2 supp S 0.

Using Lemma 5.7.1 we now permute dots and crosses in the intervals fw 2
B j w > u0g and fw 2 B j w < v0g; the second interval is empty for B.m; n/

and for D.m; n/ (if the assumption in §5.8.1 holds). We do this in such a way
that in the resulting order we have B D Œu0; uC� [ ŒuC; vC� [ ŒvC; v0�, where
u0 � uC � u0 > v0 � vC � v0, the interval Œu0; uC� (resp., ŒvC; v0�) con-
sists of the elements of the same type, and the interval ŒuC; vC� consists of the
elements of alternating types.

5.9.2. Consider the resulting ordering .B; >/ and set … WD ….B; >/, S WD S 0.
Let � be the corresponding Weyl vector and � be the highest weight of L.

From Lemmas 5.7.2, 5.7.1 we conclude that the KW-formula is equivalent
to the KW-formula for .…; S/.

Since B D Œu0; uC� [ ŒuC; vC� [ ŒvC; v0� as above, we have obtained
…; S for which Iso is connected and S is dense, which completes the proof
for A.m; n/.

In addition, for D.m; n/ we have obtained that "m is minimal in B and
ın � "m 2 S . Therefore … contains ın ˙ "m and S D fın�i � "m�igr�1

iD0. This
completes the proof for D.m; n/.

5.9.3. For B.m; n/ we have obtained S D fın�i � "m�igr�1
iD0 or S D f"m�i �

ın�igr�1
iD0. Retain notations of Lemma 5.8.2. Recall that vS D v0 is minimal in

B and .�; v/ D 0 for v 2 ŒuS ; vS �. We will show that .…; S/ can be chosen in
such a way that Iso is connected, S is dense and for u; v 2 B we have

(25) j.�C�; u/j D j.�C�; v/j H) .�C�; u/ D .�C�; v/ D .�C�; ˛mCn/:

Since vS is minimal, B is of the following form: �1 > � � � > �k are of
the same type and �k > �kC1 > � � � > �mCn D vS are of alternating types
(i.e., Iso is connected and contains ˛mCn�1). This implies .�; u � v/ D 0 if
kuk2 D kvk2 D �k�1k2.

Set xu WD .� C �; u/. Normalize .�; �/ by the condition kvSk2 D 1. Then
�0 D 1

2
.

Let us show that jxuj D jxvj forces u or v in supp S .
Indeed, if xu D xv , then, by Lemma 5.8.2, u or v is in supp S . If jxuj D

jxvj and u; v are of different types, then KW-condition forces u or v in supp S .
Consider the remaining case, when xu D �xv, u; v are of the same type and
u 62 supp S . If kuk2 D kvk2 D 1, then xu; xv � 1

2
, so xu 6D �xv. If kuk2 D

kvk2 D �1, then xu; xv � 1
2

, so xu D �xv forces jxuj D jxvj D 1
2

. Then
xu or xv is 1

2
. By Lemma 5.8.2, u or v is in Œu0; v0� and Œu0; v0� n ŒuS ; vS � is

either empty, or is fu0g and ku0k2 D �kuSk2 D kvSk D 1. Thus u or v is in
ŒuS ; vS � D supp S , as required.
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We conclude that the multiset fjxujg contains t copies of 1
2

, where t D 2r or
t D 2r C 1, and all other elements are distinct. Set B WD fu 2 B j jxuj D 1

2
g.

Clearly, Œu0; v0� � B and (25) holds if Œu0; v0� D B . In particular, (25) holds if
Œu0; v0� contains 2r C 1 elements.

Consider the case when (25) does not hold. Since Œu0; v0� contains ŒuS ; vS �

which has 2r elements, this means that Œu0; v0� D ŒuS ; vS � and B D ŒuS ; vS �`fug, where xu D �1
2

. Then kuk2 D �1, so u; uS are of the same type. If
w 2 Œu; uS � is of the same type as u, then xw 2 Œ�1

2
; 1

2
� (since xuS

D 1
2

D
�xu), so xw is ˙1

2
, that is w 2 B . This means that either w D u or w D uS .

Hence �u; uS Œ does not contain elements of the same type as u; uS ; that is either
�u; uS ŒD ; or �u; uS ŒD fvg with kuk2 D �kvk2. If �u; uS ŒD fvg, we make the
reflection with respect to u � v and obtain a new ordered set .B;0 >/; one has
L D L.�0; …0/ (…0 D ….B;0 >/), where �0 is such that �0 C �0 D � C �, so
.�0 C �0; u/ D �1

2
and in B0 one has �u; uS ŒD ;. Thus, in both cases (for B

if �u; uS ŒD ;, and for B0 otherwise) we have �u; uS ŒD ;. Then Œu; v0� contains
2r C1 elements (r C1 elements of type uS and r elements of type v0). Note that
the restriction of � (resp., �0) to Œu; v0� is zero weight, since .�; u � uS / D �1.

Using Lemma 5.7.2 we can rearrange dots and crosses in Œu; v0� in an alter-
nating way; the resulting interval is Œu; v0�, where kv0k2 D kuk2 D �1 and v0 is
minimal in the new order on B. Since �Œu;v0
 D 0, this rearrangement preserves
� (i.e., � is the highest weight of L with respect to the new set of simple roots).
Using Lemma 5.7.1, we rearrange dots and crosses in the rest of B (in Œu0; uŒ)
in such a way that in the resulting order we, again, have first several elements
of the same type and then a segment of elements of alternating types. Let …00
be the new set of simple roots, �00 be the new Weyl vector and �00 is such that
L D L.�00; …00/. Then �00

Œu;v0

D 0, so .�00 C �00; w/ D �1

2
for each w 2 Œu; v0�.

Note that Iso in …00 is connected; take S 00 such that supp S 00 consists of last 2r

elements (i.e., supp S 0 D�u; v0�). Then S 00 is dense. Since Œu; v0� contains 2r C1

elements and .�00 C�00; w/ D �1
2

for each w 2 Œu; v0�, (25) holds for .…00; S 00/.

6. KW-character formula for strongly integrable maximally atypical
modules when h_ 6D 0 and for integrable vacuum modules when h_ D 0

In this section g is a symmetrizable affine Lie superalgebra (with arbitrary h_).
Let � be the root system of g and let P� be a finite part of �.

We say that a subset of simple roots … for � is compatible with P� if P… D
P� \ … is a subset of simple roots for P� (in other words, … n P� contains only
one root).

Let P� be non-exceptional and let L D L.�; …/ be a non-critical � [ P…0-
integrable g-module of maximal atypicality, where … is compatible with P�.
We call such g-module strongly integrable (cf. [KW4]). Assume that L satisfies
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the KW-condition for …; S with S � P…. We shall prove the following KW-
character formula:

(26) Re� ch L.�/ D j �1
�

X
w2W. P…0[�/

sgn.w/ w
� e�C�Q

ˇ2S .1 C e�ˇ /

�
;

where j� is the number of elements in the “smallest” factor of W. P…/, see (19)
and � WD f˛ 2 …0 j k˛k2 > 0g.

We shall also prove this formula for the non-critical C
.1/
n -integrable vacuum

D.nC1; n/.1/-modules and for the non-critical integrable vacuum D.2; 1; a/.1/-
modules.

6.1. Vacuum modules over g D D.2; 1; a/.1/

Recall that a 6D 0; �1. One has D.2; 1; a/0 D A1 	 A1 	 A1; if we denote the
root in i th copy of A1 by 2"i , then k2"1k2 W k2"2k2 W k2"3k2 D 1 W a W .�a�1/.
(Recall the definition of a vacuum module in §3.1.3.)

Let L.�/ be a �-integrable vacuum module for some � � …0 and k WD
.�; ı/. If � n P…0 contains one root, then � D fı � 2"r ; "rg and L.�/ is �-
integrable if and only if 2k=k2"rk2 2 Z�0. If � n P…0 contains two roots,
then � D fı � 2"r ; ı � 2"q; 2"r ; 2"qg, and L.�/ is �-integrable if and only if
2k=k2"rk2; 2k=k2"qk2 2 Z�0; in particular, if k 6D 0, then k2"rk2=k2"qk2 2
Q>0, so a 2 Q. If � n P…0 contains three roots, then � D …0 and k D 0.

We consider a non-critical module L.�/, that is k 6D 0. We see that L.�/

can be A
.1/
1 -integrable for any copy A

.1/
1 in …0, but it is A

.1/
1 	 A

.1/
1 -integrable

only if a 2 Q and the roots of � have positive integral square length for some
normalization of .�; �/.

Let � D f˛ 2 …0 j k˛k2 2 Q>0g for some normalization of .�; �/. If
a 62 Q, then � can be any copy of A

.1/
1 . If a 2 Q, then either � D A

.1/
1 , which

corresponds to the longest root (the absolute value of k2"ik2 is maximal; this is
2"1 if �1 < a < 0), or � D A

.1/
1 	 A

.1/
1 ( P� D f2"2; 2"3g if �1 < a < 0).

We fix … which consists of isotropic roots:

… D fı � "1 � "2 � "3; �"1 C "2 C "3; "1 C "2 � "3; "1 � "2 C "3g:

6.1.1. Recall that j� D 2 and set

Z WD j�Re� ch L �
X

w2W.�[ P…0/

sgn.w/ w
� e�C�Q

ˇ2S .1 C e�ˇ /

�
:

Suppose that Z 6D 0.
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The � [ P…0-integrability of L.�/ gives .�; ˛_/ � 0 for each ˛ 2 � [ P…0.
Since � D 0, � C � D � is maximal in its W.� [ P…0/-orbit, so supp Z �
� C � � Z�0…. Let � � � be a maximal element in supp Z (� 2 Z�0…). The
arguments of §4.3.1 show that

(27) 2.� C �; �/ D .�; �/ and .� � �; ˛_/ � 0 for each ˛ 2 � [ P…0:

The coefficient of e� in Z is equal to the coefficient of e� in

j�e� �
X

fw2W.�[ P…0/jw�D�g
sgn.w/ w

� e�Q
ˇ2S .1 C e�ˇ /

�
:

Since � is maximal in its W.� [ P…0/-orbit, the stabilizer of � in W.� [ P…0/ is
equal to W. P…0/. The KW-formula for D.2; 1; a/ implies that the coefficient of
e� is zero. Hence � 6D 0.

Since .�; P…0/ D 0, (27) gives .�; ˛_/ � 0 for each ˛ 2 P…0. Therefore
� D jı � P3

iD1 ei"i , where ei � 0 for each i . One readily sees that � 2 …

forces 2j � ei � es � 0 for each fi; sg � f1; 2; 3g.

6.1.2. Consider the case a 62 Q; without loss of generality we assume � D
fı � 2"1; 2"1g and normalize the form .�; �/ by k"1k2 D 1.

Since 2.�; �/ D .�; �/, we have e2 D e3 D 0, 2jk D e2
1 . Moreover,

.� � �; .ı � 2"1/_/ � 0 gives k � 2e1. Since 2j � e1 � 0, we obtain
j D e1 D 0, that is � D 0, a contradiction.

6.1.3. Assume that a 2 Q.
For the case � D A

.1/
1 , without loss of generality we assume � D fı �

2"1; 2"1g and write � D j.ı � 2"1/ C .2j � e1/"1 � e2"2 � e3"3.
For the case � D A

.1/
1 	 A

.1/
1 , without loss of generality we assume � D

fı �2"i ; 2"igiD1;2 and write � D e1=2.ı �2"1/C .j �e1=2/.ı �2"2/C .2j �
e1 � e2/"2 � e3"3.

In both cases we obtain � D P
˛2X x˛˛, where X � �[ P…0 and x˛k˛k2 �

0 for each ˛ 2 X (recall that k˛k2 > 0 for ˛ 2 �). Since 2.�; �/ D .�; �/ we
have .�; �/ C .� � �; �/ D 0, that is

X
˛2X

x˛..�; ˛/ C .� � �; ˛// D 0:

For each ˛ 2 P…0[� one has .�; ˛/k˛k2 � 0 and .���; ˛/k˛k2 � 0 (by (27)).
Therefore for each ˛ 2 X we have x˛.�; ˛/; x˛.� � �; ˛/ � 0. Hence for each
˛ 2 X we obtain x˛.�; ˛/ D x˛.� � �; ˛/ D 0, that is x˛.�; ˛/ D 0.

Write � D �0C�00, where �0 2 Q� and �00 2 Q. P…0n�/. One has k�0k2 D
.�; �0/ D P

˛2X\� x˛.�; ˛/ D 0. Similarly, k�00k2 D 0. Since .�; �/ is
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non-negatively (resp., negatively) definite on Q� (resp., on Q. P…0 n �/), we
get �00 D 0 and � D �0 2 Qı. Then 2.�; �/ D .�; �/ gives � D 0, a
contradiction.

6.1.4. Remark. The following denominator identity for D.2; 1; a/.1/ was
proven in [GR]:

Re� D
1Y

nD1

.1 � e�nı/
X
t2T

t. PRe�/;

where T is the translation group of A
.1/
1 � D.2; 1; a/

.1/

0
D A

.1/
1 	 A

.1/
1 	

A
.1/
1 . The corresponding embedding A1 � D.2; 1; a/0 D A1 	 A1 	 A1 is not

specified in [GR] and we take an opportunity to correct this. This embedding is
the same as described above, namely, any embedding if a 62 Q, and the copy
with the maximal absolute value of the square length of the root if a 2 Q. This
choice is necessary for the proof of Proposition 2.3.2 [GR], where it is used that
a non-zero linear combination of the two remaining even roots has non-zero
square length.

6.2. Other forms of (3) for P� 6D D.2; 1; a/

Let L D L.�; …/ be a non-critical integrable g-module of maximal atypicality,
where … is compatible with P� and L satisfies the KW-condition for …; S with
S � P…, or let L be a non-critical C

.1/
n -integrable vacuum D.n C 1; n/.1/-

module. In the first case we normalize .�; �/ as in §3; in the second case we
normalize the form on D.n C 1; n/.1/ in such a way that k˛k2 D 2 for some
˛ 2 C

.1/
n . Then

� WD f˛ 2 …0 j k˛k2 > 0g
is a connected component of …0, and L is �-integrable.

Let Pg be the subalgebra of g with the root system P� and the Cartan algebra
h (i.e., Pg D .

P
˛2 P� g˛/ C h) and PL D PL.�; P…/ be the irreducible Pg-module

of the highest weight �. Clearly, PL is a finite-dimensional module satisfying the
KW-condition for P…; S .

By §13.2, P� D � \ P…0 is a finite part of � , i.e., P� is connected and
� n P� consists of one root, which we denote by ˛] (we exclude the case � D
G.3/.1/; P� D D.2; 1; �3=4/).

From [K3], 6.5, it follows that in the case when ˛] D jı � b� , where � 2
�. P�/; b 2 Q, one has W.�/ D W. P�/ Ë T , where T is a free abelian subgroup
of W.�/. Recall that � is one of the root systems A

.r/
n ; B

.1/
n ; C

.1/
n ; D

.r/
n ; G

.1/
2

with r D 1; 2. The condition ˛] D jı � � holds for all pairs .�; P�/ (where
� is as above and P� is a finite part of �), except for .B

.1/
n ; Dn/; .A

.2/
2n�1; Dn/
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and .G
.1/
2 ; A2/. The last case is not possible, since � D G

.1/
2 appears only for

� D G.3/.1/ and in this case P� D G.3/; P� D G2, by above.
Assume that the pair .�; P�/ is not .B

.1/
n ; Dn/ or .A

.2/
2n�1; Dn/. Then, by

above, W.�/ D W. P�/ Ë T and so W.� 0/ D W. P…0/ Ë T , since � 0 n � is a
connected component of P…0. Let P� be the Weyl vector for P� D �. P…/. Notice
that .� � P�; P…/ D .�; P…/ D 0, so � C � � P� is W. P…0/-invariant. Then (3) can
be rewritten as

Re� ch L.�/ D
X
t2T

t
�
e�C�� P�j �1

�

X
w2W. P…0/

sgn.w/ w
� e P�Q

ˇ2S .1 C e�ˇ /

��
:

Using the KW-formula for PL, we get

(28) Re� ch L.�/ D
X
t2T

t. PRe� ch PL.�//;

where PR is the Weyl denominator for P….
For the cases .B

.1/
n ; Dn/; .A

.2/
2n�1; Dn/ we can extend W.�/ to W.C

.1/
n / and

present W.C
.1/
n / D W.Cn/ËT as in [R]; then we obtain (28) for T � W.C

.1/
n /.

Note that in (28) there is no S ; we do not assume that P… contains a maximal
isotropic subset. More precisely, if the KW-formula holds for some …; S with
S � P…, then (28) holds for each set of simple roots …0 compatible with P�. In
particular, if L satisfies KW-conditions for …; S and …0; S 0, where …; …0 are
compatible with P� and S; S 0 � P�, then the KW-formulas for …; S and …0; S 0
are equivalent.

Note that P� is the “largest part” of P…0 in the sense of §5.2, except for the
following cases: � D G.3/.1/ with P� D D.2; 1; �3=4/, � D D.2; 1; a/.1/

with � D A
.1/
1 , � D D.n C 1; n/.1/ with � D C

.1/
n , and � D A.2n � 1; 2n �

1/.2/ with P� D Dn (in the case � D A.2n � 1; 2n � 1/.2/ one has � D A
.2/
2n�1,

P� D D.n; n/, and P� can be Dn or Cn). If P� is the “largest part” of P…0, then,
using (18) we can rewrite (26) as

(29) Re� ch L.�/ D
X

w2W.�/

sgn.w/ w
� e�C�Q

ˇ2S .1 C e�ˇ /

�
;

cf. (14).

6.3. Case h_ 6D 0 or � D A.n; n/.1/ and P� is not exceptional

In this case P� is the “largest part” of P…0. Since formulas (29) and (14) are the
same, it is enough to show that L satisfies the KW-condition for some …0; S 0,
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where …0 is compatible with P�, S 0 � P�, and …0; S 0 satisfy the assumptions of
§4.

In the light of §5.8, one has .�; ˛/ D 0 for each ˛ 2 …0, where …0 is a
Dynkin subdiagram of … and …0 D A.k; l/ (resp., B.k; l/; D.k; l/) for P… D
A.m; n/ (resp., B.m; n/; D.m; n/) and min.k; l/ D #S (and D min.m; n/,
since � has maximal atypicality). Let B0 � B be the ordered subset corre-
sponding to …0 (i.e., …0 D .B0; >/). We can rearrange dots and crosses in B0

in such a way that the last 2 min.k; l/ elements are of alternating types, and the
last element in B0 is of positive square length (resp., is "m) if P� D B.m; n/

(resp., if P� D D.m; n/).
This rearrangement corresponds to a certain sequence of odd reflections

(with respect to roots in �.…0/ � P�); let …0 be the subset of simple roots
obtained from … by this sequence of odd reflections. Clearly, P…0 WD P� \ …0 is
a subset of simple roots for P� and the corresponding dot-cross diagram contains
B0 with the new order. Thus the dot-cross diagram for P… contains a segment
of 2 min.m; n/ elements of alternating types; moreover, if P� 6D A.m; n/, then
these are the last 2 min.m; n/ elements and the last element is of positive square
length for B.m; n/ and is "m for D.m; n/. Since P� is the “largest part” of P…0,
k˛k2 � 0 for each ˛ 2 P…0.

One has L D L.�; …/ D L.�; …0/ and so L satisfies the KW-condition
for .…0; S 0/, where S 0 is any subset of P…0 which contains min.m; n/ mutually
orthogonal isotropic roots. Thus the assumptions of §4 are reduced to the con-
dition k˛k2 � 0 for each ˛ 2 …0. Recall that k˛k2 � 0 for each ˛ 2 P…0 and
that …0 n P…0 consists of one root, which we denote by ˛0. Hence it remains to
verify that k˛0k2 � 0.

For � D A.m; n/.1/, any subset of simple roots is naturally encoded by a
cyclic dot-cross diagram, which contains m dots and n crosses. Let m � n.
Since the diagram for …0 contains 2n elements of alternating types, it does not
contain two neighboring crosses, so k˛k2 � 0 for each ˛ 2 …0.

Suppose k˛0k2 < 0 and � 6D A.m; n/.1/, that is P� 6D A.m; n/. One has
.˛0; ˛1/ 6D 0 or .˛0; ˛2/ 6D 0, where ˛1; ˛2 are the first two roots in P…0. Thus
k˛ik2 D 0 for i D 1 or i D 2. By the construction of P…0, the pair ˛1; ˛2 can
be written as "1 � "2; "2 � ı1, or "1 � ı1; ı1 � "2, or "1 � ı1; ı1 (case B.1; 1/),
or ı1 � "1; "1 � ı2, where ."i ; "j / D �.ıi ; ıj / D ıij and .ıi ; "j / D 0 for
i; j D 1; 2. Since k˛0k2 < 0, one has ˛0 2 …0 or 2˛0 2 …0, so ˛0 or 2˛0 is a
root …0nf�[ P…0/. Thus ˛0 D ı�xı1 for x 2 f1; 2g or ˛0 D ı�.ı1Cı2/. Then
˛1; ˛2 is the pair ı1 � "1; "1 � ı2 and ˛0 D ı � xı1. By the construction of P…0,
k˛1k2 D 0 forces k˛k2 D 0 for each ˛ 2 P… (resp., for each ˛ 2 P… n f"mg) if
P� D D.m; n/ (resp., if P� D B.m; n/). If k˛k2 D 0 for each ˛ 2 P…, then, since
.�; ı/ D h_ � 0, we get .�; ˛0/ D k˛0k2=2 � 0, a contradiction. Finally, for
P� D B.m; n/ we obtain ı D ˛0Cx.

P
˛2 P…0 ˛/, so .�; ı/ D �x2=2Cx2=2 D 0,

a contradiction.
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6.4. Case h_ D 0

The remaining cases are D.n C 1; n/.r/.n > 1; r D 1; 2/, A.2n � 1; 2n � 1/.2/

and A.2n; 2n/.4/.
Note that if L is of maximal atypicality, then PL is a finite-dimensional Pg-

module of maximal atypicality, and §5.8 implies .�; P�/ D 0, except for the
case � D D.n C 1; n/.1/ (since for other cases P� D D.n; n/ or B.n; n/).
Thus if � 6D D.n C 1; n/.1/, then L.�; …/ is a non-critical integrable vacuum
module.

We set � 00 WD f˛ 2 P…0 j k˛k2 < 0g. Then � [ P… D �
`

� 00. One has
.�; � 00/ D 0 (it is obvious if L is a vacuum module; otherwise � D D.n C
1; n/.1/; P� D D.n C 1; n/; � 00 D Cn and, by §5.8, .�; ˛/ D 0 for each ˛ 2
D.n; n/ � D.n C 1; n/, in particular, for ˛ 2 � 00).

We introduce

Z WD j�Re� ch L �
X

w2W.�[ P…/

sgn.w/ w
� e�C�Q

ˇ2S .1 C e�ˇ /

�
:

Suppose that Z 6D 0. Let �0 be a maximal element in supp Z; we write �0 �� D
� � � for � 2 Z…. The arguments of §4.3.1 show that (27) holds.

6.4.1. Cases D.n C 1jn/.1/; n > 1, and A.2n � 1; 2n � 1/.2/. In these cases
we choose …, which consists of isotropic roots, see (12), and take any S (S is
unique up to an automorphism of …). The proof is similar to the one in §6.1.

For D.n C 1; n/.1/ one has …0 D D
.1/
nC1 	 C

.1/
n ; P� D D.n C 1; n/. If

L.�/ is integrable, then � D D
.1/
nC1 and � 00 D Cn; if L.�/ is a C

.1/
n -integrable

vacuum module, then � D C
.1/
n and � 00 D DnC1.

For A.2n � 1; 2n � 1/.2/ one has …0 D A
.2/
2n�1 	 A

.2/
2n�1; P� D D.n; n/.

Note that P� D � \ P� can be Dn or Cn and � 00 is Cn or Dn respectively.
Recall that � D 0. Since L D L.�; …/ is � [ � 00-integrable, � D � C �

is maximal in its W.�/ 	 W.� 00/-orbit, so supp Z � � C � � Z�0…. Thus
� 2 Z�0…. Observe that Q… D Q.� [ � 00/. Write � D �0 � �00, where
�0 2 Q�; �00 2 Q� 00. We claim that

(30) �0 2 Q�0�; �00 2 Q�0� 00:

Indeed, by above, .�; � 00/ D 0. Using (27), we get .�00; ˛_/ � 0 for each
˛ 2 � 00; Theorem 4.3 in [K3] gives �00 2 Q�0� 00. This implies �00 2 Q�0…,
so �0 D � C �00 2 Q�0…. Thus �0 2 Q� \ Q�0…. It remains to verify that

(31) .Q�0… \ Q�/ � Q�0�:

Observe that each ˛ 2 � is a sum of two simple roots ˛ D ˇ.˛/ C ˇ0.˛/

(ˇ.˛/; ˇ0.˛/ 2 …) and we can choose ˇ.˛/ in such a way that ˛ 7! ˇ.˛/ is an
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injective map from � to … (for instance, for D.n C 1; n/.1/ with � D D
.1/
nC1,

one has ı�"1�"2 D .ı�"1�ı1/C.ı1�"2/, "i �"iC1 D ."i �ıi /C.ıi �"iC1/,
"nC"nC1 D ."n�ın/C.ın�"nC1/, so we can take ˇ.ı�"1�"2/ D ı�"1�ı1,
ˇ."i � "iC1/ D ıi � "iC1, ˇ."n C "nC1/ D ın C "nC1), cf. (B) in §13.5. ThenP

˛2� a˛˛ D P
ˇ2… bˇ ˇ, where bˇ.˛/ D a˛; this establishes (31) and (30).

In the light of (30) we have

� D �0 � �00 D
X

˛2�[� 00

x˛˛; where x˛k˛k2 � 0:

The formula 2.� C �; �/ D .�; �/ gives

(32) 0 D .�; �/ C .� � �; �/ D
X

˛2�[� 00

x˛.�; ˛/ C x˛.� � �; ˛/:

Take ˛ 2 � [ � 00. The � [ � 00-integrability of L.�/ gives .�; ˛/k˛k2 � 0.
Moreover, .� � �; ˛/k˛k2 � 0, by (27). Thus x˛.�; ˛/; x˛.� � �; ˛/ � 0.
Using (32) we obtain x˛.�; ˛/ D x˛.� � �; ˛/ D 0, that is x˛.�; ˛/ D 0. One
has

.�0; �0/ D .�; �0/ D
X
˛2�

x˛.�; ˛/ D 0I

.�00; �00/ D .�; �00/ D
X

˛2� 00

x˛.�; ˛/ D 0:

Since .�; �/ is negatively definite on Q� 00 and non-negatively definite on Q� 0,
we obtain �00 D 0; �0 2 Zı, that is � D sı. Since L is non-critical, .�C�; ı/ 6D
0, so the formula 2.�C�; �/ D .�; �/ gives � D 0, that is ��� D � 2 supp Z.

It remains to verify that � 62 supp Z. Since .�; ˛_/ � 0 for ˛ 2 � [ � 00, the
coefficient of e� in Z is equal to the coefficient of e� in

j�e� �
X

fw2W.�[ P…0/jw�D�g
sgn.w/ w

� e�Q
ˇ2S .1 C e�ˇ /

�
:

If StabW.�[� 00/� � W. P…0/, then the KW-formula for PL implies � 62 supp Z

as required. Otherwise, .�; ˛]/ D 0, where ˛] is the “affine root” in � , i.e.,
� D P� [ f˛]g. Since .�; ˛]/ D 0, L is not a vacuum module (since L is
non-critical), so g D D.n C 1; n/.1/ and .�; ˛/ D 0 for each ˛ 2 D.n; n/ �
D.nC1; n/ D P�. Let ˛1 be the first root in P… (i.e., ˛1 2 P… and ˛1 62 D.n; n/).
Then .�; ˛1/ 6D 0. Note that … admits an involution � , which interchanges ˛0

and ˛1 and stabilizes all other simple roots. This involution preserves �; � 00 and
S . One has .�.�/; ˛1/ D .�; ˛0/ D 0, so L.�.�/; …/ is a vacuum module and,
by above, its character satisfies the KW-formula. This implies the KW-formula
for L.�; …/. This completes the proof for D.n C 1jn/.1/; A.2n � 1; 2n � 1/.2/.
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6.4.2. Cases D.n C 1; n/.2/; A.2n; 2n/.4/. In these cases P� D B.n; n/ and
we choose P… in such a way that k˛k2 � 0 for ˛ 2 P… (recall that k˛k2 > 0 for
˛ 2 �). The Dynkin diagram is

ˇ � ˝ � ˝ � � � � � ˝ � ˇ;

where both ends are non-isotropic roots; for A.2n; 2n/.4/ the ends have the
same parity and for D.n C 1; n/.2/ the ends have different parity. One has

P… D fı1 � "1; "1 � ı2; : : : ; ın � "n; "ng; ˛0 D ı � ı1I
we can (and will) normalize the form .�; �/ by k"ik2 D 1 D �kıik2. Note that
P… contains S D fıi � "ign

iD1. One has

� D fa.ı � "1/; "1 � "2; : : : ; "n�1 � "n; a0"ng;
where for g D D.n C 1; n/.2/ one has a D a0 D 1 (resp., a D a0 D 2)
if � D D.n C 1/.2/ (resp., if � D C

.1/
n ), and for g D A.2n; 2n/.4/ one

has a D 1; a0 D 2 or a D 2; a0 D 1. Observe that � contains ı � "1 and
"n 2 � (they are of the same parity for D.n C 1; n/.2/ and of different parity
for A.2n; 2n/.4/).

Let k D .�; ı/. Recall that L.�/ is a non-critical vacuum module, so k 6D 0.
If ı � "1 is even (resp., odd), then L.�/ is �-integrable if and only if 2k 2 Z�0

(resp., k 2 Z�0).
One has 2� D Pn

iD1."i � ıi /.
Since P� is the “largest part” of P…0 in the sense of §5.2, (26) can be rewritten

as (29). We have .�; ˛/ � 0 for ˛ 2 P� , .�; ı � "1/ D �1=2. Since .�; ı � "1/ D
k � 1

2
, one has .� C �; ˛/ � 0 for each ˛ 2 � . Therefore � C � is maximal

in its W.�/-orbit, so supp Z � � C � � Z�0…, that is � 2 Z�0…. Moreover,
from Lemma 3.3.4 (ii) we obtain � 6D 0. Write � D jı � Pn

iD1.ei"i C diıi /.
From (27) we obtain

2kj �
nX

iD1

.ei C di / D
nX

iD1

.e2
i � d2

i /;

0 � en � en�1 � � � � � e1 � kI 0 � dn � dn�1 � � � � � d1:

Since � 2 Z�0… we have ei ; di 2 Z and
Pn

iD1.ei Cdi / � j . Since ei ; di � 0,
the equality j D 0 forces � D 0, which contradicts the above. Let us show that
j D 0. Since

Pn
iD1.di � d2

i / � 0, we have 2kj � Pn
iD1.e2

i C ei /. If k D 1=2,
then ei D 0 for each i , so j D 0. If k > 1, then

Pn
iD1 ei � j and ei � k imply

2kj � kj C j , that is j D 0, as required.
Finally, for k D 1 we have ei 2 f0; 1g for each i , which implies 2j DPn

iD1.2ei C di � d2
i /. Combining with

Pn
iD1.ei C di / � j , we get di D 0 for

each i . This gives � D jı � Pj
iD1 "j and j � n. Set ˛ WD ıj � "j . In the light
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of §2.2.6 and Lemma 2.2.8, Z D Z.…/ is equivalent to Z.r˛…/ (where Z.…0/
stands for an element Z defined for …0 and viewed as an element of R.…0/).
Clearly,

supp.Z.r˛…// � � C �r˛… � Z�0.r˛…/ D � C � C ˛ � Z�0.r˛…/:

Observe that .�C���; ˛/ 6D 0, so supp.Z/\f�C���CZ˛g D f�C���g
(since k�C��
k2 D k�C�k2 for each 
 2 supp.Z/). By Lemma 2.2.8, Z has
a pole of order � 1 at ˛, and so, by Lemma 2.2.9, � C � � � 2 supp.Z.r˛…//,
that is

� C � � � 2 � C � C ˛ � Z�0.r˛…/;

which gives � C ˛ 2 Z�0.r˛…/; one readily sees that this does not hold for
� D jı � Pj

iD1 "j (if � 6D 0), a contradiction. This completes the proof.

7. The root system �.L/

In this section we exclude g of types D.2; 1; a/ and D.2; 1; a/.1/ with a 62
Q from consideration. Then we can (and will) choose a normalization of the
bilinear form .�; �/, such that .˛; ˇ/ 2 Z for each pair ˛; ˇ 2 �. Consequently,
for each set of simple roots … one has 2.�…; ˛/ 2 Z for each ˛ 2 … and thence
for each ˛ 2 �.

For the Lie superalgebras D.2; 1; a/; D.2; 1; a/.1/ with non-rational a all
the results of this section remain valid if we fix a standard symmetric Cartan
matrix for D.2; 1; a/ as in [K1] and replace Z by Z C Za in the construction of
�.L/.

7.1.

We will use the following fact.

Proposition. If 	 is a non-isotropic root and ˛ is a root, then .˛; 	_/ is an
integer (resp., even integer) if 	 is even (resp., odd).

Proof. Since .	; 	/ 6D 0, k˛ ˙ N	k2 ! 1 as N ! 1, hence g˙� act locally
nilpotently on g, and thus .˛; 	_/ is an integer (resp., an even integer) if 	 is
even (resp., odd), using representation theory of A1 (resp., B.0; 1/). �

7.2. Definition of �.L/

Let �C be a subset of positive roots in �. Consider an irreducible highest weight
module L D L.�; �C/ over g, associated with �C. If ˇ is a simple isotropic
root, then L is again an irreducible highest weight module, but associated with
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the subset of positive roots rˇ .�C/. Indeed, if v� 2 L is a highest weight
vector for �C, then v� (resp., e�ˇ v�) is a highest weight vector for rˇ .�C/ if
.�; ˇ/ D 0 (resp., if .�; ˇ/ 6D 0). Since .�; ˇ/ D 0, we obtain L.�; �C/ D
L.�0; rˇ �C/, where the highest weight �0 of the module L.�0; rˇ �C/ is given
by

(33) �0 D
�

� � ˇ for .� C �; ˇ/ 6D 0;

� for .� C �; ˇ/ D 0:

Thus the notion of an irreducible highest weight module is independent of
the choice of �C (by Proposition 2.1.1 (a)).

In this paper we consider only non-critical irreducible highest weight mod-
ules L D L.�; �C/, i.e., we assume that the highest weight � satisfies .� C
�…; ı/ 6D 0. This property is independent of the choice of �C, since, by§2.1.2,
one has �… � �…0 2 Z� and L.�; …/ D L.�0; …0/ forces �0 � � 2 Z�.

7.2.1. For each � 2 h� we introduce the sets

D.�/iso D f˛ 2 � j .˛; ˛/ D 0; .� C �; ˛/ D 0g;
D.�/o WD f˛ 2 �1 j .˛; ˛/ 6D 0; .� C �; ˛_/ 2 2Z C 1g;
D.�/e WD

n
˛ 2 �0

ˇ̌̌
.˛; ˛/ 6D 0;

˛

2
62 �1; .� C �; ˛_/ 2 Z

o
:

Let Wess;� be the subgroup of W generated by the reflections fr˛ j ˛ 2
D.�/o [ D.�/eg. From Proposition 7.1, it follows that

(34)
D.�/o D D.� C 
/o; D.�/e D D.� C 
/e;

Wess;� D Wess;�C� for each 
 2 Q:

We introduce the following subset of �:

�ess.�/ D D.�/o [ D.�/e [ f2˛ j ˛ 2 D.�/og [ Wess;�D.�/iso:

Note that the even roots in �ess.�/ are D.�/e [ f2˛ j ˛ 2 D.�/og and that
D.�/o (resp., Wess;�D.�/iso) is the set of non-isotropic (resp., isotropic) odd
roots in �ess.�/. The main motivation for this definition is Proposition 7.3.1.

For an irreducible highest weight module L D L.�; …/ we set �ess.L/ WD
�ess.� C �/; Wess.L/ WD Wess;�C�. Proposition 7.2.3 shows that �ess.L/ is
well-defined.
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7.2.2. Lemma. For any ˇ 2 D.� C �/iso and 	 2 D.� C � C ˇ/iso, one has
	 2 �ess.� C �/.

Proof. If .ˇ; 	/ D 0, then 	 2 D.� C �/iso. Assume that .ˇ; 	/ 6D 0. Then
ˇ C 	 or ˇ � 	 is an even root (this is proven in [S3] for the finite root systems;
the non-twisted affine case follows immediately); we denote this root by ˛. One
has

.� C �; .ˇ ˙ 	/_/ D 2.� C �; 	 ˙ ˇ/

.	 ˙ ˇ; 	 ˙ ˇ/
D 2.� C �; 	/

˙2.	; ˇ/
D 2.�ˇ; 	/

˙2.	; ˇ/
D ˙1;

so ˛ 2 D.� C �/e if ˛
2

62 �1.
Consider the case when ˛

2
2 �1; then ˛

2
is a non-isotropic odd root, so g

is of the types B.m; n/; G.3/ or their affinizations. In these cases the roots ˇ; 	

are of the form k1ı ˙ ."i C ıj /; k2ı ˙ ."i � ıj /, where k1; k2 2 Z and k1 C k2

is even. (Here and further we use the description of root systems in [K1].) Then
either ˛ D ˇ C 	 and ˇ��

2
2 �0, or ˛ D ˇ � 	 and ˇC�

2
2 �0; observe that

ˇ˙�
4

62 �. By above,
�
� C �;

�ˇ ˙ 	

2

�_�
D ˙2

so D.� C �/e contains ˇ��
2

or ˇC�
2

.
Since 	 D rˇ��ˇ D �rˇC�ˇ, we obtain 	 2 �ess.� C �/, as required. �

7.2.3. Proposition. If … and …0 are two sets of simple roots and L.�; …/ D
L.�0; …0/, then �ess.� C �/ D �ess.�

0 C �0/.

Proof. Since any two sets of simple roots are connected by a chain of odd re-
flections and each odd reflection is invertible, it is enough to show that �ess.�

0C
�0/ � �ess.� C �/ if …0 D rˇ …, where ˇ is an odd isotropic root.

If �C� D �0 C�0, then, obviously, �ess.�C�/ D �ess.�
0 C�0/. By (33), if

� C � 6D �0 C �0, then �0 C �0 D � C � C ˇ and .� C �; ˇ/ D 0. From Proposi-
tion 7.1 it follows that D.�0 C�0/e D D.�C�/e and D.�0 C�0/o D D.�C�/o;
by Lemma 7.2.2, D.�0 C �0/iso � �ess.� C �/. The assertion follows. �

7.2.4. Proposition. One has Wess.L/�ess.L/ D �ess.L/.

Proof. It is enough to verify that for ˛; 	 2 D.�/o [ D.�/e one has r˛	 2
D.�/o [ D.�/e. We have

.�; .r˛	/_/ D .�; 	_/ � .�; ˛_/.˛; 	_/:

By Proposition 7.1, .˛; 	_/ is an integer (resp., even integer) if 	 is even (resp.,
odd). Thus r˛	 2 D.�/o [ D.�/e, as required. �
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7.3. The properties of supp.Re� ch L/

Fix a choice of �C, and let � 2 h� be a non-critical weight. Recall that �

is called typical if .� C �; ˇ/ 6D 0 for all odd isotropic roots ˇ, and atypical
otherwise.

The following proposition is proven in [KK] in the Lie algebra case and
in [GK] in the general Lie superalgebra case.

7.3.1. Proposition. If � 2 supp.Re� ch L.�//, then there exists a chain � D
�r < �r�1 < � � � < �0 D � C �, where either �k D r��k�1 for 	 2
.D.�k�1 C�/o [D.�k�1 C�/e/\�C or �k D �k�1 �	 for 	 2 D.�k�1 C
�/iso \ �C.

7.3.2. Taking into account (34) and Lemma 7.2.2, we obtain by induction on k

that D.�k C�/e D D.�C�/e; D.�k C�/o D D.�C�/o and �ess.�k C�/ D
�ess.� C �/.

This leads to the following useful properties of supp.Re� ch L.�//.

7.3.3. Corollary. Let L D L.�/ be a non-critical irreducible highest weight
module. For each 
 2 supp.Re� ch L.�// one has

(i) 
 2 � C � � Z�0.�ess.�/ \ �C/, k� C � � 
k2 D k� C �k2.
(ii) If L.�/ is typical, then 
 2 Wess.L/.� C �/.

If L.�/ is atypical, then .
; ˇ/ D 0 for some odd isotropic root ˇ,

(iii) �ess.
/ D �ess.� C �/.

7.3.4. Corollary. Let L D L.�/ be a non-critical irreducible highest weight
module and �ess is not irreducible, that is

�ess D
a
i2X

�i
ess; where .�i

ess; �j
ess/ D 0 for all i 6D j:

If � C � � � 2 supp.Re� ch L.�//, then � can be written as � D P
i2X �i

with the property that for each i 2 X there exists a chain � � �i D �r <

�r�1 < � � � < �0 D � C �, where either �k D r��k�1 for 	 2 .D.�k�1 C
�/o [ D.�k�1 C �/e/ \ �C \ �i

ess or �k D �k�1 � 	 for 	 2 D.�k�1 C
�/iso \ �C \ �i

ess.
In particular, �i 2 Z�0.�i

ess.�/ \ �C/ and k� C � � �ik2 D k� C �k2.
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7.3.5. A subset E of the set of real roots �re D �nZı is called a root subsystem
if the following properties hold:

(i) if ˛ 2 E, then �˛ 2 E;
(ii) if ˛ 2 E is not isotropic, then r˛E D E;

(iii) if ˛ 2 E is isotropic and ˇ 2 E is such that .˛; ˇ/ 6D 0, then either ˇ C ˛

or ˇ � ˛ lies in E.

Note that any subset E 0 of �re is contained in a unique minimal root subsys-
tem of �re. Indeed, in order to construct a minimal root subsystem containing
E 0, we should add to E 0 an element �˛ if ˛ 2 E 0, r˛ˇ if ˛; ˇ 2 E 0 and ˛ is
non-isotropic, and one of the elements ˇ ˙ ˛ which is in �re if ˛ is isotropic
with .˛; ˇ/ 6D 0 (exactly one of them is in �re), and repeat this procedure. It
follows from the results of [S3] that if this minimal root subsystem is finite, then
it is a root system of a finite-dimensional basic simple Lie superalgebra. If this
minimal root subsystem is infinite, then it is the set of real roots of an affine Lie
superalgebra, see [Sh].

If E 0 D E 0
1

`
E 0

2 such that .E 0
1; E 0

2/ D 0, then the minimal root subsystem
of �re containing E 0 is of the form E1

`
E2, where E1; E2 are minimal root

subsystems containing E 0
1; E 0

2 respectively.
Let �.L/ (resp., �.
/) be the minimal root subsystem of �re containing

�ess.L/ (resp., �ess.
/). Denote by W.L/ the Weyl group of �.L/, i.e., the
subgroup of W generated by reflections in non-isotropic roots from �.L/.

All results Lemma 7.2.2–Corollary 7.3.3 remain valid if we replace �ess.L/

by �.L/.

7.4. Examples

Assume that L WD L.�/ is non-critical.
If L.�/ is typical, then �ess.L/ D �.L/ consists of non-isotropic roots.
If L.�/ is finite-dimensional, then �.L/ D �ess.L/ D �re if L is atypical,

and �.L/ D �ess.L/ D f˛ 2 � j .˛; ˛/ 6D 0g if L is typical.
If g D A.m; n/ or A.m; n/.1/, then �ess.L/ D �.L/. However it is not true

in general, as the following example shows.

7.4.1. Let g D D.m; n/ and let � be such that .�; "i / D .�; ıi / D 1
2

. Then
�ess.�/0 D f˙"i ˙ "j I ˙ıi ˙ ıj W i 6D j g and �ess.�/1 D �1, so �ess.�/ is
not a root system; in this case �.�/ D �.

7.5. The sets ….L/

Fix a set of positive roots �C, and let … be the subset of simple roots. Let
�.L/C WD �.L/ \ �C and denote the corresponding set of simple roots by
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….L/. Denote by …0.L/ the set of simple roots of �.L/ \ �C
0

(it does not
depend on the choice of …). Note that both ….L/ and …0.L/ are linearly de-
pendent, if �.L/ has more than one affine component.

7.5.1. Lemma. Let ˛ 2 ….L.�// be a non-isotropic root. For each 
 2
supp.Re� ch L/ one has r˛
 2 � C � � Z�0….L.�//.

Proof. We prove the assertion by induction on the length of the chain in Propo-
sition 7.3.1. One has 
 D �r D �r�1 � a	 for 	 2 �ess.L.�//C, a 2 Z>0.
If 	 D ˛, then �r D r˛�r�1 and r˛
 D �r�1 2 � C � � Z�0….L.�//

by Corollary 7.3.3 (i). If 	 6D ˛, then r˛	 2 �.L.�//C and thus r˛�r D
r˛�r�1 � ar˛	 . By the induction hypothesis, r˛�r�1 2 � C � � Z�0….L.�//,
so r˛�r 2 � C � � Z�0….L.�//, as required. �

7.5.2. Denote by RL the analogue of R:

RL D
Q

˛2�
C

0
.L/

.1 � e�˛/Q
˛2�

C

1
.L/

.1 C e�˛/
:

Note that RL 2 R.…/.
Fix �L 2 h� such that 2.�L; ˛/ D .˛; ˛/ for all ˛ 2 ….L/.

7.5.3. Remark. Since RL; �L depend on …, we will sometimes write
RL;…; �L;… to prevent a confusion. We choose �L;… compatible for all sub-
sets of simple roots …, proceeding as in §2.1.2. The elements RL;…e�L;… are
equivalent for all ….

7.5.4. Let ˇ 2 … be an odd simple root and let rˇ be the corresponding odd
reflection. Then

rˇ �C \ �.L/ D
�

�.L/C if ˇ 62 ….L/;

�.L/C n fˇg [ f�ˇg if ˇ 2 ….L/:

Recall that rˇ �C has the set of simple roots rˇ … WD frˇ ˛ j ˛ 2 …g, where

rˇ ˛ D
8<
:

�ˇ if ˛ D ˇ;

˛ C ˇ if .˛; ˇ/ 6D 0;

˛ otherwise.

As a result, the set of simple roots for rˇ �C \ �.L/ coincides with ….L/ if
ˇ 62 ….L/ and is equal to rˇ ….L/, defined by the above formulas, if ˇ 2 ….L/.
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7.6. Character formulas for different choices of �C.…/

Let L be a irreducible highest weight module. Then ch L 2 R.…/ for each ….
Suppose that �.L/ D � and that for some … the following formula holds in
R.…/:

Re� ch L D
X

w2W 0

xww
� e�Q

ˇ2J .1 C e�ˇ /

�
;

where 
 2 h� n f0g; J � �; xw 2 Q, and W 0 satisfies the conditions of §2.2.8.
Combining §2.2.6 and §2.2.8, we conclude that the above formula holds in
R.…0/ for any …0.

An important special case is when 
 D � C �…; L D L.�; …/; J D J.…/.
In this case we can obtain a formula of similar form for certain other subsets
of positive roots �C.…0/ as follows. Let …0 D rˇ … for an odd isotropic root
ˇ 2 …. Then L.�; …/ D L.�0; …0/, where �0 is given by (33). This implies the
formula

Re� ch L.�0; …0/ D
X

w2W 0

xww
� e�0C�…0Q

ˇ2J.…0/.1 C e�ˇ /

�
;

where J.…0/ D J.…/ if .� C �; ˇ/ 6D 0 and J.…0/ D .J.…/ n fˇg/ [ f�ˇg if
.� C �; ˇ/ D 0 and ˇ 2 J.…/ (this method does not work if .� C �; ˇ/ D 0

and ˇ 62 J.…/).

7.6.1. Remark. If L D L.�; …/ with � 6D ��, similar results hold if we
substitute W by the integral Weyl group W.L/, see §7.3.5: in this case we take
W 0 generated by reflections r˛; ˛ 2 I , where I � …0.L/.

7.7. The map F W L 7! L

Fix �C.…/ and a non-critical irreducible highest weight module L D L.�; …/.
Set

� D � C � � �L:

Let g0 be the Kac–Moody superalgebra with the set of real roots �.L/ and
the set of simple roots ….L/. This Kac–Moody superalgebra is of finite or affine
type (with a symmetrizable Cartan matrix—its symmetrization is given by the
restriction of .�; �/ to ….L/). Let h0 be a Cartan subalgebra of g0 and let h00 be
a commutative Lie algebra of dimension dim h�dim h0. Consider the Lie super-
algebra g� WD g0 	 h00 and identify its Cartan subalgebra with h in such a way
that the simple roots of g0 are identified with ….L/. We denote by L.�/ an irre-
ducible highest weight module with highest weight � over the Lie superalgebra
g�.
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Recall that L is non-critical and g0 is either basic finite-dimensional (if �.L/

is finite) or affine. It is easy to see that in the second case L.�/ is also non-
critical. Indeed, let ı0 2 �.L/ be the primitive imaginary root of g0. Then
kı0k2 D 0, so ı0 is an imaginary root in �0, hence ı0 D kı, where k 6D 0

and ı 2 �C
0

is a primitive imaginary root. But .� C �L; ı0/ D k.� C �; ı/ 6D 0,

so L.�/ is non-critical.
The following lemma shows that the map F W L ! L is a well-defined map

of non-critical irreducible highest weight modules.

7.7.1. Lemma. Let …; …0 be two sets of simple roots. If L D L.�; …/ D
L.�0; …0/, then

F.L.�; …// Š F.L.�0; …0//:

Proof. Recall that …0 can be obtained from … by a sequence of odd reflections.
Let ˇ 2 … be an isotropic root and …0 D rˇ …. Denote by ….L/ (resp., by
…0.L/) the set of simple roots for �C \ �.L/ (resp., for .rˇ �C/ \ �.L/) and
choose �L; we may (and will) choose �0

L WD �L C ˇ.
Consider the case when .� C �; ˇ/ 6D 0. Then �0 C �rˇ… D � C � so

� C �L D �0 C �0
L.

If ˇ 62 �.L/, then, by §7.5.4, ….L/ D …0.L/ and thus �0 D � and

F.L.�0; rˇ …// D L.�; ….L// D F.L.�/; …/:

If ˇ 2 �.L/, then, by §7.5.4, ….L/ D rˇ …0.L/ and, in particular, we
choose �0

L D �L C ˇ. Thus �0 D � � ˇ and

F.L.�0; rˇ …// D L.� � ˇ; rˇ ….L// Š L.�; ….L// D F.L.�; …//:

Consider the case when .� C �; ˇ/ D 0. Then ˇ 2 ….L/ and �0 D � C ˇ,
�0

L D �L C ˇ. One has �0 D �, so �0 C �0 D � C � C ˇ that is �0 C �0
L D

�C�LCˇ which gives �0 D �. Therefore F.L.�0; rˇ …// D L.�0; rˇ ….L// Š
L.�; ….L// D F.L.�; …//. �

7.7.2. In [KRW] it was conjectured that the characters of an admissible g-
module L WD L.�; …/ and the g�-module F.L/ are related by the formula
(cf. (1))

(35) Re� ch L D RLe�L ch F.L/:

Since �.L/C � �C.…/ for each …, the algebra R.….L// can be natu-
rally embedded in R.…/, so we consider the above formula as an equality in
R.…/. By §2.2.6 and Lemma 7.7.1 the elements in the left-hand side (resp., the
elements in the right-hand side) are equivalent for all subsets of simple roots.
Therefore if the formula holds for some …, it holds for all other choices of ….

In the next sections we verify formula (35) for certain cases.
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8. Linkage L � L0

Let g be a basic or affine Lie superalgebra and �C.…/ be a subset of positive
roots in the set of roots �. Let …0 be the set of simple roots for �C

0
. Define the

standard dot action of the Weyl group by w � � WD w.� C �/ � �.

8.1. Enright functor

Fix ˛ 2 …0 and a 2 C=Z. Let M.g; a/ (resp., M.g0; a/) be the category of g-
modules (resp., g0-modules) M with a locally nilpotent action of a root vector
e˛ , a diagonal action of h, i.e., M D L

�2h� M�, and such that .�; ˛_/ 
 a

mod Z if M� 6D 0.
For each � 2 h� denote by O� the full subcategory of the category O ,

whose objects are g-modules N satisfying N� D 0 if � � � 62 Z�. Note
that Or˛ �� D Or˛�.

We denote by MM.
/ (resp., ML.
/) the Verma (resp., irreducible) g0-module
with the highest weight 
 (since …0 is fixed, these modules do not depend on
the choice of …).

We will use the following theorem which can be easily deduced from [KT2],
[IK].

8.1.1. Theorem. For each a 2 C=Z there exists a left exact functor T˛.a/ W
M.g0; a/ ! M.g0; �a/ (Enright functor) which induces a left exact functor
T˛.a/ W M.g; a/ ! M.g; �a/ with the following properties.

(a) Assume that ˛ 2 … or ˛
2

2 …, M.�; …/ 2 M.g; a/ and .�; ˛_/ 62 Z. One
has

T˛.a/.M.�; …// D M.r˛ � �; …/; T˛.a/.L.�; …// D L.r˛ � �; …/;

T˛.a/. MM.�; …// D
8<
:

MM.r˛ � �; …/ if ˛ 2 …;

MM
�
r˛ � � � ˛

2
; …

�
if

˛

2
2 …;

T˛.a/. ML.�; …// D
8<
:

ML.r˛ � �; …/ if ˛ 2 …;

ML
�
r˛ � � � ˛

2
; …

�
if

˛

2
2 …:

(b) If 0 6D a 2 C=Z, then T˛.a/ is an equivalence of categories M.g; a/ !
M.g; �a/ and the inverse is given by T˛.�a/.
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(c) If ˛ 62 �.�/ and a 
 .� C �; ˛_/, then T˛.a/ provides an equivalence of
categories O�

�! Or˛�.

8.2. The linkage �
Let ‚ be the set of functors T W O� ! O�0 which can be presented as composi-
tions of Enright functors T˛.a/ W O.�/

�! Or˛� with ˛ 62 �.�/; a D .�; ˛_/.
By Theorem 8.1.1 (c), each T 2 ‚ is an equivalence of categories.

We will say that the highest weight irreducible modules L and L0 are linked
if L0 D T .L/ for T 2 ‚, and denote it by L � L0.

8.2.1. Let L � L0 be two linked highest weight irreducible modules and …; …0
be two subsets of simple roots. Then there exists a finite chain

L D L1 D L.�1; …1/; L2 D L.�2; …2/; : : : ; Lt D L.�t ; …t / D L0;
where …1 D …; …t D …0, and for each i we have

LiC1 D Li ; …iC1 D rˇ …i

for some isotropic ˇ 2 …i ; or

…iC1 D …i and LiC1 D T .Li /

for some T D T˛.a/ 2 ‚ W ˛ 2 …i or
˛

2
2 …i :

Note that in the first case �i C �i D �iC1 C �iC1 if .�i C �i ; ˇ/ 6D 0 and
�i C �i C ˇ D �iC1 C �iC1 if .�i C �i ; ˇ/ D 0, see (33); in particular, one
has k�i C �ik2 D k�iC1 C �iC1k2. In the second case (…iC1 D …i ) one has
˛ 62 �.�i / and �iC1 D r˛.�i C �i / � �i , where �i is the Weyl vector for …i .
This implies the following useful property of the linkage:

L.�; …/ � L.�0; …0/ H) k� C �k2 D k�0 C �0k2:

8.2.2. Fix …. Let L0 D T˛.a/.L/ for some ˛ 62 �.L/ such that ˛ or ˛
2

lies
in …. Write L D L.�; …/; L0 D L.�0; …/ and recall that � D r˛ � �0. Then
�.L0/ D r˛.�.L//. The conditions on ˛ imply r˛.�.L//\�C D �.L/\�C
so ….L0/ D r˛.….L//.

Recall the algebra g� and the map L ! F.L/ introduced in §7.7. Since
….�0/ D r˛.….�//, there exists a natural isomorphism of the Kac–Moody su-
peralgebras 
 W Œg�; g��

�! Œg�; g�� with the property 
 W g�
ˇ ! g�

r˛ˇ for each

ˇ 2 ….L/. This isomorphism can be extended to the isomorphism 
 W g� �! g�

such that 
.h/ D r˛.h/ for each h 2 h. Then �.h/ D �0.
.h// (see §7.7 for no-
tation), so there exists an isomorphism F.L/

�! F.L0/ compatible with 
 (i.e.,

0.av/ D 
.a/v for all a 2 g�; v 2 F.L/).
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8.2.3. Corollary. If L.�; …/ � L.�0; …0/, then there exists an isomorphism

 W g� �! g� and an isomorphism F W F.L/

�! F.L0/ compatible with 
.

8.2.4. Proposition. If L � L0 and (35) holds for L, then (35) holds for L0.

Proof. Recall §7.7.2 that if (35) holds in R.…/, it holds in R.…0/ for each …0.
In the light of §8.2.1 it is enough to consider the case when L0 D T˛.a/.L/

for some ˛ 62 �.L/ such that ˛ 2 … or ˛
2

2 …. By §8.2.2, in this case

ch F.L0/ D r˛.ch F.L//

in R.…/ (both elements lie in R.…/ since ….L/; ….L0/ D r˛.….L// lie in
�C). One has RL0e�L0 D r˛.RLe�L/ so

RL0e�L0 ch F.L0/ D r˛.RLe�L ch F.L//

in R.…/.
Write L D L.�; …/. By Theorem 8.1.1, T˛.a/ is an equivalence of cate-

gories O�

�! O�0 and T˛.a/.M.
// D M.r˛ � 
/ for each 
 2 O�. Since
L0 D T˛.a/.L/, we obtain

Re� ch L0 D r˛.Re� ch L/

in R.…/. This completes the proof. �

8.3.

We will also use the following simple fact.

Lemma. For each w 2 W there exists L0 � L such that �.L0/ D w�.L/.

Proof. Take ˛ 2 …0. If ˛ 2 �.L/, then r˛�.L/ D �.L/; if ˛ 62 �.L/, then
�.L0/ D r˛�.L/ for L0 D T˛.a/.L/. �

Note that for � D A.m; n/; C.n/; A.m; n/.1/; C.n/.1/ any odd root lies in a
set of simple roots. Hence, in these cases, for any ˇ 2 �.L/ we can choose …

such that ˇ 2 ….
If � 6D A.m; n/; C.n/; A.m; n/.1/; C.n/.1/, then W acts transitively on the

set of odd isotropic roots, so if �.L/ contains odd isotropic roots, then for any
odd isotropic root ˇ 2 � there exists L0 � L such that ˇ 2 �.L0/.
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9. Typical case for g� with even root subsystem of rank � 2

Recall that for an affine Weyl group every orbit on non-zero level has a unique
maximal element in the order � (if the level is not a negative rational number) or
a unique minimal element (if the level is not a positive rational number). We call
� 2 h� extremal if for each connected component � of …0.�/, � is maximal or
minimal in its W.�/-orbit.

Fix a non-critical level k and denote by WC (resp., W�) the subgroup of
W.�/ generated by r˛ such that k.˛; ˛/ > 0 (resp., k.˛; ˛/ < 0). We introduce
a partial order on the Weyl group W.L/ as follows:

for xC; yC 2 WC; x�; y� 2 W� let xCx� �k yCy� if xC � yC; x� � y�
in the Bruhat order on W .

9.1.

Proposition. If � is extremal, then for each y �k w there exists an embedding
M.w � �/ ! M.y � �/ and dim Hom.M.w � �/; M.y � �// D 1.

Proof. Recall that the Bruhat order is the unique order satisfying e � w forces
w D e, and for each ˛ 2 …0 one has:

l.r˛w/ < l.w/ forces w � r˛wI
w � w0 forces r˛w � r˛w0 or w � r˛w0I
w � w0 forces r˛w � r˛w0 or r˛w � w0:

We claim that any order �0 with the properties:

� l.r˛w/ < l.w/ forces r˛w �0 w, and y �0 w forces r˛y �0 r˛w or r˛y �0
w,

� satisfies y � w ) y �0 w.

Indeed, the first property implies that e �0 x for all x. Let us prove the
assertion by induction on l.w/. If l.w/ D 0, then w D y D e and thus y �0 w.
Now take any w with l.w/ > 0 and ˛ 2 …0 such that l.r˛w/ < l.w/. Then
the property implies r˛w �0 w. One has y � r˛w or r˛y � r˛w. In the first
case, the induction hypothesis gives y �0 r˛w, so r˛w �0 w implies y �0 w,
as required. In the case r˛y � r˛w the induction hypothesis gives r˛y �0 r˛w

and the second property gives y �0 w or y �0 r˛w �0 w. The claim follows.

9.1.1. Next, let us show that for any typical weight �, M.r˛ � �/ is a submodule
of M.�/ and dim Hom.M.r˛ � �/; M.�// D 1 if r˛ � � < � and ˛ 2 …0.�/.

The proof is by induction on ˛ (with respect to the order given by …0).
Indeed, if ˛ 2 …0 this immediately follows from typicality of M.�/. Take
	 2 …0 such that r�˛ < ˛. Since ˛ 2 …0.�/ one has 	 62 …0.�/ so the
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Enright functor T� is an equivalence of categories. By induction, M.rr� ˛ � .r� �
�// is a submodule of M.r� � �/ so M.r˛ � �/ is a submodule of M.�/ (since
r˛ D r�rr� ˛r� ). This proves that M.r˛ � �/ is a submodule of M.�/ for any
˛ 2 …0.�/. Moreover, by induction

(36) dim Hom.M.rr� ˛ � .r� � �//; M.r� � �// D 1:

If dim Hom.M.r˛ � �/; M.�// > 1, then there exists an exact sequence

0 �! N �! M.r˛ � �/ ˚ M.r˛ � �/ �! M.�/

and Nr˛ �� D 0 that is Hom.M.r˛ � �/; N / D 0. Using the Enright functor we
obtain the exact sequence

0 �! N 0 �! M.r�r˛ � �/ ˚ M.r�r˛ � �/ �! M.r� � �/

with Hom.N 0; M.r�r˛ � �// D 0. Since r�r˛ D rr� ˛r� , this contradicts (36).

9.1.2. Denote M.w � �/ as M.w/. Let us show the existence of the embedding
M.w/ � M.y/ for y �k w.

By §9.1.1, M.r˛x/ is a submodule of M.x/ if r˛x >k x for ˛ 2 …0.�/.
It remains to show that for ˛ 2 …0.�/ M.w/ � M.y/ the module M.r˛y/

contains M.r˛w/ or M.w/.
Indeed, using the Enright functors as in §9.1.1 we can reduce the question

to the case when ˛ 2 …0. If M.r˛y/ contains M.y/ it contains M.w/ as well.
Otherwise, M.r˛y/ is a submodule of M.y/ and f˛ acts locally nilpotently on
M.y/=M.r˛y/. If M.r˛w/ contains M.w/, then f˛ acts injectively on L.w ��/

so Hom.L.w � �/; M.y/=M.r˛y// D 0 and thus Hom.M.w/; M.r˛y// D
Hom.M.w/; M.y//, as required. If M.r˛w/ is a submodule of M.w/, it is also
a submodule of M.y/ and, by above, Hom.M.r˛w/; M.r˛y// D
Hom.M.r˛w/; M.y//.

9.1.3. It remains to verify that dim Hom.M.w/; M.y// � 1 for each y; w.
Write w D w�wC; y D y�yC with y�; w� 2 W�; yC; wC 2 WC. We

proceed by induction on l.wC/ C l.y�/.
Assume that l.wC/ 6D 0. Then there exists ˛ 2 ….�/ such that r˛ 2 WC and

M.w/ � M.r˛w/. Using the Enright functors as in §9.1.1 we can reduce the
question to the case when ˛ 2 …0. Then, by [IK] Corollary 4.1, T˛.M.w// D
M.r˛w/ and dim Hom.M.w/; M.y// � dim Hom.T˛.M.w//; T˛.M.y///.
Since T˛.M.y// is either M.y/ or M.r˛y/, we obtain dim Hom.M.w/; M.y//

� dim Hom.M.r˛w/; M.y0// for some y0. Arguing like this we obtain
dim Hom.M.w/; M.y// � dim Hom.M.w�/; M.y0//.

It remains to verify that dim Hom.M.w/; M.y// � 1 for w 2 W�. We prove
this by induction on l.w/.
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If l.w/ D 0, then w D e. If y 62 WC, there exists ˛ 2 ….�/ such that r˛ 2
W� and M.y/ � M.r˛y/. Then f˛ acts locally nilpotently on M.y/=M.r˛y/

and injectively on M.e/. Hence dim Hom.M.e/; M.y// �
dim Hom.M.e/; M.r˛y// and therefore dim Hom.M.e/; M.y// D
dim Hom.M.e/; M.yC//. However yC� � �, so that we have dim Hom.M.e/;

M.yC// � 1.
Assume that dim Hom.M.w/; M.y// � 1 for all w 2 W� with l.w/ � r .

Take w 2 W� with l.w/ D r C 1. Take ˛ 2 ….�/ such that r˛ 2 W� and
l.r˛w/ D r . Then M.r˛w/ � M.w/ and dim Hom.M.r˛w/; M.y// � 1.
As before, using Enright functors we can assume that ˛ 2 …0. But then the
embedding of M.r˛w/ in M.w/ is given by the multiplication of the highest
weight vector to f˛ which is non-zero divisor so dim Hom.M.w/; M.y// �
1 � dim Hom.M.r˛w/; M.y// � 1, as required. This completes the proof. �

9.2.

Now let L D L.�; …/ be a g-module. Assume that g� is one of the affine Lie
superalgebra with the set of even roots which is the union of affine or finite root
systems of rank at most two.

9.2.1. Let � be a non-critical extremal typical weight. By Proposition 9.1, for
y �k z; y; z 2 W.�/ the module M.y ��/ contains a unique singular vector v.z/

of weight z � � and this vector gives rise to an embedding M.z � �/ � M.y � �/.
Consider a Kac–Moody algebra Qg with the set of simple roots …0.L/ (and

the set of real roots �0.L/\�re); this algebra coincides with g�;0 if and only if
�0.L/ is indecomposable. Let Qh be the Cartan subalgebra of this Kac–Moody
algebra and let �0 2 Qh� be a Weyl vector. We introduce the �-action of the Weyl
group W on Qh� by the usual formula w �� WD w.�C�0/��0. Consider �0 2 Qh�
satisfying

.�0 C �0; ˛/ D .� C �; ˛/ for each ˛ 2 …0

(if �0 is indecomposable, then �0 C �0 D � C �).
Denote by MM .w/ the Verma module over Qg with the highest weight w �

�0. For y �k w the module MM.w/ contains a unique singular vector v0.z/ of
weight z � �0 and this vector gives rise to an embedding M.z � �0/ � M.w � �0/.

9.2.2. Since Qg is the product of finite-dimensional or affine Lie algebras of rank
at most two, any submodule of Verma module MM .w/ over Qg is generated by the
singular vectors (and is a sum of the submodules of the form MM.y/, y 2 W.�/).

Define a map ‰ from the set of submodules of MM.w/ to the set of sub-
modules of M.w/ given by MM .y/ 7! M.y/. It is easy to see that this map is
compatible with inclusions.
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Let MM 0.w/ be the maximal proper submodule of MM .w/. Then ‰. MM 0/ is a
proper submodule of M.w/.

9.2.3. Suppose that for some w the module M.w/ has a submodule which is
not generated by singular vectors. Then for some w0 �k w we have ŒM.w/ W
L.w0/� > 1. Let w; w0 be such a pair with the minimal value of w � � � w0 � �.
Then, if N is a submodule of ‰. MM 0/ and 
 � w � � � w0 � �, one has

pw ����.ch ‰.N // D pw ��0��.R1 ch N /;

where p�.
P

a�e�/ WD a� and R1 WD Q
ˇ2�

C

1

.1 C e�ˇ /.

Let fM i .w/gi�0; f MM i .w/gi�0; be the Jantzen filtrations of M.w/, MM.w/

respectively. Recall that for each i the modules M i .w/=M iC1.w/;
MM i .w/= MM iC1.w/ are semisimple. This implies M.z/ � M i .w/; MM.z/ �
MM i .w/ if z �k w and l.z�1w/ � i .

It is easy to see that

MM i .w/ D
X

fz�kwjl.z�1w/�ig
MM.z/:

Therefore ‰. MM i .w// � M i .w/. Clearly, MM 1 D MM 0. Therefore for 
 D w �
� � w0 � � one has

dim M i .w/w ���� � dim.‰.M i //w ���� D pw ��0��.R1 ch MM i /

for each i > 0. Since ŒM.w/ W L.w0/� > 1 one has

dim M 1.w/w ���� > dim.‰.M 1//w ���� D pw ��0��.R1 ch MM 1/:

However, the Jantzen sum formula implies

(37) e�w ��
1X

iD1

ch M i .w/ D e�w ��0R1

1X
iD1

ch MM i .w/

so 1X
iD1

dim M i .w/w ���� D pw ��0��

�
R1

1X
iD1

ch MM i
�
;

a contradiction.
We conclude that all submodules of M.w/ are generated by singular vectors

(and lie in the image of ‰). Combining the inclusions ‰. MM i .w// � M i .w/

and (37) we obtain M i .w/ D ‰. MM i .w//. This gives

M i .w/ D ‰. MM i .w// D
X

fz�kwjl.z�1w/�ig
M.z/:
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9.2.4. Denote by ML.
/ (resp., MM .
/) the irreducible (resp., Verma) Qg-module
with the highest weight 
. One has

ch ML.w � �0/ D
X
y2C

sgn.yw�1/ ch MM .y � �0/;

where C WD fy 2 W.�0/=StabW.�0/.�0 C �0/ j y � �0 � w � �0g.
This implies

ch L.w � �/ D
X
y2C

sgn.yw�1/ ch M.y � �/:

From the construction of �0, one readily sees that

C D fy 2 W.�/=StabW.�/.� C �/ j y � � � w � �g:

9.2.5. Corollary. Let g� be one of the affine Lie superalgebra with the set of
even roots which is the union of affine or finite root systems of rank at most two
and let � be a non-critical extremal typical weight. For each w 2 W.L/ the
Jantzen filtration M i .w � �/ is given by

M i .w � �/ D
X

fz2W.�/jz�kw; l.z�1w/�ig
M.z/

and
ch L.w � �/ D

X
y2C

sgn.yw�1/ ch M.y � �/;

where C D fy 2 W.�/=StabW.�/.� C �/ j y � � � w � �g.

10. �-Relatively integrable modules

This section is continuation of §8. Throughout the section, L is an irreducible
highest weight g-module.

10.1. Definition of �-relative integrability

We retain notations of §3.1.3. Recall the definition of …0.L/ from §7.5.

10.1.1. Definition. For a subset � � …0.L/ we call L �-relatively integrable
if F.L/ is �-integrable. We call L relatively integrable if F.L/ is integrable.
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10.1.2. In the light of Lemma 7.7.1, the above notion does not depend on the
choice of … (if L.�; …/ Š L.�0; …0/, then L.�; …/ is �-relatively integrable if
and only if L.�0; …0/ is �-relatively integrable). Moreover, by Corollary 8.2.3,
the linkage � preserves relative integrability.

For each � � …0.L/ we denote by W.�/ the subgroup of W.L/ generated
by r˛; ˛ 2 � .

10.1.3. In the affine Lie algebra case, relative integrability of L implies admis-
sibility in the sense of [KW2]. Any boundary admissible module in the sense
of [KW4] is …0.L/-relatively integrable (these are the modules L, such that
dim F.L/ D 1).

10.2. Properties

In this section we will prove several useful properties of the characters of rela-
tively integrable modules.

Note that the term R0 ch L does not depend on the choice of … (since �C
0

is
fixed) and lies in R.…/ for each ….

10.2.1. Lemma. Take 	 2 …0.L/.

(i) There exists L0 � L such that the root corresponding to 	 in …0.L0/ in
the sense of Corollary 8.2.3 lies in …0.

(ii) Assume that f� acts locally nilpotently on F.L/. Denote by �# the con-
nected component of �0 which contains 	 and by �# the corresponding
Weyl vector (i.e., the Weyl vector for �# \ �C

0
). The element e�#

R0 ch L

is a W.	/-skew-invariant element of RW.�/ for W.	/ D fr� ; Idg.

Proof. Let us show that (ii) holds for 	 2 …0. Choose … such that 	 2
… or 	=2 2 … and denote by � the highest weight of L: L D L.�; …/.
By Lemma 7.7.1 one has F.L/ D L.�; ….L//. Since f� acts locally nilpo-
tently on F.L/ one has

.� C �…; 	_/ D .� C �L;…; 	_/ 2 Z>0:

This means that f� acts locally nilpotently on L, so L can be decomposed as a
direct sum of sl2.	/-modules. Therefore .1 � e�� /e�=2 ch L is a W.	/-skew-
invariant element of RW.�/. Since �# � 	=2 and �0 n f	g are r� -invariant,
e�#

R0 ch L is also a W.	/-skew-invariant element of RW.�/.
Now we prove (i) and (ii) by induction on 	 . If 	 62 …0, there exists ˛ 2 …0

such that r˛	 < 	 . Since 	 2 …0.L/, one has r� 0	 � 	 for each 	 0 2 …0.L/,
so ˛ 62 …0.L/ and thus ˛ 62 �.L/ (because ˛ 2 …0). Using the Enright functor
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T˛.a/ we obtain L0 D T˛.a/.L/ � L and r˛	 < 	 is the root corresponding to
	 in …0.L0/. This proves (i).

For (ii) choose … which contains ˛ or ˛=2. Recall that, by Corollary 8.2.3,
F.T˛.a/.L// Š F.L0/ under the identification of Kac–Moody superalgebras
with the sets of simple roots ….L/ and r˛….L/; under this identification Cf�

is identified with Cfr˛� , so fr˛� acts locally nilpotently on F.L0/.
Since T˛.a/ provides the equivalence of categories, Re� ch L0 2 RW.˛/ and

Re� ch L D r˛.Re� ch L0/. Therefore

e�#
R0 ch L D R1e�#��Re� ch L D R1e�#��r˛.Re� ch L0/:

Note that R1e�#�� is r˛-invariant element of RW.˛/ (if ˛ 2 …, then �1 and
�# � � are r˛-invariant; if ˛=2 2 …, then �1 n f˛=2g and e�#��.1 C e�˛=2/ is
r˛-invariant). Hence e�#

R0 ch L0 2 RW.˛/ and

e�#
R0 ch L D r˛.e�#

R0 ch L0/:

By induction hypothesis, e�#
R0 ch L0 is a W.r˛	/-skew-invariant element of

RW.r˛�/, so e�#
R0 ch L is a W.	/-skew-invariant element of RW.�/. �

10.2.2. Corollary. Let L be �-relatively integrable (� � …0.L/). Assume
that � lies in a connected component �# of �0; let �# be the corresponding
Weyl vector.

Then the element R0e�#
ch L is a W.�/-skew-invariant element of RW.�/

and the element Re� ch L is a W.�/-skew-invariant element of RW.�/ŒY
�1�

(see §2.2.3 for notation).

Proof. From Lemma 10.2.1 it follows that R0e�#
ch L is a W.�/-skew-invariant

element of RW.�/. Recall that R1 2 Y , so Re� ch L 2 RW.�/ŒY
�1�. It re-

mains to verify that Re� ch L is W.�/-skew-invariant. Since R0e�#
is W.�#/-

skew-invariant and Re� is W -invariant, their ratio R1e�#�� is W.�#/-skew-
invariant, and, in particular, is W.�/-skew-invariant. Hence Re� ch L D
R1e�#�� � R0e�#

ch L is W.�/-skew-invariant. �

10.2.3. Denote by RL;0; RL;1.…/ the following analogues of R0; R1.…/:

RL;0 WD
Y

˛2�C.L/0

.1 � e�˛/; RL;1.…/ WD
Y

˛2�C.L/1

.1 C e�˛/:

Note that these elements lie in Y (and Y � R.…0/ for each …0) and RL.…/ D
R�1

L;1
.…/RL;0.
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Recall (see §2.2.6) that the elements R.…/e�… 2 R.…/ are equivalent for
all …: the expansion of R.…/e�… in R.…/ does not belong to R.…0/, how-
ever, the expansion of R.…/e�… in R.…0/ coincides with the expansion of
R.…0/e�…0 in R.…0/. Similarly, RL.…/e�L;… are equivalent for all …. Hence
the elements R1.…/e��… ; R1;L.…/e��L;… are equivalent for all …; since these
elements lie in Y , the expansion of R1.…/e��… (resp., of R1;L.…/e��L;…) in
R.…0/ is equal to the expansion of R1.…00/e��…00 (resp., of R1;L.…00/e��L;…00 )
in R.…000/ for any sets of simple roots …; …0; …00; …000. This allows us to use
the notation R1;Le��L for R1;L.…/e��L;… .

10.2.4. Lemma. For a set of simple roots … let X.…/ be the expansion of
R1;LRe���L ch L in R.…/. For any … and …0 one has X.…/ D X.…0/ (in
particular, X.…/ 2 R.…0/).

Proof. By above, the elements R1;LRe���L ch L are equivalent for all …, so
X.…/ is equivalent to X.…0/. It remains to show that X.…/ 2 R.…0/.

Since any two sets of simple roots are connected by a chain of odd reflec-
tions, it is enough to consider the case …0 D rˇ …, where ˇ 2 … is an odd
isotropic root. We denote by R1;L; R; �; �L the corresponding elements for …

and set R WD R.…/; R0 WD R.rˇ …/. Observe that ch L 2 R \ R0, since L is
an irreducible highest weight module.

If ˇ 2 �.L/, then the element R1;LRe���L has the same expansion in R
and in R0, since

R1;LRe���1;L D
Y

˛2�
C

0

.1 � e�˛/ �
Y

˛2�
C

1
.…/n�1.L/

.1 C e�˛/�1e���1;L

and �C
1

.…/ n �1.L/ lies in �C.rˇ …/ \ �C.…/.
Consider the case ˇ 62 �.L/. Let us show that the expansion of Re� ch L

in R lies in R0. Indeed, denote this expansion by Y . Since ch L 2 R \ R0, Y

has a pole of order � 1 at ˇ. By Lemma 2.2.9, in order to show that Y does not
have a pole, i.e., that Y 2 R0, it is enough to verify that for each � 2 h� the
set supp Y \ f� C Zˇg is finite. In fact this set contains at most one element,
since the action of the Casimir element gives k�k2 D k�Crˇk2 if �; �Crˇ 2
supp.Y /, so .�; rˇ/ D 0. However, for � 2 supp Y one has �.�/ D �.L/, so
ˇ 62 �.�/, that is r D 0. Hence Y 2 R0. Since the product R1;Le��L lies in
R and in R0, we conclude that X.…/ D R1;Le��LY 2 R.…0/. The assertion
follows. �

10.2.5. By above, X.…/ does not depend on … (for fixed L). The next lemma
shows that the equivalence relation � preserves X.…/.
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Lemma. Let X.L/ be the expansion of R1;LRe���L ch L in R.…/. Recall
that for L � L0 one has F.L/ Š F.L0/ via the natural identification �.L/ and
�.L0/. Under this identification X.L/ D X.L0/.

Proof. It is enough to verify the assertion for L0 D T˛.a/.L/, where ˛ 2 …0 n
�.L/. Choose … which contains ˛ or ˛

2
. One has

Re� ch L.�; …0/ D
X

a�e� ; Re� ch L0 D r˛.Re� ch L/:

By §8.2.2, �.L0/ D r˛�.L/ and ….L0/ D r˛….L/. Thus

r˛.R1;L/ D R1;L0 ; r˛.�L/ D �L0 :

Hence r˛X.…/ is the expansion R1;L0Re���L0 ch L0 in R.…/. �

10.2.6. Let L be �-relatively integrable (� � …0.L/). Assume that � admits
a Weyl vector �� (.�� ; ˛/ D .˛; ˛/=2 for each ˛ 2 �). By above, the element
R1;LRe�C�� ��L ch L does not depend on … (and have the same expansions in
all algebras R.…0/).
Proposition. The element R1;LRe�C�� ��L ch L is a W.�/-skew-invariant
element of RW.�/.

Proof. Denote by X.L/ the expansion of R1;LRe�C�� ��L ch L in R.…/ (this
does not depend on … by Lemma 10.2.4). It is enough to verify that X.L/e�� is
W.	/-skew-invariant element of RW.�/ for each 	 . We prove this by induction
on 	 2 �C

0
.

Assume first that 	 2 …0. Take … which contains 	 or �
2

and set R WD
R.…/. By Corollary 10.2.2, R0e�#

ch L is a W 0-skew-invariant element of
RW 0 . Clearly, �C

1
n �1.L/C is r� -invariant, so R1;LR�1

1
is a W.	/-invariant

element of RW.�/. Since 	 or �
2

lies in …, � ��L is r� -invariant; since 	 2 …0,
�# � �� is r� -invariant. Hence e�C�� ��L��#

is a W.	/-invariant element of
RW.�/, so X.L/e�� is a W.	/-skew-invariant element of RW.�/ as well.

Now take 	 62 …0 and ˛ 2 …0 such that 	 0 WD r˛	 < 	 . Then ˛ 62 �.L/

(see the proof of Lemma 10.2.1). Let L0 WD T˛.a/.L/. By §10.1.2, we conclude
that L0 is r˛�-relatively integrable. By induction X.L0/e�r˛� is a W.	 0/-skew-
invariant element of RW.� 0/. Clearly, �r˛� can be chosen equal to r˛�� . More-
over, by Lemma 10.2.5, X.L0/ D r˛.X.L//. Then X.L/e�� D r˛.X.L0/e�r˛� /

and thus X.L/e�� is a W.	/-skew-invariant element of RW.�/, as required. �

11. Character formulas for some typical and relatively integrable modules

In this section we prove formula (35) from §7.7.2 for some cases.
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11.1.

Recall that a module L.�; …/ is typical if .� C �; ˇ/ 6D 0 for all isotropic
ˇ 2 �1.

Recall (see §9) that we call � 2 h� extremal if for each connected component
� of …0.�/, � is maximal or minimal in its W.�/-orbit. We say that � is regular
if StabW � D fIdg.

11.1.1. Theorem. If L D L.�; …/ is typical and � C � is a regular extremal
weight, then

Re� ch L D
X

fw2W.L/jw.�C�/��C�g
sgn.w/ew.�C�/

and (35) holds.

11.1.2. Recall that …0.L/ is the set of simple roots of �.L/ \ �C
0

.

Corollary. If L D L.�; …/ is a typical module and F.L/ is …0.L/-integrable,
then

Re� ch L D
X

w2W.L/

sgn.w/ew.�C�/

and (35) holds.

The above theorem admits the following generalization.

11.1.3. Theorem. Let L D L.�; …/ is a typical module. Set

� WD f˛ 2 …0.L/ j .� C �; ˛_/ > 0g
(that is � � …0.L/ is maximal such that F.L/ is �-integrable). Write � D
�f

`
�aff , where �f (resp., �aff ) is the union of connected finite (resp., affine)

type diagrams in � . Assume that for each ˛ 2 …0.L/ n � one has

.� C �; w0˛_/ < 0;

where w0 is the product of the longest elements in W.�f /. Then

Re� ch L D
X

w2W.�/

sgn.w/ew.�C�/:

11.1.4. Remark. We do not expect Theorem 11.1.3 to hold in general. Namely,
the coefficients of the character formula may involve non-trivial Kazhdan–
Lusztig polynomials.
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11.2. Proof of Theorems 11.1.1, 11.1.3 and Corollary 11.1.2

First note that Theorem 11.1.1 is a particular case of Theorem 11.1.3: if � is
extremal, then � is a union of connected components of …0.L/ and each root
˛ 2 …0.L/ n � lies in a connected component Q� � …0.L/ such that � is a
minimal element in its W. Q�/-orbit. One has .� C �; w˛_/ D .� C �; ˛_/ for
each w 2 W.�/; if � is regular, then .� C �; ˛_/ < 0. Thus a regular typical
extremal weight satisfies the assumptions of Theorem 11.1.3.

Now let us deduce Corollary 11.1.2 from Theorem 11.1.1. First, consider the
case when L0 D L.�0; …/ is a typical module and g˙˛ acts nilpotently on L0 for
some ˛ 2 …0. We claim that .�0 C �; ˛_/ 2 Z>0. Indeed, choosing …0 which
contains ˛ or ˛=2 we obtain L0 D L.�0 C���0; …0/ and .�0 C���0; ˛_/ � 0;
since .�0; ˛_/ > 0, we get .�0 C �; ˛_/ > 0. Since g˙˛ acts locally nilpotently
on L0, ˛ 2 �.L/, so .� C �; ˛_/ 2 Z>0, as required.

Next let L D L.�; …/ be a typical module such that F.L/ is …0.L/-
integrable. By above, .� C �; ˛_/ D .� C �L; ˛_/ 2 Z>0 for each ˛ 2 …0.L/.
Hence � C � is regular and extremal. Hence Corollary 11.1.2 follows from The-
orem 11.1.1.

11.2.1. Proof of Theorem 11.1.3. We claim that

supp.Re� ch L/ � W.�/.� C �/:

Indeed, by Proposition 7.3.1 it is enough to verify that for each w 2 W.�/ if
.w ��C�; 	_/ > 0 for some non-isotropic even positive root 	 , then 	 2 �.�/.
One has .w � � C �; 	_/ D .w0� C �; .w0w�1	/_/. Since 	 62 �.�/, the root
w0w�1	 lies in �C n �.�/. By the assumptions, .w0 � � C �; ˛_/ < 0 for ˛ 2
…0.L/ n � and for ˛ 2 �f ; therefore this inequality holds for ˛ 2 …0.L/ n �aff
and thus for a positive non-isotropic even root ˛ which does not lie in �.�aff /.
Hence .w � � C �; 	_/ < 0, as required.

By Proposition 3.12 in [K3], � C � is a unique �-maximal element in its
W.�/-orbit (by definition of �).

We claim that F.L/ is �-integrable. Indeed, take ˛ 2 � and let …0 be a
subset of simple roots for �.L/ such that ˛ or ˛=2 lies in …0. Since F.L/ is
typical, F.L/ D L.�0; …0/, where � C � D �0 C �0, so .�0 C �0; ˛_/ > 0. Since
˛ 2 �.L/, we conclude that g�;˙˛ acts locally nilpotently on F.L/. Hence
F.L/ is �-integrable.

Using Corollary 10.2.2, we conclude that Re� ch L is W.�/-skew-invariant.
Therefore Re� ch L 2 RW.�/ and so

Re� ch L D cFW.L/e
.�C�/:

Since the coefficient of e�C� in Re� ch L is 1, c D 1, as required. �
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11.2.2. Theorem. Let L be a non-critical module such that .F.L/; ….L//

satisfies the conditions of §4 and S � …. Then (35) holds.

11.2.3. Theorem. Let L be a non-critical vacuum module such that �.L/ is
affine and F.L/ is integrable. Then (35) holds.

11.2.4. Corollary. If �.L/0 is connected (i.e., �.L/ D A.0; m/; B.0; n/;

C.n/, their untwisted affinizations, or A.0; 2n�1/.2/; C.nC1/.2/; A.0; 2n/.4/)
and F.L/ is …0.L/-integrable, then (35) holds.

In particular, by the results of §4, we obtain the character formula for all
admissible modules over A.0; n/.1/; C.n/.1/.

11.2.5. Theorem. Let L be a non-critical g-module such that for each con-
nected component �i of �.L/ one has either .F.L/; �i / D 0 or F.L/ is �i

0
-

integrable and �i -typical (i.e., .F.L/; ˇ/ 6D 0 for each ˇ 2 �i ). Then (35)
holds.

11.2.6. Corollary. Let L be a non-critical g-module such that dim F.L/ D 1.
Then (35) holds.

11.3. The case when F.L/ is a vacuum module

Consider the case when F.L/ is a vacuum module (i.e., F.L/ D L.�; ….L//,
where .�; P….L// D 0 for some finite part P….L/ of ….L/), which is integrable
(i.e., is �-integrable for a connected component � of …0.L/, see §3.1.3). We
denote by ˛0 the affine root in ….L/, i.e.,

….L/ D P….L/ [ f˛0g:
Normalize the bilinear form in such a way that k˛k2 2 Q>0 for ˛ 2 � .

The following theorems improve the result of Theorem 11.2.2 in the case
when F.L/ is an integrable vacuum module with �.L/ 6D A.n; n/.1/.

11.3.1. Theorem. Let F.L/ be an integrable vacuum module such that the
dual Coxeter number of �.L/ is non-zero.

Assume that ….L/ is such that k˛k2 � 0 for each ˛ 2 ….L/; if ….L/ D
C.m/ or ….L/ D A.m; n/.1/; m > n, assume, in addition, that the affine root
in ….L/ is not isotropic. Then (35) holds.
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11.3.2. Theorem. Let F.L/ be a non-critical integrable vacuum module.
If �.L/ D D.2; 1; a/.1/ and a 6D �1

2
; �2, then (35) holds for any ….L/;

for �.L/ D D.2; 1; �1
2
/.1/ D D.2; 1; �2/.1/, (35) holds if k˛0k2 � 0.

If �.L/ D A.2n � 1; 2n � 1/.2/; D.n C 1; n/.1/ and ….L/ is as in §6.4.1,
then (35) holds.

If �.L/ D A.2n; 2n/.4/; D.n C 1; n/.2/ with ….L/ is as in §6.4.2 and the
level of F.L/ is not 1, then (35) holds.

If �.L/ D A.2n; 2n/.4/; D.n C 1; n/.2/ with ….L/ is as in §6.4.2 and the
level of F.L/ is 1, then (35) holds if P….L/ � ….

11.3.3. For each ˛ 2 P� we write ˛ D P
ˇ2….L/ x˛;ˇ ˇ, and let supp.˛/ WD

fˇ 2 … j x˛;ˇ 6D 0g. Consider the following conditions on a set of simple roots
….L/:

(A) k˛0k2 � 0;
(B) for each ˛ 2 � there exists ˇ 2 supp.˛/ such that ˇ 62 supp.˛0/ for each

˛0 2 � ; this ˇ is denoted by b.˛/;
(C) �L 2 X1 � X2, where

X1 WD f� 2 h� j .�; ˛/ 2 Q�0 for all ˛ 2 ….L/g;
X2 WD

X
˛2 P….L/0

Q�0˛_:

It is easy to see that (B) holds for each … if � 6D F.4/.1/, see §13.5. Note
that (C) holds if �L D 0 and if k˛k2 � 0 for each ˛ 2 ….L/ (in this case
�L 2 X1). We give examples of sets of simple roots ….L/ satisfying (A), (B),
(C) in §13.5.

11.3.4. Theorem. Let F.L/ be a non-critical integrable vacuum module such
that �.L/ 6D A.m; n/.1/; C.n/.1/. If ….L/ satisfies the conditions (A)–(C),
then (35) holds.

11.4. Proofs

Step 1. Set

Z WD Re� ch L � RLe�L ch F.L/ D 0; Z0 WD R1;Le��LZ:

We have to prove that Z0 D 0. Suppose that Z0 6D 0.
Denote by �… (resp., �…) the highest weight of L (resp., of L); recall that

�… C �… D �… C �L;…. By Corollary 7.3.4, supp.Z/ � �… C �L;… �
Z�0�C.L/, so for each …

(38) supp.Z0/ � �… � Z�0….L/:
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Clearly, �… C �… 62 supp.Z/, so �… 62 supp.Z0/.
Let F.L/ be �-integrable, where � � …0.L/ is connected. Since � is con-

nected, it admits a Weyl vector �� 2 h� (.�� ; ˛_/ D 1 for each ˛ 2 �).
By Proposition 10.2.6, for each � � …0.L/ the element e�� Z0 is a W.�/-
skew-invariant element of RW.�/. Therefore supp.e�� Z0/ is a union of regular
W.�/-orbits (the regularity means that the stabilizer of each element is trivial).
From (38) it follows that each orbit has a �-maximal element (i.e., maximal with
respect to the following order: 
0 �� 
00 if 
0 � 
00 2 Z�0�). Let � D �… � 


be a �-maximal element in its orbit. Using the regularity of the orbit we obtain
.�… � 
; ˛_/ � 0 for each ˛ 2 � .

Combining maximality of 
 and regularity of the orbit we obtain

(39) .�… � 
; ˛_/ � 0 for each ˛ 2 �:

Now let �… C �L � 
 be a maximal element in supp.Z/ with respect to
the order 
0 � 
00 if 
0 � 
00 2 Z�0�C. Clearly, 
 6D 0. Then �… � 
 is a
maximal element in supp.Z0/ with respect to the same order and so this is a
…0.L/-maximal element in supp.Z0/. Since �… C �L � 
 2 supp.Z/ we have
2.�… C �L; 
/ D .
; 
/. Combining with (38) we get

(40) 2.�… C �L; 
/ D .
; 
/; 
 2 Z�0….L/; 
 6D 0:

We will show that (39) contradicts (40).

11.5. Proofs of Theorems 11.2.2, 11.2.3 and Corollary 11.2.4

11.5.1. Proof of Theorem 11.2.2. Arguing as in §4.3.2 we deduce from (39)
and (40) that 
 2 Z�0S . Write 
 D P

ˇ2S xˇ ˇ, xˇ � 0. Let ˇ be such
that xˇ 6D 0. By Lemma 10.2.4, Z0 does not depend on the choice of …, so
supp.Z0/ � �…0 � Z�0…0.L/ for any …0. In particular, �… � 
 2 �…0 �
Z�0…0.L/ for any …0. For …0 D rˇ … we have �…0 D �…, so 
 2 Z�0…0.L/.
However, �ˇ 2 …0.L/ and S n fˇg 2 …0.L/, a contradiction. �

11.5.2. Proof of Theorem 11.2.3. Recall that L is a vacuum module means that
L D L.�; …/, where .�; P�/ D 0 for some finite part P� of �. In particular, P� �
�.L/ and the inclusion is strict, since �.L/ is affine. Note that the elements of
P… are indecomposable in �.L/C D �C \ �.L/, so P… � ….L/. Hence P…

(resp., P�) is a finite part of ….L/ (resp., of �.L/).
Consider �0 WD �.L/ with a set of simple roots …0 WD ….L/ and a finite

part P�.
If the dual Coxeter number of �0 is non-zero or �0 D A.n; n/.1/, then,

by §13.2, there exists a chain of odd reflections with respect to the roots in P�
which transform …0 to a set of simple roots …00 with the following property: for
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each ˛ 2 …00 one has k˛k2 � 0 (where .�; �/ is normalized in such a way that
.�0; ı/ � 0). Acting by the same chain of odd reflections of …, we obtain a set
of simple roots Q… for � such that Q….L/ D …00. Clearly, L D L. Q�; Q…/, where
. Q�; P�/ D 0. Hence .F.L/; Q….L// satisfies the conditions of §4 and S � ….
By Theorem 11.2.2, (35) holds.

Similarly, if the dual Coxeter number of �0 is zero and �0 6D A.n; n/.1/,
then, by §13.2, there exists a chain of odd reflections with respect to the roots in
P� which transform …0 to a set of simple roots …00 given in §6.1, §6.4.1, §6.4.2,
respectively. Acting by the same chain of odd reflections of …, we obtain a
set of simple roots Q… for � such that Q….L/ D …00. One has L D L. Q�; Q…/,
where . Q�; P�/ D 0 and F.L/ is integrable. In this case the statement follows
from Theorem 11.3.2. �

11.5.3. Proof of Corollary 11.2.4. If L is typical, the assertion follows from
Corollary 11.1.2. Assume that L is not typical.

In the light of Theorem 11.2.2 it is enough to verify that there exists L0 � L

and … such that .�0
… C �…; ˇ/ D 0 for some ˇ 2 …, where L0 D L.�0

…; …/.
Assume that this is not the case. Then for any L0 one has �0

… C�… D �0
…0 C�…0

for all …; …0. Fix any … and let ˇ 2 �.L/ be such that .�… C �…; ˇ/ D 0.
First, consider the case when ˇ 2 …0 for some …0. Then �… C �… D

�…0 C �…0 implies that .�…0 C �…0 ; ˇ/ D 0, so the assertion holds for L0 D L

and ˇ 2 …0.
Assume that ˇ 62 …0 for any …0. Then � 6D A.m; n/; C.n/; A.m; n/.1/;

C.n/.1/. In particular, …0 is not connected. Let � be a connected component
of …0 such that �.�/ \ �.L/ D ;. There exists w 2 W.�/ and …0 such
that wˇ 2 …0 (by Lemma 13.4 the stronger assertion holds). Write w as a
product of simple reflections and let T be the product of the corresponding
Enright functors. Then wˇ 2 �.T .L// and T .L/ D L.w.�… C �…/ � �…; …/,
so the assertion holds for L0 D T .L/ and wˇ 2 …0. �

11.6. Proofs for vacuum cases

Since F.L/ is a vacuum module, F.L/ is not only �-integrable, but also
P…0.L/-integrable, so .�… � 
; ˛_/ � 0 for each ˛ 2 P…0.L/. For ˛ 2 P….L/

one has .�…; ˛_/ D 0, so we obtain

(41) .
; ˛_/ � 0 for each ˛ 2 P…0.L/:

We will frequently use the following statement, which is a part of Theorem
4.3 in [K3]:

(Fin) If A is a Cartan matrix of a semisimple Lie algebra and v is a vector with
rational coordinates, then Av � 0 implies v > 0 or v D 0;
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(Aff) If A is a Cartan matrix of an affine Lie algebra and v is a vector with
rational coordinates, then Av � 0 implies v 2 Qı.

11.6.1. Proof of Theorem 11.3.1. Arguing as in §11.5.1 we obtain that for any
S � P….L/ satisfying the conditions in §3.3 one has 
 2 Z�0S , 
 6D 0. In
particular, 
 2 Z�0

P….
Consider the case P�.L/ 6D A.m; n/; C.n/, i.e., Q P�0 D Q P�. Combin-

ing (41) and (Fin) we obtain 
 2 �Q�0
P�C

0
. Since 
 2 Z�0�C we get 
 D 0,

a contradiction.
If ….L/ D C.m/ or ….L/ D A.m; n/.1/; m > n, then using the condi-

tion that affine root is not isotropic, we obtain that the set of isotropic roots
Iso � ….L/ lies in P….L/. It is easy to see that the condition k˛k2 � 0 implies
that each connected component of Iso is of type A.n C 1; n/ (and not of type
A.n; n/). By above, it is enough to verify that for some S ,

Z�0S \ f� j 8˛ 2 P…0.L/ .�; ˛_/ � 0g D f0g:
Clearly, it is enough to check the assertion for each connected component of
Iso � P….L/. Retain notation of §3.3.1 and choose S D f"i � ıig in each
component of Iso. Write 
 D P

ki ."i � ıi /. Taking ˛ D "i � "iC1; ıi � ıiC1 2
…0, we obtain ki D kiC1 for each i , that is 
 D k

Pn
iD1."i � ıi / for some

k � 0. Then .
; ."n � "nC1/_/ D k, so k � 0, that is 
 D 0, a contradiction. �

11.6.2. Proof of Theorem 11.3.2. Combining (40) and (41), we obtain that 


satisfies the formulas (27). Then arguing as in §6.4.1 (resp., §6.4.2, §6.1) we get
the assertion for A.2n�1; 2n�1/.2/; D.nC1; n/.1/ (resp., A.2n; 2n/.4/; D.nC
1; n/.2/ and D.2; 1; a/.1/); the restriction that P….L/ � … for �.L/ D
A.2n; 2n/.4/; D.n C 1; n/.2/ with level 1, comes from the use of odd reflec-
tions in the proof of this case.

Now consider the remaining case �.L/ D g D D.2; 1; a/.1/. Recall that
a 6D 0; �1 and D.2; 1; a/ Š D.2; 1; a�1/ Š D.2; 1; �1 � a/; if a 2 Q, we
assume (without loss of generality) that �1 < a < 0.

One has D.2; 1; a/0 D A1 	 A1 	 A1; if we denote the root in i th copy of
A1 by 2"i , then k2"1k2 W k2"2k2 W k2"3k2 D 1 W a W .�a � 1/.

Let L.�/ be a �-integrable vacuum module of level k for some � � …0. If
� n P…0 contains one root, then � D fı�2"r ; "rg and L.�/ is �-integrable if and
only if 2k=k2"rk2 2 Z�0. If � n P…0 contains two roots, then � D fı � 2"r ; ı �
2"q; 2"r ; 2"qg, and, by above, L.�/ is �-integrable if and only if 2k=k2"rk2;

2k=k2"qk2 2 Z�0; in particular, if k 6D 0, then k2"rk2=k2"qk2 2 Q>0, so
a 2 Q and, since �1 < a < 0, r; q D 2; 3. If � n P…0 contains three roots, then
� D …0 and k D 0.
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We see that L.�/ with k 6D 0 can be A
.1/
1 -integrable for any copy A

.1/
1 in

…0, but it is A
.1/
1 	 A

.1/
1 -integrable only if a 2 Q and the roots of � have

positive integral square length for some normalization of .�; �/.
Recall that � D f˛ 2 …0 j k˛k2 2 Q>0g for some normalization of .�; �/.

If a 62 Q,then � can be any copy of A
.1/
1 . If a 2 Q, then either � D A

.1/
1 , which

corresponds to the longest root (the absolute value of k2"ik2 is maximal; this is
2"1 if �1 < a < 0), or � D A

.1/
1 	 A

.1/
1 (and then P� D f2"2; 2"3g, by above).

Let us show that (40) contradicts (39).
Recall that there are 4 sets of simple roots:

…1 D fı � "1 � "2 � "3; �"1 C "2 C "3; "1 C "2 � "3; "1 � "2 C "3g;
and …2 WD fı � 2"1; "1 � "2 � "3; 2"2; 2"3g, with similar …3; …4 (ı � 2"i 2
…iC1).

Take …s . Write � D jı � P3
iD1 ei"i . By (39), e1; e2; e3 � 0. By (40),

� 2 Z�0…i ; in all 4 cases, using e1; e2; e3 � 0, we get e1; e2; e3 � 2j . Hence

(42) 0 � ei � 2j for i D 1; 2; 3:

In particular, � D 0 if j D 0. Since � D 0 contradicts (40), we assume that
j > 0.

Consider the case � D f2"1; ı � 2"1g. Normalize .�; �/ by k2"1k2 D 2

(then k2"2k2 D 2a; k2"3k2 D �2.a C 1/). Recall that k 2 Z>0. By (39) one
has e1 � k and k�k2 D 2.� C �; �/, that is e2

1 C ae2
2 � .a C 1/e2

3 D 4jk.
If a 62 Q, then we get e2 D e3 and e2

1 � e2
3 D 4jk; if a 2 Q, then, by our

assumption, �1 < a < 0 and we obtain e2
1 � 4jk. Combining with e1 � k

with (42), we get j D 0, a contradiction.
Consider the case � D fı � 2"2; ı � 2"3; 2"2; 2"3g (with �1 < a < 0).

Normalize .�; �/ by k2"2k2 D 2 (then k2"1k2 D 2=a; k2"3k2 D �2.a C
1/=a). Recall that k; �ka=.a C 1/ 2 Z>0. By (39) one has e2 � k; e3 �
�ka=.a C 1/ and k�k2 D 2.� C �; �/, that is

e2
1=a C e2

2 � a C 1

a
e2

3 D 4jk:

Recall that j > 0. By (42), e2; e3 � 2j , so we obtain e1 D 0; e2 D 2j D
k; e3 D 2j D �ka=.a C 1/. If a 6D �1

2
this is impossible. For a D �1

2
we get

� D j.ı � 2"2 � 2"3/, which does not lie in Z�0…s for s D 1; 3; 4. Hence (40)
contradicts (39) for …i with i D 1; 3; 4. �

11.6.3. Proof of Theorem 11.3.4. By (40), 2.�… C �L; 
/ D k
k2. The con-
dition (C) implies �L D �1 � �2, where .�1; 
/ � 0 (since 
 2 Z�0….L/) and
.�2; 
/ � 0 (by (41)). Hence .�L; 
/ � 0, that is

2.�…; 
/ � k
k2:
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Let sı be the minimal imaginary root in �.L/ (ı is the minimal imaginary
root in �). Write P….L/0 D P� [ � 00 and recall that k˛k2 62 Q>0 for ˛ 2 � 00.

Write 
 D j.sı/ � 
0 � 
00, where 
0 2 Q P�; 
00 2 Q� 00. From (Fin)
(see §11.6) we deduce from the condition (41) that


0 2 Q�0 P�; 
00 2 Q�0� 00:

Note that j.sı/�
0 D 
C
00 2 Z�0….L/ because � 00 � Z�0….L/. Therefore
j.sı/ � 
0 2 Q� \ Z�0….L/.

We claim that j.sı/ � 
0 2 Q�0� . Indeed, write � D P� [ f˛]
0g. One has

j.sı/ � 
0 D j˛
]
0 C

X
˛2 P�

y˛˛ D j
X

ˇ2supp.˛
]
0/

x
˛

]
0;ˇ

C
X
˛2 P�

X
ˇ2supp.˛/

y˛x˛;ˇ ˇ:

In the light of assumption (B), the coefficient of the root b.˛/ is equal to
y˛x˛;b.˛/; thus j.sı/ � 
 2 Z�0….L/ gives y˛xb.˛/ � 0, so y˛ � 0. Hence
j.sı/ � 
0 2 Q�0� , as required.

Set k WD .�; sı/. Then k D .�; ˛
]
0/, so .
; ˛

]
0/ � k by (39). Using (41) we

get

k
k2

Dkj.sı/ � 
0k2 C k
00k2 � kj.sı/ � 
0k2

Dj.j.sı/ � 
0; ˛
]
0/ C

X
˛2 P�

y˛.j.sı/ � 
0; ˛/

Dj.
; ˛
]
0/ C

X
˛2 P�

X
y˛.
; ˛/ � jk:

Since 2.�; 
/ D 2jk we obtain j D 0, so 
 D �
0 � 
00. Since 
 2
Z�0….L/ with 
0 2 Q�0 P�]; 
00 2 Q�0 P� 00 we get 
 D 0, a contradiction. �

11.7. Proof of Theorem 11.2.5

Let L be a non-critical g-module such that for each connected component �i of
�.L/ one has either .F.L/; �i / D 0 or F.L/ is �i

0
-integrable and �i -typical

(i.e., .F.L/; ˇ/ 6D 0 for each ˇ 2 �i ).
We want to prove that (35) holds.
By Lemma 10.2.4, Z0 does not depend on the choice of … and is preserved

by � (Z0.L/ D Z0.L0/ if L0 � L).
Decompose �.L/ in the union of irreducible components �.L/ D `

�j .
By (38), we can decompose �… � � D P

�j with �j 2 Z�j . This decom-
position might be not unique (even for fixed …): �s is uniquely defined if �s
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is finite, but �s � �0
s 2 Zı for different decompositions of �, if �s is affine.

By (38), there exists a decomposition, where �j 2 Z.�j \ �C/.
Note that �rˇ… D � if ˇ 62 �.L/ or .�…; ˇ/ D 0, and �rˇ… D � � ˇ

otherwise. In particular, if .�…; �j / D 0 for some …, then this holds for each
….

Assume that .�…; �j / D 0. We claim that for any two decompositions �…�
� D P

�s and �…0 �� D P
�0

s one has �j ��0
j 2 Zı (in particular, �j D �0

j

if �j is finite). Indeed, it is enough to consider the case …0 D rˇ … and �… 6D
�…0 . Then �…0 D � � ˇ and .�…; ˇ/ 6D 0, that is ˇ 62 �j . Therefore there
exists a decomposition �…0 � � D P

�00
s with �00

j D �j ; since �00
j � �j 2 Zı

the claim follows.
Let us show that

(43) .�…; �j / D 0 H)
�

�j 2 Zı; if �j 6D A.m; n/.1/; C.m/.1/;

�j 2 Zı C Z�j ; if �j D A.m; n/.1/; C.m/.1/;

where for �j D A.m; n/.1/; C.m/.1/ the element �j 2 Z�j is such that
.�j ; �

j

0
/ D 0.

Take j such that .�…; �j / D 0. Since .�j ; �s/ D 0 for s 6D j , (39) gives

(44) .�j ; ˛_/ � 0 for each ˛ 2 …0.L/ \ �s:

11.7.1. Assume that �j is finite and Q�j D Q�
j

0
. Then, from (Fin) (see

§11.6), �j 2 �.Q�
j

0
\ �C/; since �j 2 Z.�j \ �C/, we get �j D 0, as

required.
Assume that �j is affine and Q�j D Q�

j

0
. Then, from (Aff) (see §11.6),

�j 2 Zı, as required.
Assume that �j is A.m; n/.1/; C.n/.1/. Since L is non-critical, .�L; ı/ 6D 0,

so the case A.n; n/.1/ is excluded. Let �j be of type A.m; n/.1/ with m 6D n,
or C.n/.1/. In this case Q�j lies in Q�

j

0
C Z�j , where �j 2 h� is orthogonal

�
j

0
. Combining (Aff) and (44) we obtain �j 2 Zı C Z�j , as required.

11.7.2. Now consider the remaining case �j D A.m; n/; C.m/. By above, �j

is uniquely defined, and, in particular, does not depend on ….
One has Q�j D Q�

j

0
C Z� , where � 2 h� is orthogonal �

j

0
. Combining

(Fin) in §11.6 and (44) we obtain �j D x� � �0, where �0 2 QC…
j
0 . Since

�j 2 Z�0…j for each …, we obtain x� 2 Z�0…j for each …. Thus for each
set of simple roots … the corresponding set of simple roots …j (the set of simple
roots for �j \ �C.…/) is such that x� 2 Z�0…j .
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Consider the root "1�ı1 in A.m; n/ or C.m/. Assume that this root is simple
in �, i.e., lies in a set of simple roots …. If …j is the set of simple roots in
�j \�C.…/, then r"1�ı1

.…j / is the set of simple roots in �j \�C.r"1�ı1
…/.

Write � D n
Pm

iD1 "i � m
Pn

iD1 ıi for A.m; n/ and � D �ı1 for C.m/. Since
x� 2 Z�0…j and "1�ı1 2 …j , one has x � 0; similarly, x� 2 Z�0r"1�ı1

.…j /

gives x � 0. Hence x D 0. Since x D 0, we have �j D ��0 2 �QC…
j
0 .

Combining with �j 2 Z�0…j , we get �j D 0.
It remains to show that "1 � ı1 lies in some set of simple roots for �. If �

is of type A.m0; n0/, C.n0/ or A.m0; n0/.1/, C.n0/.1/, then any odd root lies in a
set of simple roots, so this holds.

Let us show that for other root systems � this can be achieved for some L0 �
L. Denote by 
L the embedding A.m; n/ ! � with the image �j . Since m; n >

1, � is not exceptional or affinization of exceptional. In the light of Lemma 13.4
the root 
L."1 �ı1/ or 
L.ı1 �"1/ 2 X (see Lemma 13.4 for notations). We may
(and will) assume that 
L."1 �ı1/ 2 X . Denote by �0 the connected component
of �0 containing ı1 � ı2 and by � 0 its set of simple roots .� 0 � …0). Take
˛ 2 � 0. If ˛ 2 �.L/ and .˛; ˇ/ 6D 0, then ˛ 2 �j , and so ˛ 2 …

j
0 (since

˛ 2 …0), which implies .ˇ; ˛_/ D �1. As a result, if ˛ 2 � 0 is such that
.ˇ; ˛_/ > 0, then ˛ 62 �.L/, and we can apply the Enright functor T˛.a/

to L. Set L0 WD T˛.a/.L/. Clearly, �.L0/ D r˛.�.L// and 
L0 D r˛
L. In
particular, r˛�j D A.m; n/ and the 
L0."1 � ı1/ D r˛ˇ < ˇ. By Lemma 13.4,
repeating this procedure we obtain L00 � L, where ˇ00 WD 
L00."1 � ı1/ is an
essentially simple isotropic root (see §13.1), that is ˇ00 2 … for some … (and

L00.ı1 � "1/ 2 …0 for …0 D rˇ 00.…/).

11.7.3. Now fix … and let �… C �L � 
 2 supp.Z/. From Corollary 7.3.4 it
follows that 
 can be decomposed as a sum 
 D P


j with

(45) 2.�… C �L; 
j / D k
j k2; 
j 2 Z�0.�j \ �C/

and, moreover, that �… C �L � 
j 2 W.�j /.�… C �L/ if the restriction of �…

to �j is typical, i.e., .�… C �L;…; ˇ/ 6D 0 for each ˇ 2 �j .
Consider the case when the restriction of �… to �j is typical, i.e., .�… C

�L;…; ˇ/ 6D 0 for each ˇ 2 �j . By above, �… C �L � 
j 2 W.�j /.�… C
�L/ and �… C �L is …0.L/-maximal in its W.�j /-orbit by Theorem 11.1.1.
Since .
 � 
j ; �j / D 0, �… C �L � 
 2 W.�j /.�… C �L � .
 � 
j // and
�… C �L � .
 � 
j / is …0.L/-maximal in its W.�j /-orbit. Therefore Z 2
RW.�j /. Since Z is W.�j /-skew-invariant (see Corollary 10.2.2), we conclude
that �…C�L�.
�
j / 2 supp.Z/. Note that �…C�L�.
�
j / >… �…C�L�
.

Now let �… C �L � 
 be a maximal element in supp.Z/ with respect to the
order 
0 � 
00 if 
0 � 
00 2 Z�0�C. Then �… � 
 is a maximal element in
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supp.Z0/ with respect to the same order and so is a …0.L/-maximal element in
its W.L/-orbit. By above, 
j D 0 for each j such that the restriction of �… to
�j is typical.

Let us show that 
j D 0 for each j . By the assumption .�…; �j / D 0. Then,
by (43), 
j D 0 if �j is finite and 
j D kj ı if �j 6D A.m; n/.1/; C.m/.1/ is
affine; in the latter case, since �j is not critical, .�L; ı/ 6D 0, so (45) forces
kj D 0. If �j D A.m; n/.1/ or C.m/.1/, then 
j D xj �j C kj ı. In the light
of Lemma 13.3, (45) forces 
j D 0 for �j D A.m; n/.1/. For �j D C.n/.1/

we can (and will) normalize the form in such a way that k˛k2 � 0 for ˛ 2 �j ;
then k�j k2 < 0 and .�L; 
j / � 0 since 
j 2 Z�0.�j \ �C/. Now (45) forces
xj D 0, that is 2.�L; kj ı/ D 0; hence 
j D 0, as required.

We conclude that 
 D 0, a contradiction. �

12. Examples: g� of type A.1; 1/.1/ and B.1; 1/.1/

In this section we establish the KW-formula in two more cases: g� is of types
A.1; 1/.1/ or B.1; 1/.1/.

12.1. Case g D gl.2; 2/.1/; sl.2; 2/.1/; psl.2; 2/.1/

Consider … D f˛0; ˛1; ˛2; ˛3g, where k˛ik2 D 0 and .˛i ; ˛iC1/ 6D 0 (where
˛4 D ˛0). Let ƒ0; ƒ1; ƒ2; ƒ3 be the corresponding fundamental
weights, i.e., .ƒi ; j̨ / D ıij . Let L D L.�; …/ be a non-critical module
and �.L/ Š �. We show that (35) holds if L is a non-critical module such
that F.L/ Š L.�0; …/, where �0 D k0ƒ0 C k2ƒ2 or � D k0ƒ0 C k1ƒ1,
k0; k1; k2 2 Z�0.

Note that we do not assume that � is of above form (or that ….L/ Š …).

12.2. Marked diagrams

Fix a irreducible highest weight module L. For each … take � such that L D
L.�; …/. Consider the Dynkin diagram of ….L/ and assign to each edge ˛ � ˛0
the scalar product .˛; ˛0/ and to each node ˛ the number x˛ WD .� C �…; ˛/

(which is integral).
We call the diagram ….L/ endowed by these numbers a marked diagram

D.L; …/ corresponding to .L; …/.

12.2.1. If ˇ is an odd node of a marked diagram ….L/, we define the action
of rˇ on the marked diagram D.L; …/ in such a way that rˇ � D.L; …/ D
D.L; rˇ …/ in the case when ….L/ D …. This means that
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� the nodes connected to ˇ change their parity and other nodes (including ˇ)
preserve the parity;

� the scalar products between the node corresponding to ˇ and other nodes
change to the opposite; other scalar products do not change;

� the mark xˇ of ˇ is changed to �xˇ ; if the mark xˇ 6D 0, the new mark of
the node ˇ0 connected to ˇ is xˇ C xˇ 0 , and if xˇ D 0, the new marks of the
node ˇ0 connected to ˇ is xˇ 0 C .ˇ; ˇ0/; other marks do not change.

12.2.2.

Example 1. The second diagram is obtained from the first one by the reflection
with respect to the upper-right node:

12.2.3. By §7.5.4, D.L; rˇ …/ D rˇ � D.L; …/ if ˇ 2 … and D.L; rˇ …/ D
D.L; …/ otherwise.

We say that two marked diagrams D; D0 are connected by an odd reflection
if D0 D rˇ D for some odd node ˇ 2 D.

Denote by DM.L/ the set of marked diagrams D.L0; …0/ for all …0 (com-
patible with …0) and all L0 such that L � L0. One readily sees that any two
diagrams in DM.L/ are connected by a chain of odd reflections rˇ �. In Corol-
lary 12.2.5 below we show that if D 2 DM.L/ and v 2 D is an odd node, then
sv �D 2 DM.L/. This implies that DM.L/ is the set of diagrams obtained from
D by the action of chains of odd reflections; in particular, DM.L/ D DM.L0/
if DM.L/ \ DM.L0/ is non-empty. Take a pair .L; …/ and let L0 be such that
D.L; …/ D D.L0; …/ with �.L0/ D �. Then L0 is partially integrable and
DM.L/ D DM.L0/.

12.2.4. Lemma. For each odd node of the marked diagram D 2 DM.L/ there
exists a pair .L0; …0/ such that L � L0, D.L0; …0/ D D and the root in …0.L0/
which corresponds to this node is simple, i.e., lies in …0.

Proof. Let D D D.L; …/ and let ˇ 2 ….L/ be the root corresponding to the
odd node in D. We prove the assertion by induction on ht….ˇ/.

If ht… ˇ D 1, then ˇ 2 …, as required.
If ˇ is of the form ˇ D jı C ˇ0 for ˇ0 2 …; j 2 Z>0, then ˇ0 62 ….L/

and for …0 WD rˇ 0… one has …0.L/ D ….L/. Moreover, htˇ D 4j C 1 and
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ht…0 ˇ D 4j � 1, because ˇ0 2 …0, so ht…0.ı C ˇ0/ D 3. Hence ht…0 ˇ < ht… ˇ

and the assertion follows by induction.
Assume that ˇ 6D jı C ˇ0 for ˇ0 2 …; j 2 Z�0. Take ˛ 2 …0 such that

k˛k2 D 2 and r˛ˇ < ˇ (thus .˛; ˇ/ D 1). Note that ˛ 62 ….L/, because for
˛; ˇ 2 ….L/ one has r˛ˇ � ˇ. Since ˛ 2 …0, one has 1 � ht… ˛ � 3.

If ht… ˛ D 1, i.e., ˛ 2 …, then ˛ 62 �.L/ (because ˛ 62 ….L/). Applying
the Enright functor T˛ (see §8) we have

….T˛.L// D r˛….L/; D.T˛.L/; …/ D D.L; …/

and the node corresponding to ˇ is r˛ˇ D ˇ � t˛; t > 0. Thus ht… r˛ˇ D
ht… ˇ � t < ht… ˇ and the assertion follows by induction.

Assume that ht… ˛ D 2. Then ˛ D ˛1 C ˛2, where ˛1; ˛2 2 … are odd
roots and .˛1; ˛2/ D 1. If ˛1; ˛2 2 ….L/, then ….L/ contains three odd roots
ˇ; ˛1; ˛2 and since .˛1; ˛2/ D 1 one has f.ˇ; ˛1/; .ˇ; ˛2/g D f0; �1g that is
.ˇ; ˛1 C ˛2/ D �1, a contradiction. Thus at least one of the roots ˛1; ˛2, say
˛1, is not in ….L/. Since � contains two non-orthogonal odd roots, it contains
only odd roots, so ˇ D jı ˙ ˇ0 for some ˇ0 2 …; j 2 Z>0. From the above
assumption we obtain ˇ D jı � ˇ0. Since ˇ 2 ….L/ one has ˇ0 62 ….L/.
Moreover, .ˇ; ˛1 C ˛2/ D .˛1; ˛2/ forces ˇ0 62 f˛1; ˛2g. For …0 WD r˛1

… one
has ˛ 2 …0, …0.L/ D ….L/. Since ˛1 6D ˇ0, one has ht…0.ı�ˇ0/ � ht….ı�ˇ0/
so ht…0 ˇ � ht… ˇ. Since ˛ 2 …0, the assertion follows by induction from the
above.

Now assume that ht… ˛ D 3, i.e., ˛ D ˛1 C ˛2 C ˛3, where ˛i 2 … is
odd for i D 1; 3 and even for i D 2. One readily sees that k˛k2 D 2 forces
k˛2k2 D �2. Since .ˇ; ˛/ D 1, ˇ is of the form jı C ˛i or jı C ˛i C ˛2 for
i 2 f1; 3g and j 2 Z�0. From the above assumption we get ˇ D jı C ˛i C ˛2.
Since ˇ 2 ….L/, one has ˛i 62 ….L/. Set …0 WD r˛i

…. One has …0.L/ D ….L/

and ht…0 ˇ < ht… ˇ since 1 D ht…0.˛i C ˛2/ < ht….˛ � i C ˛2/ D 2. The
assertion follows by induction. �

12.2.5. Corollary. If D 2 DM.L/ and v is an odd node of D, then sv � D 2
DM.L/.

In the light of Corollary 12.2.5 it is enough to verify formula (35) for one set
of simple roots ….L/ (if the formula holds for L and F.L/ Š F.L0/, then the
formula holds for L0). We check the formula for the cases � D kƒ0 Cjƒ2; � D
kƒ0 C jƒ1, k; j 2 Z�0; k C j 6D 0, where ….L/ consists of odd roots (in
particular, � D 0).

12.2.6. Case � D k0ƒ0 C k2ƒ2; k0; k2 2 Z�0; k0 C k2 6D 0. In this case,
F.L/ is integrable and .� C �; ˛i / D 0 for i D 1; 3. Set S WD f˛1; ˛3g and
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Z.…/ is the expansion of

(46) Z.…/ WD Re� ch L � FW.�/

� e.�C�/Q
ˇ2S .1 C e�ˇ /

�

in R.…/. Arguing as in §4, we obtain that the …-maximal element in
supp Z.…/ is � � �, where � 2 ZS , that is � D a1˛1 C a3˛3. where a1; a3 �
0; a1 Ca3 6D 0. By Lemma 12.2.4, we can assume that ˛1 is a simple root. Then
L.�; …/ D L.�; r˛1

…/. Since � C � � .a1 � 1/˛1 � a3˛3 62 supp Z.…/ and
� C � � a1˛1 � a3˛3 62 supp Z.…/, Lemma 2.2.9 gives � C � � .a1 � 1/˛1 �
a3˛3 2 supp Z.…0/ or �C��a1˛1 �a3˛3 2 supp Z.…0/, where …0 WD r˛1

….
It is easy to see that supp Z.…0/ � � C �0 � Z�0…0, so �.a1 � 1/˛1 � a3˛3

or �a1˛1 � a3˛3 lie in �0 � Z�0…0 D ˛1 � Z�0…0; since �˛1; ˛3 2 …0, we
obtain a1 � 0, that is a1 D 0. Similarly, a3 D 0, a contradiction. Hence supp Z

is empty, that is Z D 0 and (35) holds.

12.2.7. Case � D kƒ0Cjƒ1; k; j 2 Z�1. In this case F.L/ is �[f˛0C˛1g-
integrable, where � D f˛0 C ˛3; ˛1 C ˛2g Š A

.1/
1 . Set S WD f˛2g and define

Z WD Z.…/ as in (46). Arguing as in §4, we obtain that the …-maximal element
in supp Z is of the form � � �, where � 2 Z�0….L/; � 6D 0, k�k2 D 2.�; �/

and .� � �; ˛_/ � 0 for ˛ 2 � [ f˛0 C ˛1g.
Set

˛1 D "1 � ı1; ˛2 D ı1 � "2; ˛3 D "2 � ı2; ˛0 D sı � "1 C ı2

(ı is the minimal imaginary root in �, sı is the minimal imaginary root in
�.L/). Note that � WD ˛1 C ˛3 is orthogonal to �.L/. Write

� D a.sı/ C b� C .d1 C d2/"2 � d1ı1 � d2ı2

D a˛0 C .a C b/˛1 C .a � d1/˛2 C .a C b C d2/˛3:

The condition � 2 Z�0….L/ gives

a; b; d1; d2 2 Z; a; a C b; a � d1; a C b C d2 � 0:

The above conditions .� � �; ˛_/ � 0 give d1 � d2; �j � d1 C d2 � k.
The condition k�k2 D 2.�; �/ is equivalent to

d1d2 D ka C j.a C b/:

Since a; aCb � 0 one has d1d2 � 0. If d1Cd2 � 0, then the above inequalities
imply 0 � d1 � a; d1 C d2 � k, so d1d2 C d2

1 � ka and thus d1 D d2 D 0.
If d1 C d2 < 0, then d1; d2 < 0 and the above inequalities imply �d2 �
a C b; �d1 � d2 � j , so d1d2 C d2

2 � j.a C b/ and thus again d1 D d2 D 0.
Therefore d1 D d2 D 0 and thus a D a C b D 0 (since j; k > 0). Hence
� D 0, a contradiction, so (35) holds.
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12.3. Case gL D B.1; 1/.1/

Let g be an affine Lie superalgebra and L be a g-module such that �.L/ D
B.1; 1/.1/ and F.L/ satisfies the KW-condition. The case of typical F.L/ was
considered in §9. Below we establish the KW-character formula for atypical
case when the KW-condition holds and F.L/ is �-integrable for “sufficiently
large” � (in the standard notation � D f2ı1; ı � 2ı1g or � D f"1; ı � "1; 2ı1g).

12.3.1. Consider the embedding 
L W B.1; 1/.1/ ! � given by the identification
�.L/ Š B.1; 1/.1/.

Recall (see §13.1) that a root is called essentially simple if it lies in some set
of simple roots. Let ˇ 2 B.1; 1/.1/ be an isotropic essentially simple root; let us
show that for some L0 � L the root 
L0.ˇ/ is essentially simple.

Indeed, the non-isotropic roots of B.1; 1/.1/ are A
.1/
1 	 B.0; 1/.1/; each es-

sentially simple root of B.1; 1/.1/ is of the form ˙.˛1 � ˛2/, were ˛1 (resp.,
˛2) is a simple root of A

.1/
1 (resp., of B.0; 1/.1/). Assume that 
L.˛1/ 62 …0.

Then there exists 	 2 …0 such that r� 
.˛1/ < ˛1 (see §2.1.3 for <); note that
	 62 
.�.L// (since r˛0˛ � ˛ for ˛0 2 …0.L/ n f˛g) and that r�˛2 D ˛2. For
L0 WD T� .L/ we have 
L0.˛1/ < 
L.˛1/ and 
L0.˛2/ D 
L0.˛2/. A similar rea-
soning works if 
L.˛2/ 62 …0. Hence there exists L0 such that 
L0.˛1/; 
L0.˛2/ 2
…0. By §13.1.2, 
L0.˛1/ � 
L0.˛2/ is an essentially simple root, as required.

12.3.2. Now assume that L D L.�; …/ is such that F.L/ satisfies KW-condi-
tion. Let us show that for some set of simple roots …0 of � and some L0 � L

one has L0 D L.�0; …0/, where .�0 C �; ˇ0/ D 0 for some ˇ0 2 …0.
Since F.L/ satisfies KW-condition and gL D B.1; 1/.1/, one has .� C

�; 
L.ˇ// D 0, where ˇ 2 B.1; 1/.1/ is essentially simple.
Indeed, if this does not hold, then for all L0 � L the value �0 C �0 does not

depend on …0 (i.e., if L0 D L.�0; …0/ D L.�00; …00/, then �0 C �0 D �00 C �00).
Then taking L0 D T�1

� � � T�s
.L/ as above, we obtain L0 D L.�0; …0/, where

�0 C �0 D w.� C �/, and 
L0.ˇ/ D w
L.ˇ/, where w WD r�1
� � � r�s

. Hence
.�0 C �0; 
L0.ˇ// D 0. Since ˇ0 WD 
L0.ˇ/, we can choose …0 containing ˇ0 and
L0; …0 satisfies our requirements.

12.3.3. By above, we can (and will) assume that L D L.�; …/ is such that
.� C �; ˇ/ D 0 for some ˇ 2 ….

For B.1; 1/.1/ there are three sets of simple roots:

…1 WD fı � ı1 � "1; "1 � ı1; ı1g; …2 WD fı � 2ı1; ı1 � "1; "1g;
…3 WD fı1 C "1 � ı; ı � 2ı1; ı � "1g
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and the set …1 can be obtained from …2 (resp., from …3) by an odd reflection
with respect to the unique isotropic root in …2 (resp., in …3). Hence we can
(and will) assume that ….L/ Š …1; we identify ….L/ and …1.

If F.L/ is integrable, (35) follows from Theorem 11.2.2 (since S D fˇg �
… and …1 satisfies the conditions of §4).

12.3.4. Now consider the case when F.L/ is non-critical �-integrable, where
� D fı � "1; "1; 2ı1g (subprincipal case in [KW4]). The formula for � D 0 is
proved in Theorem 11.2.5, so we assume that � 6D 0. We will show that if � 6D 0

and KW-condition holds, i.e., .� C �; ˇ/ D 0 for some ˇ 2 ….L/, then

(47) Re� ch L D 1

2
FW.�/

� e�C�

1 C e�ˇ

�
:

This implies (35).

12.3.5. Set y0 WD .�; ı � ı1 � "1/; y1 WD .�; "1 � ı1/; y2 WD .�; ı1/. The
module L.�; …1/ is �-integrable if and only if either � D 0 or it is one of the
following cases, cf. [KW4]:

y1 D y2 D 0; �2.y0 C 1/ 2 Z�0I
y0 D y2 D 0; �2.y1 C 1/ 2 Z�0I
y0; y1 6D 0; 2y2; �2.y0 C y2 C 1/; �2.y1 C y2 C 1/ 2 Z�0:

KW-condition holds for first two cases and does not hold for atypical mod-
ules in the third case (since y0; y1 6D 0). Note that B.1; 1/.1/ admits an auto-
morphism given by "1 7! ı � "1; ı1 7! ı1, which interchanges the isotropic
roots of …1; this automorphisms interchanges the first and the second cases. For
the third case KW-condition does not hold.

Therefore we may (and will) consider the first case (when y1 D y2 D 0, i.e.,
F.L/ is a vacuum module). In this case ˇ D "1 � ı1. Since � is non-critical,
y0 6D �1. Hence

y1 D y2 D 0; 2y0 2 Z; y0 < �1:

Using the denominator identity for B.1; 1/ (see (18)) we rewrite (47) in the
form

Re� ch L D FW.� 0/

� e�C�

1 C e�ˇ

�
;

where � 0 WD fı � "1; "1g Š A
.1/
1 . Set ˛1 D "1; ˛0 WD ı � "1 and let r1; r0 2

W.� 0/ be the corresponding reflections.
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First, let us show that the support of the right-hand side is in �C� �Z�0…1

and that the coefficient of e�C� is equal to 1. For w 2 W.� 0/ let

Yw WD ew.�C�Cˇ/

1 C ewˇ
2 R.…1/

(i.e., Yw is the expansion in R.…1/ of the fraction in the right-hand side). It is
enough to verify that for each w 2 W.� 0/,
(48) supp Yw � � C � � Z�0…1

and for w 6D Id,

(49) � C � 62 supp Yw :

Our reasoning is based on the formula (15). One has .� C �; ˛_
1 / D �1; .� C

�; ˛_
0 / D �2y0�1 and so .r1.�C�/; ˛_

1 / D 1, .r1.�C�/; ˛_
0 / D �2y0�3 � 0.

Therefore r1.� C �/ is maximal in its W.� 0/-orbit; this establishes (48) for
w 6D Id; r1; r0r1 and (49) for the same w if y0 < �3=2; for y0 D �3=2

this gives (49) for w 6D r1; r0r1; r1r0r1. For w D r1; r0r1; r1r0r1 one has
w.�ˇ/ 2 �C.…1/ and, moreover, w.�ˇ/ �1 ı1 C "1, where �1 stands for
…1-partial order. Thus for such w one has

supp Yw � w.� C �/ C wˇ �1 r1.� C �/ C wˇ

�1 � C � C "1 � .ı1 C "1/ D � C � � ı1:

This establishes (48), (49).
Now for Z WD Re� ch L � 1

2
FW.�/.

e�C�Cˇ

1Ceˇ / we have supp Z � � C � �
Z�0…1 and � C � 62 supp Z.

Since F.L/ is �-integrable, Z is W.�/-skew-invariant. Arguing as in §11.4
we conclude that it is enough to verify that if � 2 Z�0…1 satisfies 2.�C�; �/ D
k�k2 and .� � �; ˛_/ � 0 for ˛ 2 � , then � D 0. Write

� D s0.ı � ı1 � "1/ C s1."1 � ı1/ C s2ı1; s0; s1; s2 � 0:

Then .� � �; ˛_/ � 0 for ˛ 2 � gives

s0 � s1; s0 C s1 � s2 � 0; s1 � s0 � y0

and 2.� C �; �/ D k�k2 gives

.s0 C s1 � s2/2 � .s0 � s1/2 D 2y0s0 C s2:

The last formula can be rewritten as

.s0 C s1 � s2/2 D .s0 � s1/2 C y0.2s0 � s2/ C .y0 C 1/s2:

By above, y0 < �1; 0 � s0 � s1 � �y0; 2s0 � s2, so the right-hand side is
at most .y0 C 1/s2 < �s2. Hence s2 D s0 C s1 � s2 D 0 that is � D 0, as
required. This completes the proof of (47).
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13. Appendix

Let � be a root system of a finite-dimensional basic Lie superalgebra or an
associated (untwisted or twisted) affine Lie superalgebra. As before, we fix �C

0

and consider sets of simple roots … such that �.…/C contains �C
0

.

13.1. Essentially simple roots

Let us call a root ˇ essentially simple if there exists … which contains ˇ.
The set of non-isotropic essentially simple roots coincides with the set of

simple roots for the non-isotropic part of �, see Proposition 2.1.1 (b). For
� D A.m; n/; C.n/; A.m; n/.1/ and C.n/.1/ any odd isotropic root is essen-
tially simple.

13.1.1. We say that �0 is a root subsystem of � if � (resp., �0) has a subset of
simple roots … (resp., …0) such that …0 � ….

Note that if �0 is a root subsystem of �, then the essentially simple roots of
�0 are essentially simple for � (if ˇ is essential for �0, then ˇ lies in a subset
of simple roots for �0 which is obtained from …0 by a chain of odd reflections;
therefore ˇ lies in a subset of simple roots for � which is obtained from … by
the same chain of odd reflections).

13.1.2. The following fact is useful. If ˛1; ˛2 are non-isotropic essentially sim-
ple roots and ˛1 � ˛2 is an isotropic root, then ˛1 � ˛2 is essentially simple (for
instance, � D B.m; n/ and ˛1 D "m; ˛2 D ın).

Indeed, let …i be a set of simple roots containing ˛i . Since ˛1 � ˛2 2
�, …1 6D …2. Since ˛1; ˛2 2 �C.…i / for i D 1; 2 we have ˛1 � ˛2 2
�C.…2/; ˛2 � ˛1 2 �C.…1/. Recall that …1 can be obtained from …2 by a
chain of odd reflections. Since for an odd reflection r� we have

�C.r�…/ D .�C.…/ n f	g/ [ f�	g;
r˛1�˛2

is one of the reflections in this chain. Hence ˛1�˛2 is essentially simple.

13.2. Finite parts

Let X be an affine Dynkin diagram. We call its connected subdiagram PX its
finite part, if X n PX contains exactly one root. By Lemma 3.1.1, PX is of finite
type. We call a root subsystem P� a finite part of the affine root system � if P�
has a subset of simple roots P… which is a finite part of a subset of simple roots
for �.

In this section we will describe the finite parts of affine root systems.
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Let � 6D F.4/.1/; G.3/.1/ and P� be a finite part of �. We will show that each
set of simple roots P… such that P� D �. P…/ is a finite part of some … (where
� D �.…/). Moreover, we will show that each P… can be uniquely extended
to …: if P� D �. P…/, then there exists a unique subset of simple roots … for
� containing P…; moreover, P… Š P…0 forces … Š …0: if there exists a .�; �/-
preserving map 
 W P� ! P�0 such that 
. P…/ D P…0, then 
 can be extended to a
.�; �/-preserving map Q
 W � ! � such that 
.…/ D …0.

Now let X be a disjoint union of Dynkin diagrams of affine Lie algebras.
We call PX � X a finite part of X if for each connected component Xj of X ,
PX \ Xj is a finite part of Xj . From the description of finite parts given below

it follows that for � 6D F.4/.1/; G.3/.1/ the following holds: if P� is a finite part
of �, then P�0 is a finite part of �0.

13.2.1. The finite part of X
.1/

l
is Xl if X D A; C; D. The finite parts of other

relevant to this paper affine Lie algebras are given by the following tables:

B
.1/
k

A
.2/
2k

A
.2/
2k�1

D
.2/
kC1

G
.1/
2

Bk ; Dk Bk ; Ck Ck ; Dk Bk G2

We claim that the finite parts of affine root systems for classical affine Lie
superalgebras, which are not Lie algebras, are given by the following tables:

A.k; l/.1/ B.0; l/.1/ B.k; l/.1/; k > 1 C.k/.1/ D.k; l/.1/

A.k; l/ B.0; l/; C.l/ B.k; l/,D.k; l/ C.k/ D.k; l/

A.2k; 2l � 1/.2/ A.2k � 1; 2l � 1/.2/ A.2k; 2l/.4/ D.k C 1; l/.2/ C.l C 1/.2/

B.k; l/; D.l; k/ D.k; l/; D.l; k/ B.k; l/; B.l; k/ B.k; l/ B.0; l/

where we take D.1; n/ WD C.n C 1/; D.1; 1/ WD A.1; 0/.
The finite parts of G.3/.1/ are G.3/; D.2; 1; �3

4
/; A.2; 0/; the finite parts of

F.4/.1/ are F.4/; A.3; 0/; the finite part of D.2; 1; a/.1/ is D.2; 1; a/.

13.2.2. Let P� be a finite part of �. By definition, P� has a subset of simple roots
P… which is a finite part of a subset of simple roots for �, which we denote by
…. Since any other subset of simple roots for P� can be obtained via a chain of
odd reflections, any subset of simple roots P…0 of P� is a finite part of some …0.
Let us show that …0 is unique and that P… Š P…0 implies … Š …0: i.e., if there
exists a .�; �/-preserving map 
 W P� ! P�0 such that 
. P…/ D P…0, then 
 can be
extended to a .�; �/-preserving map Q
 W � ! � such that 
.…/ D …0.

For � D A.m; n/.1/ all Dynkin diagrams are cycles and the sum of all
simple roots is ı; hence P… determines ….

Since any set of simple roots for P� are connected by a chain of odd reflec-
tions, it is enough to verify the assertion for one choice of P…. Let P… be a finite
part of …. Denote the unique root in … n P… by ˛0.
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Consider the case � 6D A.m; n/.1/; F .4/.1/; G.3/.1/. For each … any proper
connected subdiagram of … is of finite type which is not F.4/; G.3/. Hence any
proper connected subdiagram has at most one branching node ˇ, this node has
three branches, two of these branches have length one (excluding the “branch-
ing” point) and consist of the nodes 	1, 	2 respectively with k	1k2 D k	2k2;

.	1; ˇ/ D .	2; ˇ/, which are connected if and only if k	1k2 D 0.
It is not hard to show that P� 6D A.k; l/ for .k; l/ 6D .1; 1/. Therefore P� is

B.k; l/ or D.k; l/. Take P… D f"1�"2; : : : ; "k �ı1; : : : ; aılg (a D 1 for B.k; l/,
a D 2 for D.k; l/) and write ˛1 WD "1 � "2; : : : ; ˛kCl WD aıl . If in … the node
˛0 is connected to a node which is not ˛1, then, by above, … n f˛1g is of type
A; B; C; D and contains ˛kCl D aıl ; then .˛0; ˛i / D 0 for i > 2 and ˛2 is a
“branching” node; since … n f˛lg is of finite type, k˛0k2 D k˛1k2; .˛0; ˛2/ D
.˛1; ˛2/ and .˛1; ˛2/ D 0; hence … is uniquely defined (and it is of the type
B.k; l/.1/, D.k; l/.1/ respectively). Consider the remaining case when ˛0 is
connected only to ˛1; then the subdiagram ˛0 � ˛1 can be one of the following:

˝ � �I � � �I � H) �I � (H �I � � �:

For P… D B.k; l/ the above subdiagrams correspond to … of the types B.k; l C
1/; B.k C 1; l/; A.2k; 2l � 1/.2/; D.k C 1; l/.2/ and A.2k; 2l/.4/ respectively.
For P… D D.k; l/ the above subdiagrams corresponds to … of the types D.k; lC
1/; D.kC1; l/; A.2k�1; 2l �1/.2/; B.k; l/.1/ and A.2l; 2k�1/.2/ respectively.
We conclude that in each type of � the set of simple roots … containing P… is
uniquely defined (up to isomorphism).

13.2.3. Root systems F.4/; F.4/.1/. Recall that the non-isotropic roots of
F.4/ are B3 	 A1.

The root system F.4/ has 6 sets of simple roots, which are pairwise non-
isomorphic; the root system F.4/.1/ has 7 sets of simple roots, among them 4

non-isomorphic.
The finite parts of F.4/.1/ are F.4/ and A.3; 0/. Each … for F.4/.1/ con-

tains P… of type F.4/ and each P… of type F.4/ can be uniquely, up to isomor-
phism, extended to some … for F.4/.1/. Only 4 (out of 7) sets of simple roots
for F.4/.1/ contain P… of the type A.3; 0/; three of these sets of simple roots are
non-isomorphic and each P… of the type A.3; 0/ can be uniquely, up to isomor-
phism, extended to some ….

There are 4 subsets P…1; : : : ; P…4 of simple roots for F.4/ satisfying k˛k2 �
0 for each ˛ 2 P…; there are three subsets …1; …2; …3 of simple roots for
F.4/.1/ satisfying k˛k2 � 0 for each ˛ 2 … ( P…i � …i ); one has …1 Š …3.
If we consider the affine root ˛0.i/ WD …i n P…i (i D 1; 2; 3), then ˛0.1/; ˛0.2/

are long roots in B3 and ˛0.3/ is isotropic.
Each of the sets …1; …2; …3 contains a finite part A.3; 0/: if we denote by

˛0.i/0 the corresponding affine root, then this root is isotropic for …1; …3 and
is a short root for …2.
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13.2.4. Root systems G.3/; G.3/.1/. The non-isotropic roots of G.3/ are G2 	
B.0; 1/. We write G2 in terms "1; "2; "3 subject to the relations "1 C "2 C "3 D
0; k"1k2 D k"2k2 D k"3k2; we choose the set of simple roots "2 � "3; "3. For
B.0; 1/ we take the simple root ı1 with kı1k2 D �k"ik2. Then the isotropic
roots are ˙ı1 ˙ "i ; i D 1; 2; 3.

The sets of simple roots for G.3/ are the following:

ı1 C "1; "2 � "3; "3I
� ı1 � "1; "2 � "3; ı1 � "2I
"3; ı1 � "3; �ı1 C "2I
ı1; �ı1 C "3; "2 � "3:

Recall that we call an isotropic root essentially simple if it lies in some set of
simple roots. The set of essentially simple roots for G.3/ is f˙.ı1 C"1/I ˙.ı1 �
"2/I ˙.ı1 � "3/g.

The non-isotropic roots of G.3/.1/ are G
.1/
2 	 B.0; 1/.1/. Using the above

notations, we write the set of simple roots for G
.1/
3 (resp., for B.0; 1/.1/) as

ı C "1 � "2; "2 � "3; "3 (resp., ı � 2ı1; ı1). Here is the sets of simple roots for
G.3/.1/ and their finite parts:

ı � 2ı1; ı1 C "1; "2 � "3; "3I G.3/; D
�
2; 1; �3

4

�
;

ı � ı1 C "1; �ı1 � "1; "2 � "3; ı1 � "2I G.3/; D
�
2; 1; �3

4

�
; A.2; 0/;

ı C "1 � "2; "3; ı1 � "3; �ı1 C "2I G.3/; D
�
2; 1; �3

4

�
; A.2; 0/;

ı C "1 � "2; ı1; �ı1 C "3; "2 � "3I G.3/; A.2; 0/;

� ı C ı1 � "1; ı � 2ı1; "2 � "3; ı C "1 � "2I D
�
2; 1; �3

4

�
; A.2; 0/:

The set of essentially simple roots is the union of the corresponding set for
G.3/ with f˙.ı � ı1 C "1/g.

Note that G.3/ and D.2; 1; �3
4
/ have 4 sets of simple roots; each set occurs

exactly once as a finite part of a set of simple roots for G.3/.1/ (in other words,
P… can be uniquely extended to …).

13.3.

In this subsection we will prove the following statement.

Lemma. Let � D A.m; n/.1/; m 6D n. If 
 2 Z�0.…/ is such that .
; �0/ D 0

and 2.�; 
/ D .
; 
/, then 
 D 0.
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13.3.1. We start with the following problem. Let X D .x1; : : : ; xmCn/ be a
sequence of m C n numbers, where m numbers are equal to 1 and n numbers to
�1. Let f .X/ be the “total number of disorders”:

f .X/ WD
X
i<j

1

2
.xi � xj /:

Clearly, jf .X/j � mn. Let X1; : : : ; XmCn be the sequences obtained from X

by cyclic permutations. We claim that there exist i; j such that 0 � f .Xi / < 2m

and �2n < f .Xj / � 0.
Indeed, let �.X/ be the sequence obtained from X by moving last element

to the first place: �.x/i WD xi�1 if 1 < i � m C n, �.x/1 WD xmCn. Set
fk.X/ WD f .�k.X//. Since �mCn D Id, fk has period m C n.

We claim that
PmCn�1

kD0 fk.X/ D 0 for each X . Indeed, let X be any se-
quence and s 2 f1; 2; : : : ; m C n � 1g be such that xs D 1 and xsC1 D �1;
let X 0 be the sequence obtained from X by switching xs and xsC1 (x0

i D
xi if i 6D s, x0

s D �1; x0
sC1 D 1). Then f .X 0/ D f .X/ � 2. Note that

�j .X 0/ is obtained from �j .X/ by the same operation (for different index
s) if j C s 6
 0 modulo m C n; if j C s 6
 0 modulo m C n, then for
Y WD �j .X/ we have y1 D �1; ymCn D 1 and Y 0 WD �j .X 0/ is obtained
from Y by switching y1 and ymCn. Clearly, f .Y 0/ D f .Y / C 2.m C n � 1/;
by above, if j C s 6
 0 modulo m C n, then f .�j .X 0// D f .�j .X 0// � 2.
Hence

PmCn�1
kD0 fk.X/ D PmCn�1

kD0 fk.X 0/. Since any sequence can be ob-
tained from the sequence X0 D .1; : : : ; 1; �1; : : : ; �1/ by a chain of above
operations, we obtain

PmCn�1
kD0 fk.X/ D PmCn�1

kD0 fk.X0/. One has readily
sees that

PmCn�1
kD0 fk.X0/ D 0, as required.

Note that f .�.X// D f .X/C2n if xmCn D 1 and f .�.X// D f .X/�2m

if xmCn D �1, so fiC1 � fi is 2n or �2m. Since
PmCn�1

kD0 fk.X/ D 0, fk.X/

contains positive and negative elements. If i is such that fiC1.X/ < 0 � fi .X/,
then fi .X/ < 2m, and if j is such that fj C1.X/ > 0 � fj .X/, then fj .X/ >

�2n. The claim follows.

13.3.2. Recall that a set of simple roots for A.m; n/ can be naturally encoded as
a sequence of m dots and n crosses, see §5.6): for instance, … D f"1 � "2; "2 �
ı1; ı1 � "3g is encoded by the sequence � � 	 � ; putting 1 instead of dots and
�1 instead of crosses, we obtain a sequence considered in §13.3.1. Similarly, a
set of simple roots for A.m; n/.1/ can be encoded by the same sequence viewed
as a cycle. The inverse procedure can be described as follows: to a sequence
X as in §13.3.1 we assign the Dynkin diagram of A.m; n/-type with k˛ik2 D
xiC1 Cxi for i D 1; : : : ; mCn�1 and the Dynkin diagram of A.m; n/.1/-type
with k˛ik2 D xiC1 C xi for i D 1; : : : ; m C n � 1 and k˛0k2 D x1 C xmCn.
Clearly, X and �.X/ give the same Dynkin diagram of A.m; n/.1/-type.
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13.3.3. Let … be a set of simple roots for A.m; n/.1/ and QX be the correspond-
ing cyclic sequence (which we view as a set containing mCn usual sequences).
Take a sequence X 2 QX such that �2n < f .X/ � 0. Let P… be the correspond-
ing Dynkin diagram of A.m; n/-type. Since m 6D n, we may (and will) assume
that m > n and use the standard notations for A.m; n/. We set

E WD
mX

iD1

"i ; D WD
nX

iD1

ıi :

We take the standard form .�; �/ (i.e., k"ik2 D �kıj k2 D 1). Then

2.�; E/ D �
� X

˛2 P�C

1

˛; E
�

D �f .X/:

The condition .
; �0/ D 0 is equivalent to 
 D jı C u.nE � mD/; since

 2 Z�0.…/, we have j 2 Z�0, u 2 Z 1

d
, where d WD GCD.m; n/. One has

.�; ı/ D m � n. Since .�; E � D/ D 0, we have .�; 
/ D j.m � n/ � .m �
n/u.�; E/, so 2.�; 
/ D .
; 
/ gives

2j.m � n/ C .m � n/uf .X/ D �u2mn.m � n/;

that is u2mn C uf .X/ C 2j D 0. Writing u D s=d with s 2 Z, we obtain

s2mn C 2jd2 D �df .X/s:

Since 0 � �f .X/ < 2n, we get s D 0 or s > 0 and s2mn C 2jd2 < 2nds.
One has 2d � m (because n < m), so the only solution is s D j D 0. Hence

 D 0, as required.

13.4.

Recall that an odd isotropic root ˇ is essentially simple if it belongs to a set of
simple roots.

Let � be a connected component of …0. For 
 2 h� write 
 �� r˛
 if
˛ 2 � and 
 � r˛
 2 Z>0˛, and consider the order �� on h� generated by
this (
 �� � if � D r˛1

r˛2
� � � r˛s


 with .r˛i
r˛i C1 � � � r˛s


; ˛_
i�1/ 2 Z); write


 �� � if 
 �� � or 
 D �.

Lemma. Let � be a finite or affine root system and Iso be the set of odd
isotropic roots. Let X � Iso be the set of odd isotropic roots ˇ with the following
property: for each connected component � of …0 there exists an essentially
simple root ˇ0 such that ˇ0 �� ˇ. Then Iso � .X [ .�X//.
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Proof. Let � be one of the root systems Bm; Cm; Dm with the standard nota-
tions. Clearly, "i �� "m �� �"m�1 and ˙"i �� �"1 for each i D 1; : : : ; m.
In particular, "m is the minimal element in f"igm

iD1 with respect to the order �� .
Now let � be one of the root systems B

.1/
m ; C

.1/
m ; D

.1/
m ; A

.2/
2m�1 with the

standard notations, or � D A2
2m D fı � 2"1; "1 � "2; : : : ; "mg and Y WD

f"i ; sı ˙ "i W s 2 Z>0gm
iD1. We claim that "m is again the minimal element

in Y with respect to the order �� . Indeed, the finite part of � is Bm; Cm or Dm,
so sı ˙ "i �� sı � "1. For B

.1/
m ; D

.1/
m ; A

.2/
2m�1 the affine root is ı � "1 � "2,

so sı � "1 �� .s � 1/ı C "2; for C
.1/
m ; A

.2/
2m the affine root is ı � 2"1, so

sı � "1 �� .s � 1/ı C "1. Hence, for s > 0 one has sı ˙ "i �� "m, as required.
Now consider � D D

.2/
m D fı � "1; "1 � "2; : : : ; "mg with Y WD f"i ; 2sı ˙

"i ; s 2 Z>0gm
iD1. Since 2sı � "1 �� 2.s � 1/ı C "1, "m is again the minimal

element in Y with respect to the order �� .
Recall that for � D A.m; n/; C.n/; A.m; n/.1/; C.n/.1/ any odd root is es-

sentially simple, so X D �1. Take � 6D A.m; n/; C.n/; A.m; n/.1/; C.n/.1/.
If � is B.m; n/ or D.m; n/, then Iso D f˙"i ˙ ıj g. The roots ˙."i � ıj /

are essentially simple, so X contains the roots ˙."i � ıj /; "i C ıj . Hence Iso �
.X [ .�X//.

For D.2; 1; a/, one has Iso D f˙"1 ˙ "2 ˙ "3g and all roots are essentially
simple except for ˙."1C"2C"3/. Thus "1C"2C"3 2 X , so Iso � .X [.�X//.

For F.4/ recall that …0 D A1 	 B3 and choose …0 D fı1I "1 � "2; "2 �
"3; "3g. In this case Iso D f˙1

2
.ı1 ˙ "1 ˙ "2 ˙ "3/g. Take ˇ D 1

2
.ı1 ˙ "1 ˙

"2 ˙ "3/; if at least two signs ˙ are �, then ˇ is essentially simple, so ˇ 2 X .
If ˇ is not essentially simple, then �.ˇ � ı1/ is essentially simple, so ˇ � ı1 is
essentially simple. For � D B3 we have

"1 C "2 C "3 �� "1 C "2 � "3 �� "1 � "2 C "3 �� �"1 C "2 C "3

�� �"1 C "2 � "3;

so ˇ ��
1
2
.ı1 � "1 C "2 � "3/; the last root is essentially simple. Hence ˇ 2 X .

Thus X contains the roots of the form 1
2
.ı1˙"1˙"2˙"3/, so Iso � .X[.�X//.

For G.3/ one has Iso D f˙ı1 ˙ "ig3
iD1 and the essentially simple roots are

˙.ı1 C "1/; ˙.ı1 � "i /, i D 2; 3. It is easy to see that X D Iso n f�ı1 � "ig3
iD1.

In the remaining cases � is affine. Let P� be a finite part of �. Clearly, PIso D
Iso \ P� is the set of isotropic odd roots in P�; let PX � PIso be the corresponding
set for P�. Recall that any essentially simple root for P� is essentially simple for
�, so PX � X .

Note that Iso D PIso C Zı, except for C.m/.2/; D.m; n/.2/ with Iso D PIso C
Zı. Let us show that X contains PIso C jı for j 2 Z>0, where j is even for
C.m/.2/; D.m; n/.2/.

First, consider the case when P� 6D F.4/; G.3/. Then P� is B.m; n/ or
D.m; n/ and � is one of the root systems A

.1/
1 ; B

.1/
m ; C

.1/
m ; D

.1/
m ; A

.2/
2m�1; A2

2m;
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D
.2/
m . If � lies in the span of "i s, then, by above, for s > 0 (and s even for

C.m/.2/; D.m; n/.2/) one has sı ˙ "i �� "m, so sı ˙ "i ˙ ıj �� "m ˙ ıj ;
"m � ıj is essentially simple and "m C ıj �� �"1 ˙ ıj , where �"1 ˙ ıj is also
essentially simple. Hence X contains the roots sı ˙ "i ˙ ıj for s > 0 (and s

even for C.m/.2/; D.m; n/.2/), as required. The similar reasoning shows that X

contains PIso C Z>0ı for F.4/.1/ and G.3/.1/.
Combining Iso D PIsoCZı (resp., Iso D PIsoCZı for C.m/.2/; D.m; n/.2/),

the fact that X contains PX and PIso C Z>0ı (resp., PIso C 2Z>0ı for C.m/.2/;

D.m; n/.2/), and the inclusion PIso � . PX [.� PX//, we obtain Iso � .X [.�X//

as required. �

13.5.

Let … 6D A.m; n/.1/; C.n/.1/ be a set of simple roots of affine type, P… be its
finite part and � � …0 be as in §3.1.3: � WD f˛ 2 …0 j .˛; ˛/ 2 Q>0g
if the form .�; �/ is such that .�; ı/ 2 Q�0. Recall the conditions (A)–(C)
from Theorem 11.3.4:

(A) k˛0k2 � 0;
(B) for each ˛ 2 � there exists ˇ 2 supp.˛/ such that ˇ 62 supp.˛0/ for each

˛0 2 � ; this ˇ is denoted by b.˛/;
(C) � 2 X1 � X2, where

X1 WD f� 2 h� j .�; ˛/ 2 Q�0 for all ˛ 2 …g; X2 WD
X

˛2 P…0

Q�0˛_:

Let us give some examples when these conditions hold.
If � 6D F.4/ is finite and � is a connected component of …0, then supp.˛/\

supp.˛0/ D ; for each ˛; ˛0 2 � , except for the pair ˛; ˛0 D "m�1 ˙ "m, for
� D Dm. Since for affine �, P� is finite, this implies that (B) holds for all affine
sets of simple roots … which are not of type F.4/.1/.

13.5.1. Case B.m; n/.1/; D.m; n/.1/. By above, the condition (B) always
hold. Condition (C) holds if k˛k2 � 0 for each ˛ 2 ….L/ (since � 2 X1).
Let us describe other cases when (C) holds.

We write … D f˛0; ˛1; : : : ; ˛mCng with a standard enumeration: this means
.˛i ; ˛iC1/ 6D 0 for each i , except for the case D.m; n/.1/, where sometimes
.˛mCn�1; ˛mCn/ D 0, but .˛mCn�2; ˛mCn/ 6D 0 (i.e., ˛mCn�2 is a “branch-
ing” point of the Dynkin diagram). Note that this convention determines the
enumeration, except for D.m; n/.1/ with the “branching” point ˛mCn�2, where
we can interchange ˛mCn�1 and ˛mCn; note that in this case k˛mCn�1k2 D
k˛mCnk2.
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Introduce the numbers dmCn; : : : ; d1 by the following rule:

dmCn WD max.�k˛mCnk2; 0/; di WD max.diC1 � k˛ik2; 0/

for i D 1; : : : ; m C n � 1;

if ˛m�n�2 is not a “branching” point and

dmCn D dmCn�1 WD max.�k˛mCnk2; 0/; di WD max.diC1 � k˛ik2; 0/

for i D 1; : : : ; m C n � 2;

if ˛m�n�2 is a “branching” point (in this case k˛mCnk2 D k˛mCn�1k2).
The property (C) holds if and only if the sum of di with .˛0; ˛i / 6D 0 is not

greater than 2. If m > n, then ˛1 is a “branching” point (i.e., .˛0; ˛2/ 6D 0) and
(C) is equivalent to d1 C d2 � 2; if m � n, (C) is equivalent to d1 � 2. For
instance, for B.m; n/.1/ with m � n, if … has j roots of negative square length
and there are j roots of positive square length which precede (counting from
˛0) the roots of negative square length, then … satisfies (C).

13.5.2. Conditions (B) and (C) for exceptional Lie superalgebras. For
D.2; 1; a/.1/ we have two sets of simple roots satisfying (A): one consists of
isotropic roots and another one with k˛0k2 > 0 (for a 2 Q; 0 < a < 1, it takes
the form … D fı �2"1; "1 �"2 �"3; 2"2; 2"3g). Both of them satisfy conditions
(B) and (C).

For G.3/.1/ there are three sets of simple roots, which satisfy (A), all of them
satisfy (B) and (C); these are the second, the third and the fourth sets in §13.2.4.

For F.4/.1/ there are two sets of simple roots which satisfy (A)–(C); they
correspond to the third and the fourth sets of simple roots in [K1], 2.5.4.

13.5.3. For D.n C 1; n/.1/; A.2n � 1; 2n � 1/.2/ for … as in §6.4.1 we have
k˛0k2 D 0 (so (A) holds) and � D 0 (so (C) holds); it is easy to verify that (B)
holds for both choices of � , so (A)–(C) hold for this … (for both choices of �).

For D.n C 1; n/.2/; A.2n; 2n/.4/ with fixed � , we choose a presentation of
� via "i ; ıj , where � lies in the span of "i s (as it was done in §6.4.2). The set
of simple root fı � ı1; ı1 � "1; : : : ; "ng chosen in §6.4.2 does not satisfy (A).
However, … D fı � "1; "1 � ı1; : : : ; "n � ın; ıng satisfies (A)–(C). Indeed, we
can fix .�; �/ with k"ik2 D 1. Then kı � "1k2 D 1, so (A) holds. One has � D
fa0.ı � "1/; "1 � "2; : : : ; a"ng with a; a0 2 f1; 2g; thus supp.˛/ supp.˛0/ D ;
for ˛ 6D ˛0 2 � and (B) holds. Note that "i or 2"i (resp., ıi or 2ıi ) lies in P�C

0
,

so "i ; �ıi 2 X2. One has 2� D Pn
iD1.ıi � "i /, so � 2 �X2; hence (C) holds.
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