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1. Introduction

Given a symmetrizable Kac-Moody algebra g with a Cartan subalgebra §) and
an irreducible non-critical highest weight g-module L = L(A), one constructs
the associated integral Kac—Moody algebra @A as follows. Let A, C h* be the
set of real roots of g and let

Ar(A) ={a € Ap [ 204 + p.a) /(. @) € Z;

be the set of integral real roots. Then A,.(A) is the set of real roots of a Kac—
Moody algebra @A with the same Cartan subalgebra f). An important result of
representation theory is the following relation between the characters of highest
weight g-module L and the (non-critical) highest weight @'x -module L = L(A+
p—p):

(1) RePch L(A) = Re?ch L(A + p — D).

where R and R denote the Weyl denominators, and p and 5 denote the Weyl
vectors (see [F], [KT1], [KT2] and references there).

In the case when the @A-module L(A + p — p) is integrable, its character
is given by the Weyl-Kac character formula [K2], hence (1) gives an explicit
formula for ch L(A).

A g-module is called relatively integrable if the g*-module L(A + p — )
is integrable; and it is called admissible if, in addition, the QQ-span of the set of
roots of @A coincides with QA. In particular, if A = p — p, we obtain from (1)
that the character is given by a product:

) chL(p—p) =e”PR'R.
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For example, if g is an affine Lie algebra with symmetric Cartan matrix, then
there exist admissible A of rational level k, provided that k +4Y > h" /u, where
hY is the dual Coxeter number and u is the denominator of k [KW?2]. In this case
the character ch L(A), suitably normalized, is a ratio of theta functions, which
i1s a modular function.

The main problems discussed in this paper are whether for a finite-dimen-
sional basic Lie superalgebra or an associated (untwisted or twisted) affine Lie
superalgebra g, similar results hold. This is a class of Lie superalgebras, which
is the closest to symmetrizable Kac—Moody algebras. Of course, there are also
Kac—Moody superalgebras, associated to symmetrizable generalized Cartan ma-
trix, which have no real isotropic roots. For them the Weyl-Kac character for-
mula is proved in the same way as in Lie algebra case, and the relation (1) can be
derived using Enright functors [IK]. Therefore we exclude these superalgebras
from consideration.

Given an irreducible highest weight g-module L. = L(A), we construct
in §7.2 a natural generalization of the set of integral real roots for the Lie su-
peralgebra g and the corresponding integral Lie superalgebra §’x (which is also
basic or affine, or a sum of such superalgebras), and we prove formula (1) in
some cases. In particular, we prove formula (2), see Corollary 11.2.6. We be-
lieve that (1) holds for arbitrary A, but there are not enough techniques to prove
this, mainly due to the lack of translation functors (used in [F] in the Lie alge-
bra case), and the lack of Enright functors, associated to isotropic simple roots
([KT1] and [KT2] use them in the Lie algebra case, where all simple roots are
non-isotropic). So far, in full generality formula (1) is proved only for finite-
dimensional g of type A(m, n), see [CMW].

It would be natural to call an irreducible highest weight module L over
the Lie superalgebra g integrable if it is integrable as a gz-module. For finite-
dimensional g, this definition is adequate, because it is equivalent to dim L <
oo. However, for affine g, such non one-dimensional integrable irreducible high-
est weight modules exist only if the Dynkin diagram of gy is connected, see
[KW4]. For that reason, in the affine case, it is natural to study m-integrable
modules, where 7 is a subset of the set of simple roots IIg of gg, namely the
g-modules L for which all root spaces g—y, @ € 7, act locally nilpotently. The
definition of (7r-)relative integrability and admissibility of L is the same as in
the Lie algebra case.

We call a g-module integrable (both for g basic and affine) if L is integrable
with respect to the “largest” component of gg. For example, if g is the non-
twisted affine Lie superalgebra, associated to a simple finite-dimensional Lie
superalgebra g with a non-degenerate Killing form « (then g is automatically
basic), a g-module L is called integrable if it is 7-integrable for 7 = {o € Il |
k(o,) > 0}. (This conicides with the definition of integrability of the affine
Lie algebra modules [K3].) The choice of 7 in the definition of integrability
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for an arbitrary (possibly twisted) affine Lie superalgebra is explained in §3.1.3.
The study of integrable modules over affine Lie superalgebras is very important
for applications to modular invariance of modified characters [KWS5]-[KWT7].
Note that if dimg < oo, then not only the finite-dimensional g-modules are
integrable, unless g is of type A or C.

Let L(A) be either an integrable module over a finite-dimensional basic Lie
superalgebra g, or an integrable module of non-critical level over an affine Lie

superalgebra g, and let A be the set of roots of g. Let Ai- 4o be the set of roots
of g, orthogonal to A + p, and choose a maximal linearly independent subset
S in Ai— o which spans an isotropic subspace. Assume that S satisfies the
KW-condition, namely S can be included in a set IT of simple roots of A.
A natural analogue of the Weyl-Kac character formula for integrable highest
weight modules over Kac—Moody algebras is the following KW-formula, pro-

posed in [KW3], §3, for basic g, and in [KW4], §9, for affine q:

A+p

3 W ReP ch L(1) = ‘
) jaReP ch L(3) weZW,Sgn(w)w(H,eesﬂ )

for some positive integer j,, where W’ is a certain subgroup of the Weyl group
w.

In §4 of the present paper we prove the KW-formula with j; = 1 and W' =
W (), in the case when QS is a maximal isotropic subspace in QA and the
choice of the pair IT D S is “good”, provided that either g is basic, or g is affine
with 1Y # 0 oris equal to A(n, n)( (in the case A = 0 this was proved in [G1],
[G2], [R]). The choice of the pair IT D S is “good” if (¢,x) > O forall € T1
and S contains all “branching” nodes of IT (if they exist), as defined in §3.3.1.
Using odd reflections, we show that the KW-formula holds for many other (but
not all) pairs IT O S. Recall that 2" is the half of the eigenvalue of the Casimir
operator on basic g (which is 0 if and only if k = 0), and it is called the dual
Coxeter number of any twisted affine superalgebra, associated to g.

Incidentally, using a different character formula for level 1 osp(M, N )(1)—
modules, obtained in [KW4], we thereby derive in §4.5 an interesting identity
for mock theta functions.

In §5 we prove the KW-formula for all irreducible finite-dimensional mod-
ules (satisfying the KW-condition) over a basic Lie superalgebra g, except for a
few cases when g is of type D(m, n)!. This formula has been previously verified
only for g of type A(m,n), see [CHR], using the earlier work [S1], [S2], [B],
[SZ] on computation of finite-dimensional characters of gl(m,n). There have

I After this paper has been completed, we learned about the paper of S.-J. Cheng and
J.-H. Kwon “Kac—Wakimoto character formula for orthosymplectic Lie superalgebra” [CK],
where the KW-formula is established by different methods for all irreducible finite-dimensional
osp(m, n)-modules, satisfying the KW-condition, including the cases we were unable to settle.
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been a number of earlier papers, where the KW-formula was verified in the case
#S = 1, see [BL], [J1], [J2], [JHKT], [KW3].

In §6 we prove a result similar to (3), see (26), for “strongly integrable”
maximally atypical g-modules in the case when g is affine and #Y # 0. There
are fewer strongly integrable g-modules than the integrable ones, but here we
do not require that the pair [T D § is “good”. We also prove formula (26) for
the non-critical vacuum (but not all strongly integrable) modules over affine
superalgebras with 7Y = 0.

In §11 we study another extremal case — when § is empty. Such g-modules
L = L(A) are called typical and it was proven in [K2] that the usual Weyl
character formula holds for them if dimg < oo and dim L(1) < oco. We prove
that formula (3) with S = @ holds if we let W’ be the “integral” subgroup
W(L) of W, provided that L is relatively integrable. In other words, we prove
that in this case both conjectural formulas (1) and (3) hold. We also verify (1)
in a few other instances of typical and of relatively integrable modules. As a
corollary, we obtain the character formula for all relatively integrable modules
over A(0, 7)™V and C(n)D.

Note, however, that while we expect that (1) always holds, and that (3) holds
for all irreducible finite-dimensional modules (satisfying the KW-condition)
over basic g (c¢f. §5), we do not expect (3) to hold in full generality, except
when QS is a maximal isotropic subspace of QA, i.e., the module is maximally
atypical.

We also prove formulas (1) and (3) for all admissible g-modules when @x
is of small rank, see §9, 11 and 12. In particular, we obtain the character for-
mula for all relatively integrable B(1, 1)(1)-modules, and also for all admissible
A(l, 1)(1)-m0dules, associated to integrable vacuum A(1, 1)(1)-modules.

Our proofs use the ideas from [KT1], [KT2], and [G1], [G2].

In the present paper we prove all character formulas for affine superalge-
bras g (except for those with 2V = 0) used in [KW5], [KW6] to show that
for g = A(1,00M, A1, 1D, and B(1,1)D the, modified in the spirit of
Zwegers [Z], normalized supercharacters of maximally atypical admissible g-
modules of given level span SL(2, Z)-invariant space, and used in [KW7] to
show that such modular invariance holds for maximally atypical integrable g-
modules over an arbitrary (non-twisted) affine superalgebra g # A(n, n)(l).

The results of this paper were reported at the conferences in Uppsala in
September 2012, in Rome in December 2012, in Taipei in May 2013, and in
Rio de Janeiro in June 2013.

2. Preliminaries

Throughout the paper the base field is C and g is either a basic Lie superalge-
bra with a non-degenerate invariant bilinear form (—, —), or the associated to it
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and its finite order automorphism, preserving (—, —), symmetrizable affine Lie
superalgebra. Recall that a basic Lie superalgebra g is either a simple finite-
dimensional Lie algebra or one of the simple finite-dimensional Lie superalge-
bras sl(m,n) (m # n), psl(n,n) (n > 2),0sp(m,n), D(2,1,a), F(4), G(3) or
gl(m,n) [K1], and that the associated affine Lie superalgebras are constructed
in the same way as in [K3]. Recall that the Killing form « of g is non-degenerate
if and only if ¢ = sl(m,n) (m # n), osp(m,n) (m is odd, or m is even and
n #m—2>2), F(4),G(3); this is equivalent to the property that the dual
Coxeter number (= % eigenvalue of the Casimir operator on g) iS non-zero.
Recall that the dual Coxeter number associated to the Killing form is always a
non-negative rational number, see [KW3]. This number is also called the dual
Coxeter number of the associated affine superalgebra.

It is well known that for any affine Lie superalgebra the dual Coxeter number
is equal to (p, §), where p is the Weyl vector and & is the primitive imaginary
root.

The invariant bilinear form extends from the basic Lie superalgebra to the
associated affine Lie superalgebra and is denoted again by (—, —).

Recall that one often uses the following notations: A(m,n) = sl(m+1,n+
1)orgl(m+1,n+ 1) form # n, A(n,n) = psl(n,n) or gl(n,n), B(m,n) =
osp(2m + 1,2n), C(n) = osp(2,2n), D(m,n) = osp(2m,2n) (m > 1). The
associated affine Lie superalgebra, twisted by an automorphism of g of order r,
is denoted by q). We will often write A = A(m, n) to indicate that A is the
root system of A(m,n), or I[1 = A(m, n) to indicate that IT is a subset of simple
roots for the root system of type A(m,n).

Recall that we get all affine Lie superalgebras by picking an automorphism
in each connected component of the group of automorphisms of g. (The affine
Lie superalgebra depends only on this connected component; however, unlike
in the Lie algebra case, some of the affine Lie superalgebras corresponding to
different connected components may be isomorphic.)

Let b be a Cartan subalgebra of g. As in the Lie algebra case, g has the root
space decomposition with respect to . Let A C §™* be the set of roots. Denote
by Ag and Ay the subsets of even and odd roots. The restriction of (—, —) to
b is non-degenerate, hence it induces a bilinear form on §*. One can show that
Ag is a union of a finite number of root systems of affine Lie algebras with the
same primitive imaginary root §.

We define «¥ = 2a/(a, @) if @ € A is a non-isotropic root; for isotropic
a € Aweseta” = a. Notice that (i, @) does not depend on the normalization
of (—, —) if « is non-isotropic.

The Weyl group W of A is the subgroup of GL(§*), generated by reflections
rq in non-isotropic roots «, where ryA = A — 2(A, @)/ (o0, ). One knows that
W coincides with the Weyl group of Ag and that WA = A (cf. [K3], Chapter
3).
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Let Q := ZA and Qp := Z Ag be the corresponding root lattices.

2.1. Subsets of positive roots in A

Given a real valued additive function y on Q, which is positive on ¢ and does
not vanish on elements of A, we have the corresponding subsets of positive roots
AT and A%‘ (on which y is positive).

For different choices of y the subsets of even positive roots may be different,
but they can be transformed to each other by the Weyl group. Throughout the
paper we will fix one of them, A'g , and consider only the subsets of positive

roots A" in A, which contain Ag . This choice fixes a triangular decomposition
of g, compatible with the triangular decomposition of gg, corresponding to A%‘ .
Recall that, given a subset of positive roots A™ (containing A%‘ ) and an odd

simple root B € AT with (8, 8) = 0, we can construct a new subset of positive
roots (containing A%L ) by an odd reflection rg:

4) rg(AT) = (AT \ {B}) U{-B}.

2.1.1. Proposition [S4]

(a) Any two subsets of positive roots in A (containing AT ) can be obtained
from each other by a finite sequence of odd reflections.
(b) For a simple root o € A%‘ there exists a subset of positive roots, for which

a . .
« or 5 is a simple root.

2.1.2. Let AT be a subset of positive roots in A, and denote by IT the subset

of its simple roots; we shall often write AT = AT (II). One has rgA™T =
AT (IT"), where

H/ZZ{QEH|Ol7é,8,(Ol,,B):O}U{Ol+,B|Ol€H,(Ol,,B)7éO}U{—,B}.

Then we can choose a Weyl vector pi; € §*, such that the following two
properties hold for each subset IT of simple roots:

(1) 2(pm. o) = (o, ), ifa eIl;
(i) prym = pn + B, if p € I, (B, f) = 0.

Indeed, choose a set of positive roots and let IT be its subset of simple roots;
pick an arbitrary Weyl vector pyy, satisfying (i). Define (cf. Proposition 2.1.1

(a)):
Prg, g i= P+ B1 + -+ + Bs.
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Then (i1) obviously holds and (i) is straightforward to check. Finally, this is
well-defined since the equality

(5) rg, - rg L =ry ooy, 11

forces the equality 81 + --- + Bs = y1 + -+ + Y. Indeed, let us show by
induction that

AT (rg, - g, ) = (AT(I) \ $) U (=S5),

where S is obtained from a multiset {81,..., B85} by removing all pairs of
opposite roots (i.e., the pairs of the form (8, —pB)). Moreover, if rg, ---rg I1
is defined, then S is a set (each element appears once) and S C A™T(II).
This can be proven by induction on s. For s = 1 this follows from (4); if
iy TR IT is defined, then ;4 lies in rg; Ty IT and, in particular, in
AT (rg, ---rg, TI) = (AT(IT) \ §) U (—S) by the induction hypothesis. This
means that 811 ¢ S and

AT (rg; g TD = ((ATAD N\ S) U (=) \ {Bj+1}) U {=Bj+1}.
If _:8]'—}-1 ¢ S, then

At (rg,,,-+rg, T = (AT \ (S U{Bj+1}) U (=(S U{Bj11}),
and, if =811 € §, then

AT (rg;yy o rp T = (AT \ (S \{=Bj+11)) U (—=(S \ {=Bj+1})),

as required.
Now (5) implies

(AT \ ) U{=S} = (AT \T) U {-T},

where S (resp., T') is the set obtained from the set {81, ..., Bs} (resp., {y1,...,
¥: }) by removing all pairs of opposite roots. This gives S = T so B1+---+ s =
Y1 + -+ + s, as required.

2.1.3. Let QF := ZsoAT (= ZxoI1) and Qg = ZEOA%', where Z>¢S de-
note the semigroup of linear combinations of elements from S with coefficients
from Zx¢. The set 0t depends on the set A™ of positive roots, and to empha-
size this dependence we shall write QT = Q™ (I), but the set Q%‘ does not

(since we fixed A%‘ ).

We consider the corresponding partial orderings on h*. The first one is v >
puifv—p e Q%‘, and the second oneis v > pwif v — u € Z>olIl (it depends
on IT). Given S C b*, anelement A € S is called maximal (resp., [1-maximal)
if A > v (resp.,, A >y v) forallv € S.
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Note that the partial ordering > can be extended to a total ordering > 17
as follows. Fix a total ordering on the basis IT U {Ao} = {y1,...,Vm} of b*
and the lexicographic order on C. Then v = Y, a; Vi >0 4 = Y _; biyi if
(@ai,...,am) > (b1,...,bn) in the lexicographic order.

2.2. The algebra #

We introduce the algebra # = Z(I1) as in [G1], [G2]. The new part is §2.2.1
and §2.2.7-2.2.9.

Let 7 be the vector space over Q of all formal sums (possibly infinite) ¥ =
Zvef)* bye", b, € Q, and define the support of Y by

suppY = {v | by # 0}.

Let Z(I1) be the subspace of 7/, consisting of finite linear combinations of
the elements of the form ) ,cz 1 bye*™V, where A € h*. The space Z(I1)
has an obvious structure of a unital commutative algebra, induced by e*e” =
e"tV % = 1. Moreover, Z(I1) is a domain. This is clear since for any Y €
Z(I1), its support supp Y has a unique maximal element in the total ordering
>11.70r and the maximal element in supp Y'Y’ is equal to the sum of maximal
elements in supp Y and in supp Y.

For each IT define a topology on 7 by the set of open neighborhoods 77,
consisting of Y € ¥ such that supp Y <py 4 A. This makes % (I1) a topological
algebra. We idenfity the convergent infinite sums of elements of Z(I1) with
their limits.

2.2.1. Let
Vin ==Y € ¥V | suppY is finitej.

This is a subalgebra of all algebras Z(I1). Hence
(6) VinZ (IT) C Z(11).

Note also that 7" is a #j,-module (but not an algebra). Introduce the equiva-
lence relation ~ on ¥ by: X ~ X'if thereexists Y € ¥4, suchthat XY = X'Y.
Note that if X € Z(I1), X' € Z(Il') and Y € ¥, then XY = X'Y €
Z(I1) N Z(IT') by (6). Since Z(I1) is a domain, the equivalence of its two
elements X, X' € Z(I1) implies X = X'.
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2.2.2. Action of the Weyl group. 'The Weyl group W acts on 7" in the obvious

way:
w(Z bve”) = Z b,e™?.
v )%

Obviously, ¥4, is W-invariant, but % = Z(I1) is not. For a subgroup W/ C W
introduce the following subalgebra of the algebra Z:

Ry =Y € Z | wY € X foreachw € W'}.

2.2.3. Infinite products. A product of the form

(7) Y =[]0+ age™)%,

a€A

where A C A is such that the set A \ A1 (I1) is finite, and ay € Q, dy € Z>o,
can be naturally viewed as an element of Z. Since AT (IT) \ AT (IT') is a finite
set (by Proposition 2.1.1 (a)), the element Y lies in all algebras % (I1’). Hence
the set % of all such products is a multiplicative subset of each of the algebras
Z(11).

For any w € W the product

wY = 1_[(1 + age We)do,

a€A

is of the above form, since the set wA4+ \ A+ = —(wA_N A4) is finite. Hence
% is a W -invariant multiplicative subset of Zy (for each IT).

Consider the localization Zy[#% ~1] of the algebra %y by the multiplica-
tive subset %. Let ¢r1 : Zw/[# '] — Z be an algebra homomorphism, de-
fined by expanding in a geometric progression for 8 € A1, a € Q \ {0}:

A
€ A —B 2 28 )
—— ) =¢e¢*(l—ae " +a”e — )
(pn(l—i—ae—ﬁ) ( )
A 1 eA B

e
§0n(1 -{—aeﬂ) N g(pn(l —|—a_le_/3)'

This homomorphism defines an embedding of %y [# ~!] in Z.

2.2.4. We extend the action of W’ from Zw: to Zw:[% 1] by setting
w(Y~1X) ;= (wY) N (wX) foreach X € Zw/,Y € #.LetY be as in (7).
Then

(8) suppY c M —Q7F, where \ = — Z dyor.
{acA\A 1 |aq#0}
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2.2.5. Let W' be a subgroup of W. For Y € Z[# ~!] we say that Y is W'-
invariant (resp., W'-skew-invariant) if wY = Y (resp., wY = sgn(w)Y) for
eachw € W',

Note that Y := }_ aye” € % is a W'-skew-invariant element of Zy if
and only if ay,, = sgn(w)a,,. In particular, if Y is a W’-skew-invariant element
of Zw, then W’ supp(Y) = supp(Y).

We will use the following fact: if Y € %y is W'-skew-invariant and p +
supp Y consists of non-critical weights, then supp Y is the union of regular W’-
orbits, where regularity means that the elements of this orbit have trivial stabi-
lizers. This is an immediate corollary of the fact that for an affine Lie algebra
the W -orbit of each weight of non-zero level contains either maximal or min-
imal element and the stabilizer of this element in W is generated by simple
reflections; as a result the stabilizer of any weight of non-zero level is gener-
ated by reflections. Since for such a reflection r, we have ro Y = —Y, we have
raA =A = A &supp?t.

Let ¥ := ) aye’ be any element of Zw:. We claim that if
Yowew sgn(w)w(¥) € Z, then ), <y sgn(w) w(Y) is a W’'-skew-invariant
element of Zw:. Indeed, ) ,cpsgn(w)w(Y) = Y  bye”, where
by =) wew sg(W)ayy, S0 by, = sgn(w)b,, as required.

2.2.6. For each set of simple roots IT’ introduce the following products

Ry:= [] 1—e™). R()1:= [[ a+e™.

aeAd aeA(IT)NAT

One readily sees (by Proposition 2.1.1 (a)) that Ry, R(IT"); € #. We view
Rﬁ, R(H/)T and
R(IT) = 0

R(IT")y
as elements in Z(I1), as in §2.2.3. One readily sees that R(IT")e™ e Z(I1)
does not depend on IT’, so we write simply Ref (keeping in mind that this
is an element of Z(I1) for particular IT). By §2.2.3, all these elements are
equivalent (for different IT). Since Ry, R(I1")y € ¥ C Zw, the element Re”
lies in Zw [# ~!]. Clearly, ro(R(IT")e1") = —R(I1')eP™ for a non-isotropic
root € I1’. From Proposition 2.1.1 (b), we conclude that Re” is a W -skew-
invariant element of Zw [ ~1].

If IT is fixed, we denote by Ry := R(IT)7, R := R(II) the corresponding
elements in Z.

If g is finite-dimensional, or one of affine Lie superalgebras A(O0, n)®,
B0, 7))V, C(n)®, or 4(0,2n—1)@, C(n+ 1)@, A(0,2n)¥, then we can in-
troduce a Weyl vector pg satisfying (pg, o) = 1 for each a € I1o. Then Rye”0
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is a W-skew-invariant element of Zw, so Ryef0~" is a W-invariant element of
Lw .

If g is an affine Lie superalgebra and Ag is not connected, then the Weyl
vector pg does not exist. However, for each connected component w & Il
there exists a Weyl vector p, satisfying (o5, ") = 1 for each @ € ; note that
RgeP™ is a W(rr)-skew-invariant element of Zyy () and Rye?0™? is a W(rm)-
invariant element of Zyy ().

2.2.7. Poles. For an odd isotropic root « € II we say that X € Z(I1) has a
pole of order k at « if k is minimal such that

(14 e X € %(ro ).

For example, R has a pole of order 1 at each odd isotropic root o € II.
Another important example appears in the next lemma.

2.2.8. Consider Y € % (see §2.2.3) of the form Y := ]_[ﬂej(l + e~ #), where
J C A is afinite set and, for each B € Ay, J N {£B} contains at most one
element. Recall conventions of §2.2.3 and view Y ~! as an element in Z(I1),
which we denote by Y ~1(I1).

Let W/ C W be a subgroup generated by simple reflections and let A €
b* \ {0} be such that the orbit W’A has a unique maximal element. For each
subset W C W’ we introduce the following notation

A

. ¢ e wA —wpy—1

From the lemma below it follows that ﬁw//(m) lies in Z(I1) (i.e.,
eJ

the corresponding partial sums converge in Z(I1), c¢f. §2.2) and that these ele-
ments are equivalent for different choices of I1.

Lemma. Let W' C W be a subgroup generated by simple reflections; for each

w € W fix xyy € Q. Write W = Wjﬁ X Wa’ﬂ, where W; is finite and Wa’ﬂ is

the product of affine Weyl groups. Let A € §* \ {0} be such that (A, «") € Z for
each o € Tlg such that rq € W', and that (A, 68)/(a, @) > 0 for each a € Tl

such that ry € Wa’ﬁ.

(a) For each I1 the element

X(1) := Z xwe® (wY) (1)

weW’

lies in Z(I1).
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(b) All elements X(I1) are equivalent (with respect to the relation introduced
in §2.2.1).

(c) For each odd isotropic root o € Il the element X(I1) has a pole of order
at most one at a. Moreover, X(I1) has a pole of order zero at a if W/(J) N
{£a} = 0.

Proof. The assumptions on A imply that the orbit W’A contains a unique max-
imal element. We may (and will) assume that A is maximal in its orbit that is
A —wA € ZsoIlp forany w € W',

For a fixed set of simple roots I1, we denote by htyy u, the height of © =
Y wer ke, the number htyy = ), ey ka-

Note that X(IT) is an infinite sum of elements in % (I1); for (a) we have to
show that the partial sums converge (cf. §2.2). From (8) we obtain

supp(e®* (wY)~1(I)) C wA — Z>oIl.

In order to prove that X(IT) € Z(I1), it is enough to verify that for each r the
set

Hy(A) = {w e W | ht(A — wA) < r}

is finite.

Recall that (see e.g. [K3], Chapter 3) for an affine Lie algebra the stabilizer of
any element v which is maximal in its Weyl group orbit is generated by simple
reflections; thus this stabilizer is either finite or coincides with W itself (in this
case v = 0). Hence Stabw A is finite.

Letay, ..., o be the simple reflections («; € I1g) which generate W'. Since
A is maximal in its W’-orbit, the value (A, «;”) is a non-negative integer. An easy
argument (see, for instance, Lemma 1.3.2 in [G2]) shows that for each reduced
expression w = Ta Tay, s

ht(h —wd) = #(j | (h.ay)) # O},

Now the fact that H, is finite follows as in Lemma 2.4.1 (i) in [G2].
(b) Since any two subsets of positive roots are connected by a finite chain of
odd reflections, it is enough to verify that

9) XM + ) = X(r, (1 + ¢”) € Z(TT) N Z(r, T0).

Indeed, by the assumption on J, the intersection wJ N {£y} contains at most
one element. If the intersection is empty, then e¥*(wY) !(II) =
e (wY)"H(IT') € Z(I1) N Z(I1'), see §2.2.3. If the intersection wJ N {£y}
is non-empty, then e (wY )~ 1(IT)(1 + e¥) = e (Y))~1(I1), where

Y= [ (+e#)

BewJ\{£y}
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and A = wAif —y € wJ, V) = wA + yif y € wJ. Since X(I1) €
Z#Z(1), X(ryI1) € Z(ryI1), the sum X(IT)(1 4 e?) (resp., X(ry,I1)) is a well-
defined element in Z(I1) (resp., in Z(r,I1)) and since all summands (1 +

eV w( 1_::_6) lie in Z(I1) N %(ry, I1), we obtain (9). This proves (b) and (c).
O

Remark. For A # 0 the conditions

(i) the orbit W’A has a unique maximal element in the >-ordering;
(ii) (A,aV) € Z for each a € I such that r, € W/,

are equivalent if W' is finite. In the case when W' is infinite, (i) is equivalent to
(i1)+(ii1), where

(i) (A’,8)/(a,) > 0 for each o € Il such that rq € W

2.2.9. Lemma. Leta € II be an isotropic root. Assume that X = ) x et
e Z(I), X" = Y x;e* € Z(ro11) are equivalent and that X has a pole of
order < 1 at a. Then for each 1 € §* one has

(10) Yk €L Xutka = Xpyire = (=DF(xu —x)).
Moreover, x;, = x,, if (supp X) N {u + Za} is finite.

Proof. Since X has a pole of order < 1 at «, one has (1 + e~ %)X € Z(rqI1).
Since X, X’ are equivalent, the elements (1 + e %)X, (1 + e %)X’ € Z(ryI1)
are equivalent and so (1 + e %)X = (1 + e %) X'.

Recall that 7" is a ¥j,-module; for Y = )" y,e* € ¥ one has

14+e %)Y =0 = y,+ yu—a =0 forall p.

This gives (10).

Finally, note that x/; 4o = 0fork > 0, because X" € Z(ryI1) and —a €
re I1. If supp X N {u + Zayj is finite, then x,,_go = 0 for £ > 0 and thus
Xp =Xy, = Xp—ka — x;_ka = 0, as required. O

3. Root systems of basic and affine Lie superalgebras

In this section we give some (mostly known) properties of Dynkin diagrams
of basic and affine Lie superalgebras which are used in the main text. We call
a Dynkin diagram of an indecomposable affine (resp., basic) Lie superalgebra
affine (resp., finite) type Dynkin diagram. We identify a set of simple roots IT
with the vertices of its Dynkin diagram.
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In this section g is an indecomposable affine or basic Lie superalgebra with
a set of simple roots IT and a symmetrizable Cartan matrix A. We denote by A
the root system of g.

Throughout §3-6, unless otherwise stated, we use the following normaliza-
tion of the invariant bilinear form (—, —). If the dual Coxeter number is non-
zero, we normalize the form by the condition 7V € Qso. If ¢ = D(n +
1,n),D(n + l,n)(l) or D(2,1,a),D(2, l,a)(l),a € Q, we normalize the
form by the condition (¢,) € Q¢ for some ¢ € D,y ora € Dy =
A1 x Ayp; if the dual Coxeter number is zero and ¢ # D(n + 1,n), D(n +
l,n)(l), D(2,1,a),D(2, l,a)(l),a € Q, we normalize the form by the con-
dition (o,) € Q¢ for some @ € A (note that in this case all connected
components of I15 have the same number of elements).

3.1. Affine Lie superalgebras

3.1.1. Lemma. Let I1 be a set of simple roots of an indecomposable affine Lie
superalgebra and let § be the minimal imaginary root. Then § = ), ey Xa O,
where each coefficient xo # O.

Proof. Take a € IT such that x, = 0. Since A is affine, A + ré = A for some
r>0,s0r8 —a € A. One has

ré—o = Z rxgp —a,
Bell,p#a

thatis rxg < O for each 8. Then r§ € — AT, a contradiction. O

3.1.2. Finite parts. For each TT" C TI the set ZIT' N A is the set of roots of
a Kac—-Moody superalgebra with the Cartan matrix A’, which is the submatrix
of A, corresponding to IT’. Using Lemma 3.1.1, we conclude that any proper
subdiagram of a connected Dynkin diagram of affine type is of finite type, i.e.,
if IT is a set of simple roots of an indecomposable affine Lie superalgebra, then
for any proper subset IT" C IT the root system ZIT' N A is finite (and is the root
system of a certain basic Lie superalgebra).

Let X be an affine Dynkin diagram. We call a connected subdiagram X,
obtained from X by removing one node, a finite part of X. By above, X is of
finite type. We call a root subsystem A a finite part of affine root system A if A
admits a set of simple roots IT which is finite part of a set of simple roots for A.
The finite parts of affine root systems are described in §13.2.
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3.1.3. Definitions. Let g be an affine Lie superalgebra with the root system
A. Let A be a finite part of A (see §3.1.2). An irreducible vacuum module is a
module L (1) such that (A, A) = 0. Note that if IT is a set of simple roots of A
and IT is a finite part of IT, and (A, IT) = 0, then L(A) is a vacuum module.

Let g be a basic or affine Lie superalgebra. For each subset # C [Ty we say
that a g-module N is w-integrable if | acts diagonally on N and foreach ¢ €
the root spaces g+ act locally nilpotently on N.

Note that if N is -integrable, then for each w € W(rr) one has dim N, =
dim Ny, so ch N is a W(mr)-invariant element of ¥, see §2.2 for notation. In
particular, if N is a w-integrable irreducible highest weight module, then ch N
is a W(smr)-invariant element of Zy (), see §2.2.2.

Let g be an affine Lie superalgebra, let  be a finite part of g, and let ITg
be the subset of simple roots for gz = g5 N g. We say that a g-module N is
integrable if N is m-integrable for v = {«@ € Il | (o, @) € Qp}.

Note that 7 is independent of our normalization of (—,—) if #¥ # 0, but
7 changes if we change the sign of (—, —) if #¥ = 0. In all cases, except for
D(2,1, a)(l), 7 1s a connected component of ITy.

3.2.
The sets of simple roots of basic Lie superalgebras which consist of isotropic
roots are the following (n > 1):

A(n’n) {81_81’51_823"'7871—1_8117871_5}1},

An +1,n) {e1 — 81,61 —€2,...,6n — 05, 6n — €n+1},

D(n,n) {01 —€e1,61 —062,...,0n —€n,0n + €n},

D(n+1,n){e1 — 81,81 —€2,....6n —6n.6n — En+1,0n + €n+1},

(11)

and for D(2,1,a) it is as for D(2,1). The invariant bilinear form (satisfy-
ing §3.1.3) can be chosen in such a way that the vectors ¢;,§; are mutually
orthogonal and 1 = || ||*> = —||8j||2, except for the case D(n,n), where
L=l = 11612

We claim that the sets of simple roots of indecomposable affine Lie superal-
gebras which consist of isotropic roots are the following (n > 1):

An,n)® {6 —e1+ .61 61,061 —€2,...,6n—1 — &n,
Sn_(gn},
D(n—i—l,n)(l) {6 —e1 — 61,61 — 81,61 —€2,...,8n — On,

12
(12) On — 8n+1a8n + 8n+1},

ACn —1,2n — 1)@ (§ —e1 — 81,61 — 81,81 — €2, ..., En — Sn.
8n+8n}



Characters of (relatively) integrable modules 151

and for D(2,1,a)W it is as for D(2, 1),

This can be explained as follows. If TT consists of isotropic roots and A(IT)
is affine, then g has zero dual Coxeter number and g has a finite part which
appears in (11). Using the tables in §13.2 we conclude that this holds only for
g listed in (12). It is easy to see that for these algebras all Dynkin diagrams
consisting of isotropic roots are as in (12).

Another result that we are going to use is the following.

3.2.1. Lemma. Let B, B’ € II be isotropic roots with (B, B') # 0. If (B, a) # 0
for some non-isotropic o € T1, then (B, B’)/ (o, )? € Q=o.

Proof. Since B+ B’ € rgIl, we have B + B’ € I1o. Normalize the form in such
a way that ||a||?> = 2. Then (a, B') € Z<o. (o, B) € Zi<g, 50 (o, B+ B) € Z<o.
Since f + B € Tlo, we have (o, (B + ")) = 2(a, B+ B)/ 1B+ B'II* € Z <o,
so[lp + B'II> = 2(B. B') € Qxo. O

3.2.2. Let I1 be a connected Dynkin diagram which contains a non-isotropic
node, let Iso be its subdiagram consisting of isotropic nodes, and let IT’ be a
connected component of Iso. Note that TT" appears in (11). Since IT is con-
nected, IT’ contains a node 8 € I1’” which is connected to a node in IT \ IT'.
By Lemma 3.2.1, B can be described as follows. For A(n + 1,n), A(n,n), B is
one of the ending nodes; for D(n+1,n), D(n,n),n > 1, B is the first node. For
D(2,1,a), B € Il issuchthat (B, B1)/(B, B2) € Q=0¢, where IT = {8, B1, B2};
such B is unique and exists only if @ € Q. In particular, IT" of type D(2, 1, a)
with a € Q cannot be a connected component of Iso.

3.3. Choice of I1, S,

Let IT be a set of simple roots for A which satisfies the following property:
|al|?> € Qs for each o € TI. Recall that such T exists for all root systems
except for A(2k,2k)®, D(k + 1,k)@: for each non-twisted (resp., twisted)
affine A the example of such IT appears in the end of [G2] (resp., [R]), where
such IT was used for a proof of the denominator identity.

We consider q # D(2,1,a), D(2,1,a)® witha & Q. Set

7= {a eI | |a|* > 0}

Recall that the defect of a finite type root system A is the dimension of
maximal isotropic subspace in QA; for A(m — 1,n — 1), B(m,n), D(m, n) the
defect is equal to min(m, n); for other cases of non Lie algebras it is one. It
is well-known that it is equal to the maximal number of mutually orthogonal
isotropic simple roots for some choice of I, a set of simple roots of A.
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From §13.2 it follows that for affine root system A all its finite parts have
the same defect and that the maximal number of mutually orthogonal isotropic
simple roots for A is equal to the defect of its finite part. We call this number the
defect of the affine superalgebra. A subset S C II is called maximal isotropic if
QS is isotropic and dim QS is equal to the defect.

3.3.1. We say that an isotropic node B € Il is “branching” if the connected
component of Iso which contains 8 is of the type D(k + 1,k) with k > 1
and B is the “branching” node in this connected component or if the connected
component is a triangle (consisting of isotropic nodes) and f is a node in this
triangle which is connected to the rest of the diagram II (such node is unique).
Note that IT contains at most two “branching” nodes.

If IT is not the set of simple roots of D(2,1,a), D(2, 1, a)(l), D(n+1, n)(l)
consisting of isotropic nodes, we let S C I be a maximal subset of mutually or-
thogonal isotropic simple roots, which contains all “branching” isotropic nodes
of IT (if they exist). For example, if [T = D(n + 1, n) consists of isotropic roots
(see (11)), then S = {g; —§;}7_, is “good”. This is what we are called a “good”
choice of S C IT in the introduction. In the exceptional case [T = D(2,1,a),
consisting of isotropic nodes, we take S = {8}, where B € II is such that
(B,aY) > 0 for « € 7 (such B is unique, since m = Ay x Ay).

3.3.2. Remark. Let IT" be a connected component of Iso. Using §3.2.2 one
easily sees that 7’ := 7 N A(IT") and §” := S N I’ is a “good” choice of 7, S
in the sense of §3.3.1 for IT’.

3.3.3. Examples. For example, for A(m,n)(l),m > n, we have m = {§ —
€1+ &m,€1—€2,...,8m—1 — €m} and we have the following “good” choice of
IT (satisfying |la||> > 0 for each « € T):

M={—e1+6em.e1—81,....6n —€nt1.€n4t1 —Ent2. - Em—1 — Em};
and for A(n,n)™ a “good” choice of I is
[M:={6—e1+ 8,61 —061.061 —&2,...,8n —Sn},

sothatm = {6—¢&1 +é&p,61—62,...,6n—1—&n}, With “good” § = {&; —6; }_,
in both cases.
For B2, 1)) 7 = {§ — &1 — €2, &1 — &2, &2} The only “good” T is

IT=1{8—¢e1—681.61—091.61 — &2, 62}.

Since 61 — & is a “branching” node, only S = {§; — &3} is “good”.
For B(2,2)(M) v = {§ — 281,81 — 82, 28»}. The only “good” IT is

M=1{5—e1—381,e1 — 061,01 — 2,62 — 82, 62}.
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Note that Iso =~ D(2, 2), so there are no “branching” nodes; thus any S is good
(there are two choices of S: {&; — J; }12=1’ {6 —e1 — 81,82 — 82}).

For D(n,n) onehas m = {§; —8;+1 };-”;11 U{26, }. There are two “good” IT’s.
For the one, consisting of isotropic roots (see (11)), there are two choices for S:
S =1{0i—¢&}/_and § = {§; —¢; };.:1 U{8» —en}; both choices are “good” (by
definition this diagram does not contain a “branching” node). Another “good”
ITis

I1 = {81 — 81, 81 — &2, — 52, 282}.
In this case the only choice of S is {g; — 81-}1.2=1 and it is “good” (IT does not
have “branching” nodes).

For D(3,1) one has m = {1 — &3, 2 —¢&3, &2 + £3}. We have several “good”
IT’s. For instance, for

IT={e1 —e2,60 — 61,01 —€3,01 + €3}

Iso is a triangle, so the node &, — §; is branching. Thus only S = {e, — §;} is
“good”. Another IT is

IMT={e; —61,01 — 2,82 —€3,62 + €3},

both choices of §: S = {¢; — 61} and S = {61 — &2} are “good”.
For D(4,2) one has w = {&1 — &2, ...,83 — &4, €3 + &€4}. For the following
“good” IT:

[T =1{e1 —61,01 —€2,60 — 82,02 — €3,63 —€4,63 + €4},

there are two choices for S: S = {g; — §; }l.2=1 and § = {§; — 8,'_|_1}i2=1; both
choices are “good”. For the following “good” II:

IMT={e1 —er,60— 81,01 —€3,63 — 82,02 — €4,02 + €4},

there are three choices for S and only S = {e; — §1,&3 — 8>} is “good”, since
€3 — 07 is a “branching” node.

Considering the corresponding affine diagrams for D (4, 2)(D | we see that
d1 — &2 becomes “branching” in the first diagram, so only S = {§; — 8,‘+1}i2=1
remains “good”; in the second case there are no new ‘“branching” points so
S = {ey — 61, &3 — 82} remains “good”.

For D(5,2)M with a “good” II:

IM={§—e1—01,61—051,81 —€2,60 —€3,63 — 4,64 — 82,82 — €5,82 + €5}

there are two “branching” points §; —&3, 64 — 62, s00nly S = {§; —¢&2,64 — 62}
is “good”.
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For F(4) there are six choices of I, four of them are good and only one of
“good” I1’s has a “branching” node. For F (4)® there are two non-isomorphic
“good” I1’s: a “kite”-type
—01+e1—e2+¢e3 §1—e1+e2+ 63

2 ’ 2 ’

I ={5—81 — 3,82 — €3,

51+ &1 —82—83}
2
where the only “good” S is § = {(—481 + &1 — €2 + €3)/2} and a “hill”-type

—01 + &1 + &2 — €3 . 81 —¢e1+ex—e3
2 b 3’ 2
where both choices of § are “good”.

For G(3) there are three “good” I1’s and all S in these I1’s are “good”. For
G(3)W there are two “good” II’s:

H={8—81—82, ,81—82>,

[I={5+e1 —e2,—81 +€2,81 —€3,¢€3}
without “branching” nodes (so both choices of S are “good”), and
IM={6+¢e1 —081,—€1—01,01 —&2,82 — €3}
with § = {61 — &2}.

3.34. Lemma. LetT1 # AQ2n —1,2n — 1)@, AQ2n,2n)®, D(n + 1,n)")
(r =1,2)and let S, & be as above.

(i) For each a € TI with ||a||*> = 0 one has o € S or o + B € 7 for some
B es.
(ii) If w € W () is such that wp = p and wS C A™, then w = Id.

Proof. (i) In the light of §3.3.2, it is enough to verify (i) for the case, when I1
contains only isotropic roots, that is IT is either A(n, n)1) or appears in (11). It
is easy to check that the claim holds in each case.

(i1) Consider first the case when IT contains only isotropic roots.

Recall that for § = {& — 6;}7_, for D(n + 1,n). For A(n,n), D(n,n),
A(n,n)M the choice of S is unique up to an automorphism of the Dynkin dia-
gram IT, so we take S = {g; — §;}7_, for A(n,n), D(n + 1,n), A(n,n)M and
S =18 —&;};_, for D(n,n).

For A(n,n), A(n,n)® the group W stabilizes ZﬂeS B. Therefore wS C
AT forces wB = B for each B € S, so we; = &;,ws; = §; for each i =
1,...,n. This gives w = Id.

For D(n,n), the group W(m) acts by signed permutations on {4; }7'_,, and
the condition wS C AT gives foreachi = 1,...,n that wé; = §; for j < i.
Thus w = Id.
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For D(n + 1,n), the group W () acts by signed permutations with even
number of sign changes on the set {¢; ;’:11, and the condition wS C A™ gives
foreachi = 1,...,n that we; = ¢; for j <i. Thus w = Id.

For A(n 4+ 1,n), the group W () permutes {¢; };_1+11 and S is of the form

{ei—8,~}§‘=1U{8,~—8i+1};’=k+1 forsome k = 0, ...,n. The conditionwS C A™
gives foreachi = 1,...,k (resp.,i = k + 1,...,n + 1) that we; = ¢; for
j <i (resp., j >1). This implies w = Id.

Finally consider the case D (2, 1,a). Write IT = {8, 81, B2} with S = {B}.
Recall that 7 = {f + B1,B + B2} and (B + B1,B + B2) = 0. Since rgll =
{—B.B + B1.B + B2}, for each w € W(x) one has w(—p) = —B + a1(B +
B1) + a2(B + B2) for some a1,az € Z>p and a; = a» = 0 only for w = Id.
Hence wp € AT forces w = Id, as required.

Now consider the general case. Let X be the set of connected components
of Iso; for each connected component IT’ choose 7’ := A(IT") N 7, see §3.3.2.
We claim that

(13) Stabyyp = [ W().

n'eX

Indeed, since |Jo||?> > O for each o € TII, one has (p, o) > 0 for each o €
AT. This gives (p, oY) > 0 for each @ € m, so the stabilizer of p in W(rx)
is generated by the reflections {r, | @ € =, (p,a) = 0}. Clearly, (p,a) = 0
for « € AT means that « € ZIso. Since o € 7, we obtain o € 7’ for some
[T’ € X. This establishes (13).

Now take w € Staby () p. If w # Id, then there exists IT" € X such that the
projection of w to W (") is not Id. Denote this projection by w’. Recall that the
set S N TIT’ is a maximal isotropic set in IT’. By above, there exists 8 € (S NIT')
such that w8 € —A™. Clearly, w8 = w’B, so wB € —A™ for some B € S.
This proves (ii). O

4. KW-character formula for maximally atypical modules when &Y # 0

Let g be either a basic finite-dimensional Lie superalgebra, except for D(2, 1, a)
with a € Q, or an affine Lie superalgebra with non-zero dual Coxeter number
hY, or A(n,n)®, with a subset of simple roots IT such that ||«|? € Q> for
each o € IT (see §3 for the normalization of (—, —)). Set 7 := {o € Ilp |
(o, ) > 0}.

In this section we prove the KW-formula for the maximally atypical (i.e.,
#S = defect(g)) m-integrable g-modules, which admit a “good” choice of S C
IT. These include, in particular, the integrable vacuum modules over the affine
Lie superalgebras with non-zero dual Coxeter number and over A(n, n),



156 M. Gorelik and V.G. Kac

4.1. Main result

Except for the case described in the next sentence, we let S C IT be a maximal
set of mutually isotropic orthogonal simple roots, which contains all “branch-
ing” isotropic nodes, if they exist (recall that an isotropic node f € II is
“branching” if the connected component of Iso which contains f is of the type
D(k + 1,k) with k > 1 and B is the “branching” node in this connected
component, see §3.3.1). If [T = D(2, 1, a) consists of isotropic roots, we take
S = {B}, where B € II is such that (8,a") > 0 for « € 7 (such B is unique,
sincem = A1 X Ap).

Let L(A) be a non-critical 7 -integrable g-module with the property (A, ) =
0 for each B € S. We claim that, for the above “good” choice of S, ch L is given
by the KW-formula:

ew(l—{-p)

14 Re’ch L(A) = :

The condition that L (A) is w-integrable implies (A, «) > 0 for each @ € 7.
Combining with (A, ) = 0 for B € S, we obtain, using Lemma 3.3.4 (i), that
(A, ) > 0 for each « € II. In particular, if g # A(n,n)(, the condition that A
1s non-critical is superfluous.

If g = A(m,n)V with m # n, the conditions on A are equivalent to (1, «) €
Zso for each o« € Il, (A,B) = O foreach B € S. For g = A(n,n)D the
additional condition is A & Z6.

4.2. Other choices of I1 D S

Let IT be any set of simple roots containing a maximal set of mutually orthog-
onal isotropic roots S (#S = defect(g)), and L = L(A,II) is a w-integrable
module with (A, S) = 0. Beyond the cases when the pair [T D S is “good”
formula (14) holds in the following cases of non-exceptional g:

A(m,n), B(m,n),A(m,n)(l) for any m, n;

B(m,n)(l), AQ2n,2m — 1)(2), D(m,n), D(m,n)(l) form < n;

ACm, 2n)®, D(m + 1,n)@ form # n;

B(m,n)M, A2n,2m — 1)@ for m > n + 1 if the affine root «g is such that
lo[|* > 0.

In order to prove this we will show in §4.2.1 below that the g-module L
is isomorphic to the g-module L(A, IT"), where I1’ contains a maximal set of
mutually orthogonal isotropic roots S’ such that (IT’, S”) is good and (A, S') =
0.

By the same method one can show that for G(3)) formula (14) holds for
“good” pairs S C TII, described in §3.3.3, and for [T = {§ + &1 — &3,82 —
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e3,€3 — 81,81} (S is unique). In particular, (14) holds for any S if |ag?> > 0
(see §13.2.4 for the list of all IT’s).

In the case F(4)(M) formula (14) holds for the “good” pairs S C IT described
in §3.3.3 (for the “kite”-type IT if S is the “branching” node and for the “hill”-
type IT if S is any isotropic node).

4.2.1. If formula (14) holds for the pair (IT, §), then it remains valid for the
pair (ro I1, 74 S), where @ € S, see Lemmas 2.2.8, 5.7.1. Let us show that using
the reflections with respect to the roots in S we can transform the pair IT O S
to a “good” pair.

For each affine A # D(m,n) we choose A # D(k, ) which contains S
(see §13.2.1); for D(m, n)M we take A = D(m, n) containing S. If A is finite
we set A 1= A.

Consider IT = IT N A. It is convenient to use the arc diagrams introduced
in [GKMP]; these are dots and crosses diagrams described in §5.6 (dots corre-
sponds to &;’s and crosses to ; ’s) where a dot and a cross is connected by an arc
if the corresponding root lies in S. For 1= A(m,n), B(m,n), D(m,n), the arc
diagram has m dots, n crosses and min(m, n) arcs; since S C I1, all arcs con-
nect neighboring elements and different arcs have no common vertices. Since
there are min(m, n) arcs each cross is connected to a dot if m > n (resp., each
dot is connected to a cross if m < n). The odd reflection (I1, S) — (1o I1, 74 S),
where @ € §, corresponds to the interchanging of the vertices of the arcs cor-
responding to «; we call this “arc reflection”. The condition that [|«||> > 0
for each @ € I1’ means that the corresponding arc diagram does not con-
tain two neighboring crosses (resp., dots) for m > n (resp., m < n), and,
in addition, for B(m,n), D(m,n),m > n the last symbol is a dot, and for
B(m,n),n > m, D(m,n),n > m, the last symbol is a cross.

If the arc diagram (ﬂ, S') contains the same number of dots and crosses, then
using the arc reflections we can obtain the diagram (IT, S) with alternating
symbols (i.e., dots or crosses) which ends by any symbol; we choose this symbol
to be a cross (resp., a dot) for A # A(2n,2n —1)@ (resp., for A # A(2n,2n—
1)(2)) If the arc diagram (H S') contains more crosses than dots we can obtain
an arc diagram (I1’, S”) without neighboring dots, which starts and ends by
crosses; we construct a similar arc diagram (ﬁ/ , §") if there are more dots than
crosses. Let 1’ be the corresponding set of simple roots for A (IT" = IT’ if A
is finite and IT" = IT’ U {ag} if A is affine). Let us show that the pair (IT", S”)
is “good” if A % B(m,n)® or A2n,2m — 1)@ for m > n + 1. Indeed, by
above, ||a||? > 0 for each @ € IT. Moreover, IT’ does not have a branching node
(this holds for all diagrams A(m,n), B(m,n) and for D(m, n) if the last symbol
is cross). Thus (IT’, S”) is “good”.

Now we may assume that A is affine. Let &;, & correspond respectively to
the first and to the last symbol in I1": § = & (resp., & = &) if the first
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(resp., the last) symbol is a dot and & = §; (resp., & = &,) otherwise. If
A = A(m,n)D withm > n, then & = e; and ag = & — &, so ||ag]|® = 0.
For I1 = B(m,n) with n > m one has § = 8, so a9 = 8 — 281 (resp.,
ag = 6 — 61) for A = B(m, n)(l) (resp., for for A = AQ2m,2n)®, D(m +
1,n)@); thus |Jag||? > 0. For IT = B(m,n) with m > n one has & = &; and
ap = § — 2e; (resp., g = 8 — &) for A = AQ2m,2n — 1)@ (resp., for for
A = AQ2m,2n)®, D(m+1,n)P); thus ||ag]|?> > 0. In all these cases I1’ does
not contain branching nodes, so (I1, ) is “good”.

For B(n,n)®, D(n,n)®, A2n,2n — 1)@ for the resulting [T’ one has
Iso = D(n,n), which does not contain “branching” nodes; hence (IT’, S’) is
“good”.

For D(m,n)M" withn > m the arc diagram IT = D(m, n) starts and ends by
crosses, so oy = § — 261 and I1” does not have branching nodes. Thus (IT’, S”)
is good.

Consider the remaining cases B(m,n)V), AQ2n,2m —1)@ withm > n + 1
with ||ag]|> > 0. The condition ||ag||> > 0 means that the first two symbols
in the arc diagram of IT are dots, so using the arc reflections we can obtain a
diagram (IT’, S’) without neighboring crosses which also starts with two dots
and ends by a dot. Then ||z, |2 > 0. The diagram IT’ does not contain branching
nodes; by adding a non-isotropic node «j, to IT we do not create new “branch-
ing” nodes, so (IT’, S”) is good.

4.3. Proof of (14) for a good pair I1 O §

We rewrite formula (14) in the form
Atp

_|_e—/3))'

RePch L(A) = Z sgn(w) Yy, where Yy, := w( ¢
weW(m) Hﬂes(l

By Lemma 2.2.8, ZweW(n) sgn(w) Yy € Z. One has

(15) supp Yy Cw(A + p) + ( Z w,B) — Z>oIl.
{BeS|lwBeA~}

Since L(A) is w-integrable, (A,«a") € Zs¢ for each o € 7. It is easy to
deduce from Proposition 2.1.1 that rqp € p — A for each « € . Note that
(p,a) > 0 for each o« € AT (because ||||> > 0 for each a € II), so rgp €
p — AT for each o € 7. Therefore w(A + p) € A + p — Z>oT1, so

supp( Z sgn(w)Yw) CA+p—Zsoll
weW(m)

Clearly, supp(Re? ch L(A)) C A 4+ p — Z>oIl.
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Let us show that
(16) A+p—Zs0S)Nsupp(Yy) =0 for we W(n),w # Id.

Indeed, assume that the intersection is non-empty. Then, by (15), w €
Staby (z)(A + p) and for each B € S one has either wf € AT or—wpB € Z>oS.
If —wB € Z>oS, then B —wh € ZS,s0 || —wh||*> = 0; but B — wh € Z,
thus B = wp. Therefore w € Staby()(A+p) and wS C A™'.ByLemma 3.3.4
(i1), w = Id, as required.

We conclude that the coefficient of e*1# in ZwEW(n') sgn(w) Yy is 1; clear-

ly, the coefficient of e*T? in ReP ch L(A) is also 1. Let

ek+p

Z := Re’ch L(\) — we;(n) sgn(u))w(l_[ﬂes(1 n e—ﬂ))'

Suppose that Z # 0. By above,
supp(Z) C A + p— Z>oIl, A + p & supp(Z).

Recall that the Casimir element acts on a Verma module M (u) by a scalar
(u, u + 2p). The Casimir elements acts on M(u) by the same scalar as on
ML) if u + p € supp(ReP ch L(A)). Thus |[v||?> = ||A + p]||? for each v €
supp(Re” ch L(1)). On the other hand, it is easy to see that ||v]|> = ||A + p]?
for each v € supp Yy. Thus ||v]|2 = ||A + p||? for each v € supp(Z).

Let A + p — u be a maximal element in supp(Z) with respect to the order
>11 (see §2.1.3). We have

1A+ p—pl> =2+ pl?,  p€Zsoll, p#0.

4.3.1. By §2.2.6, Rgef™ is a W(m)-skew-invariant element of P ().
Since L(A) is m-integrable, ch L(1) is a W(sm)-invariant element of Zy(y),
see §3.1.3. Thus

RgeP™ ch L(A) = Rye”” P(Re” ch L(A))

is a W(m)-skew-invariant element of Zyy (). By §2.2.6, Rye™ P is a W(r)-
invariant element of Zyy (), s0

ew(/l—l-p)

RyeP™™° Z sgn(w) —
wGW(T[) HﬂGS(l +e wﬂ)

= Y sgn(w)e®PrD T (147

weW () ﬁeA;F\S
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By §2.2.3, e*tPr [] geatis(1+ e™P) € Bw(x) s0, by §2.2.5, the sum in the
1

right-hand side is a W (rr)-skew-invariant element of Zyy ().

We conclude that Rye?*~PZ is a non-zero W (rr)-skew-invariant element
of Zw(x). Clearly, A —  + pr is a maximal element in its support. Hence
(A —u+ pr,aY) is a positive integer for each « € 7 (positive, since A — i + pr
is a maximal element in the support of a skew-invariant element of Zyy (), and
integer, since (A, @) € Zx>¢). Therefore

(A—u,) >0 foreachoa € .

4.3.2. By Lemma 3.3.4, forany y € [l onehasy € # U S, or 2y € m, or
Yy =a—B,a €m,B €S.Define a linear map p : Z>oIl — %ZZ()]T which is
zero on S and the identity on 7. Recall that (A + p, S) = (S5, S) = 0. We have
20+ p, ) = (1, 1), 80 2(A + p, p()) = 2 — p(), p()), which implies

200+ p— . p(w) = =l p(w)I*.

Since (p, ), (A — i, ) > 0 for each o € 7, the left-hand side is non-negative.
Hence || p(n)||?> < 0. Since p(n) € %Zzon, we obtain p(u) = 0if A is
finite, and p(u) = s6 if A is affine. In the latter case 2(A + p, p(n)) = 2u —
p(n), p(wn)) gives 2(A+p, s8) = 0. Since A is non-critical, s = 0, so p(u) = 0.
Hence u € ZS \ {0}.

4.3.3. By (16), for u € ZS, the coefficient of e*TP~# in Y,, is equal to zero
if w # Id. One readily sees that L(A);_,, = 0 foreachv € ZS,v # 0. Thus
the coefficient of et~ in ReP ch L is equal to the coefficient of e TP~# in
erte ]_[/365(1 + ¢~ #)~1 = Y. Hence the coefficient of eA**#~H in Z is equal
to zero, a contradiction. This gives Z = 0 and establishes the KW-formula. [

4.4.

Remark. Let g be of the type A(0,n)® or C(n)(M). Note that Ag is indecom-
posable, so m = [lg, W(rr) = W.Let L = L(A, IT) be a w-integrable module.
If L is typical, i.e.,, (A + p, B) # O forall B € Ay, then ch L is given by the
Weyl-Kac character formula Re chL =) cw sgn(w)e® *+0) If L is atyp-
ical, then there exists IT’ such that L = L(A’, IT") and (A’ +p’, B’) = 0 for some
B’ € II', see the next paragraph. By above, ch L is given by the KW-character
formula Re? ch L = Y, oy sen(w)e® A+ /(1 + e~B"). This formula was
proven earlier in [S4].

Let us show that (A + p, B) = 0 for some B € Ay forces the existence of
IT" such that L = L(A’,IT") and (A’ + p’, B’) = 0 for some B’ € I1’. Indeed,
it is easy to show that for this g for any odd root S there exists I1” such that
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B € I1”. Recall that IT” can be obtained from IT by a chain of odd reflections
rBys. .-, Tg,. Writing M0 := M, A% := A and IV = rg; I7=! (so 1" =
I15+1), we introduce A/ by L = L(A/,T17). Then A/ + p/ = A/=1 4 p/—1,
(where p/ is the Weyl vector for IT7) if (A/=1 + p/~1 B i) # 0. Therefore,
if (W74 p/7Bj) # Ofor j = 1,...,s, then A5t 4 pST1 = ) 4 p,
and taking I’ := T1” = TI**! we obtain (A’ + p/,f) = O and B € II". If
(A7 1 +.,0j_1,,3j) = 0 for some j, then we take T1' := I1/~! and B’ := B;
(B; € I/ ~1 by the definition of an odd reflection).

4.5. A new identity

In [KW4] a product character formula was obtained for the osp(m, n)(l)—mod—
ule V1 := L(Ayg). The bilinear form in this case is normalized there by ||&; [|?> =
1 = —|8;||>. 1f M > N + 2, this normalization coincides with our normaliza-
tion. On the other hand, we have established in this section the KW-character
formula for V7. Comparing these formulas, we obtain a new identity, see below.

4.5.1. Letq = osp(m,n)Y, M > N + 2. Consider a set of simple roots
M={—(e1+01),e1—061.01—€2,...,8n—0n,6n—Ent1.Ent1—Ent2,...}.

The set IT has an involution ¢ which exchanges the first two roots (via &1 +—
§ — 1) and fixes the rest. This involution induces an involution ¢ of g. Consider
the vacuum g-module V; and its twisted by ¢ module Vl‘. By [KW4], these are
all integrable (i.e., w-integrable) g-modules of level 1.

One has Vi = L(Ay), where (Ag,6) = 1,(Ag,&) = (Ao,d;) = 0, and
Vi = L(Ao + &1). Formula (14) gives

0 Z eW(Ao+p)
Refch V) = sgn(w) —
weW(m) H?:](l + e_w(*?z +81))
ew(A0+€1+p)
P L _
e we%’%n) ) e Gre ) [Ty (1 + oo 70

where W () is the Weyl group of sops (B, if M = 2m + 1, and Dy, if M =
2m).
On the other hand, formula (7.5) from [KW4] gives

ReP(ch Vi £ ch VY)

=Re"0"? l°—°[ (1 £ g% 12)PODTTIL (1 & €8 gk~1/2) (1 £ 8 gk ~1/2)
k=1 [T7=1(1 F edigh=1/2)(1 F e~3i gk=1/2)

9
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where ¢ = ¢ %, N = 2n, and either p(M) = 0,M = 2m,osp(m,n) =
D(m,n),or p(M) =1,M =2m + 1,08p(m,n) = B(m,n).

Comparing the last character formula with the previous two, gives a product
formula for some mock theta functions (as defined in [KW35]).

5. KW-character formula for finite-dimensional modules

We say that a highest weight module L satisfies the KW-condition, if for some
set of simple roots IT one has L. = L(A, IT) and IT contains a subset S, which
spans a maximal isotropic subspace in QAi‘ o (where Ai‘ o = {a € A |
(A + p,a) = 0}). Sometimes we say that L satisfies the KW-condition for IT
(or for (IT, §)).

Note that dim QAi‘_i_p is the invariant of L (if L = L(A,ITI) = L(A/, IT),
then dim QAi_+p = dim QA/J\_’+p/)’ see [KW3], Corollary 3.1.

Throughout this section g is a basic Lie superalgebra g and L is a finite-
dimensional irreducible (hence highest weight) g-module, which satisfies the
KW-condition for some (I1, S), and r := dim QAi‘ o Note that #§ = r <
defect(g). We assume that r > 0 (otherwise L is typical and Re’ch L =
> wew sen(w) e? A0 by [K2], [KW3]).

Recall that KW-formula (3) has the form

ew()H—p)

(17) JaRePch L = sgn(w) —,
w;V [Tges( +e wh)

where j; # 0. In this section we prove this formula for finite-dimensional
modules, satisfying the KW-condition, in all cases except for ¢ = D(m,n)
with S = {0 —em} or S = {&,;, — 6} with k < n. For C(n) the formula was
proved in §4.

The coefficient j, is equal to r! for A(m, n), 2" r!for B(m,n),to 1 for C(n),
to 2" r! or 2"~ r! for D(m,n), and to 2 for the exceptional Lie superalgebras,
cf. (19) and §5.2.1 below.

5.1. Outline of the proof

Let us explain the outline of the proof. In §5.2 we deduce (17) from (14) for
(IT, §) satisfying the assumptions of §4.1, and then, using Lemma 5.7.1, we
deduce (17) for any (IT, S) for the exceptional Lie superalgebras. In §5.4 we
establish (17) under the assumption that (p,@") > 0 for all « € Tl (this
assumption holds for some subsets of simple roots, if g is A(m — 1,n — 1)
or D(m,n)). For B(m,n) we establish (17) for some special subsets of simple
roots in §5.5. Then, in §5.7-5.9, we explain why for A(m — 1,n — 1) (resp.,
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B(m,n)) the KW-formula for any (IT’, S”) is equivalent to the KW-formula for
(IT, §) as in §5.4 (resp., in §5.5), and why this holds for D(m, n) except for the
cases, when S = {§p — e} or S = {e, — 6} with k < n.

For D(m,n) one of the simplest cases, when we have not established the
KW-formula, is D(3,2) with IT = {81 — 83,80 —€3,83 — 01,01 — 02, 252} and
A =4de1 + 4y —e3 + 01.

5.2. Case of maximal atypicality

Let r(= #S) be equal to the defect of g. Assume that IT, S satisty the assump-
tions of §4.1. Take 7 = {o € I | ||a||> > 0} for A # D(n+1,n),D(2,1,a),
w = Dyyq for D(n + 1,n),and 1 = D, = A; x Ay for D(2,1,a). Then,
by (14),

ek+p

[lges(1+ e_ﬂ))’

see §2.2.8 for notation. Write W = W(xw) x W(Ilg \ 7). Since L is finite-
dimensional, the left-hand side of this formula i1s W -skew-invariant. Then

|W(IIo \ m)|Re” ch L = Fy (r1\n)(Re” ch L)

RePch L = ﬁW(n)(

eA+p

[Tges(1+ e_ﬁ))

=7 F
(18) W(Tlo\n) W(n)(

ek+p

[lges(1+ e_ﬂ)).
This establishes KW-formula (17) for this case with

(19) Ja = [WIIp \ m)|;

note that W (Il \ ) is the smallest factor in the presentation of W(Ily) as the
direct product of Coxeter groups.
In particular, for A = 0 we obtain the denominator identity (for such IT, §).
Note that 7 is the “largest part” of Ilp in the following sense: g \ 7 is
a connected component of I1g with the property |W(x)| > |W(Ilg \ )| (for
A(n,n), B(n,n), D(2,1, a) the choice of 7 is not unique).

:yw(

5.2.1. The coefficient j, for a non-exceptional Lie superalgebra can be obtained
as follows: it is not hard to show (see §5.8) that IT contains a connected subdi-
agram I1’ of defect r with the property (A,«) = 0 for « € I1’; moreover, IT/
is of “the same type” as I1 (if IT = A(m,n), then IT" = A(m’, n’), etc.). Write
W(Ily) = Wi x Wa, where Wy, W, are the Weyl groups of the components
of ITj, (connected components if IT" # D(2,1)). If we choose W, such that
|W1i| > |Wa|, then j, = |Wa|. If IT = A(m,n) (resp., B(m,n), D(m,n)), then
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" = A(m',n’) (resp., B(m',n’), D(m’,n’)), with r = min(m’, n’). There-
fore for A(m,n) (resp., for B(m,n)) one has j, = |W(A4,)| = r! (resp.,
Jja = 2" r!). For D(m,n) one has either IT" = D(m’,r) form’ > r and j) =
|W(C,)| =2"r),or IT' = D(r,n’) forn’ > r and j;, = |W(D,)| =2""1r.

5.2.2. Now let g be an exceptional Lie superalgebra and let L = L(A,IT) be a
finite-dimensional g-module, satisfying the KW-conditionfor (I1, §). We claim
that the KW-formula holds and j, = 2. Note that g has defect one, so r = 1,
thatis § = {B} for some g € II.

Indeed, by above, if I, S satisfy the assumptions of §4.1, then the KW-
formula holds (this was also proved previously, see [KW2]) and j; = |W(I1p \
)| = 2. Assume that ¢ # D(2,1,a) with a € Q and I1, S do not satisfy the
assumptions of §4.1. It is easy to check that in this case B is the only isotropic
root in IT and that (rgIl, S = {—p}) satisfy the assumptions of §4.1. In par-
ticular, the KW-formula holds for (rgIl, S’ = {—pB}). By Lemma 5.7.1, this
implies the KW-formula for (IT, {8}).

Now let ¢ = D(2, 1, a) for irrational a (this case is not covered by §4). It
is easy to see that, in this case, the trivial module is the only finite-dimensional
atypical module. KW-formula for the trivial module is the denominator identity,
which, clearly, does not depend on a; it holds for rational a, hence it holds in
general.

This establishes KW-formula (17) with j; = 2 for the exceptional Lie su-
peralgebras.

5.3.

Denote by j; the coefficient of e**# in fw(%). Set
€S

e/l—I-P
HﬂGS(l + e_'B))'

The KW-formula is equivalent to j; # 0 and Z = 0.
If Z # 0, we denote by A’ a maximal element in supp Z. The arguments
of §4.3.1 show that

Z = jyRePchL — ﬁW(

(20) (M —p,a¥) >0 foreacha € Ij.
5.3.1. Lemma. suppZ C W(A + p—ZS).

Proof. Clearly, supp(%) CWA+p—15S).

Let us show that supp Re®ch L C W(A + p—Z.S).
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In the light of Proposition 7.3.1 (in §7), it is enough to verify that for y €
W, u € 7S and an isotropic root 8, if (y(A + p — ), B) = 0, then y(A + p —
w)—B=y'(A+p—u) forsome y € W, u' € ZS.

We start with the case y = Id, so (A + p— u, ) = 0. If (S, 8) = 0, then
(A 4+ p, B) = 0 and, by the KW-condition, B € ZS. Therefore the claim holds
for y) = Id, ;' = u + B. Now let (S, ) # 0, that is (8, 8’) # 0 for some
B’ € S. Since g4 p generate a copy of s[(1,1) C g, either 4 ' or g — B’
isaroot,ie.,a := f —xpf’ € Agforx = lorx = —1.Since A + p — p is
orthogonal to S and to f’, it is orthogonal to . One has ro 8 = xf’, so

Atp—p—B=r+p—pn—xraf =ra(A+p—pn—xp.
Thus the claim holds for y' = ro, ' = u + xB.
Now take an arbitrary y € W. Then (y(A 4+ p — u), B) = 0 implies (A +
p—u,y ') =0.Byabove, A +p—pu—y 18 =wl + p— i) for some
weW,ueZS. Theny(A+p—pu)—B =yw@l + p—u), as required. O

54. Case A(m — 1,n — 1) and D(m,n),r > 1, or D(m,n),S = {B}, where
B = t(em — on)

In Corollary 5.8.2 below we show that the KW-formula for any (IT’, S’) is
equivalent to the KW-formula for (I, S) such that (p,«") > 0 for each @ €
[Tp. For such (I1,S) we prove the formula below, proving thereby the KW-
formula for (IT", S').

54.1. Letgbe A(m — 1,n — 1) or D(m,n). We shall assume that
21) Ya € Iy (p.a”) > 0.

We will prove the KW-formula under this assumption, by showing that j; # 0
and Z = 0.

5.4.2. Since L is finite-dimensional, (A, «") > 0 for each o € ITy. Assump-
tion (21) implies that A + p is maximal in its W-orbit and Stabw (A + p) =
W(I1}), where

My :={aelly| A+ p,a) =0} ={a Tl | (A,a) = (p,a) = 0}.

Take o € ITj. Since A is not exceptional, (p, ) = 0 implies & = S +
B’, where B, B’ € II are isotropic, see Lemma 5.6.4. In this case, (B,a) =
(B',a¥)=1.If(A,B) #0,then L = L(A,IT) = L(A—B,rgIl) and (A, ) =
0 gives (A — B,a¥) = —1, which is impossible, since L is finite-dimensional.
Therefore (A, f) = 0; similarly, (A, 8’) = 0. We conclude that IT, is spanned
by IT’, where
MN:={aecl| A a) = (pa)=0}
(more precisely, ITj is a set of simple roots for A(TT")p).
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5.4.3. Since A + p is maximal in its W -orbit, using (15) we obtain
suppZ C A+ p—Z>oIl.

Suppose that Z # 0 and let A’ be a maximal element in supp Z. Then A’ =
A+ p—' for some v’ € ZsoIl.

Let us show that v/ € ZS. By Lemma 5.3.1, ' := w(A + p — n) with
w € W,u € ZS. Combining (20) and (21), we get (A',a¥) > 0 for each
a € I1y. Thus A = w(A + p — ) is maximal in its W-orbit. Since A + p —
lies in this orbit, we have A + p — u = A’ — v for some v € ZsoIlp. Thus
uw=v+v, where u € ZS,v € Z>ollp and v/ € Z>oII. Since S is a set of
mutually orthogonal isotropic roots, v = 0 and v = u, as required.

5.4.4. Denote by P : ¥ — ¥ the projection sending Zvef)* a,er PV to
> ezs @ve* TPV Since A € A+p—ZS, itis enough to verify that P(Z) = 0.

If w ¢ W(IIy), then w(A + p) = (A + p) — y, where y € Z>oIlo, y # 0.
By (15), this implies P(Yy,) = 0. Hence

eA+p A+p

(At ) = P (P (1))

Since (p, ) = 0 for each o € IT’, I’ consists of isotropic roots. Clearly,
S is a maximal set of mutually orthogonal isotropic roots in T’ (otherwise,
(S, B) = 0 for some B € IT’, which contradicts the KW-condition). In particu-
lar, from the denominator identity ((18) for A = 0) for IT’ one has

oA+o
[Tges(1 +e7F)

Fwany ( ) = J(M)R(IT)eH*,
where j(IT") # 0.

Since T1" C IT is orthogonal to A, the highest weight vector in L(A) gener-
ates the trivial module over the corresponding to I’ subalgebra, and so L(4);_,
= 0 for each v € ZIT',v # 0. Therefore P(e’chL) = 1. Since S C IT we
have

P(RePch L) = P(R(IT)e*TP).

Then

ek+p

nﬂGS(l + e_ﬂ)))
=(jz — J(I)) P(R(IT)e* ).

P(Z) :P<j;LRep chl — fw(

The coefficient of e*** in the left-hand side is zero and in the right-hand
side is j, — j(IT'). Hence j, = jiv # 0 and P(Z) = 0, as required. This
completes the proof of the KW-formula under the assumption (21).
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5.5. Case B(m,n)

In this case there is no IT such that (p, «¥) > 0 for each « € IIj.

We will show below that the KW-formula for any (IT’, S”) is equivalent to
the KW-formula for (I, S) such that (p, @) > 0 for all except one root in ITg
(which is either &, or 24,). Moreover, by (25), {& € A | (A + p,a) = 0} is
spanned by

N :={aecll|(A+p a) =0

Since (A, ") > 0 for each o € I, I1° consists of isotropic roots.

5.5.1. Consider the case when oy, 4, = & (for ap,+, = 6, we interchange &’s
and 4’s). Then oy 4n—1 = 6 — &m.

Normalize (—, —) by ||&;||> = 1. Then (A,&;) > 0 > (A,§;) for each i, j.
Since r > 1, the KW-condition implies that (A, €,) = (A, §,z) = 0 and that IT1°
is connected (and contains §, — &;,). Then

n:=mn’u {mn}

is a connected subdiagram containing o, +,. Recall that S is a maximal set
of mutually orthogonal isotropic roots in I1°, so I1" is B(¢,r) for t = r or
t=r+1,and (A, em—i) = (A,8,—j) =0for0<i <r—1.

Write W(IT;) = W4 x W_, where W_ is the group of signed permutations
of {8p—;i}Zy and Wy is the group of signed permutations of {en—;}i_g. We
denote by Sy, S, the subgroups of unsigned permutations in the corresponding
groups, and by w—_ the longest element in W_ (w_¢; = —§; fori > n —r).

5.5.2. Since (A+p,aY) > 0fora € I\ {28,}, A + p is maximal in W(By,) x
S, -orbit (where S, is the subgroup of unsigned permutations in W(C,) C W).
One has

1
(A +p.em—i) = A+ p.0n—j) = 5.

so w_(A + p) is maximal in its W-orbit. Since A° is spanned by I1°, we have

1
A+p,0)) == forn—r<i <mn;
(22) 2
(/\—i—,o,8j)<—§ forl <i<n-—r.

In particular, Stabw (A + p) is S; x S, C W(IIj).
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e AT L\ RLP g ertr
553 LetZ :=2"r'RefchL JW(—HBGS(l_i_e_B)).
Let us show that

(23) suppZ C A+ p— (Z>oI1\{0}).

Let p’ be the Weyl vector of IT’. Note that IT’, S satisfy the assumptions
of §4.1, so (18) for B(¢,r) gives

/ /

ef ef
[Tges(1 +e7P) [Tges(l + e_ﬁ))'

The term in the left-hand side is obviously W (IT}))-skew-invariant, so

EW(HZ))( ) = 2rr!35W+(

/

o o
Hﬂeg(el n e‘ﬂ)) = Sgﬂ(w—)er!a@W_i_ (w_(l_[ﬂes(el n e_ﬂ)))'

Recall that sgn(w—) = 1. Since A and p — p’ are W(II;))-invariant, using the
denominator identity (see (18)) for B(¢, r), we obtain

e
ﬁw(

1_[}365(1 + e_B))

— ﬁW/ W) (el-ho_p/gzw(n&) (

T W(ng)(

A+p

/

eP
l_[ﬂGS(l _|-e_.3)))
el F )H‘P—Plﬂ ep/ )
/W) i [Tges(1 +e7P)
=2"r' W/ W(IT. w. w— ) ,
(/W)W [Tges(1 +e7P)

(24)

where W/ W(II}) is a set of coset representatives.

Hence
ek+p
Ppetrm) T e e
pes we(W/W(ITy)x Wy
where Yy, 1= eV tD)

HBGS(I +e—wh)"

Write W = W(By,) x W(Cp). Then (W/W(I1y)) x Wy = (W(Cy)/ W-) x
W(By,). Consider the Bruhat order > on W(C,). The following claim can be
easily proven by induction on the Bruhat order:

Vy e W(Cy) 3z € W_  suchthat yz > w_.

Using this claim we choose the set of representatives in W(C,,)/ W_ consisting
of the elements which are larger than w_ (with respect to the Bruhat order).
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Since w—(A + p) is maximal in its W -orbit, we get ww—(A + p) < A + p for
eachw € (W(Cy)/W-) x W(By,).
Take w € (W(C,)/ W-) x W(By,). Using (15) we obtain

supp Yuw_ C A+ p—ZsolIl,

sosupp Z C A+ p—ZsoIl. Moreover, since Staby (A + p) is equal to S; x S,
we conclude that A + p € supp Yy, forces w = w_x for x € Wy. Com-
bining (24) and (18) for B(¢,r), we conclude that the coefficient of e*tP in
Q’W(e’wpl_[ﬁes(l + e~ P)) is equal to 27 r!. Hence A + p ¢ supp Z. This
establishes (23).

5.5.4. Suppose that Z # 0.Let A’ := A+ p—v’ be maximal in supp Z. By (23),

v € Z>oIl. By Lemma 5.3.1, ' = w(A + p— ) forw € W, u € ZS.
Recall that (A’ — p, o) > 0 for o € ITp. One has ||§;]|> = —1 and (p, §,) =

%; therefore (A', §;) < % for each i and the maximal element in W -orbit of A’

is of the form
V=2t Y6
{i|(A'—p,8;)=0}

Since (A" — p,8j —8j+1) = 0, the set D := {5; | (A" — p,8;) = 0} is either
empty or of the form {§;,6;+1,...,8,}. Assume that §,_, € D. Thené; € D
forn—r <i < n;forsuchi onehas (p,d;) = :I:%, so (A, §;) = :I:%.Therefore
A+p—p,wé) = :I:%. Recall that for j < n —r one has (,d;) = 0 and
A+p,8;) < —% by (22). Hence foreachi = n—r,...,n one has wé; = +£4;,
where n —r < j < n, a contradiction. We conclude that

n
A =A’+Z§i, wheren —r <s <n.
i=s
Since A" is maximal in WA' = W(A + p — 1), we have
n n
Atp—p=A—v=24+Y §=r+p—v+) &,
i=s i=s
for some v € Z>oIl. Then

n
v—|—v’:,u+28i € ZsoIl’
i=
and v,V € ZsoIl. Hence v,v" € Z>oIl/, thatis A’ —p = A — V' for v €
ZZOH/-
Recall that IT" is B(t, r). Therefore Q1" = QIIj,. For each & € IT, one has
(A" — p,aY) > 0; since (A, ) = 0 we obtain (v/,a¥) < 0. By Theorem 4.3
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in [K3], if A is a Cartan matrix of a semisimple Lie algebra and v is a vector
with rational coordinates, then Av > 0 implies v > 0 or v = 0. Therefore
V' € —QsoAT(IT')g. Since v/ € ZsoIl’, v = 0, which contradicts (23).

This proves the KW-formula if IT is such that (p, ") > 0 for all except one
root in ITy.

5.6. Dots and crosses diagrams

Letgbe A(m —1,n — 1) = gl(m,n), B(m,n) or D(m,n).

For a set of simple roots Il we denote by Iso the subdiagram of Dynkin
diagram consisting of isotropic nodes. We call a set of r mutually orthogonal
isotropic simple roots dense if S is contained in a connected subdiagram con-
sisting of 2r — 1 isotropic roots.

We will show that if L satisfies the KW-condition for some pair, then L =
L (A, IT) satisfies the KW-condition for a pair (IT, S), such that Iso is connected
and S is dense (plus some additional conditions for B(m,n) and D(m,n)), and
the KW-formula for the former pair is equivalent to the KW-formula for (T1, 5).

5.6.1. Inthis section we encode subsets of simple roots for the root system A(g)
by diagrams described in [GKMP]. We recall this construction below.

Recall that the standard basis of h* consists of ¢; withi = 1,...,m and §;
with j = 1,...,n, which are mutually orthogonal. We can normalize the form
(—,—) in such a way that ||&;||*> = 1 for each i and ||§;||> = —1 for each j.

Set

&= ReiliLy, 2:=1}io, #=EUT.

We call two elements vq, vo € & elements of the same type if ||v1]|*> = |v2]?
(i.e., {v1,v2} C & or {vy,v2} C Z) and elements of different types otherwise.

Fix atotal order > on & = {&; > --- > &, 4+, } and define the corresponding
set of simple roots I1(A, >) as follows:

g I1(#A,>)
Am—1Ln—1) | {& — &)
B(m,n) & — éi—l—l};n:in_l U m+n}
D(m,n) & — &0 T U 2bmtn} if Emin € 2
& — Si+1}:'n=+1n_l Umin—1 +Emtnsifépyn €&

We encode a subset IT of simple roots for the root system A(g) by the or-
dered set A, which is pictorially represented by an ordered sequence of dots
and crosses, the former corresponding to vertices in & and the latter to vertices

in 9.
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For instance, the sequence - - X X encodes {e] —&3,82 —01,61 — 62} for
A(l, 1), {81—82, 82—81,51—82, 52}f01‘ B(Z, 2) and {81—82, 82—51, 81—82, 252}
for D(2,2).

For each u,v € A, u — v is a root. We call u, v the ends of « = u — v.
The root u — v is isotropic if u, v are of different types and is simple if u, v are
neighbors.

A simple odd reflection ry—y, with v, w € % corresponds to the switch
of consecutive vertices v, w in the ordered sequence (v and w should be of
different types).

For v,w € % denote by [v, w] the (ordered) set of elements of Z lying
between v and w, namely, if v > w, then [v,w] ={u € Z | v >u > w} and
by Jv, w[ the set [v, w] \ {v, w}.

Let [v, w] be any interval and |[v, w]N&| = k, |[v, w]N Z| = [. We denote
by I1([u, v]) the corresponding set of simple roots of A(k,[)-type: if [v, w] =
{uy > up > --- > ug}, then I(Ju, v]) := {u; —us,...,us—1 — uz}. Note that
each permutation of dots and crosses in [v, w] correspond to a sequence of odd
reflections and thus to a choice of another set of simple roots in A(k, ).

Let W[y 4] be the Weyl group of IT([u, v]) (the subgroup of W consisting of
(non-signed) permutations of [v, w]N& and of [v, W]N D), so W[y, ] = Sk XS;.

We say that [v, w] is balanced if TI([v, w]) has a maximal possible number
of mutually orthogonal isotropic roots; in other words, if [v, w] consists of k1
dots and k; crosses, then [v, w] is balanced if it contains min(ky, k) disjoint
pairs consisting of neighboring vertices of different types.

Any v € h* can be written in the form v = ), ., ¥, u for some scalars yy;
we define the restriction of v to [v, w] by the formula

v[u’v] = Z Yull.

uelv,w]

We say that vy, o] is trivial if (v,a) = 0 for all « € II([v, w]); it means that
A(k, I)-module of highest weight v, , is one-dimensional (where I1([v, w]) is
a set of simple roots for A(k,[)).

A set S of mutually orthogonal simple isotropic roots is represented by a set
of disjoint pairs consisting of neighboring vertices of different types. It can be
encoded by the set of these vertices, which we denote by supp S. Note that S is
dense if supp S C Z form an interval consisting of the elements of alternating

types.

5.6.2. For the cases A(m—1,n—1) and B(m, n), using the description of Borel
subalgebras in [K1], it is not difficult to show that any set of positive roots for g
(satisfying A1 (IT) N A = Ag ) is of the form IT1(Z#, >) for some total order
> on A.
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Consider the case D(m,n). Recall that D(m, n) has an autormorphism ¢p
(induced by a Dynkin diagram automorphism of D,,) which preserves h and
satisfies tp(6;) = 6; for 1 < i < n,ip(ej) = ¢ forl <i < m — 1 and
tp(em) = —&m. Any set of positive roots for D(m, n) is of the form I1(%4, >)
or tp (IT(A, >)) for some total order > on A. If §,, +¢&,, € S, then §, ¢, € I1
and (p (IT) = II. Thus either (IT, S) or (¢(IT), ¢(S)) are such that IT = T1(A4,
>) and S is of the form S = {u; —v;}i_,, u;, v; € %. Therefore, using 1p, we
can (and will) assume that IT = I1(#, >) and S is of this form.

5.6.3. Summarizing, we consider I1 = I1(#, >), which is encoded by a se-
quence of m dots and n crosses, and S C II is encoded by supp S, which is a
subset of A, consisting of r pairs of neihboring dots and crosses.

5.6.4. Lemma. Ifa € Il is such that (p,a) = 0, then « = B + B/, where
B, B’ € 11 are isotropic.

Proof. Mark each element of u € 4 by the number (p, u). If u > v are neigh-
boring in A, then (p,u) = (p,v) if u,v are of different types and (p,u) —
(p,v) = ||u||? otherwise.

Ifu —v e Ilp foru,v € %, then u, v are of the same type and there are no
other elements of these type between them. This means that (p, u) — (p,v) =
(1 —t)|lu||?, where ¢ is the number of elements in Ju, v][.

Take o € I1g such that (p, o) = 0.

If « = u — v, then, by above, |u, v[ consists of one element, say w, and
u, w are of different types. Hence u — w, v — w are isotropic simple roots and
u—v = (u—w)—+ (w—v) as required. This establishes the claim for A(m, n).

For B(m, n) the last mark is equal to =1/2, so all marks are not integral. If
o #u—vforu,ve A thena = uora = 2u for some u € A, and thus
(p, o) # 0.

For D(m,n) the last mark is zero if the last element is a dot and is —1
otherwise. If @ # u — v for u,v € %, then o = 26, or ¢ = &1 + &p. If
a = 26,, then (since &, is represented by the last cross), (p, ;) = t'1, where ¢/
is the number of dots after the last cross. Hence (p, ) = 0 forces t’ = 1, that is
On £ &m € I1, which gives 26,, = (6, — &m) + (6n + &m), as required. Consider
the remaining case @ = &,,—1 + &n. By above, (p, &—1 — &m) = 1 —t, where
t is the number of elements in |&,,—1, &, [. Note that &, is the last dot in %, so
(p, &m) = —t’, where t’ is the number of crosses after €,,. Then 0 = (p, &,,—1 +
em) = 1 —t—2t',s0t' = 0andt = 1. This means that &,,,—1 — 8,,0, * &m
are isotropic simple roots, and €,,—1 + &, = (€m—1 — 6n) + (6 + &) is the
required presentation. (]
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5.7. Equivalence of the KW-formulas

Let L = L(A,II) be a finite-dimensional g-module, satisfying the KW-condi-
tion for (IT, S).

In Lemma 5.7.1 we show that if 8 € II is isotropic and (8, S) = 0, then L
satisfies the KW-condition for (rgI1, rg §) and the corresponding KW-formulas
are equivalent (one has rgS = S if B & S and rgS = (S \ {B}) U {-B}
if B € §). In particular, we can permute dots and crosses in any interval [u, v]
such that [u, v]Nsupp S = @; then L satisfies the KW-condition for the resulting
1" and the original S, and the corresponding KW-formulas are equivalent.

In Lemma 5.7.2 we assume that (4, >) contains an interval [u, v] such
that supp S C [u,v] and (A,u — u’) = 0 for each u’ € [u,v]. Let the or-
dered set (%,” >) be obtained from (Z4, >) by some permutation of dots and
crosses in [u, v] in such a way that with the new ordering this interval is bal-
anced (with a maximal set of mutually orthogonal isotropic roots S’). In this
case L = L(A,IT’) and L satisfies the KW-condition for (IT", S”), where IT' =
I1(%,” >); moreover, the corresponding KW-formulas are equivalent.

5.7.1. Lemma. Let L = L(A,I1) be a finite-dimensional g-module which sat-
isfies the KW-condition for (I1, S). Let § € I1 be an isotropic root orthogonal
to all elements of S.

(i) The KW-condition holds for (I1', S”) := (rgIl1, rgS).

(ii) Let L = L(A',T1') and p’ be the Weyl vector for T1'.
Then

A+p e/l’—l—p’

1_[}365’(1 + e_ﬂ)

e
l—[ﬂES(l + e_ﬁ)

are equivalent.
In particular, formulas (17) for (S, I1) and (S’, I1') are equivalent.

gw( ) e Z(I), ggfw( ) e (1)

Proof. The proof of (i) is straightforward. For (ii) set
A+p

X' = ﬁW( il ) e #(IT).

HﬂES’(l + e_ﬂ)

Note that X, X’ are finite sums; for each isotropic root 81 € IT (resp., 1 €
IT"), X (resp., X’) has a pole of order < 1 at ;.

If 8 ¢ S,then S = S’; moreover, the KW-condition implies that (A +
0. B) #0,50A + p = A + p/. Hence X, X'are the expansions of the same
element in Z(I1) and in Z(I1'), so they are equivalent.
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If B € S,then A = A and so

e)Ver/ e tp

Mpes (1 + e Tlpes+e7P)

Then again X, X’ are the expansions of the same element and they are equiva-
lent. =

5.7.2. Lemma. Let L = L(A,II) satisfy the KW-condition for (I1, S) and
let T1 = I1(A,>). Assume that [u,v] € (%A, >) is such that supp S C [u, v]
and A, ] is trivial. Let the ordered set (A, >) be obtained from (%, >) by
permuting some dots and crosses in [u, v]: we denote the resulting interval in
(B, >) by [u', V'] ([u,v] = [u’, V'] as non-ordered sets). Then

(i) L = L(A,IT1"), where TT' := T1(A,” >).
(ii) If [u’,v'] is balanced, then L satisfies the KW-condition for (I1, S”), where
S’ is a maximal set of mutually orthogonal isotropic roots in T1([u’, v']).

Moreover, the KW-formula for (I1, S) is equivalent to the KW-formula for
(I, S7).

Proof. Let I1([u,v]) = A(k,l), where k < [. Then (i) follows from the fact the
one-dimensional A(k, /)-module has the same highest weight for any choice of
simple roots.

For (ii) assume that [u’, v] is balanced and S’ is a maximal set of mutually
orthogonal isotropic roots in IT([u’, v']). Then S’ contains k elements. Since L
satisfies the KW-condition, [u, v] is balanced and S contains k elements. Since
(A, ) = 0 for each o € TI([u, v]), one has (A, «) = 0 for each « € S’. Hence
L satisfies the KW-condition for (IT’, S”).

It remains to show that the KW-formulas are equivalent.

Denote by W/ W[, a set of coset representatives. Note that A — A, ;] and
P — P[u,v] are W([u, v])-stable. Since the denominator identity for A(k, /) holds
for (IT([u, v]), S) and for (IT([u’, v']), S”), we have

ek+,0

yW(HﬂGS(1+e—ﬂ))

e/H—,o

H,BES(I + e_ﬁ))

— A=A v1+HP—Pluv]
_JW/W[u,v] (6‘ [u,v] [u U]JW[M,‘U](

— I a7
_JW/W[u,v]JW[u,u](

eMu.v1 P[] ))
HﬂGS(l + e‘ﬂ)

A[u v]+P”
_ A=A +po—p T e
_ﬂW W (e [u,v] [M’U]JW (
/ [u,v] [u,v] l_[ﬂeS/(l +€_ﬂ)
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At o—Pp.v1+p” )
l_[ﬂGS’(l + €_ﬂ) ’

where p” is the Weyl vector for TTI([u’, v']). Recall that IT([u’, v']) can be ob-
tained from IT([u, v]) by a sequence of odd reflections rg, ...rg,. Then p” =

:yw(

Plu,v] + Z§=1 Bi. Since TT’ is obtained from IT by the same sequence of odd
reflections, we have p" = p — p, ] + p” is the Weyl vector for IT'.

erto er o’
We conclude that ﬁw(m) S %(H) and ﬁw(m) S

2 (I1') are equivalent elements. The assertion follows. O

5.8. Properties of I1, S

For eachu € A set y, := (A, u).

Letu > v € #and ||u||?> = ||v||?>. Then u — v € Ig and, since L(A, IT) is
finite-dimensional, (A, (u — v)Y) = (A, u — v)||u||? = 0. This gives y, ||u|*> >
yu||v||?. Moreover, since the irreducible A(1, 0)-module of the highest weight
ag1 — bdy + aey is finite-dimensional only for b = a, we obtain that y,, = y,
forces yy = yy for each w € [u, v] (yy is constant for w € [u, v]).

Let ug (resp., vsg) be the largest (resp., smallest) element in supp S. Take
u’,v" such thatug —u’, vg —v’ € S. Recall that ug, u” and vg, v" are neighbors
of different types and y,¢ = Yuw/,Yvg = Yu. By above, y,, is constant for
w € [ug,vs]. Since [ug, vs] contains elements of different types, the set {w €
A | yw = Yug} 1s an interval (containing [us, vs]). Denote this interval by
[u,v] (u > ug > vg > v). Then (A,«) = 0 for each @ € II([u,v]). In
particular, [u, v] is balanced and S C TI([u, v]) is a maximal set of mutually
orthogonal isotropic roots.

For B(m, n), finite-dimensionality of L implies yy, |w||?> > 0 for each w €
A. This gives y,, = 0 and thus y,, = 0 for each w < u. Hence v is the minimal
element in % and A, ) = 0.

5.8.1. For D(m,n), finite-dimensionality of L implies y,, ||w|?® > 0 for each
w € B\ {em}and |yg | > |ye,,| fori < m.In particular, if (A, ug) # 0, then
r=18 = {0 —emyorS ={em —0i}. If (A,ug) = 0, then (A,u) = 0 for
each u € supp S, and, as for B(m, n), we obtain that v is the minimal element
in % and A, ,] = 0. Note that [u, v] contains at least r elements of each type,
SO &m, 0n € [u, v].

We assume for the rest of §5 that either (A,us) = 0or S = {a(6, — em)},
where a = £1. Thus we exclude the case (A,ug) # 0and S = {a(6x — em)}
withk <n.
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5.8.2. Lemma. Letthe g-module L. = L(A, ) satisfy the KW-condition for
(T1, S), where Iso is connected and S is dense. Set A\° := (A + p, us).

(i) One has (A + p,aY) > 0ifa € g anda = u — v foru,v € %;

(ii) The multiset {(A + p,u)}ues contains 2r or 2r + 1 copies of A° and all
other elements are distinct. The set {x € B | (A + p,x) = A% form an
interval [ug, vo|, which contains [ug, vs].

Remark. Note that [ug, vg] contains 2r elements and [ug, vo] contains 2r or
2r + 1 elements.

Proof. Take u € [ug,vg]. From §5.8 one has (A,u) = (A,ug); since S is
dense one has (p,u) = (p,us). Therefore (A + p,u) = (A + p,ug).

Letu, v € % be of the same type and u > v. Since Iso is connected, (p, (u —
v)Y) > 0 and if (p, (u — v)Y) = 0, then (p, w) is constant for w € [u, v] (so,
[u, v] consists of the elements of alternating types). By §5.8 the same holds for
A. This proves (i) and, moreover, shows that (A + p, u) = (A + p, v) implies that
A and p are constant on [u, v]. If [u, v]\[u s, vs] contains more than one element,
then it contains two neghboring elements u’, v" of different types. However,
A+ p,u'—v") =0and (u' —v’, S) = 0, which contradicts the KW-condition.
Hence [u,v] \ [us, vs] contains at most one element (in particular, u or v lies
in [ug, vs]). This proves (ii). O

Corollary. Let L = L(A, IT) satisfy the KW-condition for (I1, S), where Iso
is connected and S is dense. If T1 is A(m — 1,n — 1), or if Il is D(m,n) with

(p,a”) >0 foreacha € T.

5.9. Choice of (I1, S)

Finally, we show that for A(m,n), B(m,n) and D(m, n), if a finite-dimensional
g-module L satisfies the KW-condition for (IT, S), and, for D(m,n) the as-
sumption of §5.8.1 is fulfilled, then the KW-formula is equivalent to the KW-
formula for (IT, S), where Iso is connected, S is dense, and, for D(m,n),
On — &m € I1.

5.9.1. Let [u,v] be the interval constructed in the second paragraph in §5.8.
Using Lemma 5.7.2 we can rearrange dots and crosses in [u, v] such that the
resulting interval [u’, v'], u’ > v’, is balanced. We do this in such a way that the
interval has first a segment of the elements of same type and then a segment of
elements of alternating types; for D(m, n) we choose the minimal element to be
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em. We choose S’ such that supp S’ consists of the last 2r elements in [u’, v'];
then S’ is dense and v’ € supp S’.

Using Lemma 5.7.1 we now permute dots and crosses in the intervals {w €
B |w>u'}and {w € Z | w < v'}; the second interval is empty for B(m, n)
and for D(m,n) (if the assumption in §5.8.1 holds). We do this in such a way
that in the resulting order we have & = [ug, u+] U [u4+,v4] U [v4, vo], where
up > us > u' > v’ > vy > vy, the interval [ug, uy] (resp., [v+, vo]) con-
sists of the elements of the same type, and the interval [u 4, v4] consists of the
elements of alternating types.

5.9.2. Consider the resulting ordering (%, >) and set I1 := I1(%4, >), S := §’.
Let p be the corresponding Weyl vector and A be the highest weight of L.

From Lemmas 5.7.2, 5.7.1 we conclude that the KW-formula is equivalent
to the KW-formula for (IT, §).

Since 4 = [ug,u4+] U [u4+,v4] U [vy, vo] as above, we have obtained
IT, S for which Iso is connected and S is dense, which completes the proof
for A(m,n).

In addition, for D(m,n) we have obtained that &, is minimal in %4 and
On — &m € S. Therefore IT contains §, + &, and S = {§,,—; — sm_i}{;(l). This
completes the proof for D(m, n).

5.9.3. For B(m,n) we have obtained S = {§,—; — 8m_,~}{;(1) or S = {em—i —
On—i }lr ;(1). Retain notations of Lemma 5.8.2. Recall that vg = vg 1S minimal in
% and (A,v) = 0forv € [ug,vs]. We will show that (IT, S) can be chosen in
such a way that Iso is connected, S is dense and for u, v € % we have

(25) |A+p,u)| =[A+p,v)] = (A+p,u) = (A+p,v) = (A+p, ¥m+n)-

Since vg is minimal, 4 is of the following form: §&; > --- > &, are of
the same type and & > &4 > -+ > &u4n = vg are of alternating types
(i.e., Iso is connected and contains o, +,—1). This implies (p,u — v) = 0 if
[ull® = vlI> = —l&1 >
Set xy, := (A + p,u). Normalize (—, —) by the condition ||vg||?> = 1. Then
20 =1L

Let us show that |x;,| = |x,| forces u or v in supp S.

Indeed, if x,, = Xy, then, by Lemma 5.8.2, u or v is in supp S. If |x,| =
|xy| and u, v are of different types, then KW-condition forces u or v in supp S.
Consider the remaining case, when x,, = —Xxy, u, v are of the same type and
u & supp S. If |[u]|> = ||v||* = 1, then xy, xy > %, SO Xy # —xy. If Ju||? =
|v||? = —1, then xy, xp < %, SO Xy = —Xy forces |xy| = |xy| = % Then
Xy OF Xy i8S % By Lemma 5.8.2, u or v is in [ug, vo] and [ug, vo] \ [us, vs] is
either empty, or is {uo} and |[ug||> = —|jus||*> = ||vs| = 1. Thus u or v is in
[us,vs] = supp S, as required.
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We conclude that the multiset {|x,, |} contains 7 copies of 1, where t = 2r or

t = 2r + 1, and all other elements are distinct. Set B := {u € B | |xy| = %}
Clearly, [ug, vo] C B and (25) holds if [ug, vg] = B. In particular, (25) holds if
[ug, vo] contains 2r + 1 elements.

Consider the case when (25) does not hold. Since [ug, vo] contains [ug, vs]
which has 2r elements, this means that [ug, vo] = [us,vs] and B = [ug, vs]

[ [{u}, where x,, = —%. Then ||u||> = —1, so u,ug are of the same type. If

w € [u,ug] is of the same type as u, then x,, € [—%, %] (since xy g = % =

—Xy), SO Xy 1S +1 thatis w € B. This means that either w = v or w = us.
Hence Ju, u g[ does not contain elements of the same type as u, u g; that is either
Ju,us[= 0 or Ju,ug[= {v} with |Ju||> = —||v||%. If Ju, ug[= {v}, we make the
reflection with respect to u — v and obtain a new ordered set (%,” >); one has
L =LA\, 1" (ITI' = T1(%4, >)), where A" is such that A’ + p’ = A + p, so
A+ o u) = —% and in %’ one has Ju,ug[= @. Thus, in both cases (for #
if Ju, ug[= @, and for %’ otherwise) we have |u, ug[= 0. Then [u, vo] contains
2r 41 elements (r 4+ 1 elements of type u s and r elements of type vg). Note that

the restriction of A (resp., A/) to [u, vo] is zero weight, since (p, u —ug) = —1.
Using Lemma 5.7.2 we can rearrange dots and crosses in [u, vg] in an alter-
nating way; the resulting interval is [u, v'], where ||[v’||? = ||u||*> = —1 and v’ is

minimal in the new order on . Since A [y, ,,] = 0, this rearrangement preserves
A (i.e., A is the highest weight of L with respect to the new set of simple roots).
Using Lemma 5.7.1, we rearrange dots and crosses in the rest of 2 (in [ug, u[)
in such a way that in the resulting order we, again, have first several elements
of the same type and then a segment of elements of alternating types. Let TT”
be the new set of simple roots, p” be the new Weyl vector and A” is such that
L = L(1",11”). Then )tﬁw,] =0,s0 A"+ p",w) = —% for each w € [u, v].
Note that Iso in T1” is connected; take S” such that supp S” consists of last 2r
elements (i.e., supp S” =Ju, v]). Then S” is dense. Since [u, v'] contains 2r + 1
elements and (A" + p”, w) = —% for each w € [u, vg], (25) holds for (IT”, S").

6. KW-character formula for strongly integrable maximally atypical
modules when 2V # 0 and for integrable vacuum modules when 2V = 0

In this section g is a symmetrizable affine Lie superalgebra (with arbitrary 2").
Let A be the root system of g and let A be a finite part of A.

We say that a subset of simple roots IT for A is compatible with A if IT =
A N I is a subset of simple roots for A (in other words, IT \ A contains only
one root).

Let A be non-exceptional and let L = L(A, IT) be a non-critical 7z U ITo-
integrable g-module of maximal atypicality, where IT is compatible with A.
We call such g-module strongly integrable (cf. [KW4]). Assume that L satisfies
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the KW-condition for II, S with § C IT. We shall prove the following KW-
character formula:

e)H—P

nﬁes(l + e_ﬁ)>’

(26) RePch L(A) = j;l Z sgn(w) w(
weW (I1oUn)

where j; is the number of elements in the “smallest” factor of W(IT), see (19)
and 7 := {a € Tp | ||«]|> > 0.

We shall also prove this formula for the non-critical C,gl)—integrable vacuum
D(n+1,n)M-modules and for the non-critical integrable vacuum D(2, 1, a)"-
modules.

6.1. Vacuum modules over ¢ = D(2, 1, a)(l)

Recall that a # 0, —1. One has D(2,1,a)5 = A1 X A1 x Ay; if we denote the
root in i th copy of A1 by 2¢;, then || 21| : [|12e2]|% : 283> =1 :a : (—a—1).
(Recall the definition of a vacuum module in §3.1.3.)

Let L(A) be a w-integrable vacuum module for some 7 C Ilg and k :=
(A,8). If = \ TIp contains one root, then 7 = {§ — 2¢,, .} and L(A) is 7-
integrable if and only if 2k/|2&,||?> € Zso. If 7 \ I1y contains two roots,
then 7 = {§ — 2¢&,,8 — 2¢4,2¢,,2¢4}, and L(A) is r-integrable if and only if
2k /|12&, 1%, 2k/||2e4|1* € Z>o; in particular, if k # 0, then ||2e,||?/[2e41% €
Q>0,80a € Q. If 7\ [T contains three roots, then 7 = I1g and k = 0.

We consider a non-critical module L(A), that is k # 0. We see that L(A)
can be Agl)—integrable for any copy Agl) in ITp, but it is Agl) X Agl)—integrable
only if a € Q and the roots of 7 have positive integral square length for some
normalization of (—, —).

Let 7 = {a € Ty | ||¢||> € Q=¢} for some normalization of (—, —). If

a € Q, then 7 can be any copy of Agl). If a € Q, then either 7 = Agl), which

corresponds to the longest root (the absolute value of ||2¢; || is maximal; this is

2e1if —1 <a < 0),orm = AV x AW (7t = {265, 23} if =1 < a < 0).
We fix IT which consists of isotropic roots:

M={5—¢e1—e2—¢e3,—€1 +e2+ 63,61 +62—¢€3,61 —&2+ €3}.

6.1.1. Recall that j; = 2 and set

e)L+p

[Tges(1+ e_ﬂ)).

Z = jyRePch L — Z sgn(w)w(
weW (rUIl)

Suppose that Z # 0.
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The 7 U ITg-integrability of L(1) gives (A, aY) > 0 for each & € 7 U I1,.
Since p = 0, A + p = A is maximal in its W(x U II)-orbit, so supp Z C
A+ p—Z>oIl. Let A — u be a maximal element in supp Z (i € Z>oII). The
arguments of §4.3.1 show that

27) 2(A+p.p) = (. ) and A —p,a¥) >0 foreach o € 7 U Il,.
The coefficient of ¢? in Z is equal to the coefficient of et in
A
A

e T ()

{weW (xUIlp)|lwA=A}

Since A is maximal in its W(rr U I1g)-orbit, the stabilizer of A in W( U I1g) is
equal to W(ITp). The KW-formula for D(2, 1, a) implies that the coefficient of
e is zero. Hence j # 0.

Since (A, IIg) = 0, (27) gives (u, ) < 0 for each o« € IIg. Therefore
w=jé— Z?:l e;&i, where e; > 0 for each i. One readily sees that u € I1
forces 2j —e; — ey > 0 for each {i, s} C {1,2,3}.

6.1.2. Consider the case a ¢ Q; without loss of generality we assume 7 =
{§ — 2e1,2¢e1} and normalize the form (—, —) by ||&1]|?> = 1.

Since 2(A, ) = (u, ), we have e; = ez = 0, 2jk = e%. Moreover,
(A — u, (8 —2e1)Y) > 0 gives k > 2e;. Since 2j > e; > 0, we obtain
j =e1 =0, thatis u = 0, a contradiction.

6.1.3. Assume thata € Q.

For the case m = A(ll), without loss of generality we assume 7 = {§ —
2e1,2¢e1} and write u = j(§ —2¢e1) + (2] —e1)e1 — exen — e3é3.

For the case m = Agl) X Agl), without loss of generality we assume 7 =
{8 —2¢;,2¢;}i=12and write u = e1/2(6—2¢e1)+ (j —e1/2)(6 —2&2) 4+ (2j —
e1 — 62)82 — €3¢&3. )

In both cases we obtain u = Y,y Xqo, where X C wUTIg and xq ||a||? >
0 for each & € X (recall that ||«||? > O for & € 7). Since 2(A, u) = (1, () we
have (A, u) + (A — pu, n) = 0, that is

Z xa(()\,,()t) + (A' —[,L,Ol)) = 0.

aeX

Foreacha € IToUm onehas (A, a)|a||? > 0and (A—pu, )| = 0 (by (27)).
Therefore for each @ € X we have x4 (A, @), xo (A — 1, ) > 0. Hence for each
a € X we obtain xy(A, ) = x¢ (A — u, ) = 0, that is x4 (u, ) = 0.

Write u = /' + ", where i/ € Qu and u” € Q(ITg\ 7). One has ||| =
(i) = Yyexnn Xa(i.0) = 0. Similarly, 2”2 = 0. Since (-, —) is
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non-negatively (resp., negatively) definite on Q7 (resp., on Q(I1g \ 7)), we
get W/ = O0and u = ' € Q6. Then 2(A, ) = (u,p) gives u = 0, a
contradiction.

6.1.4. Remark. The following denominator identity for D(2,1,a)") was
proven in [GR]:

oo
Re? = [T(1—e7%) Y 1(Re?),
n=1 teT

where T is the translation group of Agl) C D(2, l,a)(al) = Agl) X Agl) X
Agl). The corresponding embedding A1 C D(2,1,a)5 = A1 x A1 x Ay is not
specified in [GR] and we take an opportunity to correct this. This embedding is
the same as described above, namely, any embedding if a € Q, and the copy
with the maximal absolute value of the square length of the root if a € Q. This
choice is necessary for the proof of Proposition 2.3.2 [GR], where it is used that
a non-zero linear combination of the two remaining even roots has non-zero
square length.

6.2. Other forms of (3) for A # D(2,1,a)

Let L = L(A, IT) be a non-critical integrable g-module of maximal atypicality,
where IT is compatible with A and L satisfies the KW-condition for IT, S with

S C TII, or let L be a non-critical C,gl)-integrable vacuum D(n + l,n)(l)-
module. In the first case we normalize (—, —) as in §3; in the second case we
normalize the form on D(n + 1,7)(! in such a way that ||e||> = 2 for some

o € C,gl). Then
mi={a €y | [a|? > 0}

is a connected component of Iy, and L is -integrable.

Let g be the subalgebra of g with the root system A and the Cartan algebra
h@e,d = (D yecide) +b)and L = L(A,II) be the irreducible g-module
of the highest weight A. Clearly, L is a finite-dimensional module satisfying the
KW-condition for ﬁ, S.

By §13.2, 7 = n N f[o is a finite part of 7w, i.e., 7 is connected and
7 \ 7 consists of one root, which we denote by af (we exclude the case A =
G, A = D(2,1,-3/4)).

From [K3], 6.5, it follows that in the case when ot = jé — b6, where 0 €
A(rr),b € Q, one has W(xr) = W(mr) x T, where T is a free abelian subgroup

of W(sr). Recall that i is one of the root systems A,(f), B,Sl), C,gl), D,(,r), Gél)
with » = 1,2. The condition «f = j§ — @ holds for all pairs (7, 7) (Where
7 is as above and 7 is a finite part of ), except for (B,gl), D), (Agl)_l, Dy)
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and (Gél), A3). The last case is not possible, since 7 = Gél) appears only for

A = G(3)M and in this case A = G(3), # = G», by above.

Assume that the pair (7, 77) is not (Bn , Dy) or (A%) 1> Dn). Then, by
above, W(r) = W(7) x T and so W(xr') = W(Ilg) x T, since n’ \ 7 is a
connected component of ITp. Let p be the Weyl vector for A = A(II). Notice
that (o — p, IT1) = (A, II) = 0, s0 A + p — p is W(I1g)-invariant. Then (3) can

be rewritten as

. 1Y
rrantn = (A Y ()

teT weW(I1p)

Using the KW-formula for L, we get

(28) RePch L(A) = Z t(Re® ch L(L)),
teT

where R is the Weyl denominator for I1.

For the cases (B(l) D), (A%)_l, D,,) we can extend W(m) to W(C,gl)) and
present W(C,g )) = W(C,)xT asin [R]; then we obtain (28) for T C W(C,gl)).

Note that in (28) there is no S; we do not assume that IT contains a maximal
isotropic subset. More precisely, if the KW-formula holds for some IT, S with
S C TI, then (28) holds for each set of simple roots IT" compatible with A. In
particular, if L satisfies KW-conditions for IT, S and IT’, S’, where IT, IT" are
compatible with A and S, S’ C A, then the KW-formulas for IT, S and IT/, S’
are equivalent.

Note that 7 is the “largest part” of I1y in the sense of §5.2, except for the
following cases: A = G(3)M) with A = D(2,1,-3/4), A = D2,1,a)V
withm = AV A = D+ 1,0)D withw = CV, and A = A2n — 1,20 —
1)(2) with # = D, (inthe case A = A(2n —1,2n — 1)@ one has & = A;Zn) 1>
A = D(n,n), and 7 can be D, or C,). If 7 is the “largest part” of I1, then,
using (18) we can rewrite (26) as

A+p

(29) ReP chL(A) = sgn(w) w ¢ ,
we;(n) (nﬂes(l +€_ﬂ))

of. (14).

6.3. Case hY # 0or A = A(n,n)M and A is not exceptional

In this case 7 is the “largest part” of I1o. Since formulas (29) and (14) are the
same, it is enough to show that L satisfies the KW-condition for some IT’, S’,
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where IT’ is compatible with A, S’ C A, and IT', S satisfy the assumptions of
§4.

In the light of §5.8, one has (A,«) = 0 for each « € I1°, where T1° is a
Dynkin subdiagram of IT and T1° = A(k, ) (resp., B(k,1), D(k,1)) for IT =
A(m,n) (resp., B(m,n), D(m,n)) and min(k,/) = #S (and = min(m,n),
since A has maximal atypicality). Let 2% C % be the ordered subset corre-
sponding to I1° (i.e., I1° = (%%, >)). We can rearrange dots and crosses in 28°
in such a way that the last 2 min(k, /) elements are of alternating types, and the
last element in Z° is of positive square length (resp., is &m) if A = B(m, n)
(resp., if A = D(m, n)).

This rearrangement corresponds to a certain sequence of odd reflections
(with respect to roots in A(IT%) C A); let TI’ be the subset of simple roots
obtained from IT by this sequence of odd reflections. Clearly, II':=ANTis
a subset of simple roots for A and the corresponding dot-cross diagram contains
%9 with the new order. Thus the dot-cross diagram for I1 contains a segment
of 2min(m, n) elements of alternating types; moreover, if A # A(m, n), then
these are the last 2 min(m, n) elements and the last element is of positive square
length for B(m,n) and is &,, for D(m,n). Since 7 is the “largest part” of I1o,
l||? = 0 for each o € TT'.

One has L = L(A,IT) = L(A,IT) and so L satisfies the KW-condition
for (IT’, §'), where S’ is any subset of I1’ which contains min(m, n) mutually
orthogonal isotropic roots. Thus the assumptions of §4 are reduced to the con-
dition |Ja||?> > 0 for each & € IT’. Recall that ||«||?> > O for each & € IT’ and
that IT" \ IT’ consists of one root, which we denote by ag. Hence it remains to
verify that ||ag]|? > 0.

For A = A(m,n)™, any subset of simple roots is naturally encoded by a
cyclic dot-cross diagram, which contains m dots and n crosses. Let m > n.
Since the diagram for T1" contains 2n elements of alternating types, it does not
contain two neighboring crosses, so ||||?> > 0 for each o € IT’.

Suppose ||ag||2 < 0 and A # A(m,n)D, that is A # A(m,n). One has
(g, 1) # 0 or (o, or2) # 0, where a1, are the first two roots in I1’. Thus
|ei|> = O fori = 1 ori = 2. By the construction of IT’, the pair o1, a5 can
be written as &1 — &2, &5 — 81, 0r &1 — 81,81 — &, or &1 — 01, 81 (case B(1,1)),
or 61 — €1,&1 — 62, where (g;,¢;) = —(6;.6;) = d;; and (§;,&;) = 0 for
i,j =1,2.Since |Jag||?> < 0, one has ag € I or 20 € g, so g or 2ag is a
root I1p\ {w UTIp). Thus ag = §—x8; forx € {1,2} orag = §—(81+6>). Then
a1, 0 is the pair 81 — &1, &1 — 87 and ag = & — x61. By the construction of I,
(o3 12 = 0 forces ||a]|2 = 0 for each « € II (resp., for each & € IT \ {e,}) if
A = D(m,n) (tesp., if A = B(m,n)).If ||oe||2 = 0 for each « € II, then, since
(p.8) = h¥ >0, we get (p,ap) = lag]|?/2 > 0, a contradiction. Finally, for
A = B(m,n) we obtain § = 2 +x(Q_ e @), 50 (p,0) = —x2/24x%/2 =0,
a contradiction.
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6.4. Case hY =0

The remaining cases are D(n 4+ 1,n)(n > 1,r = 1,2), AQn —1,2n — 1)@
and A(2n,2n)¥.

Note that if L is of maximal atypicality, then L is a finite-dimensional -
module of maximal atypicality, and §5.8 implies (4, A) = 0, except for the
case A = D(n + 1,n)® (since for other cases A = D(n,n) or B(n,n)).
Thus if A # D(n + 1,n)D, then L(X, IT) is a non-critical integrable vacuum
module.

We set 7”7 := {a € IIg | ||a||?> < 0}. Then # U II = 7 || #". One has
(A,7”") = 0 (it is obvious if L is a vacuum module; otherwise A = D(n +
l,n)(l),A = D(n + 1,n),7” = C, and, by §5.8, (A,«a) = 0 for each « €
D(n,n) C D(n + 1,n), in particular, for « € ).

We introduce
Atp

Z = jyRech L — Z sgn(w)w(l_[ el .y )
weW (xUII) ’BES( te )

Suppose that Z # 0. Let A’ be a maximal element in supp Z; we write A’ —p =
A — p for u € ZI1. The arguments of §4.3.1 show that (27) holds.

6.4.1. Cases D(n + 1|n)V,n > 1, and A2n — 1,2n — 1)@ In these cases
we choose I1, which consists of isotropic roots, see (12), and take any S (S is
unique up to an automorphism of IT). The proof is similar to the one in §6.1.

For D(n 4+ 1,n)® one has IT, = pW « C(l) A = D+ 1,n). If

n+1
L(}) is integrable, then 7 = D,(l_zl and 7”7 = Cp;if L(A) is a C,gl)—integrable
vacuum module, then 7 = C,g ) and 7”7 = Dp41.

For A2n —1,2n — 1)(2) one has I1y = A%)_l X Agzn) 1 A = D(n,n).
Note that 7 = 7 N A can be D,, or C, and 7"’ is C,, or D,, respectively.

Recall that p = 0. Since L = L(A,II) is # U ”-integrable, A = A + p
is maximal in its W(x) x W(x")-orbit, so suppZ C A + p — Z>oIl. Thus
u € ZsolIl. Observe that QIT = Q(xr U ). Write u = p/ — u”, where
w € Qm, u” € Qn”. We claim that

(30) 1€ Qxsom, ' eQxon’”.

Indeed, by above, (A,7”") = 0. Using (27), we get (u”,a¥) < 0 for each
o € 7”"; Theorem 4.3 in [K3] gives u” € Qson”. This implies u” € Qx>oII,
sop = p+ p € Qsoll Thus 1’ € Qr N QsoIl. It remains to verify that

(31) (Q>oITNQm) C Qxpr.

Observe that each a € m is a sum of two simple roots @« = fB(a) + B'(«)
(B(), B’ () € TI) and we can choose B(«) in such a way that & — S(«) is an
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injective map from 7 to IT (for instance, for D(n + 1,n)® with 7 = sz:zl,

onchasd—e;—ep = (6—e1—081)+(81—¢2), 6i—¢€i+1 = (6i—8;)+(6i—€i+1),

enténty1 = (en—0n)+(6n—ent1),so we can take f(6—e; —e3) = §—e1—61,

B(ei —ei+1) = 8i — &i+1, B(en + &n+1) = On + en+1), ¢f. (B) in §13.5. Then

Y gy dat = Zﬁel‘[ bgB, where bg(q) = aq; this establishes (31) and (30).
In the light of (30) we have

w=pu —u’ = Z xqt,  where xq|ja|? > 0.

The formula 2(A + p, ) = (u, u) gives

(32 0= W+A-pp= ) xho)+rxa-pa).

aenUnr”

Take o € 7 U nr”. The 7 U r”-integrability of L(A) gives (A, a)]e[? > 0.
Moreover, (A — i, @)||a||?> = 0, by (27). Thus xq(A, ), xo (A — p, ) > 0.
Using (32) we obtain xq (A, @) = xo(A — , ) = 0, that is x4 (i1, @) = 0. One
has

(Won) = () = ) xalp.e) = 0:

[04S¥/ 4
W'y = (up") = ) Xa(p.a) =0.
aen”
Since (—, —) is negatively definite on Qz” and non-negatively definite on Q7n’,

we obtain u” = 0, u’ € Z4§, thatis u = s6. Since L is non-critical, (A + p, §) #
0, so the formula 2(A+p, u) = (u, ) gives u = 0, thatisA—pu = A € supp Z.

It remains to verify that A & supp Z. Since (A, «¥) > O0fora € 7 U ", the
coefficient of ¢ in Z is equal to the coefficient of e* in

A

{weW (xUIIg)|lwA=A}

If Stabw (zuzyA C W(I1g), then the KW-formula for L implies A ¢ supp Z
as required. Otherwise, ()L,ocﬁ) = 0, where o is the “affine root” in T, 1.€e.,
n = 7 U {a*). Since (A,a?) = 0, L is not a vacuum module (since L is
non-critical), so ¢ = D(n + 1,n)™) and (A,a) = 0 for each o € D(n,n) C
D(n+1,n) = A.Let o be the first root in IT (i.e., ¢ € ITand oy & D(n, n)).
Then (A, 1) # 0. Note that [T admits an involution o, which interchanges o
and o1 and stabilizes all other simple roots. This involution preserves 7, 7’/ and
S. One has (0(A), 1) = (A, 9) = 0,s0 L(o(A), IT) is a vacuum module and,
by above, its character satisfies the KW-formula. This implies the KW-formula
for L(A, IT). This completes the proof for D(n + 1|n)M, A2n —1,2n —1)@.
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6.4.2. Cases D(n + 1,n)®, A2n,2n)¥®. In these cases A = B(n,n) and
we choose IT in such a way that ||e||? > 0 for & € II (recall that ||e||*> > O for
a € ). The Dynkin diagram is

O-®-®——®—0,

where both ends are non-isotropic roots; for A(2n, 2n)(4) the ends have the
same parity and for D(n + 1,n)® the ends have different parity. One has

I1={8 —e1.61 —82.....8n —n.en}, o =28—351;

we can (and will) normalize the form (—, —) by |l&; |> =1 = —||8;||>. Note that
IT contains § = {§; — &;}7'_,. One has

m=4{al8—¢1),81 —€2,....6n—1 —En.ad’ en},

where for ¢ = D(n + 1,n)®? one hasa = ' = 1 (tesp., a = a’ = 2)
if 7 = D(n + 1)@ (resp., if 7 = Cn(l)), and for ¢ = A(2n,2n)® one
hasa = 1,a’ = 2ora = 2,a’ = 1. Observe that A contains § — &1 and
én € A (they are of the same parity for D(n + 1,17)® and of different parity
for A(2n,2n)®).

Let k = (A, 4). Recall that L (1) is a non-critical vacuum module, so k # 0.
If § — &1 is even (resp., odd), then L(A) is mw-integrable if and only if 2k € Z >
(resp., k € Z>y).

One has 2p = > _7_(si — &;).

Since 7 is the “largest part” of f[o in the sense of §5.2, (26) can be rewritten
as (29). We have (p, @) > Ofora € 7, (p,6 —e1) = —1/2.Since (A, —¢&1) =
k > %, one has (A + p,a) > 0 for each « € 7. Therefore A + p is maximal
in its W (m)-orbit, so supp Z C A + p — Z>olI1, thatis u € Z>oI1. Moreover,
from Lemma 3.3.4 (ii) we obtain u # 0. Write & = j§ — Y ' (eiei + di8;).
From (27) we obtain

n n
2kj = (ei +di) =) (e —d}).
i=1 i=1

0<ep<ep—1=<---<e1<k; 0=<d,=<dy—1=<---=d.

Since u € Z>oIl we have e;, d; € Z and Z?:l(ei +d;) < j.Sincee;,d; > 0,
the equality j = 0 forces u = 0, which contradicts the above. Let us show that
j =0.Since >7_,(di —d?) <0,wehave 2kj <Y 7_,(e? +e;). Ifk =1/2,
then e; = 0 foreachi,so j = 0.If k > 1, then Z?zl e; < j ande; < k imply
2kj <kj + j,thatis j = 0, as required.

Finally, for k = 1 we have e¢; € {0, 1} for each i, which implies 2] =
> r_1(2ei +di —d?). Combining with Y 7_, (e; +d;) < j, we getd; = 0 for
each i. This gives u = j§ — Z{zl gjand j <n.Seta :=J§; —¢;. In the light
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of §2.2.6 and Lemma 2.2.8, Z = Z(I1) is equivalent to Z(rIT) (where Z(IT’)
stands for an element Z defined for T’ and viewed as an element of Z(I1")).
Clearly,

supp(Z(re11)) C A + promt — Zzo(reIl) = A + p + a — Zzo(reI1).

Observe that (A4+p—pu, ) # 0, sosupp(Z){A+p—u+Za} = {A+p—u}
(since |[A 4+ p—v]||> = ||A+p||? for each v € supp(Z)). By Lemma 2.2.8, Z has
a pole of order < 1 at &, and so, by Lemma 2.2.9, A + p — u € supp(Z(ryI1)),
that is

A+p—pEA+p+a—ZLxo(rell),

which gives u + o € Z>0(rqIT); one readily sees that this does not hold for
w=jé— lj _, & (f u # 0), a contradiction. This completes the proof.

7. The root system A(L)

In this section we exclude g of types D(2,1,a) and D(2,1,a)V) with a ¢
Q from consideration. Then we can (and will) choose a normalization of the
bilinear form (—, —), such that («, 8) € Z for each pair @, § € A. Consequently,
for each set of simple roots IT one has 2(pr, @) € Z for each @ € IT and thence
for each o € A.

For the Lie superalgebras D(2,1,a), D(2,1,a)") with non-rational a all
the results of this section remain valid if we fix a standard symmetric Cartan
matrix for D(2, 1,a) as in [K1] and replace Z by Z + Za in the construction of
A(L).

7.1.

We will use the following fact.

Proposition. If y is a non-isotropic root and « is a root, then («a,y") is an
integer (resp., even integer) if y is even (resp., odd).

Proof. Since (y,y) # 0, |la £ Ny|> — oo as N — oo, hence g+, act locally
nilpotently on g, and thus («, y") is an integer (resp., an even integer) if y is
even (resp., odd), using representation theory of A; (resp., B(0, 1)). (|

7.2. Definition of A(L)

Let A™ be a subset of positive roots in A. Consider an irreducible highest weight
module L = L(A, A1) over g, associated with A™. If B is a simple isotropic
root, then L is again an irreducible highest weight module, but associated with
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the subset of positive roots rg (AT). Indeed, if v; € L is a highest weight
vector for AT, then v; (resp., e_pvy) is a highest weight vector for rg (AT) if
(A, B) = 0 (resp., if (A, B) # 0). Since (p, B) = 0, we obtain L(A, A1) =
L(),rg A™), where the highest weight A’ of the module L(A/, rg AT) is given
by

_(A=B forQ+p.B)£0,

(33) A
A for (A + p,B) = 0.

Thus the notion of an irreducible highest weight module is independent of
the choice of A™ (by Proposition 2.1.1 (a)).

In this paper we consider only non-critical irreducible highest weight mod-
ules L = L(A,A™), i.e., we assume that the highest weight A satisfies (A +
o, 8) # 0. This property is independent of the choice of A™, since, by§2.1.2,
one has pry — prr € ZA and L(A, IT) = L(A/, IT") forces A — A € ZA.

7.2.1. For each A € h* we introduce the sets

DMN)iso ={a € A| (¢,) =0, (A + p,a) = 0},
DAy :={o € A7 | (@.a)#0, (A +p,a¥) €27 + 1},

DA, = {a € AO‘ (@, ) # 0, % ¢ Ar. (A +p.aV) € Z}.

Let W, 5 be the subgroup of W generated by the reflections {r, | a €
D(A)o U D(A),}. From Proposition 7.1, it follows that

D(A)o = D(A +v)o, D(A)e = D(A +v)e,

(34)
I/Vess,/l = I/Vess,).—l-v foreach v € Q

We introduce the following subset of A:
Aess(A) = D(A)o U D(A)e U {2a | @ € D(A)o} U Wegsa D(V)iso-

Note that the even roots in A,i(A) are D(A)e U {20 | @« € D(A),} and that
D(A), (resp., W1 D(4)is0) is the set of non-isotropic (resp., isotropic) odd
roots in A, (A). The main motivation for this definition is Proposition 7.3.1.

For an irreducible highest weight module L = L(A, IT) we set A, (L) =
Agss(A + p), Wess(L) := Wi 24p- Proposition 7.2.3 shows that A, (L) is
well-defined.
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7.2.2. Lemma. Forany 8 € D(A + p)iso and y € D(A + p + B)iso, One has
Y € Ags(A + p).

Proof. 1If (B,y) = 0, then y € D(A + p)iso. Assume that (B,y) # 0. Then
B + y or B — y is an even root (this is proven in [S3] for the finite root systems;
the non-twisted affine case follows immediately); we denote this root by «. One
has

L +p,(B£y)) = 20+ p,y£B) 20 +p,y)  2(=By) _

(y£By=p)  £20.8) 208
soa € D(A + pe if 5 & A7

Consider the case when % € Aqg; then % 1S a non-isotropic odd root, so g
is of the types B(m, n), G(3) or their affinizations. In these cases the roots 3, y
are of the form k16 £ (; +8;), k28 £ (e; —6;), where k1, kp € Z and k1 + k2
is even. (Here and further we use the description of root systems in [K1].) Then
eithera = f + y and /32;" € Ag,ora = B —y and ﬂ% € Ag; observe that
ﬂ% ¢ A. By above,

+1,

(o (52)) - 2

ﬂ_

s0 D(A + p)e contains =¥ or ﬂ%

Since y = rg_, = —rg4, B, we obtain y € A,(A + p), as required. [

7.2.3. Proposition. If I and T1" are two sets of simple roots and L(A, 1) =
LA, 1), then Ags(A + p) = Agss(A + 0).

Proof. Since any two sets of simple roots are connected by a chain of odd re-
flections and each odd reflection is invertible, it is enough to show that A (A" +
p') C Aggs(A + p) if TI" = rgII, where  is an odd isotropic root.

If A +p = A+, then, obviously, A (A + p) = Aps(A + p'). By (33), if
A+p#MN+p then A +p =LA+ p+ B and (A + p, B) = 0. From Proposi-
tion 7.1 it follows that D(A" 4+ p")e = D(A+p)e and D(A' +p)o = D(A+p)o;
by Lemma 7.2.2, D(A" 4 p/)iso C Aess(A + p). The assertion follows. O

7.2.4. Proposition. One has Wog (L) Ass(L) = Agss(L).

Proof. 1t is enough to verify that for o,y € D(A)y, U D(A), one has rqy €
D(A)o U D(A),. We have

(A, (ray)") = A.y") — (A (e, ).

By Proposition 7.1, (&, y) is an integer (resp., even integer) if y is even (resp.,
odd). Thus roy € D(A)p U D(A)e, as required. a
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7.3. The properties of supp(Re” ch L)

Fix a choice of AT, and let A € h* be a non-critical weight. Recall that A
is called typical if (A 4+ p, B) # O for all odd isotropic roots 8, and atypical
otherwise.

The following proposition is proven in [KK] in the Lie algebra case and
in [GK] in the general Lie superalgebra case.

7.3.1. Proposition. If i € supp(Re” ch L(1)), then there exists a chain p =
Wr < fr—1 < -+ < o = A + p, where either iy = rypg—; for y €
(D(ttk—1 +P)o U D (-1 + p)e) NAY or g = pg—y —y fory € D(pug—y +
p)iso N A+-

7.3.2. Taking into account (34) and Lemma 7.2.2, we obtain by induction on k
that D(pg + ple = D(A+ p)e. D(jig + p)o = D(A + p)o and Agss (g + p) =
Aess(A + p).

This leads to the following useful properties of supp(Re” ch L(A)).

7.3.3. Corollary. Let L = L(A) be a non-critical irreducible highest weight
module. For each v € supp(ReP ch L(A)) one has

(i) v €A+ p—Z>0(Aess(A) NAF), A+ p—v[* = [|A + p|*.
(it) If L(A) is typical, then v € W, (L)(A + p).

If L(A) is atypical, then (v, B) = 0 for some odd isotropic root B,
(iii) Aess(\)) = Aess(’1 + IO)

7.3.4. Corollary. Let L = L(A) be a non-critical irreducible highest weight
module and A g is not irreducible, that is

Ao = | [ ALy, where (AL, AL) =0 foralli # j.

ess’ ess’
ieX

If A+ p— w € supp(Re” ch L()), then p can be written as u = ) ; c x [
with the property that for each i € X there exists a chain A — u' = u, <
Ur—1 < -+ < o = A + p, where either py = rypg—y fory € (D(ur—1 +
Plo U D(ig—1 + ple) N AT N AL or g = pg—y —y fory € D(pg—1 +
Piso N AT N AL

In particular, /' € Z=o(AL (M) N AY and |A + p— |2 = ||A + p||%

ess
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7.3.5. A subset E of the set of real roots A,, = A\ZS is called a root subsystem
if the following properties hold:

(1) fa € E, then —a € E;
(i1) if o € E is not isotropic, then ro E = E;
(iii) if o € E isisotropic and € E is such that («, 8) # 0, then either 8 + «
or f —aliesin E.

Note that any subset E’ of A,, is contained in a unique minimal root subsys-
tem of A,.. Indeed, in order to construct a minimal root subsystem containing
E’, we should add to E’ an element —« if & € E', rqff if a, B € E’ and « is
non-isotropic, and one of the elements f 4+ « which is in A, if « is isotropic
with («, B) # 0 (exactly one of them is in A,.), and repeat this procedure. It
follows from the results of [S3] that if this minimal root subsystem is finite, then
it is a root system of a finite-dimensional basic simple Lie superalgebra. If this
minimal root subsystem is infinite, then it is the set of real roots of an affine Lie
superalgebra, see [Sh].

If E' = E| ][ Ej such that (E{, EJ) = 0, then the minimal root subsystem
of A,. containing E’ is of the form E; || E», where Eq, E, are minimal root
subsystems containing E7, E, respectively.

Let A(L) (resp., A(v)) be the minimal root subsystem of A,, containing
Aess(L) (resp., Ags(v)). Denote by W(L) the Weyl group of A(L), i.e., the
subgroup of W generated by reflections in non-isotropic roots from A(L).

All results Lemma 7.2.2—Corollary 7.3.3 remain valid if we replace A,z (L)
by A(L).

7.4. Examples

Assume that L := L(A) is non-critical.

If L(A) is typical, then A, (L) = A(L) consists of non-isotropic roots.

If L(A) is finite-dimensional, then A(L) = A,i(L) = A, if L is atypical,
and A(L) = Aegs(L) = {x € A | (o, ) # 0} if L is typical.

If g = A(m,n) or A(m,n)D, then A,,(L) = A(L). However it is not true
in general, as the following example shows.

7.4.1. Let g = D(m,n) and let A be such that (A,&;) = (1,8;) = % Then
Agss(M)g = {Fei L ej; £6; £ 10 # j}and Ag(A)T = A7, 50 Aggs(A) is
not a root system; in this case A(A) = A.

7.5. The sets TI(L)

Fix a set of positive roots AT, and let IT be the subset of simple roots. Let
A(L)T := A(L) N AT and denote the corresponding set of simple roots by
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IT(L). Denote by ITg(L) the set of simple roots of A(L) N A%r (it does not
depend on the choice of IT). Note that both IT(L) and ITo(L) are linearly de-
pendent, if A(L) has more than one affine component.

7.5.1. Lemma. Let o € II(L(1)) be a non-isotropic root. For each v €
supp(Re” ch L) one has rqv € A + p — Z>oI1(L(1)).

Proof. We prove the assertion by induction on the length of the chain in Propo-
sition 7.3.1. One has v = py = py—1 —ay for y € Aux(L(A)T, a € Zwy.
If y = o, then up = ropr—1 and rov = pr—1 € A + p — Z>oII(L(A))
by Corollary 7.3.3 (i). If y # «, then roy € A(L(A))™ and thus rqu, =
Fallr—1 —argyy. By the induction hypothesis, rq itr—1 € A + p— Z>oI1(L(A)),
SO Faqbr € A + p — Z>oI1(L(A)), as required. O

7.5.2. Denote by Rj the analogue of R:
HaeA%‘(L)(l —e™%)

Ry = .
Moenr@yd+e™)

Note that Ry, € Z(I1).
Fix p;, € b* such that 2(pz, ) = (o, @) for all @ € TI(L).

7.5.3. Remark. Since Ry, pr depend on II, we will sometimes write
Rp 1. pL.o to prevent a confusion. We choose pr 1 compatible for all sub-
sets of simple roots II, proceeding as in §2.1.2. The elements Ry mef--T are
equivalent for all IT.

7.5.4. Let B € II be an odd simple root and let rg be the corresponding odd
reflection. Then

A(L)* if B ¢ TI(L),
AL)T\{BYU{-B} if e TI(L).

Recall that rg A has the set of simple roots rgll := {rga | a € I1}, where

rg AT NA(L) =

—B ifa =8,
rpa=qa+p  if(a,B) #0,
o otherwise.

As aresult, the set of simple roots for rg A1 N A(L) coincides with TT(L) if
B ¢ I1(L) and is equal to rg IT(L), defined by the above formulas, if 8 € TI(L).
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7.6. Character formulas for different choices of AT (IT)

Let L be a irreducible highest weight module. Then ch L € Z(I1) for each II.
Suppose that A(L) = A and that for some IT the following formula holds in
Z(I1):

Vv

e
RePch L = xww< ),
2, (i

where v € h* \ {0}, J C A, xy € Q, and W' satisfies the conditions of §2.2.8.
Combining §2.2.6 and §2.2.8, we conclude that the above formula holds in
% (I1) for any IT’.

An important special case is when v = A + prp, L = L(A, 1), J = J(II).
In this case we can obtain a formula of similar form for certain other subsets
of positive roots AT (IT’) as follows. Let IT" = rgII for an odd isotropic root
B € I1. Then L(A,IT) = L(A/, IT"), where A’ is given by (33). This implies the
formula

e)(./‘}—pnl

RePch L(A,11') = XpW ,
w;,/ (H,gef(n/)(l + e_ﬂ))

where J(IT") = J(IT) if (A + p,B) # 0 and J(IT') = (J(IT) \ {B}) U {—B}if
(A + p,B) = 0and B € J(II) (this method does not work if (A + p,B) = 0
and B & J(I1)).

7.6.1. Remark. 1t L = L(A,Il) with A # —p, similar results hold if we
substitute W by the integral Weyl group W(L), see §7.3.5: in this case we take
W' generated by reflections ro, @ € I, where I C I1o(L).

7.7. Themap F : L+ L

Fix AT (IT) and a non-critical irreducible highest weight module L = L (A, IT).
Set _
A=A+p—pL.

Let g’ be the Kac-Moody superalgebra with the set of real roots A(L) and
the set of simple roots IT(L). This Kac-Moody superalgebra is of finite or affine
type (with a symmetrizable Cartan matrix—its symmetrization is given by the
restriction of (—, —) to IT(L)). Let §’ be a Cartan subalgebra of g’ and let §” be
a commutative Lie algebra of dimension dim § —dim §’. Consider the Lie super-
algebra @ := g’ x b” and identify its Cartan subalgebra with § in such a way
that the simple roots of g are identified with IT(L). We denote by L (1) an irre-
ducible highest weight module with highest weight A over the Lie superalgebra

ar.
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Recall that L is non-critical and g is either basic finite-dimensional (if A(L)
is finite) or affine. It is easy to see that in the second case L(}) is also non-
critical. Indeed, let ' € A(L) be the primitive imaginary root of g’. Then
|82 = 0, so & is an imaginary root in Ay, hence 8 = k&, where k # 0
and § € Ag is a primitive imaginary root. But (A + pz.,8') = k(A + p,§) # 0,
so L(X) is non-critical.

The following lemma shows that the map F : L — L is a well-defined map
of non-critical irreducible highest weight modules.

7.7.1. Lemma. Let I1,T1" be two sets of simple roots. If L = L(A,TI) =
LA, T1), then
F(L(A, 1)) = F(L(A, 1T")).

Proof. Recall that IT’ can be obtained from IT by a sequence of odd reflections.
Let B € II be an isotropic root and I1" = rgIl. Denote by IT(L) (resp., by
I1'(L)) the set of simple roots for AT N A(L) (resp., for (rg AT) N A(L)) and
choose pz,; we may (and will) choose p; = pr + B.

Consider the case when (A + p, ) # 0. Then A" + p,,;m = A + p so
A+pL =M +p].

If B & A(L), then, by §7.5.4, TI(L) = IT’(L) and thus A’ = A and

F(L(X,rgTl)) = L(A, TI(L)) = F(L(}), D).

If B € A(L), then, by §7.5.4, TI(L) = rgIl’(L) and, in particular, we

choose p; = pr, + B. Thus A =A—pand
F(L(,rgI) = L( — B,rgTI(L)) = L(A, TI(L)) = F(L(A, T0)).

Consider the case when (A 4 p, 8) = 0. Then B € II(L) and p" = p + B,
p; = pL +B.Onehas A’ = A, s0A +p' =24+ p+ Bthatis M + p; =
A+ pr + B which gives A’ = A. Therefore F(L (), rgll)) = LV, rgll(L)) =
LA TI(L)) = F(L(A, D). O

7.7.2. In [KRW] it was conjectured that the characters of an admissible g-
module L := L(A,II) and the @A—module F (L) are related by the formula

(cf. (1))
(35) RePch L = RpePL ch F(L).

Since A(L)T C A™T(II) for each II, the algebra Z(I1(L)) can be natu-
rally embedded in Z(IT), so we consider the above formula as an equality in
Z(I1). By §2.2.6 and Lemma 7.7.1 the elements in the left-hand side (resp., the
elements in the right-hand side) are equivalent for all subsets of simple roots.
Therefore if the formula holds for some IT, it holds for all other choices of IT.

In the next sections we verify formula (35) for certain cases.



Characters of (relatively) integrable modules 195

8. Linkage L ~ L’

Let g be a basic or affine Lie superalgebra and A™(IT) be a subset of positive
roots in the set of roots A. Let I1¢ be the set of simple roots for A%‘ . Define the

standard dot action of the Weyl group by w - A := w(A + p) — p.

8.1. Enright functor

Fix @ € Tlg and a € C/Z. Let Mi(g, a) (resp., M(gg. a)) be the category of g-
modules (resp., gg-modules) M with a locally nilpotent action of a root vector
eq, a diagonal action of f), i.e., M = @Meb* M,,, and such that (u,aY) = a
mod Z if M,, # 0.

For each A € §* denote by &, the full subcategory of the category O,
whose objects are g-modules N satisfying N, = 0if u — A & ZA. Note
that ﬁra.x = ﬁrak-

We denote by M (v) (resp., L(v)) the Verma (resp., irreducible) gg-module
with the highest weight v (since I1g is fixed, these modules do not depend on
the choice of IT).

We will use the following theorem which can be easily deduced from [KT2],
[IK].

8.1.1. Theorem. For each a € C/Z there exists a left exact functor Ty(a) :
M(ag,a) — Ml(gg, —a) (Enright functor) which induces a left exact functor
Tw(a) : M(g,a) — M(g, —a) with the following properties.

(a) Assume that o € 1 or § € T, M(A, IT) € M(g,a) and (A, ") & Z. One
has

Ta(a)(M(A,TT)) = M(rg - A, 1),  Ty(a)(L(A, 1)) = L(rg - A, I0),
M (rg - A, TI) ifo € T1,
@me—%n)y%em

L(rg - A, 1) ifa € I1,

g o o
LOWA—EJQ if 5 el

Tu(a)(M (A, T1)) =

To(a@)(L(A, D)) =

(b) If 0 # a € C/Z, then Ty(a) is an equivalence of categories M(g,a) —
M(g, —a) and the inverse is given by Ty, (—a).
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(c) Ifa & A(A) anda = (A + p,aY), then Ty(a) provides an equivalence of
categories O, = Oy

8.2. The linkage ~

Let ® be the set of functors T : &3 — €, which can be presented as composi-
tions of Enright functors Ty (a) : O(1) = Oy, 2 Witha & A(X), a = (A, aY).
By Theorem 8.1.1 (c), each T € ® is an equivalence of categories.

We will say that the highest weight irreducible modules L and L' are linked
if L'’ =T(L)forT € ©, and denote itby L ~ L.

8.2.1. Let L ~ L’ be two linked highest weight irreducible modules and IT, IT’
be two subsets of simple roots. Then there exists a finite chain

L=L'=rt,ah, L2 =L(%10%,.... L' =L\, 1Y) =L,
where TT! = T1, TT? = IT, and for each i we have
it it = rlgl'Ii
for some isotropic 8 € I’, or
'+ =1 and L' = T(L))
i

forsomeT:Ta(a)e(@:aeHior%EH.

Note that in the first case A* + p* = AT 4+ pPFLif (A% 4+ pf, B) # 0 and
A4 pl 4+ B = AT 4 L (A + pf, B) = 0, see (33); in particular, one
has A} 4 p'||? = ||A*F! 4 p**1||2. In the second case (IT'+! = TI%) one has
o & AAY) and AP T1 = rg (AF + p') — p*, where p' is the Weyl vector for TT.
This implies the following useful property of the linkage:

LA T ~ LA, 1) = [|A+pl* = 1A+ p'|I.

8.2.2. Fix II. Let L' = Ty(a)(L) for some a ¢ A(L) such that « or 5 lies
in IT. Write L = L(A,II),L" = L(A/, 1) and recall that A = ry - A’. Then
A(L") = rq(A(L)). The conditions on & imply 7 (A(L)) NAT = A(L)NAT
so IT(L") = rq(TI(L)).

Recall the algebra @’\ and the map L — F(L) introduced in §7.7. Since
IT(A) = re(I1(1)), there exists a natural isomorphism of the Kac-Moody su-

peralgebras ¢ : [@*,gl] = [§’1,§A] with the property ¢ : §’g — @fa 8 for each
B € I1(L). This isomorphism can be extended to the isomorphism ¢ : §" = §A
such that ¢(h) = ry(h) for each h € §). Then A(h) = A/(¢(h)) (see §7.7 for no-

tation), so there exists an isomorphism F'(L) S F (L") compatible with ¢ (i.e.,
/(av) = t(a)v foralla € g%, v € F(L)).
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8.2.3. Corollary. If L(A,I1) ~ L(A,II'), then there exists an isomorphism
L@ > @ and an isomorphism F : F(L) = F(L') compatible with .

8.2.4. Proposition. If L ~ L' and (35) holds for L, then (35) holds for L'.

Proof. Recall §7.7.2 that if (35) holds in % (I1), it holds in #Z(I1’) for each IT’.
In the light of §8.2.1 it is enough to consider the case when L' = T, (a)(L)
for some o ¢ A(L) such that o € TT or 5 € I1. By §8.2.2, in this case

ch F(L") = ry(ch F(L))

in Z(I1) (both elements lie in % (I1) since T1(L), I1(L") = ry(TI(L)) lie in
AT). One has Ry/ePL’ = ro(RpePl) so

Rpe”t ch F(L') = rq(RpeP: ch F(L))

in Z(I1).

Write L = L(A, IT). By Theorem 8.1.1, T, (a) is an equivalence of cate-
gories O, = Oy and Ty(a)(M(v)) = M(ryq - v) for each v € 0. Since
L' = Ty(a)(L), we obtain

Re?ch L' = ro(ReP ch L)
in Z(I1). This completes the proof. O

8.3.

We will also use the following simple fact.

Lemma. For each w € W there exists L' ~ L such that A(L") = wA(L).

Proof. Take o € Ip. If « € A(L), then r, A(L) = A(L); if ¢ & A(L), then
A(L") = rq A(L) for L' = Ty(a)(L). O

Note that for A = A(m,n), C(n), A(m,n)D, C(n)® any odd root lies in a
set of simple roots. Hence, in these cases, for any § € A(L) we can choose I1
such that 8 € II.

If A # A(m,n),C(n), A(m,n)D, C(n)M, then W acts transitively on the
set of odd isotropic roots, so if A(L) contains odd isotropic roots, then for any
odd isotropic root 8 € A there exists L’ ~ L such that 8 € A(L’).
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9. Typical case for §A with even root subsystem of rank < 2

Recall that for an affine Weyl group every orbit on non-zero level has a unique
maximal element in the order > (if the level is not a negative rational number) or
a unique minimal element (if the level is not a positive rational number). We call
A € §* extremal if for each connected component 7 of ITo(A), A is maximal or
minimal in its W (sr)-orbit.

Fix a non-critical level k and denote by Wy (resp., W_) the subgroup of
W(A) generated by ry such that k (o, ) > 0 (resp., k (o, o) < 0). We introduce
a partial order on the Weyl group W(L) as follows:

forxy,y+ e We,x—,y—e W_letxyx— <p y4+y—ifxy < yp,x— > y_
in the Bruhat order on W'.

9.1.

Proposition. If A is extremal, then for each y <j w there exists an embedding
Mw-A) — M(y-A) anddimHom(M(w -A), M(y - X)) = 1.

Proof. Recall that the Bruhat order is the unique order satisfying e > w forces
w = e, and for each o € Il one has:

[(rqw) < l(w) forces w > rqw;

/ / /
w>w  forces rqw >rew’ or w > rew';

/ / /
w>w  forces rqw > rqw oOr rqw > w.

We claim that any order <’ with the properties:

o [(rqw) < I(w) forces row <" w, and y <" w forces ryy <’ rqw orrqy <’
w,
e satisfiesy <w = y < w.

Indeed, the first property implies that e <’ x for all x. Let us prove the
assertion by induction on /(w). If [(w) = 0, then w = y = e and thus y <’ w.
Now take any w with /(w) > 0 and o € Il such that /[(rqw) < [(w). Then
the property implies row <" w. One has y < rqw or rqy < rqw. In the first
case, the induction hypothesis gives y <’ rqw, so rqw <" w implies y <" w,
as required. In the case ro y < rqw the induction hypothesis gives rqy <’ rqw
and the second property gives y <’ w or y <’ rqw <" w. The claim follows.

9.1.1. Next, let us show that for any typical weight A, M (ry - 1) is a submodule
of M(A) and dimHom(M (ry - 1), M(A)) = 1ifry - A < A and o € TTp(A).
The proof is by induction on « (with respect to the order given by Ilg).
Indeed, if o € Iy this immediately follows from typicality of M(A). Take
y € Il such that rya < «. Since o € IIp(A) one has y & IIp(A) so the
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Enright functor T is an equivalence of categories. By induction, M (ry,¢ - (ry -
A)) is a submodule of M(ry - A) so M(ry - A) is a submodule of M(A) (since
Fo = I'yTr,qly). This proves that M(rq - A) is a submodule of M(A) for any
a € I1g(A). Moreover, by induction

(36) dim Hom(M (ry,q - (ry - 1)), M(ry, - 1)) = 1.
If dim Hom(M (ry - A), M(A)) > 1, then there exists an exact sequence
00— N — M(rg-A) ® M(ry, - A) — M(A)

and N,,., = O that is Hom(M(ry - A), N) = 0. Using the Enright functor we
obtain the exact sequence

0— N —> M(ryrg 1) ® M(ryrq - A) —> M(ry - 1)

with Hom(N', M(ryry - 1)) = 0. Since ryry = I'r,aly, this contradicts (36).

9.1.2. Denote M(w - A) as M(w). Let us show the existence of the embedding
M(w) C M(y) for y <; w.

By §9.1.1, M(rqx) is a submodule of M(x) if rox >; x for o € ITy(A).

It remains to show that for @ € ITo(A) M(w) C M(y) the module M(ryy)
contains M (rqw) or M(w).

Indeed, using the Enright functors as in §9.1.1 we can reduce the question
to the case when o € Ily. If M(rqy) contains M (y) it contains M (w) as well.
Otherwise, M (rqy) is a submodule of M(y) and f, acts locally nilpotently on
M(y)/M(ryy). If M(rqw) contains M (w), then f, acts injectively on L(w-A)
so Hom(L(w - A), M(y)/M(ryy)) = 0 and thus Hom(M(w), M(ryy)) =
Hom(M (w), M(y)), as required. If M (r,w) is a submodule of M (w), it is also
a submodule of M(y) and, by above, Hom(M(rqw), M(ryy)) =
Hom(M (rqw), M(y)).

9.1.3. It remains to verify that dim Hom(M (w), M(y)) < 1 for each y, w.

Write w = w_wy,y = y_y4 with y_,w_ € W_,y,, wy € Wi. We
proceed by induction on [(w4+) + [(y-).

Assume that /(w4) # 0. Then there exists & € T1(A) such that r, € W and
M(w) C M(rqw). Using the Enright functors as in §9.1.1 we can reduce the
question to the case when « € I1g. Then, by [IK] Corollary 4.1, T, (M (w)) =
M(rqw) and dimHom(M(w), M(y)) < dimHom(7y(M(w)), To(M(y))).
Since Ty (M (y)) is either M(y) or M(ryy), we obtain dim Hom(M (w), M(y))
< dimHom(M(rqw), M(y")) for some y’. Arguing like this we obtain
dim Hom(M (w), M(y)) < dimHom(M (w-), M(y")).

It remains to verify that dim Hom(M (w), M(y)) < 1 forw € W_. We prove
this by induction on /(w).
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If [((w) =0, then w = e. If y & W, there exists a € T1(A) such that ry €
W_ and M(y) C M(rqy). Then f, acts locally nilpotently on M(y)/M(rqy)
and injectively on M(e). Hence dimHom(M/(e), M(y)) <
dimHom(M(e), M(rqy)) and therefore dimHom(M(e), M(y)) =
dim Hom(M (e), M(y+)). However y4+A < A, so that we have dim Hom(M (e),
M(y+)) < L.

Assume that dim Hom(M (w), M(y)) < 1 for all w € W_ with [(w) < r.
Take w € W_ with [(w) = r 4+ 1. Take @ € TI(A) such that rq, € W_ and
[(rqw) = r. Then M(rqw) C M(w) and dim Hom(M(rqw), M(y)) < 1.
As before, using Enright functors we can assume that @ € Il. But then the
embedding of M(r,w) in M(w) is given by the multiplication of the highest
weight vector to f, which is non-zero divisor so dim Hom(M (w), M(y)) <
1 < dimHom(M (rqw), M(y)) < 1, as required. This completes the proof. [

9.2.

Now let L = L(A, IT) be a g-module. Assume that @’\ is one of the affine Lie
superalgebra with the set of even roots which is the union of affine or finite root
systems of rank at most two.

9.2.1. Let A be a non-critical extremal typical weight. By Proposition 9.1, for
Y <k z,y,z € W(A) the module M (y-A) contains a unique singular vector v(z)
of weight z - A and this vector gives rise to an embedding M(z - 1) C M(y - A).

Consider a Kac—-Moody algebra g with the set of simple roots I1o(L) (and
the set of real roots Ag(L) N A.); this algebra coincides with g, 5 if and only if

Ag(L) is indecomposable. Let b be the Cartan subalgebra of this Kac—Moody
algebra and let pg € h* be a Weyl vector. We introduce the --action of the Weyl
group W on bh* by the usual formula w-p := w(u+ pg) —pg. Consider g € h*
satisfying

(Ao + pg.a) = (A + p,a) foreacha € Iy

(if Ag is indecomposable, then Ag + pg = A + p).

Denote by M (w) the Verma module over g with the highest weight w -
Ao. For y <; w the module M (w) contains a unique singular vector vo(z) of
weight z - 1o and this vector gives rise to an embedding M (z-A¢) C M(w-Ap).

9.2.2. Since g is the product of finite-dimensional or affine Lie algebras of rank
at most two, any submodule of Verma module M (w) over § is generated by the
singular vectors (and is a sum of the submodules of the form M( y),y € W(A)).

Define a map W from the set of submodules of M (w) to the set of sub-
modules of M(w) given by M (y) = M(y). It is easy to see that this map is
compatible with inclusions.
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Let M’(w) be the maximal proper submodule of M (w). Then W(M’) is a
proper submodule of M (w).

9.2.3. Suppose that for some w the module M (w) has a submodule which is
not generated by singular vectors. Then for some w’ >; w we have [M(w) :
L(w")] > 1. Let w, w’ be such a pair with the minimal value of w - A — w’ - A.
Then, if N is a submodule of \II(M’) andv <w-A—w’- A, one has

Pw-a—v(chW(N)) = Pw-ro—v (RTCh N),

where p, (}_a,e*) :=a, and Ry := l—['BGAj—(l + e P).
1

Let {M*(w)}i>o0. {Mi(w)},-zo, be the Jantzen filtrations of M(w), M (w)
respectively. Recall that for each i the modules M ‘ (w)/M ’“(w)
M’(w)/M"H(w) are semlslmple This implies M(z) C M*(w), M(Z) C
M! (w)if z >, wand [(z7'w) <i.

It is easy to see that

Mt (w) = > M (2).
{z=wll(z~w)<i}

Therefore \If(]\;[i(w)) C M'(w). Clearly, M! = M’. Therefore for v = w -
A —w’ - A one has

dim M* () y.5—y > dim(W(M")) .2y = Puwtg—v(Rych MY)
for each i > 0. Since [M(w) : L(w’)] > 1 one has
dim M (w)y.5—y > dim(E(M ) yay = Puwagv(Rych M1).
However, the Jantzen sum formula implies

o0 0
(37) e WA Zch M (w) = e_w'AORTZCh M (w)
i=1 i=1

w . w .
Y dim MY (W) iy = pw.AO_V(RIZch M’),

i=1 i=1

SO

a contradiction.

We conclude that all submodules of M (w) are generated by singular vectors
(and lie in the image of W). Combining the inclusions W(Mi(w)) € Mi(w)
and (37) we obtain M’ (w) = ‘II(M (w)). This gives

Mi(w) = W(M!(w)) = > M(z).

{zzxwl|l(z7w)=<i}
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9.2.4. Denote by I:(v) (resp., M (v)) the irreducible (resp., Verma) g-module
with the highest weight v. One has

ch Z,(w -Ag) = Z sgn(yw™ 1) ch M(y - Ao),
yeC
where C := {y € W(Ao)/Stabw(r,) (Ao + pg) | ¥ - 2o < w - Ao}
This implies
chL(w-A) = Z sgn(yw™ D ch M(y - 1).
yeC

From the construction of A¢, one readily sees that

C = {y € W) /Stabwuy( +p) | y -4 <w- A},

9.2.5. Corollary. Let @A be one of the affine Lie superalgebra with the set of
even roots which is the union of affine or finite root systems of rank at most two
and let A be a non-critical extremal typical weight. For each w € W(L) the
Jantzen filtration M (w - L) is given by

Mi(w-2) = > M(z)
{ZeW Wz, [(z~1w)<i)

and

chL(w-A) = Z sgn(yw ) chM(y - 1),
yeC

where C = {y € W(A)/Stabwy(A +p) |y -A Zw- A}

10. m-Relatively integrable modules

This section is continuation of §8. Throughout the section, L is an irreducible
highest weight g-module.

10.1. Definition of m-relative integrability

We retain notations of §3.1.3. Recall the definition of ITy(L) from §7.5.

10.1.1. Definition. For a subset m C T1o(L) we call L m-relatively integrable
if F(L) is mw-integrable. We call L relatively integrable if F (L) is integrable.
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10.1.2. 1In the light of Lemma 7.7.1, the above notion does not depend on the
choice of IT (if L(A, IT) == L(A’, IT’), then L(A, IT) is r-relatively integrable if
and only if L(A/, IT') is w-relatively integrable). Moreover, by Corollary 8.2.3,
the linkage ~ preserves relative integrability.

For each w C T1o(L) we denote by W(sr) the subgroup of W(L) generated
by rg, 0 € .

10.1.3. In the affine Lie algebra case, relative integrability of L implies admis-
sibility in the sense of [KW2]. Any boundary admissible module in the sense
of [KW4] is TT1g(L)-relatively integrable (these are the modules L, such that
dim F(L) = 1).

10.2. Properties

In this section we will prove several useful properties of the characters of rela-
tively integrable modules.

Note that the term Ry ch L does not depend on the choice of IT (since Ag is
fixed) and lies in Z(I1) for each II.

10.2.1. Lemma. Take y € I1o(L).

(i) There exists L’ ~ L such that the root corresponding to y in To(L') in
the sense of Corollary 8.2.3 lies in I1y.

(ii) Assume that f, acts locally nilpotently on F(L). Denote by A* the con-
nected component of Ay which contains y and by o* the corresponding
Weyl vector (i.e., the Weyl vector for A* N A%‘ ). The element ep#R5 ch L
is a W(y)-skew-invariant element of Zw ) for W(y) = {ry,Id}.

Proof. Let us show that (i1) holds for y € IIgp. Choose Il such that y €
IT or y/2 € II and denote by A the highest weight of L: L. = L(A,II).
By Lemma 7.7.1 one has F(L) = L(A, TI(L)). Since f, acts locally nilpo-
tently on F (L) one has

A+pmyY) =R +pLm.yY) € Zso.

This means that f), acts locally nilpotently on L, so L can be decomposed as a

direct sum of s[,(y)-modules. Therefore (1 — e~¥)e?/2ch L is a W(y)-skew-
invariant element of %y (,. Since p* —y/2 and Ag \ {y} are ry-invariant,

e’ Rgch L is also a W(y)-skew-invariant element of Zy(,).

Now we prove (i) and (ii) by induction on y. If y & Ily, there exists o € g
such that roy < y. Since y € I1o(L), one has r,sy > y for each y’ € I1o(L),
soa & I1p(L) and thus o & A(L) (because « € I1g). Using the Enright functor
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Ty (a) we obtain L' = Ty (a)(L) ~ L and roy < ¥ is the root corresponding to
y in I1o(L'). This proves (i).

For (ii) choose IT which contains « or /2. Recall that, by Corollary 8.2.3,
F(Ty(a)(L)) = F(L') under the identification of Kac—-Moody superalgebras
with the sets of simple roots IT(L) and ro IT(L); under this identification C f,,
is identified with C f;,, so fr,y acts locally nilpotently on F(L’).

Since Ty (a) provides the equivalence of categories, Re” ch L’ € Zy () and
RePch L = rq(ReP ch L'). Therefore

¢” Rych L = Rye” "PReP ch L = Rye” ~Pry(ReP ch L').

Note that RTep#_p is rq-invariant element of Zy () (if € II, then At and
p* — p are ro-invariant; if /2 € T1, then At \ {&/2} and ep#_p(l +e7%/2) is
ro-invariant). Hence P Rych L' € Zw(q) and

¢” Rych L = rg(e” Rych L),

By induction hypothesis, e’ Rgch L' is a W(rqy)-skew-invariant element of
RBW (roy)» SO e’ Rgch L is a W(y)-skew-invariant element of Zyy(y). O

10.2.2. Corollary. Let L be m-relatively integrable (x C Tlo(L)). Assume
that v lies in a connected component A* of Ag; let o* be the corresponding
Weyl vector.

Then the element Rﬁe"# ch L is a W(m)-skew-invariant element of Xy ()
and the element ReP ch L is a W(m)-skew-invariant element of Ry ()% -1
(see §2.2.3 for notation).

Proof. From Lemma 10.2.1 it follows that Raep# ch L is a W(r)-skew-invariant
element of Zyy (). Recall that Ry € %, so RePch L € Xy )% —1. It re-

mains to verify that Re” ch L is W(;r)-skew-invariant. Since Raep# is W(A%)-
skew-invariant and Ref is W -invariant, their ratio RTep#_p is W(A#)-skew-
invariant, and, in particular, is W(mr)-skew-invariant. Hence RePchl =
RTep#_p . Rﬁe"# ch L is W(mr)-skew-invariant. O

10.2.3. Denote by R; g5, Ry, 7(IT) the following analogues of Ry, R7(I1):

Rig:= [] (-e®. Roy(M:= ] (+e™*.

aeAt(L)g aeAT (L)t

Note that these elements lie in % (and % C Z(I1') for each I1’) and Ry (IT) =
RZ}T(H)R Lo
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Recall (see §2.2.6) that the elements R(I1)e”™ € Z(I1) are equivalent for
all IT: the expansion of R(IT)e™ in Z(I1) does not belong to Z(I1’), how-
ever, the expansion of R(IT)eT in Z(I1’) coincides with the expansion of
R(IT")eP™’ in Z(I1'). Similarly, Ry, (IT)ePL-T are equivalent for all IT. Hence
the elements Ry(IT1)e™#™, Ry ; (IT)e™P=-T are equivalent for all IT; since these
elements lie in %/, the expansion of Ry(IT)e™ ™ (resp., of Ry ; (IT)e™PL:1) in
Z(I1') is equal to the expansion of Ry(I1”)e™P1"” (resp., of Rf 1 (IT")e=PL.n)
in Z(I1"") for any sets of simple roots IT, IT’, IT”, TT"”. This allows us to use
the notation Ry ; e™PL for Ry ; (IT)e™ L1,

10.2.4. Lemma. For a set of simple roots T1 let X(I1) be the expansion of
Ry ReP™PL ch L in Z(I). For any Tl and T one has X(I1) = X(I1') (in
particular, X(IT) € Z(I1")).

Proof. By above, the elements Ry ; Re®”PL ch L are equivalent for all IT, so
X (1) is equivalent to X (I1’). It remains to show that X (IT) € Z(IT").

Since any two sets of simple roots are connected by a chain of odd reflec-
tions, it is enough to consider the case IT' = rgI1, where B € Il is an odd
isotropic root. We denote by Ry ;, R, p, pr, the corresponding elements for IT
and set # .= #(I1), %' .= %(;ﬁ IT). Observe that ch L € #Z N %', since L is
an irreducible highest weight module.

If B € A(L), then the element Ry ; Re®™PL has the same expansion in %
and in %', since ’

Ry ReP 7l = [T 1= [ (1+e ) lePPrL
aeAd aeAT (M\AF(L)

and AT (M) \ Ag(L) lies in AT (rgIT) N AT (TD).

Consider the case 8 & A(L). Let us show that the expansion of Re” ch L
in Z lies in #’'. Indeed, denote this expansion by Y. SincechL € ZN %', Y
has a pole of order < 1 at 8. By Lemma 2.2.9, in order to show that ¥ does not
have a pole, i.e., that Y € &, it is enough to verify that for each u € §* the
set supp Y N {u + ZPB} is finite. In fact this set contains at most one element,
since the action of the Casimir element gives ||i||? = ||u+7B||% if u, u+rpB €
supp(Y), so (i, rB) = 0. However, for u € supp Y one has A(n) = A(L), so
B & A(w), thatis r = 0. Hence Y € #’. Since the product Ry ; e lies in
Z and in %', we conclude that X(IT) = Ry ye™PLY € Z(I1"). The assertion
follows. O

10.2.5. By above, X(IT) does not depend on IT (for fixed L). The next lemma
shows that the equivalence relation ~ preserves X (I1).
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Lemma. Let X(L) be the expansion of Ry Re?”PLch L in Z(I1). Recall
that for L ~ L' one has F(L) = F(L’) via the natural identification A(L) and
A(L"). Under this identification X(L) = X(L').

Proof. It is enough to verify the assertion for L’ = Ty(a)(L), where o € g \
A(L). Choose IT which contains  or . One has

RePch L(A. TI') = ) "aye”. Re’chL’' =ry(RePchL).
By §8.2.2, A(L") = rq A(L) and TI(L') = rqTI(L). Thus

”a(RT,L) = RT,LM ra(pL) = pr'-
Hence ro X (IT) is the expansion Ry, Re?™L" ch L" in Z(I1). O

10.2.6. Let L be m-relatively integrable (7 C ITo(L)). Assume that 7 admits
a Weyl vector p; ((pr,) = (a,)/2 for each o € ). By above, the element

Ry RePTPx=PL ch L does not depend on IT (and have the same expansions in
all algebras Z(I1)).

Proposition.  The element Ry | RePtPx=PL ch L is a W(m)-skew-invariant
element of Zw ().

Proof. Denote by X(L) the expansion of Ry, LRep+p”_pL ch L in Z(I1) (this
does not depend on IT by Lemma 10.2.4). It is enough to verify that X (L)e” is
W (y)-skew-invariant element of Zy(,) for each y. We prove this by induction
ony € A%‘ .

Assume first that y € Ilg. Take IT which contains y or % and set # =
Z(I1). By Corollary 10.2.2, Raep# ch L is a W/'-skew-invariant element of
Pw. Clearly, A%r \ Ag(L)™ is ry-invariant, so Ry R 1'is a W(y)-invariant
element of Zyy(y,). Since y or % lies in I1, p — py, 1s ry-invariant; since y € Iy,
p" — pr is ry-invariant. Hence ePTPr—PL=0" ig g W(y)-invariant element of
RAw(y)» 50 X(L)eP™ is a W(y)-skew-invariant element of Zyy () as well.

Now take y ¢ Il1g and o € I1g such that y’ := rqy < y. Thena € A(L)
(see the proof of Lemma 10.2.1). Let L” := T, (a)(L). By §10.1.2, we conclude
that L’ is rgm-relatively integrable. By induction X (L')eP e is a W(y’)-skew-
invariant element of Zyy(, ). Clearly, p;,» can be chosen equal to rq 0. More-
over, by Lemma 10.2.5, X(L") = rq(X(L)). Then X(L)eP™ = ro(X(L )ePraw)
and thus X(L)ef™ is a W(y)-skew-invariant element of %y ,,, as required. []

11. Character formulas for some typical and relatively integrable modules

In this section we prove formula (35) from §7.7.2 for some cases.
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11.1.

Recall that a module L(A, IT) is typical if (A + p, ) # 0 for all isotropic
,3 S AT‘
Recall (see §9) that we call A € h* extremal if for each connected component

7 of ITp(A), A is maximal or minimal in its W (ir)-orbit. We say that A is regular
if Stabw A = {1d}.

11.1.1. Theorem. IfL = L(A,II) is typical and A + p is a regular extremal
weight, then

RePch L = Z sgn(w)e® AP
{fweW(L)|lw(A+p)<A+p}
and (35) holds.

11.1.2. Recall that ITo(L) is the set of simple roots of A(L) N A%‘.

Corollary. IfL = L(A, 1) is a typical module and F (L) is T1o(L)-integrable,
then
RePch L = Z sgn(w)e? ¢+
weW(L)

and (35) holds.

The above theorem admits the following generalization.

11.1.3. Theorem. Let L = L(A,I1) is a typical module. Set
mi={aey(L)| (A +p,av)>0}

(that is m C Tlo(L) is maximal such that F(L) is w-integrable). Write 7 =
7y | way, where 1wy (resp., mwap) is the union of connected finite (resp., affine)
type diagrams in . Assume that for each a € Tlo(L) \ 7 one has

(A' + P, wOOlV) < 0’

where wy is the product of the longest elements in W(ry). Then

RePch L = Z sgn(w)e?*+0),
weW(x)

11.1.4. Remark. We do not expect Theorem 11.1.3 to hold in general. Namely,
the coefficients of the character formula may involve non-trivial Kazhdan—
Lusztig polynomials.
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11.2. Proof of Theorems 11.1.1, 11.1.3 and Corollary 11.1.2

First note that Theorem 11.1.1 is a particular case of Theorem 11.1.3: if A is
extremal, then v is a union of connected components of I1¢(L) and each root
a € Ilg(L) \ 7 lies in a connected component 7 C Ilg(L) such that A is a
minimal element in its W (7 )-orbit. One has (A + p, wa¥) = (A + p,aY) for
each w € W(m); if A is regular, then (A + p,a") < 0. Thus a regular typical
extremal weight satisfies the assumptions of Theorem 11.1.3.

Now let us deduce Corollary 11.1.2 from Theorem 11.1.1. First, consider the
case when L’ = L(A’, IT) is a typical module and g, acts nilpotently on L’ for
some o € 1. We claim that (A" + p,a") € Z~y. Indeed, choosing I1" which
contains @ or «/2 we obtain L' = LA +p—p', II')and (X + p—p',a") > 0;
since (p',aY) > 0, we get (A’ + p, @) > 0. Since g+ acts locally nilpotently
on L',a € A(L),s0 (A + p,aY) € Z=yg, as required.

Next let L = L(A,II) be a typical module such that F(L) is ITo(L)-
integrable. By above, (A + p,a¥) = (A + pr, V) € Z~¢ foreach a € ITo(L).
Hence A + p is regular and extremal. Hence Corollary 11.1.2 follows from The-
orem 11.1.1.

11.2.1. Proof of Theorem 11.1.3. We claim that
supp(Re ch L) C W(r)(A + p).

Indeed, by Proposition 7.3.1 it is enough to verify that for each w € W () if
(w-A+p,yY) > 0for some non-isotropic even positive root y, then y € A(r).
One has (w - A 4+ p,yY) = (woA + p, (wow™1y)V). Since y & A(rr), the root
wow ™1y lies in AT \ A(x). By the assumptions, (wg - A + p,aV) < 0 fora €
[To(L) \ 7 and for a € 7¢; therefore this inequality holds for a € ITo(L) \ 7y
and thus for a positive non-isotropic even root & which does not lie in A (7).
Hence (w - A + p,yY) < 0, as required.

By Proposition 3.12 in [K3], A + p is a unique 7-maximal element in its
W (7r)-orbit (by definition of ).

We claim that F(L) is w-integrable. Indeed, take « € 7 and let T’ be a
subset of simple roots for A(L) such that « or /2 lies in IT’. Since F(L) is
typical, F(L) = L(A',I1"), where A +p = A"+ p',so (A’ + p’,a") > 0. Since
a € A(L), we conclude that g, 4, acts locally nilpotently on F(L). Hence
F(L) is mw-integrable.

Using Corollary 10.2.2, we conclude that Ref ch L is W (rr)-skew-invariant.
Therefore Re” ch L € Zw ) and so

RePch L = cﬁW(L)e(’Hp).

Since the coefficient of e*T? in ReP ch L is 1, ¢ = 1, as required. d



Characters of (relatively) integrable modules 209

11.2.2. Theorem. Let L be a non-critical module such that (F(L),T1(L))
satisfies the conditions of §4 and S C I1. Then (35) holds.

11.2.3. Theorem. Let L be a non-critical vacuum module such that A(L) is
affine and F (L) is integrable. Then (35) holds.

11.2.4. Corollary. If A(L)g is connected (i.e., A(L) = A(0,m), B(0,n),
C(n), their untwisted affinizations, or A(0,2n—1)®, C(n+ 1)@, 4(0,2n)®)
and F (L) is T1o(L)-integrable, then (35) holds.

In particular, by the results of §4, we obtain the character formula for all
admissible modules over A4(0, 7)), C(n)D.

11.2.5. Theorem. Let L be a non-critical g-module such that for each con-
nected component A* of A(L) one has either (F(L),A') = 0or F(L) is A%—
integrable and A'-typical (i.e., (F(L),B) # 0 for each B € A*). Then (35)
holds.

11.2.6. Corollary. Let L be a non-critical g-module such that dim F(L) = 1.
Then (35) holds.

11.3. The case when F (L) is a vacuum module

Consider the case when F(L) is a vacuum module (i.e., F(L) = L(A, TI(L)),
where (A, I1(L)) = 0 for some finite part [T(L) of IT(L)), which is integrable
(i.e., is w-integrable for a connected component 7 of I1o(L), see §3.1.3). We
denote by « the affine root in I1(L), i.e.,

II(L) = T1(L) U {ap}.

Normalize the bilinear form in such a way that ||«||?> € Q¢ for « € 7.
The following theorems improve the result of Theorem 11.2.2 in the case
when F(L) is an integrable vacuum module with A(L) # A(n,n)®).

11.3.1. Theorem. Let F(L) be an integrable vacuum module such that the
dual Coxeter number of A(L) is non-zero.

Assume that TI(L) is such that ||«||> > 0 for each o € TI(L); if TI(L) =
C(m) or TI(L) = A(m,n)V,m > n, assume, in addition, that the affine root
in I1(L) is not isotropic. Then (35) holds.
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11.3.2. Theorem. Let F(L) be a non-critical integrable vacuum module.
IfA(L) = D2,1,a)MV and a # —3%. -2, then (35) holds for any TI(L);
for A(L) = D(2,1,—3) = D(2,1,-2)Y, (35) holds if ||eo||* > 0.
IFAL) = A2n —1,2n = D® D + 1,n)D and TI(L) is as in §6.4.1,
then (35) holds.
IFA(L) = AQ2n,2n)® D + 1,n)@ with TI(L) is as in §6.4.2 and the
level of F (L) is not 1, then (35) holds.
IfA(L) = AQ2n,2n)®, D(n + 1,n)® with TI(L) is as in §6.4.2 and the
level of F(L) is 1, then (35) holds if TI(L) C II.

11.3.3. For each o € 7 we write o = ZﬁeH(L) Xq,pB, and let supp(a) :=

{B € IT | xq,p # 0}. Consider the following conditions on a set of simple roots

IT(L):

(A) o> = 0;

(B) for each o € 7 there exists 8 € supp(«) such that 8 ¢ supp(c’) for each
o’ € m; this B is denoted by b(«);

(©) pL € X1 — X3, where

X1:={nebh*| (na)e Qs foralla € TI(L)},
Xy = Z QZ()O{V.
a€ll(L)o

It is easy to see that (B) holds for each IT if A # F(4)™), see §13.5. Note
that (C) holds if pz = 0 and if |J||?> > 0 for each « € TI(L) (in this case
pr € X1). We give examples of sets of simple roots I1(L) satisfying (A), (B),
(C)in §13.5.

11.3.4. Theorem. Let F(L) be a non-critical integrable vacuum module such
that A(L) # A(m,n)D, C(n)W. If TI(L) satisfies the conditions (A)~(C),
then (35) holds.

11.4. Proofs

Step 1. Set
Z:= RePchL — RpePtchF(L)=0, Z := RT,Le_'OLZ.

We have to prove that Z’ = 0. Suppose that Z’ # 0.

Denote by Aqy (resp., Am) the highest weight of L (resp., of_Z); recall that
A + pn = Am + pr,m. By Corollary 7.3.4, supp(Z) C A + pL,m —
Z>oAT (L), so for each TT

(38) supp(Z') C A — Z»oII(L).
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Clearly, A1 + pr1 &€ supp(Z), so A & supp(Z’).

Let F(L) be m-integrable, where & C I1g(L) is connected. Since 7 is con-
nected, it admits a Weyl vector p, € H* ((pr.aY) = 1 for each a € 7).
By Proposition 10.2.6, for each 7 C TIo(L) the element e~ Z’ is a W(r)-
skew-invariant element of %y (). Therefore supp(e”” Z’) is a union of regular
W (7r)-orbits (the regularity means that the stabilizer of each element is trivial).
From (38) it follows that each orbit has a 7-maximal element (i.e., maximal with
respect to the following order: v/ >, v if v/ — 1" € Zsom). Let &t = Ay — v
be a m-maximal element in its orbit. Using the regularity of the orbit we obtain
(Ag —v,aY) > 0 foreach o € .

Combining maximality of v and regularity of the orbit we obtain

(39) (A —v,a¥) >0 foreacha € 7.

Now let Af + pz, — v be a maximal element in supp(Z) with respect to
the order v/ > v” if v/ —v" € ZsoAT. Clearly, v # 0. Then Ay — v is a
maximal element in supp(Z’) with respect to the same order and so this is a
I1(L)-maximal element in supp(Z’). Since Aty + pz, — v € supp(Z) we have
2(An + pr.v) = (v, v). Combining with (38) we get

(40) 2(Arr + pL.v) = (v,v), v € Zsoll(L), v #0O.
We will show that (39) contradicts (40).

11.5. Proofs of Theorems 11.2.2, 11.2.3 and Corollary 11.2.4

11.5.1. Proof of Theorem 11.2.2. Arguing as in §4.3.2 we deduce from (39)
and (40) that v € Z>oS. Write v = Zﬂes xgB, xg > 0. Let B be such
that xg # 0. By Lemma 10.2.4, Z’ does not depend on the choice of II, so
supp(Z’) C A — ZsoIl'(L) for any II’. In particular, Ay — v € Ay —
Z»oI1'(L) for any IT’. For I1" = rgI1 we have A = AL so v € ZsoIT'(L).
However, —f8 € TT’(L) and S \ {8} € IT’(L), a contradiction. O

11.5.2. Proofof Theorem 11.2.3. Recall that L is a vacuum module means that
L = L(A, II), where (A, A) = 0 for some finite part A of A. In particular, A C
A(L) and the inclusion is strict, since A(L) is affine. Note that the elements of
I1 are indecomposable in A(L)Y = AT N A(L), so IT c TI(L). Hence I1
(resp., A) is a finite part of TTI(L) (resp., of A(L)).

Consider A’ := A(L) with a set of simple roots 1" := TI(L) and a finite
part A.

If the dual Coxeter number of A’ is non-zero or A’ = A(n, n)(l), then,
by §13.2, there exists a chain of odd reflections with respect to the roots in A
which transform IT’ to a set of simple roots IT” with the following property: for
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each « € I1” one has ||«|? > 0 (where (—, —) is normalized in such a way that
(0',8) = 0). Acting by the same chain of odd reflections of IT, we obtain a set
of simple roots I for A such that TI(L) = I1”. Clearly, L = L(X, IT), where
(/\, A) = 0. Hence (F(L), I1(L)) satisfies the conditions of §4 and S C TI.
By Theorem 11.2.2, (35) holds.

Similarly, if the dual Coxeter number of A’ is zero and A’ # A(n,n)®,
then, by §13.2, there exists a chain of odd reflections with respect to the roots in
A which transform I1’ to a set of simple roots I1” given in §6.1, §6.4.1, §6.4.2,
respectively. Acting by the same chain of odd reflections of II, we obtain a
set of simple roots I1 for A such that TI(L) = II1”. One has L = L(A, ),
where (A, A) = 0 and F(L) is integrable. In this case the statement follows
from Theorem 11.3.2. O

11.5.3. Proof of Corollary 11.2.4. 1f L 1is typical, the assertion follows from
Corollary 11.1.2. Assume that L is not typical.

In the light of Theorem 11.2.2 it is enough to verify that there exists L' ~ L
and IT such that (A’; + pr1. ) = 0 for some B € II, where L' = L(A, IT).
Assume that this is not the case. Then for any L’ one has A’y + o = Ay, + pr/
for all IT, IT". Fix any IT and let 8 € A(L) be such that (A; + pr1, 8) = 0.

First, consider the case when 8 € II’ for some I1’. Then Ay + pp =
A + prv implies that (Ary + prr, B) = 0, so the assertion holds for L’ = L
and B € IT'.

Assume that B & II’ for any IT". Then A # A(m,n),C(n), A(m,n)®,
C (n)(l). In particular, ITg is not connected. Let & be a connected component
of ITg such that A(r) N A(L) = @. There exists w € W(mr) and IT’ such
that w8 € TII’ (by Lemma 13.4 the stronger assertion holds). Write w as a
product of simple reflections and let 7" be the product of the corresponding
Enright functors. Then w8 € A(T (L)) and T(L) = L(w(Am1 + pm1) — e, 1),
so the assertion holds for L’ = T'(L) and wp € IT’. ]

11.6. Proofs for vacuum cases

Since F(L) is a vacuum module, F(L) is not only m-integrable, but also
I1o(L)- -integrable, so (A — v, ) > 0 for each & € I1y(L). For € TI(L)
one has (A, @) = 0, so we obtain

(41) (v,aY) <0 foreacha e ITo(L).

We will frequently use the following statement, which is a part of Theorem
4.3 in [K3]:

(Fin) If A is a Cartan matrix of a semisimple Lie algebra and v is a vector with
rational coordinates, then Av > 0 implies v > 0 or v = 0;



Characters of (relatively) integrable modules 213

(Aff) If A is a Cartan matrix of an affine Lie algebra and v is a vector with
rational coordinates, then Av > 0 implies v € Q6.

11.6.1. Proof of Theorem 11.3.1. Arguing as in §11.5.1 we obtain that for any
S  TI(L) satisfying the conditions in §3.3 one has v € Z>0S,v # 0.1In
particular, v € ZxoI1.

Consider the case A(L) # A(m,n),C(n), ie., QA6 = QA. Combin-
ing (41) and (Fin) we obtain v € —QZ()A%'. Since v € ZsoAT we getv = 0,
a contradiction.

If [I(L) = C(m) or TI(L) = A(m,n)™M,m > n, then using the condi-
tion that affine root is not isotropic, we obtain that the set of isotropic roots
Iso C TI(L) lies in TI(L). It is easy to see that the condition ||er[|> > 0 implies
that each connected component of Iso is of type A(n + 1,n) (and not of type
A(n,n)). By above, it is enough to verify that for some S,

Z>0S N{p | Vo € To(L) (1, ") < 0} = {0}.

Clearly, it is enough to check the assertion for each connected component of
Iso C TI(L). Retain notation of §3.3.1 and choose S = {&; — §;} in each
component of Iso. Write v = > k;(¢; — ;). Taking @ = &; —&j+1,8; —8i+1 €
Iy, we obtain k; = k;4; for each i, thatis v = kY, (e; — §;) for some
k > 0. Then (v, (¢, —&n+1)") = k,so k < 0, thatis v = 0, a contradiction. (]

11.6.2. Proof of Theorem 11.3.2. Combining (40) and (41), we obtain that v
satisfies the formulas (27). Then arguing as in §6.4.1 (resp., §6.4.2, §6.1) we get
the assertion for A2n—1,2n—1)®, D(n+1, n)(l) (resp., A(2n, 2n)(4) D(n+
1,n)@ and D(2,1, a)(l)) the restriction that TI(L) < II for A(L) =
AQ2n, 2n)(4), D(n + 1, n)(z) with level 1, comes from the use of odd reflec-
tions in the proof of this case.

Now consider the remaining case A(L) = g = D(2,1,a)V). Recall that
a #0,—1and D(2,1,a) = D(2, 1,a_1) ~ D2,1,—1 —a);ifa € Q, we
assume (without loss of generality) that —1 < a < 0.

One has D(2,1,a)5 = A1 x A1 x Ay; if we denote the root in ith copy of
Aj by 2¢;, then || 281 |% : |22 ¢ [2e3]2 = 1:a: (—a —1).

Let L(A) be a w-integrable vacuum module of level k for some & C I1g. If
7\ ITp contains one root, then 7 = {§—2¢&,, &,} and L(}) is -integrable if and
only if 2k /|| 2&,||* € Z=o. If w \ [T contains two roots, then 7 = {§ —2¢&,,§ —
2e4,2¢r,284}, and, by above, L(1) is w-integrable if and only if 2k /||2¢, ||?,
2k /|24 € Zso; in particular, if k # 0, then ||2&,]2/]12¢4]1*> € Q>0, so
a € Qand,since —1 <a<0,r,g=2,3.1fn \ ﬂo contains three roots, then
w =Ilpand k = 0.
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We see that L (1) with k& # 0 can be Agl)-integrable for any copy Agl) in

ITp, but it is Agl) X Agl)-integrable only if a € Q and the roots of 7 have
positive integral square length for some normalization of (—, —).
Recall that 7 = {& € I | ||a||?> € Qx0} for some normalization of (—, —).

If a ¢ Q,then 7 can be any copy of Agl). Ifa € Q, then either 7 = Agl), which
corresponds to the longest root (the absolute value of ||2¢; || is maximal; this is
2¢1if -1 <a <0),orm = A(ll) X A(ll) (and then 7 = {2¢5, 2¢e3}, by above).
Let us show that (40) contradicts (39).
Recall that there are 4 sets of simple roots:

Iy ={0—e1 —e2—¢e3,—€1 + 62+ 3,61 + 62 —€3,61 — &2 + €3},

and I, := {§ — 2e1,81 — &2 — €3, 267, 2¢e3}, with similar I13, IT4 (6 — 2¢; €
I 1)

Take I1g. Write u = j§ — 23':1 eici. By (39), e1,e2,e3 > 0. By (40),
1 € Zsoll;; in all 4 cases, using e1, e2,e3 > 0, we get eq, e2,e3 < 2j. Hence

(42) 0<e <2 fori=1273.

In particular, u = 0 if j = 0. Since © = 0 contradicts (40), we assume that
j > 0.

Consider the case w1 = {2g1,8 — 2¢1}. Normalize (—, —) by [|2&1]|*> = 2
(then ||2e2 |2 = 2a, |2e3]|> = —2(a + 1)). Recall that k € Z~¢. By (39) one
has e; < k and ||u||? = 2(A + p, ), that is e + ae? — (a + 1)e3 = 4jk.
If a ¢ Q, then we get e = e3 and e% — e_,z, = 4jk; if a € Q, then, by our
assumption, —1 < a < 0 and we obtain e% > 4jk. Combining with e; < k
with (42), we get j = 0, a contradiction.

Consider the case 7 = {6 — 2¢5,6 — 2¢e3,263,2¢3} (with —1 < a < 0).
Normalize (—, —) by ||2&2]|> = 2 (then ||2¢1]|> = 2/a, |2&3]> = —2(a +
1)/a). Recall that k,—ka/(a + 1) € Z=¢. By (39) one has e; < k,e3 <
—ka/(a + 1) and ||u]|? = 2(X + p, 1), that is

a+1 ,

e?/a + e3 — ez =4jk.

a
Recall that j > 0. By (42), e3,e3 < 2j, so we obtain e; = 0,ep = 2] =
k,es =2j = —ka/(a+1).Ifa # —% this is impossible. For a = —% we get
n = j(8 —2e5 —2¢e3), which does not lie in Z>o Il for s = 1, 3, 4. Hence (40)
contradicts (39) for I1; withi = 1,3, 4. ]

11.6.3. Proof of Theorem 11.3.4. By (40), 2(Art + pr,v) = |[v||?. The con-
dition (C) implies p;, = &1 — &2, where (§1,v) > 0 (since v € Z>oI1(L)) and
(,2,v) <0 (by (41)). Hence (pz,,v) > 0, that is

20, v) < [Iv]*.
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Let 5§ be the minimal imaginary root in A(L) (§ is the minimal imaginary
root in A). Write TT(L)o = 7 U "/ and recall that ||«||? & Qs fora € n”.

Write v = j(s8) — v/ —v”, where v/ € Qn, v/ € Qn”. From (Fin)
(see §11.6) we deduce from the condition (41) that

V/ € Qz()]%, V// S Qz()]l'”.

Note that j(s§)—v" = v+v” € ZsoII(L) because 7" C ZsoII(L). Therefore
J(s8) —v' € Qm N ZsoII(L).
We claim that j(s6) —v' € Qsox. Indeed, write 7 = 7 U {ozg}. One has

j(S5)—V/=J'Oég+ Zyaa =] Z xag,ﬁ + Z Z J’axa,ﬂlg-

QET ,Besupp(ocg) a€m Besupp(a)

In the light of assumption (B), the coefficient of the root b() is equal to
YaXa,b(a): thus j(s8) —v € Zsoll(L) gives yaXp) = 0, 50 yo > 0. Hence
j(s8) —v' € Qo as required.
Set k := (X,s8). Then k = (A, ozg), so (v, ag) < k by (39). Using (41) we
get
lviI>
=1 j(s8) = v'II> + [V < [1j(s8) —'|I?

=j(j(s8) —v'.af) + Y yalj(s8) V')

aEm
—j(v,al) + > valv.e) < jk.
aEm
Since 2(A,v) = 2jk we obtain j = 0,s0 v = —v’ — v”. Since v €

ZsoTI(L) with v' € Qso7*, V" € Qs we get v = 0, a contradiction. [

11.7. Proof of Theorem 11.2.5

Let L be a non-critical g-module such that for each connected component A’ of
A(L) one has either (F(L), A') = 0 or F(L) is A%—integrable and A’-typical
(i.e., (F(L),B) # 0 for each B € A¥).

We want to prove that (35) holds.

By Lemma 10.2.4, Z’ does not depend on the choice of IT and is preserved
by ~(Z'(L)=Z'(L")if L’ ~ L).

Decompose A(L) in the union of irreducible components A(L) = [[A/.
By (38), we can decompose Afp — . = > wj with ;€ Z A7 . This decom-
position might be not unique (even for fixed IT): uy is uniquely defined if A®
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is finite, but ps — p; € Z§ for different decompositions of u, if A* is affine.
By (38), there exists a decomposition, where j1; € Z(A7 N A™T).

Note that A,,;1 = A if B & A(L) or (Ar1, B) = 0, and A,yr1 = A — B
otherwise. In particular, if (Ary, A7) = 0 for some I, then this holds for each
IT.

Assume that _(Xn, A7) = 0. We claim that for any two decompositions A —

nw=> psand Apy—p =) i onehas pu;— ,u§ € Z§ (in particular, j1; = u;
if A7/ is finite). Indeed, it is enough to consider the case IT' = rgIl and A #

Am. Then Ay = A — B and (A, B) 75 0, that is B ¢ A/. Therefore there
exists a decomposition Ay — pu = Y uy with [LJ = [j; since /L] — nj € 745
the claim follows.

Let us show that

w; € 78, if A # A(m,n)D, C(m)D,

43) A, A) =0 = .
w; € 78 + 7§, if AV = A(m,n)D, C(m)D,

where for A/ = A(m,n)V,C(m)MV the element £ € ZAJ is such that
(&, A% = 0.
Take j such that (Ary, A7) = 0. Since (A7, A%) = 0 fors # j, (39) gives

(44) (nj,a¥) <0 foreacha € To(L) N A°.

11.7.1. Assume that A/ is finite and QA/ = QA%. Then, from (Fin) (see
§11.6), u; € —(QA% N AT); since u; € Z(AT N AT), we get w; = 0, as
required. .

Assume that A/ is affine and QAj = QA%. Then, from (Aff) (see §11.6),
Wwj € 73§, as required.

Assume that A7 is A(m,n)®, C(n)(l).. Since L is non-critical, (o7, 6) # 0,
so the case A(n,n)D is excluded. Let A’ be of type A(m, n)D with m # n,
or C(n)M. In this case QA7 lies in QA% + Z&;, where &; € bh* is orthogonal
A%. Combining (Aff) and (44) we obtain u; € Z6 + Z§;, as required.

11.7.2. Now consider the remaining case A/ = A(m,n), C(m). By above, i
is uniquely defined, and, in particular, does not depend on IT.

One has QA7 = QAJ + Z&, where £ € h* is orthogonal AJ Combining

(Fin) in §11.§ and (44) we obtain u; = x§ — ,'where u' e Q"‘Hé. Since
wj € Z>oIl/ for each II, we obtain x§ € Z>oIl/ for each I1. Thus for each

set of simple roots IT the corresponding set of simple roots I1/ (the set of simple
roots for A/ N AT (1)) is such that x§ € ZsoI1/.
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Consider the root 61 —§; in A(m, n) or C(m). Assume that this root is simple
in A, i.e., lies in a set of simple roots IT. If TT/ is the set of simple roots in
A/ NAT(TD), then Te -8, (T17) is the set of simple roots in A/ N A"‘(r(91 —5, I).
Write § = n Zl_l g —m Zl_l §; for A(m,n) and § = —§; for C(m). Since
x& € Z»oI1/ ande;—8; € T/, one has x > 0; similarly, x§ € Z>0r,31 _s, (T1Y)
gives x < 0. Hence x = 0. Since x = 0, we have u; = —u’ € —Q"‘H(J).
Combining with j1; € Z>oT1/, we get u; = 0.

It remains to show that &; — §; lies in some set of simple roots for A. If A
is of type A(m’,n’), C(n') or A(m’,n")V, C(n")(V, then any odd root lies in a
set of simple roots, so this holds.

Let us show that for other root systems A this can be achieved for some L’ ~
L. Denote by (7 the embedding A(m,n) — A with the image A/ . Since m,n >
1, A is not exceptional or affinization of exceptional. In the light of Lemma 13.4
the root t7,(e1 —81) or iz, (61 —e1) € X (see Lemma 13.4 for notations). We may
(and will) assume that t7 (¢ —&1) € X. Denote by A’ the connected component
of Ay containing §; — &, and by 7’ its set of simple roots (x” C Ilg). Take
o € /. Ifa € A(L) and (o, B) # O, thenw € A/, and so o € H{) (since
a € Ilg), which implies (8,aY) = —1. As a result, if @ € 7’ is such that
(B,aY) > 0, then @ ¢ A(L), and we can apply the Enright functor T, (a)
to L. Set L’ := Ty(a)(L). Clearly, A(L") = ro(A(L)) and tf; = rqtz. In
particular, 7o A’ = A(m,n) and the t7/(¢1 — 1) = rof < B. By Lemma 13.4,
repeating this procedure we obtain L” ~ L, where 8” := (y(e1 — 61) is an
essentially simple isotropic root (see §13.1), that is 8”7 € II for some IT (and
LL//(Sl — 81) e IT' for IT' = rﬁ//(n)).

11.7.3. Now fix IT and let Ay + pr — v € supp(Z). From Corollary 7.3.4 it
follows that v can be decomposed as a sum v = ) v; with

(45) 2 + pL.vi) = |[vi|2, vj € Zso(A) NAT)

and, moreover, that A1 + pL —Vj € W(AY)Y(An + pr) if the restriction of AL
to A/ is typical, i.e., (Am + oL, B) # 0 foreach B € AJ.

Consider the case when the restriction of )Ln to A/ is typical, i.e., (/ln +
pr.m»-B) # O for each B € A/. By above, A+ pL — vj € WA +
pr) and Am + pr, is Tlo(L)-maximal in its W(AJ) orbit by Theorem 11.1.1.
Since (v — vJ,AJ) =0,Aq + pr —v € W(A)An + p — (v — v;)) and
Ao+ pL— (v — vj) is Ilo(L)-maximal in its W(A7)-orbit. Therefore Z €
%W( AJ)- Since Z is W(A/)-skew-invariant (see Corollary 10.2.2), we conclude
that 11 +pr —(v—v;) € supp(Z). Note that Ajj+pr —(v—v;) >11 A+pL—V.

Now let A;p + pr. — v be a maximal element in supp(Z) with respect to the
order v/ > V" if v/ —v"” € Z>oA™T. Then Ay — v is a maximal element in
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supp(Z’) with respect to the same order and so is a IT1¢(L)-maximal element in
its W(L)-orbit. By above, v; = 0 for each j such that the restriction of A to
A7 is typical.

Let us show that v; = O for each j. By the assumption (Am1. A7) = 0. Then,
by (43), v; = 0if A7 is finite and v; = k;§ if A/ # Am,n)D, Cm)D is
affine; in the latter case, since A/ is not critical, (pz,8) # 0, so (45) forces
ki = 0.1If Al = A(m,n)D® or C(m)M, then vi = xj&j + k;§. In the light
of Lemma 13.3, (45) forces v; = 0 for Al = A(m,n)V. For A/ = C(n)®
we can (and will) normalize the form in such a way that ||a||?> > 0 fora € A/;
then ||£;]|> < 0 and (pr,v;) > O since v; € Zxo(A/ N AT). Now (45) forces
xj = 0, thatis 2(pr,k;6) = 0; hence v; = 0, as required.

We conclude that v = 0, a contradiction. O

12. Examples: g* of type A(1, 1) and B, D

In this section we establish the KW-formula in two more cases: §A

A, DD or B(1,1)D.

is of types

12.1. Case g = gl(2,2)D, s[(2,2)D), ps[(2,2)D

Consider IT = {ag, @1, a2, x3}, where ||oz,-||2 = 0 and (o, ®j+1) # 0 (where
a4 = «ap). Let Ag,A1,Az, A3 be the corresponding fundamental
weights, ie., (A;,oj) = §;j. Let L = L(A,II) be a non-critical module
and A(L) = A. We show that (35) holds if L is a non-critical module such
that F(L) =~ L(A',II), where A’ = koAg + koAs or A = koAg + k1Aq,
k(),kl, kz € ZZO'

Note that we do not assume that A is of above form (or that IT(L) 2 I).

12.2. Marked diagrams

Fix a irreducible highest weight module L. For each IT take A such that L =
L(A, IT). Consider the Dynkin diagram of IT(L) and assign to each edge o — o’
the scalar product («, ') and to each node « the number xo := (A + prr, @)
(which is integral).

We call the diagram I1(L) endowed by these numbers a marked diagram
D(L, IT) corresponding to (L, IT).

12.2.1. If B is an odd node of a marked diagram IT(L), we define the action
of rg on the marked diagram D(L, IT) in such a way that rg * D(L,II) =
D(L, rgIl) in the case when IT(L) = II. This means that
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e the nodes connected to 8 change their parity and other nodes (including )
preserve the parity;

e the scalar products between the node corresponding to  and other nodes
change to the opposite; other scalar products do not change;

e the mark xg of B is changed to —xg; if the mark xg # 0, the new mark of
the node B’ connected to B is x g + xps, and if xg = 0, the new marks of the
node " connected to B is xg/ + (B, B’); other marks do not change.

12.2.2.

Example 1. The second diagram is obtained from the first one by the reflection
with respect to the upper-right node:

10— ®° R ——Q®°
-1

'®Q —— O 'QR——R®°

1 -1

12.2.3. By §7.5.4, D(L,rgIl) = rg * D(L,IT)if B € I and D(L,rgll) =
D(L, IT) otherwise.

We say that two marked diagrams D, D’ are connected by an odd reflection
if D’ = rg D for some odd node g € D.

Denote by DM (L) the set of marked diagrams D (L', IT") for all IT’ (com-
patible with ITg) and all L" such that L ~ L’. One readily sees that any two
diagrams in DM (L) are connected by a chain of odd reflections rg . In Corol-
lary 12.2.5 below we show that if D € DM(L) and v € D is an odd node, then
sy* D € DM(L). This implies that DM (L) is the set of diagrams obtained from
D by the action of chains of odd reflections; in particular, DM (L) = DM(L')
if DM(L) N DM(L’) is non-empty. Take a pair (L, IT) and let L’ be such that
D(L,T1) = D(L’,TI) with A(L’) = A. Then L’ is partially integrable and
DM(L) = DM(L).

12.2.4. Lemma. For each odd node of the marked diagram D € DM(L) there
exists a pair (L', I1") such that L ~ L', D(L’,T1") = D and the root in T1'(L’)
which corresponds to this node is simple, i.e., lies in T’

Proof. Let D = D(L,II) and let B € TI(L) be the root corresponding to the
odd node in D. We prove the assertion by induction on htyy(f).

If hty B = 1, then B € TI1, as required.

If B is of the form B = j§ + B/ for B’ € 11, € Z~yp, then B & TI(L)
and for I1" := rg/II one has I1'(L) = TI(L). Moreover, htg = 4 + 1 and
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htry B = 45 — 1, because B’ € IT’, so htry (8 + B’) = 3. Hence htypy B < htyy B
and the assertion follows by induction.

Assume that 8 # j§ + B/ for B’ € T, j € Z>¢. Take @ € Tlg such that
la]|> = 2 and 7B < B (thus (o, B) = 1). Note that & ¢ TI(L), because for
a,f € I1(L) one has ro, 8 > B. Since « € I1p, one has 1 < htyo < 3.

Ifhtmo = 1,ie.,a € I1, then ¢ & A(L) (because o ¢ I1(L)). Applying
the Enright functor 7;, (see §8) we have

II(Ta (L)) = re II(L), D(Ty(L), 1) = D(L, IT)

and the node corresponding to 8 is ro 8 = B —ta,t > 0. Thus htiyrqf =
htry B — ¢t < htyy B and the assertion follows by induction.

Assume that ht;ja¢ = 2. Then ¢ = a1 + ap, where a1, € Il are odd
roots and (o1, 02) = 1. If oy, € TI(L), then IT(L) contains three odd roots
B,a1,ar and since (ay,ap) = 1 one has {(B, 1), (B,a2)} = {0,—1} that is
(B,a1 + az) = —1, a contradiction. Thus at least one of the roots a1, oz, say
a1, is not in T1(L). Since 7 contains two non-orthogonal odd roots, it contains
only odd roots, so B = j§ &+ B’ for some B’ € I1, j € Z~¢. From the above
assumption we obtain 8 = j§ — . Since B € II(L) one has 8 & TI(L).
Moreover, (8, a1 + a2) = (a1, az) forces B’ & {1, a2}. For I’ := ry, IT one
hasa € IT', IT’(L) = I1(L). Since o # B’, one has htry/(§— ") < htp(6—pB’)
so htry B < htpy B. Since o € IT’, the assertion follows by induction from the
above.

Now assume that htjo = 3, 1e., ¢ = o1 + ap + a3, where o; € Il is
odd for i = 1,3 and even for i = 2. One readily sees that |«||> = 2 forces
a2 ||?> = —2. Since (B, ) = 1, B is of the form j§ + «; or j§ + a; + a» for
i €{l,3}and j € Z>¢. From the above assumption we get 8 = j§ + «; + a2.
Since B € TI(L),onehaso; & TI(L).Set IT" := ry; IT. One has IT'(L) = TI(L)
and htry B < htyp B since 1 = htyp(«; + a3) < htp(e — i + o) = 2. The
assertion follows by induction. O

12.2.5. Corollary. If D € DM(L) and v is an odd node of D, then s, x D €
DM(L).

In the light of Corollary 12.2.5 it is enough to verify formula (35) for one set
of simple roots IT(L) (if the formula holds for L and F(L) =~ F(L’), then the
formula holds for L"). We check the formula for the cases A= kNo+ jA7, A=
kAo + jA1, k,j € Z>o,k + j # 0, where I1(L) consists of odd roots (in
particular, p = 0).

12.2.6. Case ) = koAo + koMo, ko, ko € Zzo,k() + ko # 0. In this case,
F(L) is integrable and (A + p,;) = O fori = 1,3. Set S := {&,x3} and



Characters of (relatively) integrable modules 221

Z(IT) is the expansion of

e(A+p) )
[Tges(1 +e7#)

in Z(I1). Arguing as in §4, we obtain that the IT-maximal element in
supp Z(I1) is A — w, where u € Z.S, that is u = ajo1 + azas. where ay, az >
0,a1+asz # 0. By Lemma 12.2.4, we can assume that « is a simple root. Then
L(A,TI) = L(A,rq,IT). Since A + p — (a1 — D)oy — aszas & supp Z(I1) and
A+ p—ayo; —aszasz € supp Z(I1), Lemma 2.2.9 gives A + p — (a1 — 1)y —
azas € supp Z(I') or A+ p—aj1 —azas € supp Z(I1'), where IT' := ry, I1.
It is easy to see that supp Z(IT") C A + p' — Z>oIT’, so —(a; — 1)y — azas
or —ajo; —aszas liein p’ — Zsoll" = oy — ZsoIl'; since —ap, a3 € I1/, we
obtain a; < 0, thatis a; = 0. Similarly, as = 0, a contradiction. Hence supp Z
is empty, that is Z = 0 and (35) holds.

(46) Z(IT) := RePch L — 9*W(,,)(

12.2.7. Case A = kAo+jA1, k,j € Z>1. Inthiscase F(L)is tU{ao+aq}-
integrable, where 7 = {ao + 3,01 + a2} = Agl). Set § := {a»} and define
Z := Z(II) as in (46). Arguing as in §4, we obtain that the T1-maximal element
in supp Z is of the form A — u, where i € ZsoII(L), u # 0, ||1l|* = 2(A, )
and (A — p,aV) > 0fora € 7w U {ag + a1}

Set

ar=¢€61—061, ax=901—¢€, oa3=¢e3—06, oyg=58—¢e1+3

(6 is the minimal imaginary root in A, s§ is the minimal imaginary root in
A(L)). Note that £ := «; + a3 is orthogonal to A(L). Write
w =a(sd) + b& + (di + da)ea —d181 — dad>
=aag + (@ + b)ay + (a —dy)az + (a + b + dr)as.

The condition p € Z>oI1(L) gives
a,b,dy,d, €7, a,a+b,a—dy,a+b-+dy>0.

The above conditions g— w,a¥y)>0gived; > dp,—j <dy+dy <k.
The condition || w||?> = 2(A, ) is equivalent to

didy, = ka + j(a + D).

Sincea,a+b > Oone has dyd, > 0.1If dy +d, > 0, then the above inequalities
imply 0 <dy <a,dy +dy, <k,sodd, + d12 < ka and thus d; = d, = 0.
If di + d» < 0, then dy,d> < 0 and the above inequalities imply —d, <
a+b,—d; —dy < j,sodydr + d22 < j(a + b) and thus again d; = d, = 0.
Therefore dj = d, = 0 and thusa = a + b = 0 (since j,k > 0). Hence
u = 0, a contradiction, so (35) holds.
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12.3. Case g1, = B(1, )M

Let g be an affine Lie superalgebra and L be a g-module such that A(L) =
B(1,1)® and F(L) satisfies the KW-condition. The case of typical F(L) was
considered in §9. Below we establish the KW-character formula for atypical
case when the KW-condition holds and F (L) is w-integrable for “sufficiently
large” 7 (in the standard notation 7 = {281,6 — 261} or & = {€1,8 —&1,281}).

12.3.1. Consider the embedding ¢z : B(1, 1)) — A given by the identification
A(L) = B(1,1)D,

Recall (see §13.1) that a root is called essentially simple if it lies in some set
of simple roots. Let 8 € B(1, 1)) be an isotropic essentially simple root; let us
show that for some L" ~ L the root t7/(f) is essentially simple.

Indeed, the non-isotropic roots of B(1, 1)) are Agl) x B(0,1)M):; each es-
sentially simple root of B(1, 1)) is of the form =+ (a; — a2), were a; (resp.,
ap) is a simple root of Agl) (resp., of B(0,1)™). Assume that (7, (a1) ¢ Ilo.
Then there exists y € Ilg such that r,t(a1) < o (see §2.1.3 for <); note that
y &€ t((A(L)) (since rgrr > o for o’ € TIo(L) \ {e}) and that r,ap = a. For
L' :=T,(L) we have t/(a1) < tr(21) and t7/(e2) = tp/(0r2). A similar rea-
soning works if 17, (ap) & I1o. Hence there exists L’ such that t7/(a1), 17/ (a2) €
ITo. By §13.1.2, t7/(21) — tz/(a2) is an essentially simple root, as required.

12.3.2. Now assume that L = L(A, IT) is such that F(L) satisfies KW-condi-
tion. Let us show that for some set of simple roots I’ of A and some L’ ~ L
one has L' = L(A, IT’), where (A’ + p, ') = 0 for some ' € IT'.

Since F(L) satisfies KW-condition and q; = B(1, 1), one has (A +
p.1.(B)) = 0, where B € B(1, 1)) is essentially simple.

Indeed, if this does not hold, then for all L’ ~ L the value A’ + p’ does not
depend on IT' (i.e.,if L' = L(A/,I1") = L(A”,11”),then ' + p' = A" + p").
Then taking L' = Ty, --- T, (L) as above, we obtain L' = L(A’, IT"), where
AM+p = w@ + p),and /() = wir(B), where w := ry, ---ry,. Hence
(A + 0, 11/(B)) = 0. Since B’ := 17/(B), we can choose IT’ containing B’ and
L', TI' satisfies our requirements.

12.3.3. By above, we can (and will) assume that L = L(A, IT) is such that
(A 4+ p,B) = 0 for some B € II.
For B(1, 1) there are three sets of simple roots:

My :={6 =81 —e1.e1 — 61,61}, Tla:={8 —261,81 —e1.€1},
M3 :={61 +e1—68,6 —261.6 —¢e1}
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and the set I1; can be obtained from I1, (resp., from I13) by an odd reflection
with respect to the unique isotropic root in I, (resp., in I13). Hence we can
(and will) assume that TT(L) = I1;; we identify I1(L) and IT;.

If F(L) is integrable, (35) follows from Theorem 11.2.2 (since S = {f} C
IT and IT; satisfies the conditions of §4).

12.3.4. Now consider the case when F'(L) is non-critical w-integrable, where
m = {8 —e1,€1,281} (subprincipal case in [KW4]). The formula for A =0is
proved in Theorem 11.2.5, so we assume that A # 0. We will show that if X # 0
and KW-condition holds, i.e., (A + p, B) = 0 for some B € I1(L), then

e/H—p

1
. R PN
( ) e C ) W(r) l—l—e_ﬂ

This implies (35).

12.3.5. Set yo := (A, 8 — 81 —e1), y1 := (A, e1 — 81), y2 := (X,81). The
module L(A, ITy) is w-integrable if and only if either A = 0 or it is one of the
following cases, cf. [KW4]:

yi=y2=0, =2(yo+1) €Zxo;
yo=y2=0, =2(y1+1) € Zxo;
Y0, 1 # 0, 2y2,—2(yo+ y2 + 1), —2(y1 + y2 + 1) € Zxo.

KW-condition holds for first two cases and does not hold for atypical mod-
ules in the third case (since yg, y; # 0). Note that B(1, 1)") admits an auto-
morphism given by &1 — 6 — €1, §; — 61, which interchanges the isotropic
roots of I1y; this automorphisms interchanges the first and the second cases. For
the third case KW-condition does not hold.

Therefore we may (and will) consider the first case (when y; = y, = 0, 1.e.,
F(L) is a vacuum module). In this case § = &, — 8;. Since A is non-critical,
vo # —1. Hence

yvi=y2=0, 2y0€Z, yo<-lI.

Using the denominator identity for B(1, 1) (see (18)) we rewrite (47) in the

form

eA+p
e

where 7’ := {6 — 1,61} = Agl). Setag = 1,09 ;=86 —¢e1andletry,rg €
W (r') be the corresponding reflections.
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First, let us show that the support of the right-hand side is in A + p—Zx>oI14
and that the coefficient of e**# is equal to 1. For w € W(x') let

ew()t+p+ﬂ)

Yy = ——— € Z(I1
v 1 + ewh ()

(i.e., Yy is the expansion in Z(I1;) of the fraction in the right-hand side). It is
enough to verify that for each w € W(x'),

(48) suppYy C A+ p—Z>olly
and for w # Id,
(49) A+ p &supp Y.

Our reasoning is based on the formula (15). One has (A + p, o)) = —1, (A +
p.ay) = —2yo—1landso (ri(A+p).«)) = 1, (r1(A+p), ag) = —2y0—3 > 0.
Therefore r1 (A + p) is maximal in its W(z')-orbit; this establishes (48) for
w # Id,ry,ror; and (49) for the same w if yo < —3/2; for yo = —3/2
this gives (49) for w # ry,rory,riror1. For w = ry,rory, riror; one has
w(—B) € AT(I1,) and, moreover, w(—B) >1 8§ + &1, where > stands for
[T -partial order. Thus for such w one has

supp Yoy C w(A +p) + wh <1 r1(A + p) + wp
<itA+p+er—(1+¢e1) =14+ p—01.

This establishes (48), (49).

Now for Z := RePch L — %ﬁw(n)(ﬂ—jﬁ) we have suppZ C A + p —
Z>oIly and A + p & supp Z.

Since F (L) is m-integrable, Z is W(rr)-skew-invariant. Arguing as in §11.4
we conclude that it is enough to verify thatif u € Z oIl satisfies 2(A+p, p) =
| ie]|? and (A — p, ) > 0 for @ € 7, then u = 0. Write

p=50(8 — 81 —e1) +s1(e1 — 81) + 5281, s0,51,52 > 0.
Then (A — u, @) > 0 for o € 7 gives
S0 — 51,850 + 51 —52=>0, s51—50= Yo
and 2(A + p, ju) = || ul|? gives
(s0 + 51— $2)* — (s0 — 51)> = 2y050 + 52.
The last formula can be rewritten as
(50 + 51— 52)% = (s0 — 51)* + yo(250 — 52) + (yo + D)s2.

By above, yo < —1,0 < 59 — 51 < —Y0, 259 — $2, so the right-hand side is
at most (yo + 1)s2 < —sp. Hence sp = 59 + 51 —s2 = Othatis u = 0, as
required. This completes the proof of (47).
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13. Appendix

Let A be a root system of a finite-dimensional basic Lie superalgebra or an
associated (untwisted or twisted) affine Lie superalgebra. As before, we fix A%L

and consider sets of simple roots IT such that A(TT)™" contains A%’ .

13.1. Essentially simple roots

Let us call a root B essentially simple if there exists IT which contains .
The set of non-isotropic essentially simple roots coincides with the set of
simple roots for the non-isotropic part of A, see Proposition 2.1.1 (b). For
= A(m,n),C(n), A(m,n)® and C(n) any odd isotropic root is essen-
tially simple.

13.1.1. We say that A’ is a root subsystem of A if A (resp., A’) has a subset of
simple roots IT (resp., I1’) such that IT" C II.

Note that if A is a root subsystem of A, then the essentially simple roots of
A’ are essentially simple for A (if B is essential for A’, then B lies in a subset
of simple roots for A’ which is obtained from IT’ by a chain of odd reflections;
therefore B lies in a subset of simple roots for A which is obtained from IT by
the same chain of odd reflections).

13.1.2. The following fact is useful. If a1, @ are non-isotropic essentially sim-
ple roots and o1 — a3 1s an isotropic root, then a; — o is essentially simple (for
instance, A = B(m,n) and a1 = &, 05 = 6p).

Indeed, let I1; be a set of simple roots containing «;. Since o1 — ap €
A, TI; # TI,. Since a1, a2 € AT(II;) for i = 1,2 we have a1 — ap €
A1(I13), s — a1 € AT(IT1). Recall that IT; can be obtained from IT, by a
chain of odd reflections. Since for an odd reflection r, we have

AT (ryTT) = (AT(I) \ {y}) U {7},

a;—a, 18 one of the reflections in this chain. Hence o1 —a> is essentially simple.

13.2. Finite parts

Let X be an affine Dynkin diagram. We call its connected subdiagram X its
finite part, if X \ X contains exactly one root. By Lemma 3.1.1, X is of finite
type. We call a root subsystem A a finite part of the affine root system A if A
has a subset of simple roots IT which is a finite part of a subset of simple roots
for A.

In this section we will describe the finite parts of affine root systems.
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Let A # F(4)® G(3)(M and A be a finite part of A. We will show that each
set of simple roots IT such that A = A(IT) is a finite part of some IT (where
A = A(II)). Moreover, we will show that each I1 can be uniquely extended
to IT: if A = A(H) then there exists a unique subset of simple roots IT for
A containing IT; moreover, I1 = IT’ forces IT = IT’: if there exists a (—,—)-
preserving map ¢ : A — A’ such that ((IT) = IT’, then t can be extended to a
(—, —)-preserving map ¢ : A — A such that ((IT) =

Now let X be a disjoint union of Dynkin diagrams of affine Lie algebras.
We call X C X a finite part of X if for each connected component X/ of X,
X N X/ is a finite part of X/. From the description of finite parts given below
it follows that for A # F(4), G(3)(V the following holds: if A is a finite part
of A, then A5 is a finite part of Ag.

13.2.1. The finite part of Xl(l) is X; if X = A, C, D. The finite parts of other
relevant to this paper affine Lie algebras are given by the following tables:

(1) (@) (@) 2) (1)
By Ak A1 | Py | G2
B, Dy | Br,Cr | Cg, Dy | B G2

We claim that the finite parts of affine root systems for classical affine Lie
superalgebras, which are not Lie algebras, are given by the following tables:

Ak, DD | B, HD Bk, DD k>1| ctk)® | Dk, )D
Ak, D) B(,0),C() | Bk,),D(k,l) | C(k) D(k,1)

AQk,2I — 1)@ | A2k —1,21 — 1)@ | AQ2k,2D)¥® Dk+1,D)® | CcI+ 1P
B(k,l),D(,k) | D(,1),D(.k) B(k,1),B(,k) | B(k,]) B(0,/)

where we take D(1,n) := C(n + 1), D(1,1) := A(1,0).
The finite parts of G(3)(M) are G(3), D(2, 1, —%), A(2,0); the finite parts of
F(4)D are F(4), A(3,0); the finite part of D(2,1,a)V is D(2, 1, a).

13.2.2. Let A be a finite part of A. By definition, A has a subset of simple roots
I1 which is a finite part of a subset of simple roots for A, which we denote by
I1. Since any other subset of simple roots for A can be obtained via a chain of
odd reflections, any subset of simple roots IT' of A is a finite part of some I1’.
Let us show that I1’ is unique and that IT = IT’ implies IT = I1’: i.e., if there
exists a (—, —)-preserving map ¢ : A — A’ such that ((IT) = IT/, then ¢ can be
extended to a (—, —)-preserving map 7 : A — A such that ((IT) =

For A = A(m,n)® all Dynkin diagrams are cycles and the sum of all
simple roots is §; hence IT determines IT.

Since any set of simple roots for A are connected by a chain of odd reflec-
tions, it is enough to verify the assertion for one choice of I1. Let IT be a finite
part of IT. Denote the unique root in IT \ I1 by «p.
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Consider the case A # A(m,n)V, F(4)M, G (3)M. For each IT any proper
connected subdiagram of IT is of finite type which is not F'(4), G(3). Hence any
proper connected subdiagram has at most one branching node B, this node has
three branches, two of these branches have length one (excluding the “branch-
ing” point) and consist of the nodes y1, y» respectively with ||y1]|%> = ||v2]|?.
(y1, B) = (y2, B), which are connected if and only if ||y ||*> = 0.

It is not hard to show that A # A(k, 1) for (k,1) # (1,1). Therefore A is
B(k,l)or D(k,l). Take 1= {e1—e2,...,6,—61,...,a0;}(a = 1for B(k,l),
a = 2for D(k,/)) and write a1 := €1 — €2, ...,Qk4; := ad;. If in I1 the node
® is connected to a node which is not &1, then, by above, IT \ {«;} is of type
A, B, C, D and contains o +; = ady; then (g, ;) = Ofori > 2 and o is a
“branching” node; since IT \ {o;} is of finite type, [oo||? = |1 ||?, (g, 02) =
(a1,07) and (o, @2) = 0; hence IT is uniquely defined (and it is of the type
B(k, )M, D(k, 1) respectively). Consider the remaining case when o is
connected only to «; then the subdiagram o9 — o1 can be one of the following:

®-0; O-0; O=0; O=0; -0
For I1 = B(k, ) the above subdiagrams correspond to IT of the types B(k, [ +
1), B(k +1,1), Ak, 2l — 1)@ Dk +1,1)® and A2k, 21)® respectively.
For IT = D(k, ) the above subdiagrams corresponds to IT of the types D(k, [ +
1), D(k+1,1), AQk—1,21—1)® B(k, )™ and A(21, 2k — 1)@ respectively.
We conclude that in each type of A the set of simple roots IT containing IT is
uniquely defined (up to isomorphism).

13.2.3. Root systems F(4), F(4)()). Recall that the non-isotropic roots of
F(4) are B3 x A;.

The root system F(4) has 6 sets of simple roots, which are pairwise non-
1somorphic; the root system F (4)M has 7 sets of simple roots, among them 4
non-isomorphic.

The finite parts of F(4)(!) are F(4) and A(3,0). Each II for F(4)™ con-
tains I1 of type F(4) and each IT of type F(4) can be uniquely, up to isomor-
phism, extended to some II for F 4. Only 4 (out of 7) sets of simple roots
for F(4)(1) contain IT of the type A(3, 0); three of these sets of simple roots are
non-isomorphic and each IT of the type A(3,0) can be uniquely, up to isomor-
phism, extended to some II.

There are 4 subsets I11, ..., IT4 of simple roots for F(4) satisfying ||a||? >
0 for each € TII; there are three subsets [Ty, IT5, IT5 of simple roots for
F(4)® satisfying ||«||? > 0 for each a € IT (IT; C II;); one has IT; = 3.
If we consider the affine root oo (i) := IT; \ I1; (i =1,2,3), then ao(1), x(2)
are long roots in B3 and g (3) is isotropic.

Each of the sets Iy, I1,, T3 contains a finite part A(3,0): if we denote by
ao(i)’ the corresponding affine root, then this root is isotropic for Iy, IT3 and
is a short root for IT5.
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13.2.4. Root systems G(3), G(3)").  The non-isotropic roots of G (3) are G x
B(0, 1). We write G in terms €1, €2, €3 subject to the relations 1 + &5 + €3 =
0, le1l?> = lle2ll?> = |le3]|?; we choose the set of simple roots &2 — €3, 3. For
B(0, 1) we take the simple root §; with ||§1]|> = —||&;||%. Then the isotropic
roots are +6; + &;,i = 1,2, 3.

The sets of simple roots for G(3) are the following:

81+ €1,62 — €3, €3;

— 81 —¢e1,60 —€3,81 — €2;
3,81 —€3,—681 + €2;
81,—01 + €3, 82 — €3.

Recall that we call an isotropic root essentially simple if it lies in some set of
simple roots. The set of essentially simple roots for G(3) is {+(61 +¢€1); =(61 —
£2); (81 — €3)}.

The non-isotropic roots of G(3)(!) are Gél) x B(0, 1)V, Using the above
notations, we write the set of simple roots for Ggl) (resp., for B(0, 1)(1)) as
6+ &1 —&3,62 — €3, 63 (resp., 6 — 281, 61). Here is the sets of simple roots for
G(3)™ and their finite parts:

3
8_281’81 +81’82_83’83’ G(3)’D(2’1’__)7
4
3
8 —01 +¢€1,—01 —€1,82 —€3,01 — €2, G(3), D(Z, 1,—1),14(2,0),
3
S+ £1 —e2.63.81 —£3.—81 + £2: G(3), D(z, 1,—1),/1(2,0),
0+ &1 —¢&2,01,—61 + €3, — €3; G(3),A(2,0),

3
—5+61—€1,6—261,60—63,8 +&1 —&2; D(Z, 1,—1),/1(2,0).

The set of essentially simple roots is the union of the corresponding set for
G(3) with {+(6 — 81 + €1)}.
Note that G(3) and D(2, 1, —%) have 4 sets of simple roots; each set occurs

exactly once as a finite part of a set of simple roots for G(3)(1) (in other words,
IT can be uniquely extended to IT).

13.3.

In this subsection we will prove the following statement.

Lemma. Let A = A(m,n)V m #n. Ifv € Z>o(IT) is such that (v, Ag) = 0
and 2(p,v) = (v,v), then v = 0.
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13.3.1. We start with the following problem. Let X = (x1,...,Xm+n) be a
sequence of m + n numbers, where m numbers are equal to 1 and » numbers to
—1. Let f(X) be the “total number of disorders”:

)= Y 50 - )

i<j

Clearly, | f(X)| < mn. Let X1,..., X;u+n be the sequences obtained from X
by cyclic permutations. We claim that there exist i, j suchthat0 < f(X;) < 2m
and —2n < f(X;) <0.

Indeed, let 0 (X) be the sequence obtained from X by moving last element
to the first place: o(x); := xj—1 if 1 <i < m + n,o0(x); := Xm+n. Set
fi(X) := f(6*(X)). Since 6™ 1" = Id, f; has period m + n.

We claim that 74" ~" £ (X) = 0 for each X. Indeed, let X be any se-

quence and s € {1,2,...,m +n — 1} be such that x; = 1 and x54; = —1;
let X’ be the sequence obtained from X by switching xy and xy41 (x; =
xi ifi # s, xg = —1,x;,; = 1). Then f(X') = f(X) — 2. Note that

o/ (X’) is obtained from o/ (X) by the same operation (for different index
s)if j + 5 #% 0 modulo m + n; if j + s # 0 modulo m + n, then for
Y := o/(X) wehave y; = —1,yman = l and Y’ := o/ (X’) is obtained
from Y by switching y; and y,4,. Clearly, f(Y') = f(Y) +2(m +n — 1);
by above, if j + s # 0 modulo m + n, then f(c/ (X)) = f(o/ (X)) — 2.
Hence Y} 70! fo(X) = Y020 fi (X ’). Since any sequence can be ob-
tained from the sequence Xo (1 .., 1,—1,...,—1) by a chain of above
operations, we obtain Y j o'~ ' f(x) = Zm_'_n 1 fx(Xo). One has readily

sees that Y 7"~ fi(Xo) = 0, as required.

Note that f(o(X)) = f(X)+2nif x4+ = 1 and f(a(X)) = f(X)—2m
if Xpuin = —1,50 fir1— f; is 2n or —2m. Since Y 77 =l (X) =0, fir(X)
contains positive and negative elements. If i is such that f, +1(X) <0< fi(X),
then f;(X) < 2m, and if j is such that f; 1(X) > 0> f;(X), then f;(X) >
—2n. The claim follows.

13.3.2. Recall that a set of simple roots for A(m, n) can be naturally encoded as
a sequence of m dots and n crosses, see §5.6): for instance, I[1 = {e; — &3,62 —
51,01 — €3} is encoded by the sequence - - X - ; putting 1 instead of dots and
—1 instead of crosses, we obtain a sequence considered in §13.3.1. Similarly, a
set of simple roots for A(m, n)(l) can be encoded by the same sequence viewed
as a cycle. The inverse procedure can be described as follows: to a sequence
X as in §13.3.1 we assign the Dynkin diagram of A(m, n)-type with |o; ||* =
Xit1+x; fori = 1,...,m+n—1 and the Dynkin diagram of A(m, n)(V-type
with ||e;||? = xjy1 + x; fori =1,....,m4+n—1and |ao|?> = X1 + Xman.
Clearly, X and o(X) give the same Dynkin diagram of A(m,n)™-type.
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13.3.3. Let I1 be a set of simple roots for A(m, 7)1 and X be the correspond-
ing cyclic sequence (which we view as a set containing m + n usual sequences).
Take a sequence X € X such that —2n < f(X) < 0. Let I be the correspond-
ing Dynkin diagram of A(m, n)-type. Since m # n, we may (and will) assume
that m > n and use the standard notations for A(m, n). We set

m n
E = Z&i, D = Z&'.

i=1 i=1

We take the standard form (—, —) (i.e., [|&; | = —|8;]|> = 1). Then

2p, E) = —( 3 a,E) — —F(X).

aeA%

The condition (v, Ag) = 0 is equivalent to v = jé + u(nE — mD); since
v € Z>o(IT), we have j € Z>o, u € Zé, where d := GCD(m, n). One has
(p,6) = m —n. Since (A, E — D) = 0, we have (p,v) = j(m —n) — (m —
mu(p, E), so 2(p,v) = (v, v) gives

2j(m —n) + (m —nm)uf(X) = —u’mn(m — n),
that is u?mn + uf(X) +2j = 0. Writing u = s/d with s € Z, we obtain
s?mn + 2jd? = —df (X)s.

Since 0 < — f(X) < 2n,we gets = Oors > 0and s?mn + 2jd? < 2nds.
One has 2d < m (because n < m), so the only solution is s = j = 0. Hence
v = 0, as required.

13.4.

Recall that an odd isotropic root 8 is essentially simple if it belongs to a set of
simple roots.

Let 7 be a connected component of ITg. For v € §* write v >, ryv if
@ € mand v — rqv € Z-o«, and consider the order >, on h* generated by
this (V >z wif (b = 1o 7ay =+ TV With (Fe; Ta; 41+ Ty v, @) € Z); write
V>gp pifv >z porv=pu.

Lemma. Let A be a finite or affine root system and Iso be the set of odd
isotropic roots. Let X C Iso be the set of odd isotropic roots B with the following
property: for each connected component w of Ilg there exists an essentially
simple root B’ such that B’ > B. Then Iso C (X U (—X)).
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Proof. Let m be one of the root systems By, Cy,, Dy, with the standard nota-
tions. Clearly, ¢; > em >5 —e€m—1 and &; >, —ey foreachi = 1,...,m.
In particular, &, is the minimal element in {g; }7”_; with respect to the order > .

Now let = be one of the root systems B,(nl), C,,(11), D,g}), qu)m—l with the
standard notations, or 7 = A%m = {§ —2¢e1,61 — &2,...,6my and Y =
{ei.s6 e 15 € Zxo}L,. We claim that &, is again the minimal element
in Y with respect to the order > . Indeed, the finite part of & is By, Cp, or Dy,
SO0 §6 + & >, s6 — &1. For B,g}), D,(,,l), Ag2n)1_1 the affine root is § — &1 — &2,
SO 56 — &1 =5 (s — 1)§ + &3; for C,,(11),Ag2n)l the affine root is § — 2¢1, so
s6—e1 > (s—1)3 +¢e1. Hence, for s > 0 one has 5§ + &; > &, as required.

Now consider 7 = D,(nz) ={0—¢€1,61 —€2,...,em} WithY := {g;,256 +
€i,8 € Li=o}—,. Since 258 — &1 =5 2(s — 1) + €1, &, is again the minimal
element in Y with respect to the order > .

Recall that for A = A(m,n), C(n), A(m,n)D, C(n)® any odd root is es-
sentially simple, so X = Ay. Take A # A(m,n),C(n), A(m, n) D Cn)M,

If Ais B(m,n) or D(m,n), then Iso = {£e; + 6;}. The roots +(g; — §;)
are essentially simple, so X contains the roots £(¢; —6;), &; + 6;. Hence Iso C
(X U (=X)).

For D(2,1,a), one has Iso = {£e; £ €, + e3} and all roots are essentially
simple except for £(¢1+¢e2+¢€3). Thuse; +e2+e3 € X,s0lso C (XU(—X)).

For F(4) recall that [Tp = A; x B3 and choose [Ty = {§1:61 — €2,82 —
€3, €3}. In this case Iso = {:I:%(Sl +e1 ey £ e3)). Take B = %(81 +e £
gy * e3); if at least two signs & are —, then f is essentially simple, so 8 € X.
If B is not essentially simple, then —(8 — §1) is essentially simple, so B — &1 is
essentially simple. For 1 = B3 we have

€1t e +t€E3 =g &1 T E2—E32Zx €1 — &8+ 86327 —€1+62+E3
Zx —&1 + &2 — €3,

so B > %(51 — &1 4 &3 — €3); the last root is essentially simple. Hence € X.
Thus X contains the roots of the form %(81 +e1EerEe3),501ls0 C (XU(—X)).

For G(3) one has Iso = {+4; *+ si}f’zl and the essentially simple roots are
+(81+€1), £(81 —¢€i),i = 2,3. Itis easy to see that X = Iso \ {—0; —ei}?zl.

In the remaining cases A is affine. Let A be a finite part of A. Clearly, Iso =
Iso N A is the set of isotropic odd roots in A; let X C Iso be the corresponding
set for A. Recall that any essentially simple root for A is essentially simple for
A, so X CX.

Note that Iso = Iso 4+ Z3§, except for C(m)@®, D(m,n)@ with Iso = Iso +
7.§8. Let us show that X contains Iso + j§ for j € Z=q, where j is even for
C(m)®, D(m,n)?@.

First, consider the case when A # F(4), G(3). Then A is B(m,n) or
D(m,n) and 7 is one of the root systems Agl), B,gnl), C,1(11), D,(nl), Agzn)l_l, A?

2m’
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D,Sf ). If 7 lies in the span of ¢;s, then, by above, for s > 0 (and s even for
C(m)(z), D(m,n)(z)) one has s8§ £ & >5 em, 5058 £ & £6; >5 em £ 45

m — 0; is essentially simple and ¢,, + 6; > —e1 £§;, where —e1 £ §; is also
essentially simple. Hence X contains the roots s§ &+ ¢; & §; for s > 0 (and s
even for C(m)@, D(m, n)?), as required. The similar reasoning shows that X
contains Iso + Z=o8 for F(4)M and G(3)W.

Combining Iso = Iso—i—ZS (resp., Iso = Iso+ 78 for C(m)@, D(m,n)?@),
the fact that X contains X and Iso + Z>08 (resp., Iso + 2708 for C (m)(z)
D(m,n)®), and the inclusion Iso C (X U(—X)), we obtain Iso C (X U (—X))
as required. ([l

13.5.

Let IT # A(m,n)D, C(n)® be a set of simple roots of affine type, IT be its
finite part and w C Ilg be as in §3.1.3: 7 = {o € [Ip | (0,x) € Qx0}
if the form (—, —) is such that (p,8) € Qs¢. Recall the conditions (A)—(C)
from Theorem 11.3.4:

(A) o> = 0;

(B) for each o € 7 there exists 8 € supp(«) such that 8 ¢ supp(’) for each
o’ € m; this B is denoted by b(«);

(C) p e X1 — X3, where

Xi:={nebh*| (n,a) € Qsp foralla € TI}, X, := Z Qsoa”.

Oleﬁo

Let us give some examples when these conditions hold.

If A # F(4) is finite and 7 is a connected component of I, then supp(a) N
supp(a’) = @ for each o, ' € 7, except for the pair @, &’ = &;—1 £ &5, for
1w = Dy,. Since for affine A, A is finite, this implies that (B) holds for all affine
sets of simple roots IT which are not of type F(4)(1).

13.5.1. Case B(m,n)V, D(m,n)M. By above, the condition (B) always
hold. Condition (C) holds if ||«||*> > 0 for each & € TI(L) (since p € X1).
Let us describe other cases when (C) holds.

We write I1 = {«g, a1,...,¥n+n,} With a standard enumeration: this means
(i, i+1) # 0 for each i, except for the case D(m,n)!), where sometimes
(Um+n—1-Am+n) = 0, but (Am+n—2,Um+n) # 0 (i.€., dp4pn—2 is a “branch-
ing” point of the Dynkin diagram). Note that this convention determines the
enumeration, except for D(m, n)(l) with the “branching” point a4, —2, where
we can interchange o, +n—1 and oy, 4,; note that in this case ||@min_1]*> =

|t +n ||2
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Introduce the numbers dy, 44, . . ., d; by the following rule:
dm+n = max(—||am_|_n||2,0), di = max(dij4+1 — [l ||2,O)
fori =1,.... m+n-—1,
if oy —p—2 1S not a “branching” point and

dmtn = dmtn—1 := Max(—|lam+n|?.0). di := max(d;+1 — [|la; ?,0)
fori =1,.... m+n-—2,
if 0m_n—_» is a “branching” point (in this case ||m4n || = |omin—1l?).
The property (C) holds if and only if the sum of d; with («g, ;) # 0 is not
greater than 2. If m > n, then o is a “branching” point (i.e., («g, @2) # 0) and
(C) is equivalent to dy + dp < 2;ift m < n, (C) is equivalent to d; < 2. For
instance, for B(m, n)(l) with m < n, if 1 has j roots of negative square length
and there are j roots of positive square length which precede (counting from
ap) the roots of negative square length, then IT satisfies (C).

13.5.2. Conditions (B) and (C) for exceptional Lie superalgebras. For
D(2,1, a)® we have two sets of simple roots satisfying (A): one consists of
isotropic roots and another one with ||g||> > 0 (fora € Q, 0 < a < 1, it takes
the form I1 = {§ —2e1, 1 — &2 — €3, 262, 23 }). Both of them satisfy conditions
(B) and (C).

For G(3)(1) there are three sets of simple roots, which satisfy (A), all of them
satisfy (B) and (C); these are the second, the third and the fourth sets in §13.2.4.

For F (4)(1) there are two sets of simple roots which satisfy (A)—(C); they
correspond to the third and the fourth sets of simple roots in [K1], 2.5.4.

13.5.3. For D(n + 1,n)M, 42n — 1,2n — ) for II as in §6.4.1 we have
laco]|? = 0 (so (A) holds) and p = 0 (so (C) holds); it is easy to verify that (B)
holds for both choices of 7, so (A)—(C) hold for this IT (for both choices of ).
For D(n + 1,n)®, A2n,2n)® with fixed 7, we choose a presentation of
A via g;,6;, where 7 lies in the span of ¢;s (as it was done in §6.4.2). The set
of simple root {6 — 61,61 — €1,...,¢&n} chosen in §6.4.2 does not satisfy (A).
However, I1 = {6 —e1,61 — 01, ...,&n — On, 8y} satisfies (A)—(C). Indeed, we
can fix (—, —) with ||&;||> = 1. Then ||§ —e1 |2 = 1, 50 (A) holds. One has 7 =
{a’(§ — 81) €1 — &2,...,aey} with a,a’ € {1,2}; thus supp(«) supp(a’) = @
for @« # o’ € 7 and (B) holds. Note that &; or 2¢; (resp., §; or 28;) lies in Af
S0 &, —0; € X3.One has 2p = lel(é’ —¢&;), s0 p € —X3; hence (C) holds

Acknowledgements. We are grateful to M. Wakimoto and V. Serganova for helpful discussions.
We would like to thank S.-J. Cheng and Sh. Reif for the correspondence. We are grateful to the
referee for the very thorough report and useful remarks. A part of this work was done during
our stay at the IHES. We are grateful to this institution for stimulating atmosphere and excellent
working conditions.



234 M. Gorelik and V.G. Kac

References

[BL] I.N. Bernstein and D.A. Leites, A formula for the characters of the irreducible finite-
dimensional representations of Lie superalgebras of series G/ and s/, C. R. Acad. Bul-
gare Sci., 33 (1980), 1049-1051.

[B] J. Brundan, Kazhdan—Lusztig polynomials and character formulae for the Lie superal-
gebra gl(m|n), J. Amer. Math. Soc., 16 (2003), 185-231.

[CK] S.-J. Cheng and J.-H. Kwon, Kac—Wakimoto character formula for ortho-symplectic
Lie superalgebras, preprint, arXiv:1406.6739.

[CMW] S.-]J. Cheng, V. Mazorchuk and W. Wang, Equivalence of blocks for the general linear
Lie superalgebra, preprint, arXiv:1301.1204.

[CHR] M. Chmutov, C. Hoyt and S. Reif, Kac—Wakimoto character formula for the general
linear Lie superalgebra, preprint, arXiv:1310.3798.

[F] P. Fiebig, The combinatorics of category O over symmetrizable Kac—Moody algebras,
Transform. Groups, 11 (2006), 29-49.

[G2] M. Gorelik, Weyl denominator identity for affine Lie superalgebras with non-zero dual
Coxeter number, J. Algebra, 337 (2011), 50-62.

[G1] M. Gorelik, Weyl denominator identity for finite-dimensional Lie superalgebras, In:
Highlights in Lie Algebraic Methods, Progr. Math., 295, Birkhaiiser/Springer, 2012,
pp. 167-188.

[GK] M. Gorelik and V.G. Kac, On simplicity of vacuum modules, Adv. Math., 211 (2007),
621-677.

[GKMP] M. Gorelik, V.G. Kac, P. Moseneder Frajria and P. Papi, Denominator identities for
finite-dimensional Lie superalgebras and Howe duality for compact dual pairs, Jpn. J.
Math., 7 (2012), 41-134.

[GR] M. Gorelik and S. Reif, A denominator identity for affine Lie superalgebras with zero
dual Coxeter number, Algebra Number Theory, 6 (2012), 1043-1059.

[IK] K. Iohara and Y. Koga, Enright functors for Kac—Moody superalgebras, Abh. Math.
Semin. Univ. Hambg., 82 (2012), 205-226.

[K1] V.G. Kac, Lie superalgebras, Advances in Math., 26 (1977), 8-96.

[K2] V.G. Kac, Representations of classical Lie superalgebras, In: Differential Geometrical
Methods in Mathematical Physics. II, Lecture Notes in Math., 676, Springer-Verlag,
1978, pp. 597-626.

[K3] V.G. Kac, Infinite-Dimensional Lie Algebras. Third ed., Cambridge Univ. Press, 1990.

[KK] V.G. Kac and D.A. Kazhdan, Structure of representations with highest weight of
infinite-dimensional Lie algebras, Adv. in Math., 34 (1979), 97-108.

[KRW] V.G. Kac, S.-S. Roan and M. Wakimoto, Quantum reduction for affine superalgebras,
Comm. Math. Phys., 241 (2003), 307-342.

[KW1] V.G. Kac and M. Wakimoto, Modular invariant representations of infinite-dimensional
Lie algebras and superalgebras, Proc. Nat. Acad. Sci. U.S.A., 85 (1988), 4956-4960.

[KW2] V.G. Kac and M. Wakimoto, Classification of modular invariant representation of affine
algebras, In: Infinite-Dimensional Lie Algebras and Groups, Adv. Ser. Math. Phys., 7,
World Sci. Publ., 1989, pp. 138-177.

[KW3] V.G. Kac and M. Wakimoto, Integrable highest weight modules over affine superalge-
bras and number theory, In: Lie Theory and Geometry, Progr. Math., 123, Birkhéduser
Boston, Boston, MA, 1994, pp. 415-456.

[KW4] V.G. Kac and M. Wakimoto, Integrable highest weight modules over affine superalge-
bras and Appell’s function, Comm. Math. Phys., 215 (2001), 631-682.

[KW5] V.G. Kac and M. Wakimoto, Representations of affine superalgebras and mock theta

functions, Transform. Groups., 19 (2014), 383-455.



Characters of (relatively) integrable modules 235

[KW6]
[KW7]

[KT1]

[KT2]

V.G. Kac and M. Wakimoto, Representations of affine superalgebras and mock theta
functions. II, preprint, arXiv:1402:0727, to appear in Adv. Math.

V.G. Kac and M. Wakimoto, Representations of affine superalgebras and mock theta
functions. III, preprint, arXiv:1505.01047.

M. Kashiwara and T. Tanisaki, Kazhdan—-Lusztig conjecture for symmetrizable Kac—
Moody algebras. III. Positive rational case, In: Mikio Sato: A Great Japanese Math-
ematician of the Twentieth Century, Asian J. Math., 2, International Press, 1998, pp.
779-832.

M. Kashiwara and T. Tanisaki, Characters of the irreducible modules with non-critical
highest weights over affine Lie algebras, In: Representations and Quantizations, Shang-
hai, 1998, China High. Educ. Press, Beijing, 2000, pp. 275-296.

S. Reif, Denominator Identity for twisted affine Lie superalgebras, Int. Math. Res. Not.
IMRN, 2014, 4146-4178.

V. Serganova, Kazhdan—Lusztig polynomials and character formula for the Lie super-
algebra gl(m|n), Selecta Math. (N.S.), 2 (1996), 607-651.

V. Serganova, On generalizations of root systems, Comm. Algebra, 24 (1996), 4281-
4299.

V. Serganova, Characters of irreducible representations of simple Lie superalgebras,
In: Proceedings of the International Congress of Mathematicians. Vol. II, Berlin, 1998,
Doc. Math., 1998, pp. 583-593.

V. Serganova, Kac—-Moody superalgebras and integrability, In: Developments and
Trends in Infinite-Dimensional Lie Theory, Progr. Math., 288, Birkhduser Boston,
Boston, MA, 2011, pp. 169-218.

A. Shaviv, On the correspondence of affine generalized root systems and symmetrizable
affine Kac—Moody superalgebras, M. Sc. thesis, 2014.

Y. Su and R.B. Zhang, Character and dimension formulae for general linear superalge-
bra, Adv. Math., 211 (2007), 1-33.

J. Van der Jeugt, Irreducible representations of the exceptional Lie superalgebras
D(2,1; ), J. Math. Phys., 26 (1985), 913-924.

J. Van der Jeugt, Character formulae for the Lie superalgebra C(n), Comm. Algebra,
19 (1991), 199-222.

J. Van der Jeugt, J.W.B. Hughes, R.C. King and J. Thierry-Mieg, Character formulas
for irreducible modules of the Lie superalgebras sl(m/n), J. Math. Phys., 31 (1990),
2278-2304.

S. Zwegers, Mock theta functions, preprint, arXiv:0807.4834.



	Characters of (relatively) integrable modules over affine Lie superalgebras
	Abstract
	1. Introduction
	2. Preliminaries
	3. Root systems of basic and affine Lie superalgebras
	4. KW-character formula for maximally atypical modules when hv neq 0
	4.1. Main result
	4.2. Other choices of prod supset S
	4.3. Proof of (14) for a good pair prod supset S
	4.4.Remark
	4.5. A new identity

	5. KW-character formula for finite-dimensional modules
	5.1. Outline of the proof
	5.2. Case of maximal atypicality
	5.3.Denote
	5.4. Case
	5.5. Case B(m, n)
	5.6. Dots and crosses diagrams
	5.7. Equivalence of the KW-formulas
	5.8. Properties of prod, S
	5.9. Choice of (prod, S)

	6. KW-character formula for strongly integrable maximally atypical modules when hv 6D neq 0 and for integrable vacuum modules when hv = 0
	7. The root system Delta(L)
	7.1.We will use the following fact
	7.2. Definition of Delta (L)
	7.3. The properties of supp(Rerho ch L)
	7.4. Examples
	7.5. The sets prod (L)
	7.6. Character formulas for different choices of Delta+(prod)
	7.7. The map F :  L Leftrightarrow Lbar

	8. Linkage L thicksim L'
	8.1. Enright functor
	8.2. The linkage thicksim
	8.3.We will also use the following simple fact

	9. Typical case for g-lambda with even root subsystem of rank leq 2 
	10. phi-Relatively integrable modules
	11. Character formulas for some typical and relatively integrable modules
	12. Examples: glambda of type A(1, 1)(1) and B(1, 1)(1)
	13. Appendix
	Acknowledgements
	References




