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Abstract The availability of spatial, high-resolution rainfall
data is one of the most essential needs in the study of water
resources. These data are extremely valuable in providing
flood awareness for dense urban and industrial areas. The first
part of this paper applies an optimization-based method to the
calibration of radar data based on ground rainfall gauges.
Then, the climatological Z-R relationship for the Sahand radar,
located in the East Azarbaijan province of Iran, with the help
of three adjacent rainfall stations, is obtained. The new clima-
tological Z-R relationship with a power-law form shows ac-
ceptable statistical performance, making it suitable for radar-
rainfall estimation by the Sahand radar outputs. The second
part of the study develops a new heterogeneous random-
cascade model for spatially disaggregating the rainfall data
resulting from the power-law model. This model is applied
to the radar-rainfall image data to disaggregate rainfall data
with coverage area of 512 × 512 km2 to a resolution of
32 × 32 km2. Results show that the proposed model has a
good ability to disaggregate rainfall data, which may lead to
improvement in precipitation forecasting, and ultimately

better water-resources management in this arid region, includ-
ing Urmia Lake.

1 Introduction

Information about precipitation patterns influences the design
and management of large and small (especially in urban areas)
water-resources systems, ranging from continuous flow sim-
ulation and soil-erosion modeling to the evaluation of alterna-
tive policies for environmental impact assessments (e.g., Pui
et al. 2012; Sivakumar and Sharma 2008). Short-term rainfall
patterns are one of the most common ones required in hydro-
logic modeling. For instance, these patterns are used to assess
urban stormwater, pollution transfer, and many other issues in
environmental research.

There are different sources for rainfall measurements: The
first and foremost is through ground-based gauge networks.
While gauge observations are usually treated as the ground-
truth data set, they are point measurements and cannot provide
a global view of the precipitation field. Weather radar is an-
other tool in measuring the rainfall, which can provide rainfall
data in high spatial and temporal resolution. The first report to
measure the rainfall by using radar was provided by Marshall
and Palmer (1948). They suggested that the relationship be-
tween the reflectivity factor, i.e., Z, and the rainfall rate R have
a power-law form of Z = ARb (Pedersen et al. 2010). The Z-R
relationship can be estimated with two approaches: raindrop
size distribution (RDSD) and optimization. For the first ap-
proach (RDSD), Z and R are calculated directly by using rain-
drop size-distribution data recorded by a disdrometer
(Mapiam and Sriwongsitanon 2008). Satellite-based precipi-
tation data sets, such as the Climate Prediction Center
morphing technique (CMORPH; Joyce et al. 2004),
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using Artificial Neural Networks (PERSIANN; Hsu et al.
1997; Sorooshian et al. 2000), and PERSIANN-Climate
Data Record (PERSIANN-CDR, Ashouri et al. 2015) provide
global and high-resolution precipitation data at a fine spatial
resolution. These data sets are particularly useful for estimat-
ing precipitation in remote regions where gauge observations
are not available.

In most developing countries, including Iran, the existing
rain-gauge stations do not adequately record rainfall data in
short-time intervals (less than 1 day). Even if such data sets
exist, they often have limited record lengths, as well as gaps.
Moreover, gauge-based observations are point measurements
and are usually not available in remote regions. In order to
model precipitation data for many hydrological applications in
a more suitable manner, it is necessary to simulate the statis-
tical properties of observed rainfall events, in both space and
time, in real water resources systems, such as rivers or lake
basins. For this purpose, a rainfall disaggregating model,
which enables a large-scale rainfall model to be disaggregated
to the smaller-response scales necessary for modeling hydro-
logical catchments, is required (Licznar et al. 2011; Olsson
1998).

The statistical-moments function method is one of the
models to disaggregate (Frisch and Parisi 1985; Over and
Gupta 1996). Olsson (1998) developed a model to disaggre-
gate daily-rainfall data in a rain-gauge station located in south-
ern Sweden. Mouhous et al. (2001) studied daily-rainfall data
in a rain-gauge station located in Nantes in France and
attempted to disaggregate the data. Sivakumar and Sharma
(2008) applied a random-cascade model to disaggregate
daily-rainfall data. Licznar et al. (2011) tested six random-
cascade models for generating synthetic rainfall-time series,
with a special focus on the needs of urban hydrology, e.g.,
hydrodynamic simulations of urban-drainage systems. Pui et
al. (2012) evaluated the performance of a number of daily to
subdaily rainfall disaggregates, such as two versions of
random-cascade models and the randomized Bartlett-Lewis
model using continuous rainfall data at four cities in Australia.

Another approach, which has recently become popular, is
the statistical-spatial approach that disaggregates the rainfall
data to smaller spatial levels. This model can be used to dis-
aggregate rainfall from global climate models (GCMs) to
subgrid levels. Groppelli et al. (2010) used the stochastic
space random-cascade (SSRC) approach to disaggregate rain-
fall from a GCM for an Italian Alpine watershed. In Japan,
Pathirana and Herath (2002) proposed a new spatial random-
cascade model to generate disaggregate rainfall data. None of
these models has been applied (based on our knowledge) for
northwestern Iran; furthermore, because of the recent climate
change and droughts in that area, water-resources manage-
ment is a major concern (Hassanzadeh et al. 2012). The study
area, i.e., the Urmia Lake region, is in a critical situation. The
water level of the lake is rapidly desiccating due to human

activities and the changes in the climate system. Therefore,
the reliable high-resolution precipitation data requires scien-
tists (including hydrologists, climatologists, and water-
resources planners and managers) as well as decision makers
to better prepare and plan for the restoration of this lake.

In this work, we attempt to span the gap between meteoro-
logical and hydrological model scales by using a simple,
multifractal disaggregating framework, which maintains the
observed statistical properties of the rainfall at different spatial
scales. One important aspect of this approach is its ability to
serve as a practical tool to calculate the low-scale data required
in water-resource systems studies. Then, the study uses the
data from ground gauges and radar data. Briefly, a new clima-
tological Z-R relationship is provided for the Sahand radar
outputs. In addition, a new spatially heterogeneous random-
cascade model (rarely developed) will be developed to disag-
gregate the rainfall data. In this model, the effect of seasons
also will be considered in developing the random-cascade
model. In upcoming studies, the results will be compared with
the data obtained from satellites.

This paper is organized as follows. In Section 2, a short
description of the study area is presented. In Section 3, the
model structure and methodology of each part of the study,
including the calibration method of a climatological Z-R rela-
tionship and the spatial disaggregation method, are discussed.
In Section 4, the results of these two parts of the study are
presented. Conclusions and findings and future research direc-
tions are presented in Section 5.

2 Case study

The study region is a mountainous area located in northwest-
ern Iran (Fig. 1). The area is important mostly because of
Urmia Lake, whose water level is currently shrinking
(Hassanzadeh et al. 2012). This is because of human activities
and climate-altering trends; hence, the precipitation studies in
this region are critical for restoration of the lake. The Sahand
radar is a C-band Doppler located near the Sahand Mountains
(Fig. 2). In this section, the space random-cascade model,
which was developed by Pathirana and Herath (2002) for
heterogeneous regions, is used to disaggregate rainfall for
the East Azarbaijan Province. The Sahand daily (or 6-h)
radar-reflectivity data, in the form of images with a size of
512 rows × 512 columns and a resolution of 1 × 1 km2, has
a scan coverage from 35° N–40° N latitude and 43° E–49° E
longitude (Fig. 3). The radar rainfall data used for this study
are 6 and 24-h rainfall from 2009 to 2013. These images are
controlled by gauged rainfall (calibration of a climatological
Z-R relationship for the Sahand station) before they are ap-
plied to the space random-cascade model. In this study, 6-
hourly rainfall data observed in the rain-gauge stations in
Sahand and the adjacent stations of Ahar and Tabriz, Iran,
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are used. Details of the selected rainfall stations for this study
are presented in Table 1.

3 Methodology

To achieve high-spatial resolution rainfall data for the East
Azarbaijan Province, the following two steps were completed:
The first part is the calibration of the climatological Z-R rela-
tionship for the Sahand radar. The second part describes the
spatial random-cascade model.

3.1 Z-R relationship for the Sahand radar

In this step of the study, the most suitable climatologically Z-R
relationship of the Sahand radar for 6-h radar rainfall is esti-
mated by a calibration technique based on optimization, i.e.,
the least-squares method. Chumchean (2004) suggested that
the optimal values of A and b (in Eq. 1) are within the ranges
of 31–500 and 1.1–1.9, respectively. Because Fields et al.

(2004) recommended that only the multiplicative term A
needs to be adjusted to minimize the errors, the value of b
was fixed as 1.6. The new parameter A can then be calculated
as follows:

A1 ¼ A0

.
mb ð1Þ

Where A1 is a new multiplicative term, which is considered
in the Z-R relationship, m is the gradient of regression line
between the observed radar rainfall and the gauge rainfall
obtained from the standard Z-R relationship (Z = 200R1.6),
and A0 is the initial parameter of A, which is set to 200. The
quality of the estimation procedure is evaluated by mean error
(ME), mean absolute error (MAE), root mean-square error
(RMSE), and bias (B).

3.2 Spatial random-cascade model

The main objective of the spatial random-cascade model is to
validate and evaluate the proposedmodel’s ability to distribute
a single amount of rainfall (large-scale forcing) into the con-
stituent spatial grids. A schematic of this model is shown in
Fig. 4. The proposed model was tested for both observed and
synthetic rainfall data for the East Azarbaijan Province from
2009 to 2013. To reach the total rainfall of the scanned area,
the observed data of the 1 × 1 km2 pixels are firstly aggregated
to 512 × 512 km2. Then, the parameters of the random-
cascade model are estimated based on the disaggregation of
aggregated radar data from 512 × 512 km2 to 32 × 32 km2.
The main idea behind this aggregation/disaggregation process
is to find the correct parameters of the random-cascade model
which can be later used to disaggregate observations from
other sources of rainfall such as gauge observations or
satellite-derived products, given the fact that each of these data
sources are different with different error and uncertainty char-
acteristics and structures.

Fig. 1 Location of the study region (East Azarbaijan Province, Iran)

Fig. 2 The Sahand radar near Tabriz City, Iran
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The mathematical notation of the spatial random-cascade
model is (Pathirana and Herath 2002):

Ri; j ¼ Mi; jGi; j; Mi; j ¼ 0 f orGi; j ¼ 0
Ri; j=Gi; j otherwise

�
ð2Þ

Where Ri,j is the rainfall on pixel (i,j), Gi,j is the component
of the rainfall, which is constant over time (months or seasons),
and M produces a uniform field at large accumulation. Hence,
M is a candidate for multifractal modeling (which was used to
describe spatial rainfall and is spatially homogeneous in the
statistical sense). The β-lognormal model, which was proposed
by Over and Gupta (1996), is considered in this work due to its
simplicity, wide range of application, and its ability to explicitly
consider arid zones with extended dry spells without any rain-
fall. The branching number b is given by:

b ¼ Niþ1

.
Ni ð3Þ

Where Ni is the total number of pixels at the ith cascade
level. To calculate the rainfall in one of the four subintervals,

the interval rainfall R should be multiplied by the cascade
weight W (Pathirana and Herath 2002; Licznar et al. 2011).
Thismultiplicative operation, known as a fine-grating process,
is repeated again and again to successively finer-cascade
levels. At each cascade level, each pixel is divided into b equal
parts by the cascade weight W (as in Eq. 4). The two cascade
models of Eq. 4 could be combined to propose a b-lognormal
model given in Eq. 5 (Over and Gupta 1996).

P W ¼ 0ð Þ ¼ 1−b−β;P W ¼ bβ
� � ¼ b−β ð4Þ

P W ¼ 0ð Þ ¼ 1−b−β;P W ¼ bβ−σ
2 log b½ �

2 þσX
� �

¼ b−β ð5Þ

Where β and σ2 are model parameters and X is a standard
normal variable. The disaggregation of rainfall by this model
involves two steps: (1) calibration (identification of scaling
behavior in the rainfall) and (2) generation of synthetic data.
These steps are described in detail below.

Fig. 3 Observed rainfall image for the Sahand radar (event on November 17, 2009)

Table 1 Characteristics of
selected rainfall stations Station name Latitude Longitude Time period (start/end year, dd/mm/yy)

Tabriz 38°05′ 46°17′ 01/01/1992-31/03/2009

Sahand 37°56′ 46°07′ 15/04/2008-18/04/2009

Ahar 38°26′ 47°04′ 01/01/1992-31/03/2007
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3.2.1 Calibration

Figure 5 shows the calibration part of the disaggregation mod-
el. As shown, radar-rainfall images are used for finding the
model parameters.

The scaling behavior of the statistical moment, i.e.,M (λ, q),
is computed as follows:

M λ; qð Þ ¼
X

i
Ri;λ

� �q ¼ λτ qð Þ ð6Þ

Over and Gupta (1996) also proposed the concept of a
Mandelbrot-Kahane-Peyriere (MKP) function (Mandelbrot
1982) to estimate model parameters for the β-lognormal model
as follows:

χ qð Þ ¼ β−1ð Þ q−1ð Þ þ σ2ln bð Þ
2

	 
.
q2−q
� � ð7Þ

The optimization procedure for the function given in Eq. (7)
is performed using the least-squares method to find the model
parameters (β, σ2), where b is the branch number and d is equal
to 2 in cascade models (Pathirana and Herath 2002).

3.2.2 Generation

In the generation part of the model, the disaggregating process
proceeds from the largest spatial scan area, 512 × 512 km2 to
32 × 32 km2 (Fig. 6). In this station, the installed radar shows a

very high performance in recording the images. Based on the
characteristics of the manufacturer, the radar’s pictures allow
for converting their data to a resolution of 1 × 1 km2; however,
in order to obtain more certain outputs, we will provide the
outputs up to the scale of 32 × 32 km2. Then, in other radar
studies, the quality of the observed images should be checked
before disaggregating.

It is necessary to point out that disaggregating coarse resolu-
tion observations based on spatial cascade models differ from
downscaling of the GCM simulations, where the downscaling
ratios are on the order of around 3. In the disaggregation studies
using spatiotemporal cascade models, however, a higher number
is possible. For instance, Deidda et al. (1999); Sharma et al.
(2007), and Kang and Ramirez (2010) used random-cascade
models to disaggregate the rainfall data with high ratios of
conversion.

Eq. (2) expresses the space random-cascade model mathe-
matically. Filtering the observed rainfall fields to obtain theM
fields is the most important step in model construction. In
order to obtain field G for a given month, the averages of all
snapshots for that month were taken at the pixel level, which is
determined as follows:

Ai; j ¼ 1

n

X n

k¼1
Ri; j;k ð8Þ

Gi; j ¼ TAi; j

.X
i; j

Ai; j ð9Þ

Fig. 4 A schematic of the space
random-cascade model

Fig. 5 A schematic of the calibration part of the model
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Where n is the number of snapshots with the value (i,j) and
the parameter T is the total number of pixels in a snapshot. The
field Gi,j is normalized based on the long-term averages and is
used to represent the spatial heterogeneity. When first using
the model for disaggregation, the β-model is the cascade gen-
erator that determines that the probability of wet (non-zero)
and dry (zero) rainfall periods. Then, only for non-zero results,
W is drawn from the following distribution:

W ¼ bβ−σ
2 log bð Þ

2 þσX ð10Þ
The field M is statistically homogeneous in space, and the

following relationship is used to modify M to represent the
spatial heterogeneity:

Ri; j ¼ AMi; jGi; j

.X
i; j

M i; jGi; j

� � ð11Þ

Where A is the large-scale forcing parameter.

4 Results

4.1 Calibration of the Z-R relationship

An adjusted A value of 105 is computed using Eq. (1) with the
m value (the gradient of the regression line between the
simulated-radar rainfall and the gauge rainfall). Figure 7 shows
the plot of gauge rainfall, the default-radar method
(Z = 200R1.6), our local calibration method (Z = 77.43R1.284),
and the Fields et al. (2004) method (Z = 105R1.6).

The results show that the local Z-R relationship
(Z = 77.43R1.284) can improve the accuracy of the radar rain-
fall compared to the application of traditional Z = 200R1.6

Fig. 6 A schematic of the
generation part of the model
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Fig. 7 Plot of gauge rainfall, the
default-radar method
(Z = 200R1.6), our local calibra-
tion method (Z = 77.43R1.284),
and the Fields et al. (2004) meth-
od (Z = 105R1.6)

Table 2 Comparison of the statistical measures obtained from the
modified Z-R relationship

Statistical
measures

Default radar
equation

Fields et al., (2004)
method

New equation
by using
optimization

Mean error(mm) −0.29 0.16 0.10

Mean absolute
error(mm)

0.56 0.47 0.44

Root mean-square
error(mm)

0.74 0.61 0.61
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Fig. 8 Scaling properties of the statistical moment, M (λ,q), for the
Sahand radar event (October 3, 2010)

Fouladi Osgouei H. et al.



(Fouladi Osgouei and Zarghami 2014). During the calibration
process, parameters (A, b) are adjusted to minimize the four
well-known statistical error measures. The results showed that
Z = 77.43R1.284 is more suitable for radar-rainfall prediction
by the Sahand radar (Table 2).

4.2 Spatial disaggregation model

In this part, the statistical moment M(λ,q) (based on Eq. 6) is
calculated for different values of q and scales, λ. The scaling
exponent, τ (q), can be evaluated as the slope of log [M (λ,q)]
versus log [λ] curve for various values of q (Fig. 8). The shape
of the τ (q) curves shown in Fig. 9 shows the scaling properties
of rainfall fields.

This disaggregation method depends mainly on the param-
eter values (β, σ2). In this step, the seasonal values of these
two parameters are estimated using Eq. (7) and the least-
squares method (Table 3). Figures 10 and 11 show two exam-
ples of the disaggregating rainfall of the East Azarbaijan area
from a study area of 512 × 512 km2 to lower scales. The space
random-cascade model is then applied from the study area of
512 × 512 km2 to a scale of 32 × 32 km2.

These two parameters are estimated for the years
from 2010 to 2013 using 6 and 24-h observed rainfall
data. From Table 3, we can conclude that a constant

value of 0.1 is suitable for β. In addition, the σ2 ranges
from 0.12–0.16 and is sensitive to the average seasonal
rainfall.

The results of about 100 synthetic images were com-
pared statistically with the 6-h rainfall images originally
observed. First, the exceedance probability curve of
rainfall at the selected point is estimated, and then the
simulated output from the disaggregation model is com-
pared with the observed rainfall fields (mostly 6-h and
some 24-h) using quantile-quantile (Q-Q) plots.
Exceedance probability curves for the observed and dis-
aggregated rainfall at the Sahand and Tabriz stations are
then calculated. Figures 12 and 13 show the exceedance
probability curve and the Q-Q plot for the Sahand and
Tabriz stations, respectively. The spatial heterogeneity
model is then calibrated for 2009–2013.

5 Conclusions

As smaller catchments become increasingly urbanized,
there is a growing need for utility of high spatial and
temporal-resolution rainfall data. In many regions with
sparse rain-gauge networks, weather radar provides an
opportunity to create high-resolution data useful for hy-
drological applications if the data can be disaggregated
successfully. The main objective of this paper was to de-
velop and apply a disaggregating model that accounts for
the local-scale spatial variability of rainfall. We intro-
duced a calibration procedure in which parameters were
adjusted to minimize four statistical measures (mean error,
mean absolute error, root mean-square error, and bias); we
then compared this procedure to existing radar-calibration
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Fig. 9 Estimation of the scaling exponent, τ (q), for the Sahand radar
event (December 31, 2010)

Table 3 Estimated parameters of the spatially heterogeneous random-
cascade model for the Sahand radar (scale of 6-h)

Seasons β σ2 Mean rainfall
(mm)

Date

Spring 0.10 0.123 1.37 23 April 2011, 10:00 a.m.

Spring 0.10 0.134 1.82 18 May 2011, 10:00 p.m.

Fall 0.10 0.134 0.61 03 October 2010, 04:00 p.m

Summer 0.10 0.161 1.17 24 July 2011, 02:00 p.m

Winter 0.10 0.122 0.54 30 January 2011, 06:00 p.m
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Fig. 10 Disaggregated rainfall (mm) for the East Azarbaijan from a study
area of 512 × 512 km2 to a scale of 32 × 32 km2 (April 26, 2011). The x-
axis represents the longitude, and the y-axis represents the latitude
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techniques. In the second part of this study, we considered
the suitability of a spatial random-cascade scaling-based
approach for the spatial heterogeneity rainfall disaggrega-
tion. This approach was applied to rainfall data observed
at the Sahand station in East Azarbaijan, Iran. The simu-

lation successfully reproduced the exceedance probability
curve represented by the Q-Q plot. The success of this
approach encourages future research to determine if it
can also be used for disaggregating satellite rainfall and
global-climate models.

Rainfall (mm)
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512 × 512 km2 to a scale of
64 × 64 km2 (May 18, 2011). Left:
two-dimensional view; right: the
same image in three-dimensional
view. The x-axis represents the
longitude, and the y-axis
represents the latitude

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Observed Rainfall (mm)

)
m

m( llaf
nia

R 
dellee

d
o

M

sahand

10
-2

10
0

10
2

10
-2

10
-1

10
0

Rainfall (mm)

)r>
R(

P

Sahand

 

 

Observed Rain (mm)
Modelled Rain(mm)

Fig. 12 Comparison of rainfall
simulation at the Sahand station.
Left: exceedance probabilities;
right: the quantile-quantile plots.
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