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Abstract Recent studies have estimated the magnitude of
climate feedback based on the correlation between time
variations in outgoing radiation flux and sea surface temper-
ature (SST). This study investigates the influence of the
natural non-feedback variation (noise) of the flux occur-
ring independently of SST on the determination of cli-
mate feedback. The observed global monthly radiation
flux is used from the Clouds and the Earth's Radiant
Energy System (CERES) for the period 2000–2008. In
the observations, the time lag correlation of radiation
and SST shows a distorted curve with low statistical
significance for shortwave radiation while a significant
maximum at zero lag for longwave radiation over the
tropics. This observational feature is explained by simulations
with an idealized energy balance model where we see that the
non-feedback variation plays the most significant role in

distorting the curve in the lagged correlation graph, thus
obscuring the exact value of climate feedback. We also
demonstrate that the climate feedback from the tropical
longwave radiation in the CERES data is not signifi-
cantly affected by the noise. We further estimate the
standard deviation of radiative forcings (mainly from
the noise) relative to that of the non-radiative forcings,
i.e., the noise level from the observations and atmo-
sphere–ocean coupled climate model simulations in the
framework of the simple model. The estimated noise
levels in both CERES (>13 %) and climate models
(11–28 %) are found to be far above the critical level
(~5 %) that begins to misrepresent climate feedback.

1 Introduction

Because the only direct global energy measurements are from
satellites, recent studies have attempted to determine climate
feedback from satellite retrievals (Forster and Gregory 2006;
Lindzen and Choi 2009, 2011; Spencer and Braswell 2010,
2011). The previous results, however, have shown acute con-
tradiction between the likelihood of positive and negative
climate feedbacks. High total positive climate feedback brings
in fundamentally more uncertainties in climate sensitivity than
negative climate feedback does (Roe and Baker 2007;
Lindzen and Choi 2011). Thus, currently, the huge error range
of the estimatedmagnitude of high climate sensitivity includes
all of the values found in current climate models that represent
total positive climate feedback (Colman 2003; Soden and
Held 2006; Knutti and Hegerl 2008).

Climate feedback processes essentially yield the change in
outgoing radiation flux in response to the change in global
surface temperature through the changes of cloud, water va-
por, etc. Thus, the recent observational feedback studies were
based mostly on simple linear regression between global

Y.<S. Choi (*) : S. K. Park
Department of Environmental Science and Engineering, Ewha
Womans University, Daehyeon-dong, Seodaemun-gu,
Seoul 120-750, Korea
e-mail: ysc@ewha.ac.kr

H. Cho : C.<H. Ho
Computational Science and Technology, Seoul National University,
Seoul, Korea

C.<H. Ho
School of Earth and Environmental Sciences, Seoul National
University, Seoul, Korea

R. S. Lindzen
Department of Earth, Atmospheric and Planetary Sciences,
Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA

X. Yu
Tropical Marine Science Institute, National University of Singapore,
Singapore, Singapore

Theor Appl Climatol (2014) 115:355–364
DOI 10.1007/s00704-013-0998-6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78071467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


surface temperature anomalies (ΔTs) and the flux anomalies of
global net radiation (ΔR , sum of shortwave and longwave
radiation flux anomalies). The basis of examining the relation
between ΔR and ΔTs to estimate a feedback strength is that
radiative flux is controlled by temperature over a given time in
feedback. Most theoretical and empirical experiments showed
that the exact value of feedback appears as the regression slope
ΔR /ΔTs at zero time lag when the feedback between the two
variables dominates over the system (Frankignoul et al. 1998;
Frankignoul 1999). More importantly, this should be followed
by significant correlation at zero lag. The total climate feed-
backs estimated by this way were usually positive.

However, recent observations show that correlation be-
tween ΔR and ΔTs at zero lag is very weak and moreover
is often located between the opposite signs at negative and
positive month lags (Lindzen and Choi 2011). The weak
correlation between the two variables implied that in observa-
tions, many unknown radiative processes that are not feed-
backs to sea surface temperature (SST) (e.g., random cloud
variations) exist and that they strongly confuse the feedback
strength in theΔR–ΔTs relation. This may also be the case of
feedbacks taking several weeks to fully develop, e.g., cirrus
detrainment from tropical cumulonimbus. However, as as-
sumed in most of previous feedback studies, this study rules
out such a delayed feedback process. This naturally casts a
question about the reliability of the feedback estimates from
the zero lag simple regression of observational time series.

In order to resolve the problems associated with the simple
regression method, improved methods have been suggested
by Lindzen and Choi (2009, 2011) and Spencer and Braswell
(2010). All these studies have argued the likelihood of nega-
tive feedback by applying different methods that may better
isolate the feedbacks from the effects of continuous equilibra-
tion or long-term (i.e., several decades) trend. Lindzen and
Choi (2009, 2011) used short (few-month) segments in which
the increase (or decrease) in ΔR and ΔTs occurred. Spencer
and Braswell (2010) tracked sequential ΔR and ΔTs and
found that feedback processes are presented by thin stripes
in theΔR–ΔTs chart. Both methods aim to isolate feedbacks
from the confounding factors of equilibration or long-term
trend more appropriately than does the simple regression of
the whole observed time series. However, these alternatives
have also been subject to criticism (Chung et al. 2010;
Murphy 2010; Trenberth et al. 2010).

Of course, uncertainties in the previous feedback estimates
were acknowledged (Spencer and Braswell 2011), but the
reason for the uncertainties remains unclear. Not knowing
clearly the reason prevents the improved determination of
the feedback strength. As we show here, the main reason turns
out to be a significant influence of natural variations of radi-
ation that are not related to feedback processes (called “non-
feedback” variations or noise in this study). They are in fact
hardly isolated from the observed flux anomaliesΔR in which

both feedback and non-feedback variations are blended, even
by many currently known methods (including two alternative
methods by Spencer and Braswell 2010 and Lindzen and Choi
2011).

In order to avoid spurious contribution of the non-feedback
variations to feedback, the use of a “lagged covariance” has
been suggested (Frankignoul et al. 1998; Frankignoul 1999).
This is because the cause and effect of the change in outgoing
radiation fluxes can be identified from lagged covariances.
However, only in the case when ΔTs is mostly remotely
generated in time is it likely that the atmospheric response
can reflect the true atmospheric feedback in the stochastic
determination (Frankignoul 1999). We shall begin the discus-
sion on the influence of non-feedback variations, with the
lagged correlation analysis between observed sequential ΔR
and ΔTs.

2 Cross-correlation results between radiation flux
and SST

We obtained the radiation flux data from the Clouds and the
Earth's Radiant Energy System (CERES) single scanner foot-
print (SSF, version 2.6,Wielicki et al. 1998) onboard the Terra
satellite. The flux data were correlated with the SST from the
NOAA (OISST, version 2). Here, we used SST instead of
global surface temperature because land surface temperature
is highly variable in observations, providing large uncertainty
in determination of climate feedbacks. The analysis period is
from March 2000 to June 2011 (136 months); the time and
spatial resolutions are monthly and 1°, respectively. Both data
were then deseasonalized by monthly climatological means to
produce the anomalies of global (both land and ocean) outgo-
ing fluxes and SST, ΔR , and ΔTs. Then the (lagged) cross-
correlation analysis is applied to the two anomalies; the cor-
relations and the regression slopes are shown in Fig. 1a, b,
respectively.

The cross-correlation results with respect to time lag are
shown for longwave (LW, red line) and shortwave (SW, blue
line) radiation fluxes (Fig. 1a). The thick solid line indicates
global average, and the thick dashed line indicates tropical
average (20°S−20°N). Negative lags indicate thatΔR precedes
ΔTs, whereas positive lags indicate thatΔTs precedesΔR . The
reason for using ΔTs as the abscissa is because feedbacks are
usually defined and reckonedwith respect to changes in surface
temperature. As a whole, fairly variable correlation coefficients
(r) are found according to time lags. Interestingly, only LW in
the tropics (20°S−20°N) shows a distinctively highest correla-
tion at zero lag (thick dashed red line in Fig. 1a).

At the approximate emission temperature of the earth of
255 K and assuming that the emission temperature is linearly
related with the surface temperature, the effective Planck
longwave cooling is known to be 3.3 W m−2 K−1 for small
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perturbations of the surface temperature (e.g., Trenberth et al.
2010; Lin et al. 2011; Lindzen and Choi 2011). This is the so-
called Planck response that is proportional to SST and exclu-
sion of which from LW flux is displayed by thin lines in
Fig. 1a, b. Characteristically, in Fig. 1a, in LW where Planck
response is excluded (thin red lines), the sign of correlation
around zero lag is very different from LW where Planck
response is originally included (thick red lines). Especially
for the tropics, when Planck response was excluded from the
LW flux anomalies, the convex-shaped correlation (i.e., a
maximum at zero lag and lower values at non-zero lags)
disappeared (compare thick and thin dashed red lines). This
represents that the Planck response plays a crucial role in
stabilizing the lagged correlation to have a highest value at
zero lag. However, it should be noted that for obtaining LW
climate feedback associated with specific variables like water

vapor or clouds, exclusion of Planck response from LW flux is
methodologically unavoidable.

We see from the distorted (usually S-shaped) correlation
curves in Fig. 1a that the negative correlation at zero lag
actually comes from ΔR preceding ΔTs (i.e., negative lag)
and that the correlation changes from negative to positive as
ΔR follows ΔTs (i.e., positive lag). This pattern is also very
similar to the regressionΔR /ΔTs slopes in Fig. 1b. Eventually,
this opposite sign clearly limits the statistical significance of
regression slopes at zero lag, although the regression slope is
highly fluctuating in the range of −2 to 4 Wm−2 K−1 (Fig. 1b).
For example, the coefficient of determination r2 is only 2 % at
zero lag for globally averaged SW flux (blue solid line in
Fig. 1a); the corresponding ΔR /ΔTs value to this (approxi-
mately −1 W m−2 K−1 in Fig. 1b) is indeed too uncertain to
represent a general feature of nature, or even to test climate
models with the estimated climate feedback from the observa-
tion, given that model climate sensitivity is so sensitive to
small uncertainty in climate feedbacks (Roe and Baker
2007). This weak significance at zero lag indicates that the
estimation of SW feedback is essentially more difficult than
LW feedback.

Fig. 1 also clearly compares global averages and tropical
averages. The distortion seems more intensified for global
averages than tropical averages. The tropical LW data exclud-
ing Planck response (thin dashed red lines in Fig. 1a, b) was
much more convexly shaped than the global LW data exclud-
ing Planck response (thin solid red lines in Fig. 1a, b). These
results imply that the estimation of global feedback is more
difficult than tropical feedback. This is probably associated
with major factors inducing ΔR that are mostly the non-
feedback cloud changes commonly found to be more frequent
in the extratropics and over land.

3 Distinguishing feedback from non-feedback noise

Clouds are the most important factors inducing large fluctua-
tions of outgoing radiation. Clouds are associated with various
weather phenomena such as fronts, convective system, topo-
graphic lee waves, etc. For them to form and dissipate, physical
factors such as condensation aerosols, ambient humidity, etc.
are very influential too. Hence, clouds depend on many factors
other than surface temperature. Only the dependence on surface
temperature Ts, however, is directly relevant to cloud feedback.
We shall refer to the other factors as “noise” for the sake of
distinguishing them from the feedback ‘signal’ in the outgoing
radiation flux, though these factors are often more important to
cloud formation and composition (note that optical properties
of clouds can change—not just the cloud amount, Choi et al.
2010). The noise is also called effective radiative forcing else-
where, defined as all the instantaneous radiative forcing includ-
ing fast atmospheric adjustments occurring independently of Ts

-12 -9 -6 -3 0 3 6 9 1200
Lag (month)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8
(a)

(b)

Correlation ( ΔR : ΔTS )

ΔR precedes S ΔTS precedes ΔR

Global SW
Global LW
20°N-20°S SW
20°N-20°S LW

LW without
Planck response

-12 -9 -6 -3 0 3 6 9 12
Lag (month)

-2

0

2

4

Slope ( ΔR / ΔTS ) (W m-2 K-1)

ΔT

Fig. 1 The lagged linear correlation coefficient (a) and regression slope
(b) ofΔR versusΔTs for shortwave (blue) and longwave (red) radiation;
the thick solid line indicates global data, and the thick dashed line
indicates 20°S−20°N. The thin red line indicates longwave radiation
where Planck response is excluded. In the paper, positive signs are used
for upward fluxes

Influence of non-feedback noise on climate feedback determination 357



(Gregory andWebb 2008). To be clear, the atmospheric factors
like water vapor and temperature profiles are directly changed
by ΔTs, and in turn, indirectly changing clouds are not noise
but are the feedback processes. Note that these too have already
been included in our ΔR–ΔTs analyses.

A key issue here is that the factors occurring independently
of Ts (i.e., noise) must be excluded in the estimation of feed-
back from theΔR–ΔTs analysis. This is because doing other-
wise generally leads to the distorted lagged correlationwith low
statistical significance (see Fig. 1). How this noise effect actu-
ally works on distorting the correlation is explained in the
following. Based on our analysis, separating LW and SW, the
total ΔR directly observed from the CERES is much more
strongly correlated with SWanomalies (coefficient of determi-
nation, r2=~60 %) than LW anomalies (r2=~30 %), so it is
likely that the total ΔR is primarily associated with SW radi-
ation. Simply focusing on SW, for example, instantaneously
increased cloud (independently of ΔTs) would reflect more
sunlight (positive ΔR) and thereby cool the surface (negative
ΔTs), which of necessity is a non-feedback contribution toΔR .
This case leads, of course, to negativeΔR /ΔTs, overestimating
positive cloud feedback from the ΔR–ΔTs analysis.

In order to distinguish such spurious contributions to feed-
back from actual feedbacks, it is necessary to distinguish
changes in ΔR that lead changes in ΔTs (shown as negative
lags) from those that lag (shown as positive lags). Only the
latter should be considered to be feedbacks. To confirm the
necessity of the lagged covariances in the present climate
feedback problem, we run an idealized energy balance model
assuming a hypothetical climate system with uniform temper-
ature and heat capacity (Manabe et al. 1990; Schwartz 2007;
Lin et al. 2011; Spencer and Braswell 2010). Though themodel
is too simple to simulate the earth's true climate, this model
contains enough of the essential nature of climate to determine
if the estimation of feedbacks is methodologically appropriate.
The nature of climate in the model can be inferred from the
known magnitudes and the time scales of climate responses to
forcings, without reference to the detailed physical processes
that are implemented in complex climate models. The simple
model focuses just on the relationship of time series ofΔTs and
ΔR , which is essential for the estimation of feedbacks. By
keeping simplicity at the cost of quantitative accuracy, the
following simple model provides useful insight without the
difficulties associated with complex climate models.

Cp
dΔTs

dt

� �
¼ Fnon tð Þ þ Frad tð Þ−λ⋅ΔTs tð Þ ð1Þ

where Cp is the constant bulk heat capacity of the system and λ
is the parameter indicating the feedback strength. Cp deter-
mines the overall variance of surface temperature in response
to a given amount of forcing and feedback. Here, Cp was set to

14 year W m−2 K−1 equivalent to 110 m of ocean water
corresponding roughly to the ocean mixed layer (Schwartz
2007). Following Spencer and Braswell (2010) and Lindzen
and Choi (2011), forcings in Eq. 1 are divided into two terms:
radiative (F rad) and non-radiative (Fnon) forcings. F rad can be
due for example to cloud variations, while Fnon may be due for
example to stochastic component of heat transfer from ocean
below the mixed layer. We did not consider the increasing
radiative forcing such as due to increasing CO2 that is known
to cause other problems in estimating climate feedback (Spen-
cer and Braswell 2010; also see Section 5 formore details). Two
forcing terms (F rad and Fnon) are 9-month low pass-filtered
series of monthly normally distributed random numbers with
nearly zero mean, to mimic the time scales of variations seen in
the climate models and observations (Spencer and Braswell
2011). F rad may partly include forcings by cloud variations that
are dynamically driven by Fnon. Even in that case where F rad

and Fnon are strongly correlated, F rad remains to act as a noise
source unless the cloud variations are involved in λ. λΔTs

represents radiative feedback effect. λ must have a positive
value; otherwise, the system is unstable. The larger λ is, the
faster the system is restored to equilibrium. Let λ0 be the Planck
response of 3.3 W m−2 K−1, and then λ values larger (smaller)
than λ0 indicate negative (positive) feedbacks. In order to show
that climate feedback can easily be estimated as being positive
despite the true feedback being negative, we assumed the
idealized system to have (negative) climate feedback
2.7 Wm−2 K−1, so λ in Eq. 1 is set to 6 (=2.7+3.3) W m−2 K−1.

With monthly varying F and constant Cp and λ, it is now
possible to simulate time series of temperature anomaly, ΔTs

from Eq. 1. We carried out finite difference integrations of
Eq. 1 for 10 years on monthly time scale (Choi and Song
2012). The radiative forcing plus the feedback process in our
model runs appears as the total outgoing radiative flux at the
top of the atmosphere ΔRTOA. To correspond to what the
CERES instrument actually measures, instrumental or sam-
pling errors (ε) should also be included in ΔRTOA:

ΔRTOA ¼ −Frad tð Þ þ λ⋅ΔTs tð Þ þ ε ð2aÞ

Subtracting the Planck response to surface temperature
(λ0ΔTs) from ΔRTOA, the residual finally indicates outgoing
flux anomaly without the Planck response as shown in Fig. 1.

ΔR ¼ ΔRTOA−λ0⋅ΔTs tð Þ ¼ −Frad tð Þ
þ λ⋅ΔTs tð Þ−λ0⋅ΔTs tð Þ
þ ε ð2bÞ

It is widely accepted that ΔR is largely associated with
cloud variation. However, the extraction of cloud-associated
radiation introduces many other problems beyond those
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considered here. In order to extract cloud forcing from TOA
fluxes, one may use information from analyzed data obtained
from sophisticated 3-D climate models. Such models are
already influenced by the model treatment of clouds which
is generally held to be unreliable. The present paper does not
attempt to extract cloud forcing. Rather, we will use the
radiation flux ΔR that is just the total outgoing radiation in
which only the Planck response is removed to focus on
feedbacks. Moreover, the present paper restricts itself to only
the methodological problems associated with the use of sim-
ple regression.

We now inquire how the ΔR–ΔTs lagged correlation is
changed by noise. As explained above, both forcings (Fnon

and F rad) in Eq. 1 are basically randomly generated Gaussian
numbers with nearly zero mean, but their standard deviations
are changed depending on the experiments in Figs. 2 and 3.
Fig. 2a showsΔR–ΔTs correlations with respect to the lagged
month of ΔR behind ΔTs (the abscissa). The blue-shaded
area is the range of the 1,000 repeated results by the simple
model (10 years for each run), and the lines are 30 randomly
selected examples. In Fig. 2a, we neglected the non-radiative
forcing Fnon, assuming that all the climatic forcing is purely
radiative (observed at TOA) (i.e., Fnon=0 and F rad≠0); thus,
Ts is changed by noise (like cooling effects of randomly-
formed clouds) as well as the feedback process. Randomly
generated Gaussian noise is in F rad. The standard deviation of
the forcing σ(F rad) is set to 1Wm−2. As we will estimate from
observations in the next section, the present setting of σ(Fnon)
turns out to be quite reasonable. In these extensive runs in
Fig. 2a, the maxima and minima of correlation coefficients
(and regression slopes) were present within finite lead and lag
months for most simulations. The detailed shape of the curve
varies with randomly generated forcing, but the S-shaped
curve is the most common if the forcing is purely radiative.

On the contrary, if the forcing is purely non-radiative (i.e.,
F rad=0 and Fnon≠0), most of the results of lagged analyses
are similar to Fig. 2b. The standard deviation of the forcing
σ(Fnon) is set to 5 W m−2. At larger or smaller lags, correla-
tions are more variable and lower. Correlation was highest and
constant at zero lag, resulting in that maxima of regression
slopes at zero lag (i.e., the simultaneous regression) is the
same as the true feedback 2.7 W m−2 K−1. Results in
Fig. 2a, b are completely different. Note that this difference
stems from the fact that ΔRTOA in the case of Fig. 2b is
determined mainly by feedback processes (λΔTs), whereas
ΔRTOA in the case of Fig. 2a is determined by both feedback
processes and radiative forcing (−F rad+λΔTs) (see Eq. 2a).

In more realistic conditions that both Fnon and F rad are
contributing as climatic forcings (Fig. 3), the characteristics of
ΔR–ΔTs correlation should be in between the two extreme
cases (Fig. 2a, b). Fig. 3 shows examples of the lagged
correlation (and regression slope) results for various σ(F rad)/
σ(Fnon)=0.05 (a), 0.14 (b), and 2.33 (c); these are the values

assumed by Dessler (2011), Lindzen and Choi (2011),1 and
Spencer and Braswell (2011), respectively. Here, the ε value is
set to zero. Fig. 3a shows generally the upward convex shape
with highest correlations and slopes around zero lag.
Correlations and slopes are, however, more variable and lower
than those in Fig. 2b (the extreme case of σ(F rad)/σ(Fnon)=0).
Fig. 3b shows similar correlations and slopes at all lags or
some distorted shape of the lagged correlation and slope.
Fig. 3c shows mostly the distorted shape, which resembles
Fig. 2a. All three cases indicate that σ(F rad)/σ(Fnon) smaller
than 0.2 can distort the upward convex shape and complicate
the estimation of feedback.

Fig. 4 shows more quantitatively the errors in the estima-
tion of feedback with respect to the ratio σ(F rad)/σ(Fnon) as
well as σ(ε). The error is calculated by the difference between
the regression slope at zero lag and the prescribed true feed-
back parameter (λ). It should be noted that the bar in Fig. 4
represents only the standard deviation of extensive model runs
(100 repetitions), which is much smaller than the actual max-
imal error. Also, the average of the error should not be em-
phasized too much since it should approach basically to zero if
the error distribution is symmetrical. Results clearly demon-
strate that the error increases with the increase in the ratio
σ(F rad)/σ(Fnon) for the same λ. The error also significantly
increases with the increase in sampling error (ε). More impor-
tantly, the error is considerable even for very small σ(F rad)/
σ(Fnon)~0.05, particularly in the presence of σ(ε) (Fig. 4a).
For smaller σ(F rad)/σ(Fnon), the ε value also plays an impor-
tant role in increasing the error. Comparing Fig. 4a, b, and c,
the error increases with the increase in λ if all other factors are
equal. Interestingly, the error is slightly biased upward for the
system with positive feedback (λ=1 W m−2 K−1), whereas
more greatly downward for the systemwith negative feedback
(λ=6 W m−2 K−1). That is to say, feedbacks (positive or
negative) tend to be underestimated, more greatly for negative
feedback than for positive feedback.

The above simulations clearly show that non-feedback
radiative variations strongly affect the lagged covariance be-
tween the two observed quantities. The lag serves to deter-
mine whether the observed data favors the estimation of
feedback or not. It is therefore essential to consider ΔRs that
lead and lag ΔTss; only the top of the upward convex shape
according to the lag should be identified with feedbacks.

4 Observational assessment of non-feedback variations

Our simple model simulations imply that the slope at zero lag
cannot be correctly indicative of the climate feedback in the

1 Lindzen and Choi (2011) stated that the variances of F rad and Fnon are
0.7, and 5, respectively. However, they were meant to be standard
deviations, i.e., σ(F rad)=0.7, and σ(Fnon)=5.
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CERES observations if the lagged correlation is distorted
according to the lag. This was the case when the temperature
change is largely induced by non-feedback radiative varia-
tions (or simply noise). To clarify the effect of noise in the
currently available data, we attempt to calculate F rad and Fnon.
Here, we obtain these values systematically from the observa-
tions in the framework of our simple model. By separating
F rad and Fnon in Eq. 1 into two independent equations, we
obtain as follows:

Frad tð Þ ¼ λ⋅ΔTs tð Þ−ΔRTOA; ð3aÞ

Fnon tð Þ ¼ Cp
dΔTs

dt

� �
þΔRTOA ð3bÞ

where ΔRTOA and ΔTs are the same observational data as
used in Fig. 1; both are globally averaged monthly anomalous
values deseasonalized against the monthly mean for the first
5 years (March 2000−February 2005). Thus, F rad and Fnon are
also anomalies relative to the first 5-year means as they are
derived from the anomaly data ofΔRTOA andΔTs.ΔRTOA is
used instead ofΔR for the calculation of F rad and Fnon, since
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ΔRTOA is directly measured. F rad is calculated by Eq. 3a for a
specified λ. Fnon is calculated by Eq. 3b independently of λ.

Because ΔRTOA contributes to the calculation of both F rad

and Fnon in Eq. 3, there is a correlation between F rad and Fnon

that is dependent on λ: r =−0.04 for λ=0 W m−2 K−1 to −0.19
for λ=8 W m−2 K−1 when using globally averaged CERES
ΔRTOA data (solid line in Fig. 5); the stronger the negative
feedback (larger λ), the stronger is the negative correlation
between F rad and Fnon. In addition, in the case of using
ΔRTOA averaged over the ocean only (blue dotted line in
Fig. 5),F rad andFnon have slightly stronger negative correlation
(r =−0.11 for λ=0 W m−2 K−1 to −0.23 for λ=8 W m−2 K−1).
However, in the case of using ΔRTOA averaged over the land
only (red dotted line in Fig. 5), the correlation is similar to or
slightly weaker than that for globally averagedΔRTOA. In order
to compare the observationally based estimates with climate
models, we also applied Eq. 3 to the Coupled Model
Intercomparison Project (CMIP) runs in IPCC AR4 (2007)
(Lindzen and Choi 2011); we used λ values that correspond
to IPCC AR4 (2007). In terms of correlation between F rad and
Fnon, climate models (plus marks in Fig. 5) have enormously
different characteristics from the observation (the solid line in
Fig. 5).

As we documented in the previous section, variations of
F rad and Fnon indicate the noise effects on estimating climate
feedback. Figure 6 shows the estimated magnitudes of σ(F rad)
and σ(F rad)/σ(Fnon). While not shown explicitly in the figure,
σ(Fnon) is found to be 5.27 for globally averaged ΔRTOA

(5.32 for the ocean-averaged ΔRTOA) in the observation,
while CMIP models have a wide range of σ(Fnon) (3 to 9 in
Table 1). From the observation in Fig. 6a, σ(F rad) with an
increase in λ between 0.7 and 0.9 W m−2. Only a few CMIP
models show values comparable to these observational values.
Dependence onΔRTOA should also be mentioned; σ(F rad) for
λ=3.3 W m−2 K−1 is 0.74 for globally averagedΔRTOA, 0.80
for the ocean-averagedΔRTOA, and 1.13 W m−2 for the land-
averaged ΔRTOA. Thus, land includes larger non-feedback
noise than the ocean or the globe. This supports our earlier
finding that the estimation of global feedback is more difficult
than the estimation of tropical feedback as seen in Fig. 1.

σ(F rad)/σ(Fnon) is calculated to be approximately from
0.13 to 0.18 for the global and ocean ΔRTOA (black dashed
and blue dotted lines, respectively), within the possible range
of λ in the observations (Fig. 6b). For the land-averaged
ΔRTOA (red dotted line), the σ(F rad)/σ(Fnon) value is much
larger than that for the global and ocean ΔRTOA. More de-
tailed results on dependence onCp and λ from the observation
are summarized in Table 2. Fig. 6b also shows that σ(F rad)/
σ(Fnon) from CMIP models varies from 0.11 to 0.28, for λ
around 1 W m−2 K−1. This is perhaps the reason why the
CMIP models also yield the S-shaped curve in the lagged
analyses (Lindzen and Choi 2011). On the other hand, it is
possible that the Cp values used here (14 year W m−2 K−1)
might be too large for the ocean mixed layer of the observed
climate or the CMIP models, especially in monthly time scale.

(a)

(b)

(c)

Fig. 4 The mean and standard deviation of the errors in estimated
feedback parameter (λ) from 100 simulations of the energy balance
model. The abscissa indicates the ratio, σ(F rad)/σ(F non). The
predescribed feedback parameter is 1.0 W m−2 K−1 (a), 3.3 W m−2 K−1

(b), and 6.0 W m−2 K−1 (c)

Influence of non-feedback noise on climate feedback determination 361



In our estimations, the dependency of Fnon on Cp is almost
linear, thereforeσ(F rad)/σ(Fnon) is almost proportional toCp

−1.
For instance, when Cp is set to 10 year W m−2 K−1, the values
in Fig. 6b increase by a factor of nearly 1.4 (=14/10); σ(F rad)/
σ(Fnon) is approximately from 0.19 to 0.22 in the observations
and from 0.15 to 0.38 in the CMIP models.

5 Conclusions and discussions

In this study, we have shown that the observational estimation of
climate feedback in the ΔR–ΔTs analyses remains very unsta-
ble (changes in sign between negative and positive time lags in
Fig. 1). Only LW in the tropics (20°S−20°N) shows a highest
correlation at zero time lag, allowing reliable estimation of
climate feedback. Based on our simple energy balance model-
ing, the distorted shape (in which a highest correlation does not
appear at zero lag) is found to be due to radiative forcingsmainly
from non-feedback noise, as well as instrumental/sampling er-
rors in the observations. Indeed, variability of radiative forcings
relative to that of non-radiative forcings obtained from observa-
tions should be large enough to impact the estimation of feed-
back. The critical level of noise leading to failure of feedback
estimation by the simple regression was found to be approxi-
mately 0.05.

Current estimates of σ(F rad)/σ(Fnon) (≈0.16−0.20) that are
far above the critical level needed to misrepresent feedback
indicate that the major climate variations come not only from
the ocean heat (mainly in association with natural oscillations
like the El Niño Southern Oscillation) but also from non-
feedback noise (mainly in association with autonomous cloud

changes). While claims exist that σ(F rad)/σ(Fnon) is small
enough to secure reliable estimation of feedback from the
ΔR−ΔTs analysis, the present result shows that the noise
could not be ignored. Rather, the observations as well as
various simulations of the simple model strongly support that

Fig. 5 The correlation coefficient (r) between estimated F rad and Fnon

with respect to feedback parameter λ. From the CERES and SST obser-
vations (solid line for globally averagedΔRTOA, blue dotted line for the
ocean-averaged ΔRTOA, red dotted line for the land-averaged ΔRTOA)
and from the 11 CMIP climate models (plus marks) with the estimated
values of λ by CO2 doubling equilibrium experiments (IPCC 2007)

(a)

(b)

Fig. 6 The correlation coefficient between σ(F rad) (a) and σ(F rad)/
σ(Fnon) (b) not r. The ratio, σ(F rad)/σ(Fnon) from observations is larger
than four models and smaller than six models

Table 1 The estimated
σ(Fnon) values for 11
CMIP climate models

Models σ(Fnon) (W m−2)

GFDL-CM2.1 8.78

GISS-ER 3.12

FGOALS-g1.0 5.42

INM-CM3.0 5.36

IPSL-CM4 4.04

MIROC3.2 (hires) 4.51

MIROC3.2 (medres) 3.75

ECHAM5/MPI-OM 6.36

MRI-CGCM2.3.2 8.31

CCSM3 6.03

UKMO-HadGEM1 6.68
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the present level of noise is high enough to prevent reliable
estimations of feedback.

A similar study to investigate σ(F rad)/σ(Fnon) was carried
out by Dessler (2011), but here, we have to explain why our
estimate is much larger than that from Dessler (2011) (~0.05)
by clarifying the difference inmethodology between our study
and his study. This is firstly because the detailed values of
ΔR and ΔTs used in the two studies are different. As we
mentioned above, due to many other problems involved in
restricting consideration to clouds, this study used total vari-
ation in flux, ΔR . Though ΔR contains cloud-induced vari-
ation in flux (ΔR cloud) used in Dessler (2011), ΔR is
completely different from ΔR cloud. The time variation of
ΔTs in this study is smaller than in Dessler (2011) because
of the different SST data sources used. Secondly, Dessler
(2011) obtained Fnon and F rad from incomplete formulas,
Fnon=Cp [dΔTs/dt] and F rad=ΔR (instead ofΔRTOA minus
the feedback term); as a result of which, σ(Fnon) and σ(F rad)
are much smaller than the results from Eq. 3.

Atmospheric models in which sea surface temperature is
prescribed also have cloud variations that change R , but not
Ts, in their transient simulations. Thus, their lagged covari-
ances also seem to be distorted by non-feedback variations.
Consequently, the similar distorted shape of the lagged co-
variance in both models and observations cannot guarantee
the accuracy of the models' climate feedbacks; rather, they
may simply be due to the noise. Under the distorted shape, it is
more likely that the noise leads to underestimated positive or
negative feedback.

Other than the spurious impact of non-feedback noise on the
determination of feedback, an additional problem can arise
from the use of regression over the whole record. The problem

here stems from the fact that feedbacks introduce temporary
imbalances to the radiative budget (over time scales of hours to
months), but over longer periods (years to decades depending
on climate sensitivity), the system equilibrates so as to elimi-
nate these imbalances (Lindzen and Choi 2009, 2011). Using
the whole record acts to distort the feedback estimates by
including equilibration in addition to feedback. In the whole
record, the increasing radiative forcing such as that due to
increasing CO2 forcing should be considered. If such increas-
ing radiative forcing is added in Eq. 1, it is clearly found that
the peak at zero lag in Fig. 2b has been shifted and the linear
regression approach fails. This has been already shown in
Spencer and Braswell (2010) and Lindzen and Choi (2011)
with much stronger statistical significance. Therefore, more
accurate estimation of feedback requires the isolation of the
specific feedback signals (Lindzen and Choi 2009, 2011;
Spencer and Braswell 2010, 2011).

The above concerns suggest that longer data may not be
what is crucial to obtain accurate feedbacks because the fun-
damental limitation is not with the length of data but with the
nature of the climate system randomly and radiatively forced
by non-feedback noise. Further studies should focus more on
isolation of this non-feedback noise, in order to significantly
reduce uncertainty in climate feedbacks. Recently, Cho et al.
(2012) used clear sky sea surface temperature that may be
least affected by non-feedback noise. This study suggested a
possibility to successful isolation of non-feedback variations
of longwave radiation at least within an active convective
cloudy region, the tropical western Pacific. This was actually
possible by making use of hourly cloud mask from geosta-
tionary satellite observations. Yet, isolation of noise in asso-
ciation with solar reflection remains as a great challenge.

Table 2 The estimated σ(F rad)/σ(Fnon) values associated with different choices for the bulk heat capacity of the Earth's climate systemCp and feedback
function λ

Area Cp σ(Fnon) σ(F rad)/σ(Fnon)

(yr W m−2 K−1) (W m−2) (λ=1.0 W m−2 K−1) (λ=3.3 W m−2 K−1) (λ=6.0 W m−2 K−1)

Global 10 3.78 18.7 % 19.6 % 21.9 %

14 5.27 13.4 % 14.1 % 15.7 %

21 7.90 9.0 % 9.4 % 10.5 %

28 10.54 6.7 % 7.0 % 7.8 %

Ocean 10 3.83 20.5 % 21.0 % 22.7 %

14 5.32 14.7 % 15.1 % 16.4 %

21 7.95 9.9 % 10.1 % 11.0 %

28 10.58 7.4 % 7.6 % 8.2 %

Land 10 3.77 28.8 % 29.9 % 32.1 %

14 5.24 20.7 % 21.5 % 23.1 %

21 7.85 13.8 % 14.4 % 15.4 %

28 10.47 10.4 % 10.8 % 11.5 %

Globally averaged, the ocean-averaged, and the land-averaged ΔR values are used
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