
Computing (2013) 95:191–221
DOI 10.1007/s00607-012-0214-z

Detecting component changes at run time with behavior
models

Andrea Mocci · Mario Sangiorgio

Received: 6 January 2012 / Accepted: 21 August 2012 / Published online: 13 September 2012
© Springer-Verlag 2012

Abstract Modern software systems are composed of several services which may be
developed and maintained by third parties and thus they can change independently and
without notice during the system’s runtime execution. In such systems, changes may
possibly be a threat to system functional correctness, and thus to its reliability. Hence,
it is important to detect them as soon as they happen to enable proper reaction. Change
detection can be done by monitoring system execution and comparing the observed
execution traces against models of the services composing the application. Unfortu-
nately, formal specifications for services are not usually provided and developers have
to infer them. In this paper we propose a methodology which exactly addresses these
issues by using software behavior models to monitor component execution and detect
changes. In particular, we describe a technique to infer behavior model specifications
with a dynamic black box approach, keep them up-to-date with run time observations
and detect behavior changes. Finally, we present a case study to validate the effective-
ness of the approach in component change detection for a component that implements
a complex, real communication protocol.

Keywords Behavior models · Change detection · Monitoring · Dynamic analysis ·
Specification inference · Runtime validation

Mathematics Subject Classification 68N30

A. Mocci (B)
Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
e-mail: am@csail.mit.edu

M. Sangiorgio
Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Piazza Leonardo da Vinci, 32, 20133 Milano (MI), Italy
e-mail: sangiorgio@elet.polimi.it

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78071464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


192 A. Mocci, M. Sangiorgio

1 Introduction and motivations

Modern software systems increasingly live in an open world [2,8]. In the context of
this paper, we assume this to mean that the components that can be used to compose
new application may be dynamically discovered and they may change over time. New
components may appear or disappear; existing components that were already available
may change without notice. Indeed, in an open world context, software components
can be developed and made available by different stakeholders, who pursue their own
objectives. In most cases, clients have no ways to control the development and evo-
lution of external components. Still, new applications may be developed in a way
that they rely on third party components, often called services, that are composed to
provide a specific new functionality. Although the terms “component” and “service”
can be (and should be) distinguished, in this paper the terms are used interchange-
ably.

In this setting, models play the role of formal specifications and have a crucial
importance. In fact, to be able to compose components in applications and make
sure they achieve ascertainable goals, one needs to have a model of the components
being used. Unfortunately, such a model, in practice, may not exist. For example,
in the case where components are Web services, suitable notations (e.g., WSDL)
exist to specify the syntax of service invocations, but no standard notation exists
to specify the semantics (i.e., model the behavior) of the components. In this con-
text, it becomes relevant to be able to infer a model for the component dynami-
cally, at run time, by observing how the component behaves. We consider stateful
components, hence the models we work with have to represent properly the state
of the component and describe what happens when each operation is executed. We
cannot consider each operation in isolation but their results depend on the current
state of the component. Thus we model the behavior of components using finite state
machines.

In addition to the previous problems, one must consider the fact that the component
may change at run time in an unannounced manner. In other words, even if a model
were initially provided together with the exposed service, it may become unfaithful
and inconsistent because the implementation may change at run time. For this reason,
in open-world context the role of models is twofold. It may be necessary to infer it
initially and it becomes then necessary to use the (inferred) model at run time to verify
if changes invalidate the assumptions we could make based on the initial observations.
Changes may be caused both by the deployment of a new version of the service and
by a misbehavior due to some internal failure. In principle the first class of change
may be addressed by having the clients to check a service version identifier, but there
is no way to detect misbehaviors without implementing a monitoring approach.

In conclusion, in the case where the model is initially absent, we need techniques to
infer a formal model (a formal specification) for the components we wish to combine.
We then need to keep the (inferred) model alive to analyze the run-time behavior of
the component and detect whether the new observed behaviors indicate that a change
has occurred in the component, which invalidates the model.

In this paper, we propose a technique for run-time monitoring of component changes
that relies on the use of a particular class of formal models, behavior models. We focus

123



Detecting component changes at run time with behavior models 193

on the description of the behavior of a single component rather of the overall system.
From our perspective, a component is a library which enables the interaction of a
system with a remote service. In this work we focused on services with independent
client-server interactions. The proposed approach requires a design phase, in which the
component to be monitored must be in a sort of trial phase in which it can be safely
tested to extract an initial specification. At this stage we infer two complementary
models: Behavioral Equivalence Model (Bems) [11] and Protocol Behavior Model
(Pbms). With these two kinds of model we can describe both the protocol of interaction
with an external service and the details of its behavior in a small scope. This pair
of models enables the main phase of the approach presented in this paper—a run-
time validation activity—which consists of monitoring the component behavior and
detecting a particular class of component changes. With Pbms we can monitor the
behavior of an external service. When a violation in the protocol of interaction is
detected, we fall back to the information contained in Bems to determine whether it
is due to a previously unseen behavior or to a change in the component. Our approach
can detect both changes happening while system is running and changes that take place
between different invocations of the functionalities provided by an external service.

The paper is structured as follows. Section 2 illustrates a motivating example,
an implementation of a storage service, and frames the contributions of the paper
by intuitively describing the class of models we use, providing an overview of the
monitoring approach and describing the kind of violations we support. Thus, in Sect. 3,
we detail the formalisms we use, that is, the kind of behavior models we can synthesize.
Section 4 describes how these models are constructed to enable the design phase of our
technique, while Sect. 5 describes their use at runtime to detect component changes.
A significant case study, considering an implementation of a complex protocol, is
described in Sect. 6. Finally, Sect. 7 discusses related approaches and Sect. 8 illustrates
final considerations and future work. Additional details and more complex examples
are available online [29].

2 Motivating example and approach overview

This section introduces an illustrating example and outlines the proposed approach. To
introduce the models and to explain our approach in the following section, we consider
as a running example a simple component, called StorageService, inspired by the
ZipOutputStream class of the Java Development Kit [23]. StorageService allows
the user to store data on a server organizing them in different entries. The component
mixes container behaviors with a specific protocol of interaction. We consider the
following operations: (i) putNextEntry, which adds a new entry with a given name;
(ii) write, which adds data to the current entry; and (iii) close, which disables any
further interaction. It is not possible to create and store entries named with already
used identifiers nor to write data in an invalid entry. Of course the close operation is
allowed only after the component has been opened. When the client tries to execute
a not allowed operation, the component throws a StorageException with a message
specifying the precise nature of the exception. The Application Programming Interface
Api of the component is reported in Listing 1, described as a Java interface.

123



194 A. Mocci, M. Sangiorgio

The approach we propose considers functional behaviors of software components
and uses behavior models as formal notation to describe such behaviors. A behavior
model is a finite state machine that describes the behavior of a software component
at a certain level of abstraction. In a behavior model, transitions represent modifier
invocations, while states are labeled with a given abstraction of what an external client
can observe by invoking observer methods. Behavior models differ on the different
choices for the state abstractions and the way they represent modifier invocations on
transitions. Examples of such behavior models are the finite state machines extracted
by Adabu [6], Contractor [7] or other inference and synthesis approaches [4,11,
17,32].

From a modeling point of view, we use two particular kinds of behavior models:

– a Bem is used to precisely represent a subset of the behaviors of the component,
when considering a limited scope, consisting of a fixed set of parameters for
methods and a bounded number of possible states;

– a Pbm is a synthesized generalization of the Bem , that is able to represent the
protocol of interaction between the component and its clients for a generic trace,
that is, if the trace has a normal or exceptional behavior.

The two models have a different perspective: the Bem is precise but within limited
scope, while the Pbm is generalized but less precise. Intuitively, while the Bem is able
to represent bounded container behaviors, and, for instance, it can distinguish between
LIFO and FIFO behaviors, the Pbm only represents normal and exceptional sequences
of invocations. Instead, while Pbm can describe the protocol aspect of the component’s
behavior for a generic sequence of operations, the Bem can represent only the subset
of its possible behaviors, for a limited set of method parameters and for a bounded
set of possible states.The differences in the considered scope and in the aspect of
the execution of an operation represented in the models make them complimentary.
Putting together the information contained in Bems and Pbms it is possible to develop
methodology that are both general and detailed. In Sect. 3, we discuss in detail and
formalize the two classes of models, Bems and Pbms.

The approach we propose has two phases: the design phase and the runtime phase.
In the design phase, the Bem is synthesized through dynamic analysis, and the Pbm is
abstracted from it. We extend our previous work that partially included Bem synthe-
sis [11], and we assume that the component is available for testing. This assumption is
shared with other approaches, such as [4], that proactively synthesize behavior models
for deployed services; Sect. 4 discusses how these models are synthesized. The quality
of the models produced with a black-box synthesis is related to the portion of the state

123



Detecting component changes at run time with behavior models 195

space explored during the Bem synthesis. The confidence and the behavioral cover-
age we can guarantee depends on the considered scope and it is comparable to the
knowledge of the component that a developer can get when they have to deal with an
unknown Api. Developers base their experiments on the component documentation,
on code snippets found in tutorials and possibly in their knowledge of the application
domain. After the trials, developers have an idea of how the component works but
they do not have any guarantee of having discovered all the behaviors and they have
to check that nothing unexpected happens at run time. With our approach, we use
the domain knowledge provided by developers or contained in the test cases of the
component to automatically obtain specifications.

In the runtime phase, we keep models alive to update them with new observations
and to detect a class of behavioral changes that correspond to inconsistencies with
respect to what the Pbm prescribes. Thus, our approach uses the synthesized Pbm to
monitor the component behavior during its execution. An observed violation in the
Pbm can be due to two different reasons:

– if the observations done in the design phase are still valid, the violation is a likely
new observation of the possible behaviors of the component, and the Pbm can be
safely updated to include the new behavior;

– if some of the design-phase observations are invalidated, the component behavior
is likely changed.

To distinguish between the two cases, our approach uses the inferred Bem , that
synthesizes the observed behaviors in the design phase. Please note that for simplicity
we assume that the interface of the component cannot change. In Sect. 5, we will discuss
how the monitoring approach is realized and detail how this distinction is performed.
Please note that in this work we address only change detection and not how to react to it,
that is, how to react to an observed behavior that violates the Pbm and the observations
retrieved in the design phase. It is important also to state that our approach, during the
monitoring phase, needs the possibility of querying the component to check if some
behaviors hold (e.g., some traces execute normally or terminate with an exception).
This can be easily addressed if the component admits the possibility to create new
instances and execute arbitrary operations on them; otherwise, we require the service
provider to expose a shadow component that reflects the same behavior of the analyzed
component and whose state can be safely modified and inspected without interfering
with the currently running application.

We can now proceed to analyze the behavior models used in our approach before
discussing their synthesis and their use for behavioral monitoring.

3 Behavioral equivalence and protocol models

In service oriented architectures, developers compose several software components
which unfortunately usually do not come with a complete formal specification of
their behaviors. Developers knowledge of components have to rely on documentation
expressed in natural language, when it exists, and on the provided Apis. In such an
environment components internals and their source code cannot usually be inspected.
Models of components behaviors can be inferred only considering them as black boxes

123



196 A. Mocci, M. Sangiorgio

and relying on the information obtained from the invocation of the exposed operations.
In this paper we focus on fine-grain components implemented as (Java) classes. Thus,
each operation can be a modifier or an observer, or it can play both roles. As defined
by Guttag and Liskov [14], observers are operations which can be used to inspect the
state of an object while modifiers change it. An object can have both pure observers
and modifiers, which respectively do not have side effects and which only change
the state, and operations presenting both the behaviors. Operations may also have an
exceptional result, which is considered as a special observable value.

From a formal point of view, we adopt a classic algebraic approach to component
signatures [13]. We assume the reader to be familiar with basic algebraic concepts such
as sorted set, signature, algebra and term [28]. In the hidden approach to algebraic
specification, the type of the component to be specified is distinguished by the types
used to specify method parameters and observer return values. Such types compose
the so-called visible data universe, which is a tuple Δ = 〈V,≤, �,D〉, where V is a
set of sorts, which represent types, ≤ is a subsorting relation, � is the set of operations
for these types, and D is a V, �-sorted algebra which assigns semantics to these types.
Common types used as visible data universe are integers and booleans. The subsorting
relation ≤ is used to model subtyping and type extension; its use will be explained
hereafter with a concrete example.

A visible data universe can be used to formally define the interface of a component
by means of a hidden signature, which is defined as follows:

Definition 1 (Hidden Signature [13]) A hidden signature over a visible data universe
Δ is a pair HΔ = 〈h, �〉 where h /∈ V is the hidden sort that defines the component to
be specified, while � is a {h} ∪ hV ∗ ∪ hV ∗h-sorted set of functional symbols which
represents the component operations.

Every operation σ ∈ � is classified as follows:

– σ :→ h is the only constructor;
– σ : hw → h, with w ∈ V ∗ is a modifier symbol;
– σ : hw → v, with w ∈ V ∗ and v ∈ V is an observer symbol.

We denote the set of modifier symbols as M and the set of observer symbols as O .
We denote as T x

HΔ
(Z) the set of terms up to length x using a set Z of V ∪ {h}-sorted

variables. Similarly, Mx
HΔ

(Z) is the set of modifier sequences, that is, terms composed
by the constructor and a possibly empty sequence of modifier symbols, while Cx

HΔ
(Z)

is the set of contexts, that is, modifier sequences ending with an observer. When x is
omitted, we denote terms of any possible length.

For generality, every method is considered to have both the observer and modifier
role; thus, two functional symbols, one belonging to M and one belonging to O are
added to the hidden signature. The modifier role functional symbol keeps the same
parameters as the method, while its range is obviously the hidden type h; it models
the method behavior which possibly changes the internal state of the component.
Instead, the observer role functional symbol models what the clients can observe
from that execution, that is, its return value and the thrown exceptions. In the case of
overloaded methods, we consider them as different symbols in the formal signature
of the component.

123



Detecting component changes at run time with behavior models 197

Table 1 StorageService

formal signature
h = StorageService;
V = {Entry, String, void, void_I O Ex_St Ex, void_St Ex}
Constructor

StorageService :→ StorageService

Modifiers

put Next Entr y : StorageService × Entry → StorageService

wri te : StorageService × String → StorageService

close : StorageService → StorageService

Observers

put Next Entr y : StorageService × Entry →void_I O Ex_St Ex

wri te : StorageService × String →void_I O Ex_St Ex

close : StorageService→void_St Ex

Consider the StorageService component whose interface is described in List-
ing 1. Table 1 shows the formal signature of the StorageService component obtained
with the process described above.

As illustrated in the picture, the data abstraction to be defined is identified by the
hidden sort h = StorageService, while the visible data universe is composed of
three particular sorts: void, void_St Ex, void_I O Ex_St Ex . void is a special type
with no operations and interpreted as a singleton containing just the element null.
void_St Ex is a supersort of void that contains objects of type StorageException,
and void_I O Ex_St Ex is another supersort which also contains objects of type
I O Exception.

3.1 Behavioral equivalence models

Behavioral equivalence model [11] are finite state automata providing a precise and
detailed description of the behavior of a component in a limited scope. They are based
on two key ideas: behavioral equivalence [9,13] and the small scope hypothesis [16].
Two objects are in a behaviorally equivalent state if and only if it is not possible to
distinguish them by looking at the result values obtained from any possible sequence
of their operations ending with an observer. This definition does not take into account
possible differences in the internal representation of the object states which are not
observable and therefore are not know to an external observer.

With the small scope hypothesis we assume that the behavior of a component can be
fully described by example by showing how it behaves in a limited but significant scope.
Rather than modeling the behavior of a component with all the possible combinations
of input parameters and methods interleaving, which would of course be infeasible,
we only consider the scope able to show at least one example of each behavior. Usually
the scope we have to explore to unveil all the possible behavior is quite small, given
that it is selected properly. Of course, it is not possible to guarantee the presence of all
the behaviors with a black box approach. While the notion of “behavior” might be left
as intuitive, in our case we explicitly refer to the possible protocol behaviors that be
expressed by the Pbm . We will discuss again this issue in Sect. 3.2, after we formalize
Pbms.

123



198 A. Mocci, M. Sangiorgio

From these two ideas we developed a characterization for Bems and a methodology
to infer them [11]. Bems definition comes directly from behavioral equivalence: states
represent behaviorally equivalent classes of component instances. Each state is labeled
with observed return values and each transition models a specific modifier invocation
with given actual parameters. The scope of the model defines the set of possible actual
parameters used in the model (called instance pool), and the number of states we
restrict to. Intuitively, these models define the component behaviors within a limited
scope as the only generalization performed to build them is to group together object
instances with states differing at most for something which is not observable. The
bound on the number of states is required by the fact that, in principle, each operation
could be called infinitely-many times producing a new state for each execution. Usually
the operations which continue creating new states present some regularity, hence the
model can provide an example of the behavior of the component by exploring a limited
number of states.

Let us formalize the concept of scope for a Bem , to provide a precise description of
the model. Let HΔ be a hidden signature with visible data universe Δ = 〈V,≤, �,D〉.
A set of sorts V̄ is a set of instance pool sorts iff:

V̄ ∩ V = ∅ ∧ ∀v̄ ∈ V̄ , ∃v ∈ V : v̄ ≤ v

A set of instance pools is a V̄ -order-sorted algebra D̄ such that each interpretation of
v̄ ∈ V̄ is finite. For a given visible data universe Δ = 〈V,≤, �,D〉, an instance pool
universe is the set Δ̄ = 〈V̄ ,≤, �̄, D̄〉 where V̄ is a set of instance pool sorts, D̄ is
the set of instance pools, and �̄ is the set of functional symbols whose constants is
restricted to D̄.

Thus, we are ready to bind a set of instance pools to methods, that is, we can define
an instance pool configuration that defines the Bem scope.

Definition 2 (Instance Pool Configuration) Let HΔ be a hidden signature, and Δ̄ =
〈V̄ ,≤, �̄, D̄〉 be an instance pool universe.

An instance pool configuration, or Bem scope, is a pair Π = 〈Δ̄, IP〉, where
IP : � → V̄ +. The configuration is consistent iff:

∀σhw,s ∈ �hw,s | IP(σ ) ≤ w (1)

The consistency condition prescribes that instance pools configured for a given
functional symbol are compatible with its signature, that is, they are subsorts of the
sort specified in the signature for parameters. When we restrict a set of terms with
parameters over a given instance pool, we denote them with a bar on top, and we
explicit the scope Π as follows: T̄ x

H�,Π(Z) for generic terms, M̄x
HΔ,Π(Z) for modifier

sequences, C̄ x
HΔ,Π(Z) for contexts.

We are now ready to formally define a behavioral equivalence model:

Definition 3 (Behavioral Equivalence Model) Let HΔ be a hidden signature over a
visible data universe Δ, and Π an instance pool configuration. A Behavioral Equiv-
alence Model (Bem) over HΔ with scope Π is a tuple BHΔ,Π = 〈Q, q0, I, δ,	〉,
where:

123



Detecting component changes at run time with behavior models 199

Fig. 1 A Bem of the StorageService component

– Q is the set of states of the Bem ;
– q0 ∈ Q is the initial state, that represents the constructor invocation;
– I = M̄1

HΔ,Π
({zh}) is the alphabet, which consists of modifier sequences of length

1, that is, modifier symbols with fixed parameters in the instance pool.
– δ : Q × I → Q is the transition function;
– 	 : Q × C̄1

HΔ,Π({zh}) → D is a state labeling function modeling observer return
values; the function maps an observer with fixed parameters in the instance pool
to an element in the data universe.

Please note that zh is a variable needed to represent function applications where the
component argument is not fixed; for this reason, it is usually omitted from terms. For
example, the put Next Entr y(z, e1) is a valid term in I , and by omitting the variable
z, we will denote it as put Next Entr y(e1). The values e1 and e2 are placeholders for
a pair of entries initialized with different names. Since the actual content we write on
the entires is not relevant, we decided to keep the scope small by writing only the “x”
string. We choose that scope because it highlights what happens when the service has
to deal with multiple entries.

Figure 1 represents a possible Bem for the StorageService component. We built it
limiting the scope to two entries (e1 and e2) which are used as parameters for operation

123



200 A. Mocci, M. Sangiorgio

putNextEntry. The only instance for the write operation is “x”. Each transition repre-
sents a specific operation invocation. The table in Fig. 1 describes the labeling of each
state reporting observer return values; in this specific case, they are only exceptional
results.

The Bem describes precisely all the different situations the clients have to deal with
while they are using the StorageService. For instance in S0 the component has just
been initialized and it is possible to create new entries but since no entry is available
it is not possible to place data on the server. In state S1 the entry e1 is ready to hold
user data. S3 is reached by placing again the entry e1. That operation closes the entry,
making it impossible to write new data into it. The pair of states (S2,S4) is symmetrical
to (S1,S3). The two pairs only differ for the name of the entries considered but they
describe the same behavior. In states S5 and S6 both the entries have been created.
In S5 the last entry inserted is still valid and it is possible to write data into it. That
is not possible in state S6 in which both the entires have already been closed. Finally
in state S7, reachable with the close operation, it is not possible to interact with the
component.

At this point it should be clear how Bems can show by example the behavior of the
component. The main limitations of this kind of models is that they are strictly bound
to the instance pools used to build them. Moreover Bems tend to become quite big
since the same behavior, obtained through different combinations of actual parameters,
is described several times in “symmetrical” sequences of states.

3.2 Protocol behavior models

To describe every possible component interaction outside the Bem scope, we introduce
a second kind of behavior model that generalizes the Bem through an abstraction: the
Pbms [12]. Pbms provide an abstracted, less precise but generalized description of the
interaction protocol with the component rather than the precise description in a limited
scope provided by Bems. The two kind of models have a very tight relationship because
they describe the behavior of the class at different abstraction levels. To address this
fundamental difference, Pbms have a different semantics which is strictly related to
the abstraction we want to perform on the information contained in Bems. With Pbms
we can describe the protocol of interaction with a component. We can also exploit
Pbms generality to monitor the behavior of the pieces of software which are not under
the direct control of the developers.

The new model is still based on a finite state automaton, but now states encode
whether the operations are enabled or not. We consider as enabled the operations
terminating normally. An operation is disabled if it terminates with an exception.
Therefore, operations accepting input parameters may present three different result
modes. An operation may terminate normally for all the possible values of the para-
meters, it may be always exceptional and it could even present a mixed behavior when
its outcome depends on the input values. Since Pbms are an abstraction of Bems the
only possible source of mixed behavior are different parameter values. The way we
define Bems states and how we abstract them in Pbms makes it impossible for mixed
behavior to rise from other sources such as non-observable portions of their state.

123



Detecting component changes at run time with behavior models 201

State abstraction also describes the behavior of modifiers as variant or invariant.
A modifier behavior is variant if there exists a possible invocation with specific actual
parameters that brings the component in a different behavioral equivalence state.
Otherwise, the modifier behavior is invariant. This abstraction is usually (but not
always) associated with an exceptional result of the operation: it is the typical behav-
ior of a removal operation on an empty container or an add operation on a full bounded
container. Invariant operations do not change the state of the component and thus they
are not influent in the protocol of the interaction with the class. For this reason such
operations can be, to some extent, considered as disabled since their invocation is irrel-
evant for the protocol of interaction with the class. Combining the information coming
from observer abstraction and from modifier behavior abstraction we can model effec-
tively the protocol behavior of a software component. Modifier behavior abstraction
refers to the effect of the operation on the concrete state of the component. It has
not to be confused with Pbms transitions which describes changes in the behavior of
the component. There may be operations which affects only the actual state without
modifying the component behavior and vice-versa. For instance, the addition of an
element to an already non-empty container does not changes its behavior while it does
affect the actual state.

Pbm transitions are labeled by the name of the operation they represent, ignoring
the values of the parameters. Thus they model the behavior of every possible modifier
invocation; they synthesize the behavior of possibly infinitely-many behavior changes
induced by the possible operation invocation. In practice, they model the possibility
that by performing an operation the set of operations enabled on the object may change.

Formally, a Pbm is defined as follows:

Definition 4 (Protocol Behavior Model) Let H� be a hidden signature over a visible
data universe Δ. A Protocol Behavior Model (Pbms) over HΔ is a tuple PHΔ =
〈Q, q0, I, δ,	, B〉, where:

– Q is the set of states of the Pbm ;
– q0 ∈ Q is the initial state, that represents the constructor invocation;
– I = M is the alphabet;
– δ : Q × I → ℘(Q) is the transition function;
– 	 : Q × O → ℘(V ) is the observer abstraction function;
– B : Q × M → {V ariant, I nvariant} is the behavior abstraction function.

In our approach, we focus on deterministic components. By construction, Bems
are deterministic automata and they can precisely describe, leveraging the notion of
behavioral equivalence, all the behavioral details of the components under analysis
on a finite scope. On the opposite, Pbms model the interaction with components in
every possible scope; for this reason, the abstraction used to build Pbms may introduce
non-determinism. It can be introduced for two reasons:

– states in the Pbm may represent a set of different behavioral equivalent states of
the component;

– transitions may depend on the actual parameters that are abstracted away in Pbms.

In the former case, a non-deterministic transition appears in the Pbm if the same
method, with the same parameters, leads to different Pbm states when applied to two

123



202 A. Mocci, M. Sangiorgio

different Bem states that are abstracted to the same Pbm state. In the latter case,
non-determinism arises when invocations of a method with different parameters
applied to the same Bem state lead to different Pbm states. At the Pbm level of abstrac-
tion, we cannot anymore describe precisely all the behavioral details of the component
and thus Bems presents non-determinism. Bems generality—that is, the fact that every
possible trace of the component can be interpreted in the Pbm— compensates pre-
cision loss and it enables us to describe the behavior of the component in a broader
scope than Bems.

We now formalize the notion of compatibility of a component execution with a Pbm .
Let t ∈ MHΔ(∅) be a modifier sequence. Its anemic trace α(t) ∈ M∗ is the sequence
of modifier symbols appearing in the same order as the trace. Moreover, let 〈c, d〉
be an observed component execution, composed of c = t.o(p1, . . . , pk) ∈ CHΔ(∅)

as a modifier sequence t ending with an observer o, and d ∈ D is a value in the
observable data universe representing the result of the invocation of that term in the
component. The observed component execution is compatible with a Pbm PHΔ , written
PHΔ | 〈c, d〉 if it respects the following definition:

PHΔ | 〈c, d〉 ⇔ ∃v ∈ 	(δ∗(q0, α(t)), o) | d ∈ Dv (2)

The definition above is the foundation for the monitoring approach we propose. It
states that an observed value d for a trace c is compatible with the Pbm if in the state
reached by considering the anemic sequence of modifier symbols of c, the observer
abstraction function is compatible with d.

Figure 2 represents the Pbm derived by performing the abstraction described above
to the Bem in Fig. 1. In S0 StorageService has just been initialized but no entry has
been created yet. As soon as an entry is created which is always possible in S0, the
component is in state S1 and it is ready to store some data. The subsequent invocation of
the putNextEntry operation has a non-deterministic choice. If the operation is invoked
with a different entry than the one previously inserted the component is in S3, a state
in which it is possible to store some data but it is not possible to create other entries
due to scope effects. Otherwise, if a duplicate entry is inserted, the component is in
state S2 in which it cannot store data because the entry is not valid. State S4 is an
artifact due to scope effects. In that state it is not possible to create new entries nor to
store data. In state S5, which is reachable with the close operation, every interaction
with the component is disabled.

The main contribution of the proposed approach is the integration of Bems and
Bems. Because the Pbm is derived from the Bem through an abstraction process, its
completeness and accuracy actually depends on the significance of the observations
that produced the Bem during the design phase. The Bems accuracy is deeply rooted
in the small scope hypothesis. In its original formulation [16], this hypothesis states
that most bugs have small counterexamples, and that an exhaustive analysis of the
component behavior within a limited scope is able to show most bugs. In our case, we
cast it as follows: most of the significant behaviors of a component are present within
a small scope. In our case, the term “significant behavior” refers to the abstracted
version provided by a Pbm ; that is, with behavior, in our approach, we mean the
property of a particular trace to execute normally or exceptionally as prescribed by

123



Detecting component changes at run time with behavior models 203

Fig. 2 A Pbm of the StorageService component

the Pbm . Thus, we expect that at design time we can synthesize a likely complete
Pbm , which describes the protocol of all the possible interactions of clients with the
component, while at runtime we can use the Pbm to monitor compliance with the
observed behaviors or possible mismatches that indicate component changes. Even
though we are operating in an open world, we think that the small-scope hypothesis
still holds. In an open world components may evolve or change, but the behaviors they
provide, in terms of what Bems can express, is still limited and thus we can explore it
within a small-scope.

The two different models (Bems and Pbms) can be used together at run time. The
behavior of a component is monitored and checked with respect to the Pbm . When
violations are detected, a deeper analysis exploiting the more precise information
contained in the Bem can be performed in order to discover whether the observation
that is not described by the Bems is a new kind of behavior that was not observed
before, and thus requires a change of both the Bem and the Pbm to accommodate it,
or instead it detects a component change that is inconsistent with the models. The
Bem synthesizes the observations used to generate the Pbm , and thus it can be used to
distinguish between likely changes of the analyzed component from new observations
that instead just enrich the Bems. In the following sections, we will discuss these
aspects: the design time construction of Bem and Pbm , and the runtime use of both
models to detect likely component changes.

It should be noted that the Pbm is not a full specification of the component, thus it
cannot be used to express complex functional behaviors, in particular the ones that are

123



204 A. Mocci, M. Sangiorgio

not expressible with a finite state machine, like complex container behaviors. Instead,
the Pbm models the protocol that clients can use to interact with the component, that
is, the legal sequences of operations. This limitation is also the enabling factor for
runtime detection of changes: violations can be checked and detected easily and the
model can be promptly updated when needed. Instead, a full fledged specification that
supports infinite state behaviors, like the ones of containers, is definitely harder to
synthesize, check and update at runtime.

4 Design phase: model inference

As we illustrated previously, the approach we propose prescribes two phases. The
design phase is performed on the component in a trial stage. The other phase is per-
formed at runtime. In the former, the component is analyzed through dynamic analysis
to infer a Bem for the component. We generate a set of execution traces to exhaustively
explore the small scope defined for the model. An abstraction of the Bem , the Pbm , is
then generated to generalize the observed behaviors. In this section, we describe the
design phase, with particular focus on the generation of models, so that designers can
get a formal description of a component whose behavior must be validated.

4.1 Generation of the initial behavioral equivalence model

To generate a Bem during the design phase, we adapt the algorithm and the tool
described in [11], which extracts Bems through dynamic analysis. The model is gen-
erated by incrementally and exhaustively exploring a finite subset of the component
behavior, that is, by exploring a small scope. The scope is determined by a set of actual
parameters for each component operation and a maximum number of states for the
model. The exploration is performed by building a set of traces using the values in the
instance pool and abstracting them to behavioral equivalence states. The exploration
is incremental; that is, if a trace t is analyzed, then all its subtraces have been analyzed
in the past. To build the Bem , the approach first uses observer return values: for a trace
t and every possible observer o, with fixed actual parameters, we execute t.o() and we
build a state of the Bem labeled with observed return values. We cannot guarantee the
purity of observers, therefore we have to perform independent executions each time
we want to observe a return value.

Such an abstraction does not always induce behavioral equivalence: for example,
it could be that for some operation m, there are two traces t1 and t2 such that for
every observer the return values are equal, and t1.m() and t2.m() are not behaviorally
equivalent. Operation m is called behavioral discriminator. Thus, state abstraction is
enriched with the information given by m as a discriminating operation. An example
of behavioral discriminator is the pop() operation of a stack. Suppose that size() and
top() are the only two observers; thus, for all the stacks with the same size and the same
element in the top of the stack the observer return values are the same, despite some
of them might not be behaviorally equivalent. To discriminate part of this difference,
it is possible to iteratively call the pop() operation and further calling observers. By
calling the discriminating operation we can inspect the hidden state of the object and

123



Detecting component changes at run time with behavior models 205

(a) (b)

Fig. 3 Bem behavioral discriminator discovery and resolution

thus we can take this information into account when we determine whether two states
are behaviorally equivalent. Figure 3 shows an example of behavioral discriminator
discovery and resolution as performed by the Bem inference algorithm. The example
shows how, during the Bem construction for a stack, the pop behavioral discriminator
is first discovered. Up to the invocation of the push(a) operations, the two stacks of size
2 are not distinguishable; they become distinguishable after the pop() invocation, that
reveals part of the state that cannot be inspected with just the invocation of observers.

Further examples and uses of Bems cannot be included for space reasons, but the
interest reader can refer to [11,20]. This approach guarantees the discovery of all the
behaviors presented in the class with the given scope. The way Bems are generated
implies a strong correlation between the quality of the model and the completeness of
the instance pools used to build it. The more the instances are significant, the higher
the coverage of the actual behavior of the class is.

Given the importance of the objects used to perform the Bem generation phase, we
want to exploit as much as possible all the knowledge available. The original approach,
as introduced in [11], relied entirely on instances provided by the user interested in
obtaining the Bem of a component. While the assumption that the user is able to
provide some significant instances is fair, it may be hard to achieve since it requires a
lot of effort and a deep knowledge of the behaviors of the component. Fortunately, in
practice the vast majority of the classes comes with a unit test suite containing exactly
the operation calls with some significant instances as parameters.

To exploit the knowledge about the significant instances contained in the test cases,
we build instance pools from the values of the parameters passed to the operations in the
test suite. In this way, we can build automatically the instance pools containing relevant
instances values. If the test suite is well written and tests all the possible behavior,
the so obtained instance pools are able to unveil all the behavior of the component
under analysis. This approach may have the drawback of generating instance pools
containing several redundant entries. To avoid the generation of models with a lot of
states that do not unveil new behaviors, we should filter out the instances collected
in order to keep a minimal subset able to exercise all the possible behaviors of the

123



206 A. Mocci, M. Sangiorgio

component without having to deal with a huge model. At this stage of the development,
the tool is able to extract instances from a test suite but does not select the minimal
subset of instances. This task is left to the user who has to find the best trade-off
between the number of instances used for the analysis and the completeness of the
generated Bem . In this context, a complete Bem is a model which contains an example
of all the interaction patterns. We are not interested in the specific behavior with every
possible parameter binding, which of course leads to a definition of completeness
impossible to achieve.

Another important addition to the Bem extractor is the optional execution of a
finalizing operation. When the component has some persistent state, or interacts with
other components that have a persistent state, it might be useful to reset the persistent
state in order to preserve deterministic behavior of the component to be analyzed
from the client point of view. To extract a Bem as a model of a component, the
user can specify a finalizing operation that is executed after each trace to reset the
component’s environment or to finalize component resources. We do not require the
analyzed component to provide a finalizing operation. It is usually not provided by
Service Oriented Architecture SOA application but it can be written by the developers
who want to use our tool for the sake of model generation.

4.2 Synthesis of the protocol behavior model

Once the Bem is generated we can go further with the analysis and generate the
corresponding Pbm . Generation is quite straightforward since the Bem already includes
all the needed information about the outcome of each operation in each state of the
model. The generation of the Pbm directly from the Bem is a natural choice because
of the first is an abstract view of the second model. Moreover, in our process we need
both Bem and Bems. A black box inference algorithm for Bems would require to
execute again a lot of traces juts to get the information we can already get abstracting
the content of Bems.

Pbm inference algorithm consists of the following steps: (i) generalization of the
Bem states through the Pbm abstraction function; (ii) mapping each Bem transition
into a corresponding Pbm transition. The generalization of the information contained
in a Bem state is performed by applying to each state of the Bem the Pbm abstraction
function we discussed earlier. Then for each transition of the Bem we add a transition
to the Pbm starting from the representative of the equivalence class of the starting node
in the Bem and ending in the representative of the destination node.

5 Runtime phase: monitoring and change detection

Bems and Bems are kept alive at run time for two main purposes. First, it may happen
that new behaviors manifest themselves while the system is running. In this case, the
models must be updated and enriched so that they keep track of the newly discovered
behaviors. However, it is also possible that the component undergoes modifications
changing its visible behavior at run time. As mentioned, this is rather common in
an open-world setting. For example, a Web service might undergo a change by the

123



Detecting component changes at run time with behavior models 207

service provider, which alters the behavior as seen by clients. Behavioral changes may
also be caused by unforeseen faults. The method we describe here can automatically
detect changes to the component that are inconsistent with the behaviors observed so
far. This is achieved by monitoring and analyzing system execution to detect possible
model violations that lead either to a model update or to the detection of a behavioral
change. These aspects are discussed in detail hereafter.

The boundary between model inference carried on at design time and at run time
is blurred. The goal of both the phases is to generate the best representation possible
of the behavior of a software component but each one has its own peculiarities. At
design time we build models by exploring exhaustively the defined scope. At run time
we complete them by covering also the residual behavior with a different technique
specifically designed to complete the model by adding only the new information.
However, one should strive for inferring the most complete possible model at the set-
up phase so that developers can leverage precise and reliable information about the
behavior of the component when they build their applications.

5.1 Monitoring

A monitor is introduced into the running system to support the comparison of the
actual behavior of the component under analysis and the ones encoded by the models.
Each time an instance of the scrutinized class is created, a monitoring process is
associated with it to record the observed execution trace. The monitor analyzes the
observed execution trace looking for violations with respect to the previously inferred
protocol model. Violation detection is performed by comparing the actual behavior
with the one encoded in the model. The system reports a violation when it detects
an exceptional outcome for an operation that, according to the model, should always
terminate normally or, conversely, when an operation that the model describes as
exceptional does not throw an exception.

In order to keep overhead as low as possible, the violation detector relies, when
possible, exclusively on the observed trace. This means that we do not inspect the actual
state of the component and we detect violations only on the basis of the observed trace.
State inspection would require a pro-active and very expensive monitoring step. Passive
monitoring is adequate for the purpose of this work because it behaves accordingly to
trace compatibility for Pbm we gave in Definition 2.

When the Pbm has only deterministic transitions this process is straightforward and
violations can be detected directly from the execution trace. Unfortunately, almost all
components with a complex, container-like behavior are modeled by a nondetermin-
istic Pbm . However, since the components our approach supports are deterministic,
nondeterminism can be resolved to discriminate between a potential or effective vio-
lation.

Before discussing how we implemented nondeterminism resolution, consider the
two possible strategies to deal with nondeterminism resolution during monitoring:

– we can resolve nondeterminism only when a potential violation is observed;
– we can resolve nondeterminism each time a nondeterministic transition in the Pbm

is observed.

123



208 A. Mocci, M. Sangiorgio

In general, none of the two approaches fits all the situations. The former is more
suitable for components requiring long sequences of invocations for a client to accom-
plish a task. The latter works better when the interaction between the system and an
instance of the component requires short traces. The two approaches are perfectly
compatible and we might even switch from the one to the other as the interaction
pattern changes. In that way we could ensure that the monitoring phase overhead is as
little as possible for all the scenarios.

The former strategy keeps track of all the states compatible with the observed
trace; thus, it does not require more information that what is already available to the
monitoring system. In that way, it can deal with arbitrary long execution traces and the
only overhead introduced by the presence of nondeterminism is the set of compatible
states rather than the singles state in which the component actually is. If the set of
compatible states presents a possible protocol violation, the strategy needs to check
whether it is the actual state and then properly react. It is important to note that as we
get more elements in the observed execution trace we can safely remove some states
from the set of the compatible states as they reveal to be different from the actual state
of the component. For simplicity, from now on, we implicitly consider the second
strategy to be implemented, that is, the nondeterminism resolution is performed after
each nondeterminism transition in the Pbm .

We now discuss our technique for nondeterminism resolution for a given trace t .
Nondeterminism resolution requires more information than what it is expressed in the
Pbm , thus there is need for a deeper inspection by executing operations that could
provide more information and thus reveal the state in which the component is. The
solution proposed in this paper is an enhanced monitoring phase, which does not rely
exclusively on what it is observable from the current execution but also able to perform
some more queries to the object under analysis.

For any state having nondeterministic outgoing transitions, we must be able to
uniquely select one of them. To do so, we need to determine which are the operations
that make it possible to know which one has been taken. These operations, that we
call (Pbm ) state discriminators, are the operations having different behaviors on the
destination states. By executing the discriminators on the shadow component, we do
not require state discriminators to be pure observers. In fact, every method which can
have both a normal and an exceptional result mode is a suitable state discriminator.
Nondeterminism can therefore be solved by invoking the state discriminators on the
object under analysis. State characterization of Bems guarantees that we can always
find a discriminator. Each pair of distinct Pbm states has at least an operation pro-
ducing different results. With these additional operations it is possible to determine
the compatible state among the different nondeterministic possibilities. Resolution of
nondeterminism requires an entire execution trace to be executed and, in general, it
may be expensive when there are a lot of operation performed on the external service.
We do not claim this is the best solution in general, but it turned out to be effective in
the case studies we analyzed.

It is important to remark that nondeterminism resolution is just an optimization and
that we monitor separately each instance of the component. This make it possible to
drastically reduce the length of the analyzed traces since we have to take into account

123



Detecting component changes at run time with behavior models 209

only the lifecycle of a single interaction with the component rather than the past
execution of the whole system.

Our procedure to solve nondeterminism is an optimization to avoid to carry on
nondeterministic choice when we do not actually need them. Even though Bems may
present nondeterminism they model the behavior of deterministic components. The
procedure is related to the homing sequence for finite state machines [26], but in this
case it is much simpler because we can rely on the information provided by state
labeling. For every pair of Pbm states, it is always possible to find a single operation
that allows us to know in which one the monitored component is.

As an example, we may refer to the Pbm of StorageService reported in Fig. 2.
Consider a simple trace of the form StorageService().putNextEntry(ex ). putNextEn-
try(ey), where ex , ey are newly observed parameters, that is, they were not part of
the instance pool used at design phase to infer the model. The invocation of the last
putNextEntry in state S1 is nondeterministic. Looking at the characterizations of states
S2 and S3 we can find two possible state discriminators: a further putNextEntry or a
write. The component is in state S2 if the test executions of write or putNextEntry give
us respectively an always exceptional behavior or normal results for some parameter
values and exceptional results for others. Conversely the component is in state S3, if
the results of the state discriminators are always normal for write or always exceptional
for putNextEntry, respectively. State discriminators have to be invoked on a newly gen-
erated instance of the object, which must be initialized exactly in the same state of the
actual component. This new instance behaves as a shadow component, which provides
the same functionality of the actual component and whose state can be safely modified
and inspected without interfering with the currently running application. Note that we
do not require any particular support from the provider of the service. We just need to
create a new instance of the service on which we can execute the operations required
by our approach. To initialize the state of the shadow component, the monitored exe-
cution trace is replayed to bring it into the state we are interested in. After the state is
initialized, the shadow component can be used to resolve nondeterminism by calling
the state discriminator. The scope of the running component is usually different from
the scope used to build the models during the design phase. In fact, at runtime, state
discriminators must be called with parameter values coming from both the instance
pool used during model inference, and the instances observed in the trace whose state
must be discriminated. Using only the instances contained in the original pools may
lead to wrong conclusions. For example, a behavior may arise when an instance is
used twice with the component. In this case it is clear that we are not going to observe
it if the instances used in the trace under analysis are different from the ones used at
design phase.

In conclusion, the monitoring architecture requires: (i) instrumenting the applica-
tion using the external black-box services to collect execution traces; (ii) enabling the
possibility to call operations on a shadow component (i.e., a sandboxed instance of
the service under scrutiny); (iii) enabling the possibility to replay execution traces in
order to put the shadow component in a suitable state. With such an infrastructure, the
verification module can detect changes in the behavior of external services without
interfering with the actual execution of the system. Albeit those constrains may seem
very strict, they are met by a good set of SOA applications. Instrumentation have to be

123



210 A. Mocci, M. Sangiorgio

performed client-side, and it is easy to wrap a library to enable the monitor capabilities
we need. Invocation on a shadow component requires the possibility to interact with
multiple instances, one of which will be used to replay execution traces. If the appli-
cation supports independent instances we can apply our monitoring methodology and
change detection approach.

5.2 Response to violations

During the monitoring phase it may happen that an observation on the actual execution
conflicts with what it is described by the model. There are two possible causes for
the violation observed: the model could be incomplete, and therefore it needs to be
updated, or the behavior of component has changed. The analysis phase has to be
able to deal and react properly to both these situations. The detection of a component
change is important because this is going to surprise the clients with an unexpected
behavior, inconsistent with previous observations. Our approach cannot detect changes
that do not affect the protocol of interaction with the component. Albeit that would be
interesting, the detection of that kind of change is out of the scope of this work.

A shadow component comes into play also in this case. In fact it is possible to
discover whether the violations are due to the incompleteness of the Pbm or to a change
in the behavior by replaying on a shadow component some significant executions
encoded in the Bem . If all of them produce again the previously observed results,
then the model needs to be completed and we can conclude that violations simply
indicate behaviors never explored before. Otherwise the violation signals a change
to the component that is unexpected and inconsistent with its previously observed
behavior. This indicates that clients should plan suitable reactions to continue to satisfy
their goal or reach some safe state.

We work with deterministic components. When we cannot find any contradiction
with the information contained in the Bem we can safely conclude that they did not
undergo a change, at least in the behavior which is already described by our models.
It may also happen that a component changes a previously unobserved behavior. In
that case, we cannot present the violation as a change but we report it as a behav-
ior we were not aware of and therefore developers should pay particular attention
to it.

In order to keep the approach feasible, we cannot just test that all previously
observed behaviors encoded by the Bem are still valid. We should rather focus on
the part of the model more closely related to the observed violation. The first step in
the selection of the relevant execution traces is the identification of the set of Bem

states corresponding to the state of the Pbm in which the violation occurred. The pre-
fixes of the test case traces can then be generated by looking for the shortest BEM
paths that reach the selected Bem states. The prefixes have then to be completed with
the operation that unveiled the violation. For any Bem state the operation has to be
called with all the parameters present in the instance pool used to generate the model.
If the result of execution of all traces on the shadow component coincide with the
initially observed results we conclude that there is no evidence of behavioral change
and therefore the model only needs to be updated.

123



Detecting component changes at run time with behavior models 211

5.2.1 Model updates

Model updates are first applied to the Bem and then to the corresponding Pbm . Updat-
ing the Bem means enriching the scope it covers with the trace unveiling the new
behavior. Keeping all the information in a single Bem would lead to an expensive
update step. For example if the new behavior is caused by a certain value of a para-
meter that was not in the original instance pool, we would need to update the Bem

by running on a shadow component a set of test cases that would complete the model
with respect to the extended instance pool. Moreover this would lead to an increase of
the Bem ’s size. We decided instead to place side by side the originally inferred Bem

and a set of additional Bem fragments, each describing an additionally discovered
behavior of the component. We need only Bem fragments because we are only inter-
ested in keeping track of the previously missing behavior. We then need to represent
only an execution trace containing such behavior. We also have to report the states
produced by the execution of each operation. That enriched execution trace is exactly
what we call Bem fragment. Doing that, we can easily keep track of all the relevant
executions exposing the different behaviors. Although doing that we may miss some
behavior due to the interaction of the behaviors described by different Bems, this is
not an issue: the model will describe them as soon as they appear at run time. From
the set of Bems it is easy to get the corresponding Pbm . It is quite straightforward
to extend the inference algorithm described in Sect. 3 to build a Pbm starting from
the information contained in more than one Bem so that the resulting Pbm contains
information about all the observed behaviors regardless of the Bem it comes form. To
produce correct abstractions for the new Pbm , all the Bems must have a coherent set
of observers. To ensure that, we must update the scope for the observer roles in the
already existing Bems to have them take into account all the significant values of the
parameters discovered at run time.

As an example, a violation requiring to update the models of StorageService

reported in Figs. 1 and 2 occurs after the execution of the following trace: StorageSer-
vice().putNextEntry(ex ).putNextEntry(ex ).putNextEntry(ey). write(d). After the exe-
cution of the second putNextEntry the Pbm prescribes the component to be in either
state S2 or S3. By invoking putNextEntry as a state discriminator, we discover to be in
S2, because for some entries (ex ) the operation is exceptional while for the entries e1
and e2, belonging to the scope used at inference time, the operation would terminate
normally. The third putNextEntry is still nondeterministic and it is resolved in the same
way. So according to the protocol described by the Pbm , the component is in state S2
before the execution of the write operation. However, the component now predicts the
write to be exceptional for every possible parameter, while the component executes
normally, because the last created entry is valid. The violation unveiled by the trace
above is actually due to scope effects. While the initial Pbm correctly describes the
component behavior when only two entries are used as parameters for putNextEntry,
this scope is not sufficient to describe all the component behaviors. During execution,
when the scope of the analysis is enriched with other different entries, such previously
unexplored behaviors emerge. Such a violation due to scope effects is a typical case
that requires only model update.

123



212 A. Mocci, M. Sangiorgio

Fig. 4 An updated Pbm of the StorageService component

In this case, Bem state characterization is enriched with results obtained with entries
ex and ey for the putNextEntry operation and considering d as another possible para-
meter for write. In addition to that we also generated another Bem describing the
execution trace which unveiled the violation. Figure 4 shows the Pbm obtained at the
end of the model update process. Scope effects are still there in states S3 and S4, but
the updated version of the model takes into account properly the possibility to store
infinitely-many different entries with the loops through states S1 and S2.

The detection of another interesting behavior missing in the initial models occurs
when we try to write an empty string of data when no entry is available. In this case, the
expected StorageException is not thrown because the write operation does not have
to write anything and the component does not check for the availability of an entry.
Therefore, we need to add a new Bem fragment describing the observed trace. Since
the violating trace contained a previously unseen instance, we also have to update the
existing Bem to have it consider the empty string as a parameter for the write operation.
For space limitations the updated models are only available online at [29].

5.2.2 Change detection

Change detection takes place when there is at least one test case behaving differently
than what the Pbm prescribes. Since the model encodes the behaviors observed in the
past, any violation can be considered as an evidence of a change: at least in the case
highlighted by the failing test, the same execution trace presented a different behavior
than the one assumed by the model. The system has then to react to the behavioral
changes detected. We identified two possible scenarios in order to be able to guarantee
the maximal safety though trying to limit the number of service interruptions. The
safer scenario presents a change that just turns one or more operations call with an

123



Detecting component changes at run time with behavior models 213

exceptional outcome into invocations that terminates normally. Another possible and
more critical situation affects more deeply the enabledness of the different operations
and so requires a stricter reaction to ensure the safety of the system.

In the first case, the change has to be notified but it does not require to stop the
execution of the application. The detected change is probably just an addition of
new functionalities or interaction patterns that previously were not present or were
disabled. However, for safety reason it is better to leave to the user the final decision
about how to react to this kind of behavioral changes. More serious problems may
arise form behavioral changes that turns the outcome of an operation from normal to
exceptional. Such a change makes it impossible to substitute the new component to
the one the system is expecting to deal with. At some point there may be an invocation
to the operation that changes its behavior and it is going to always produce a failure
due to the exception thrown. For this reason, when changes like this occur, the only
safe solution is to stop the execution of the system requiring the intervention of a
supervisor able to decide how to fix the problem.

Change detection can be demonstrated using again the models reported in Figs. 1
and 2 to monitor the behavior of a StorageService. For a very simple example
we can assume that the component stops working and changes its behavior to always
throw an exception every time putNextEntry is invoked. In this scenario, any execution
of putNextEntry now violates the Pbm . We are interested to check if the violation is
specific to the trace observed or it is a component change; to check this, we derive the
simple test case StorageService().putNextEntry(e1) from the Bem . Since this test case
violates the Bem , it highlights the change of the behavior of the component.

A more comprehensive evaluation of the effectiveness of the change detection
methodology has been performed injecting faults into the component under analysis
and is available online at [29].

It is important to remark that this methodology is able to identify behavioral changes
only when there is at least one failing test case in the ones that are synthesized by
the Bem . In other words, our methodology identifies changes only if they manifest
themselves as violations of previous observations synthesized by Bems. Since Bem

describes the behavior of a component in a limited scope, and thus they do not contain
information about every possible component execution, it is possible that what is an
actual change is detected as a newly observed behavior. However, since the change
is outside the knowledge inferred at design phase, this different interpretation is safe:
it corresponds to the change of an initial behavior that has never been observed, and
from a client’s point of view, it can be safely considered as a new observation.

Our approach can also effectively detect removed behavior; since we do not consider
changes in the component signature, what we mean is that a set of behaviors that
previously executed normally now became exceptional. As an example of removed
feature, consider a service having part of its operations always available while others
are available only after user authentication. It may happen that the service policy
changes and a new version of the server always requires the authentication to be
performed first. We can consider the change as the removal of the service publicly
available features. Clients may not be aware of the removal and thus they may try to use
the component as the feature would still be available. At that point the client will get an
exception as a response. In that case, the obtained result differ from the data contained

123



214 A. Mocci, M. Sangiorgio

in the models and therefore we can provide the developers with the information about
the behavioral change. Our tool does not explicitly reports it as a feature removal, but
the provided counter-example should make it easy to understand what happened. The
policy to stop the execution of the service when a change is detected avoids the building
of inconsistent models. When a violation occurs, the application cannot rely anymore
on the behavior provided by the external service. Therefore stopping its execution is
not a big deal.

6 RABBITMQ example

We now consider RabbitMQ [25] as a case study to show the effectiveness of our
approach with real software. RabbitMQ is an open source implementation of the
Advanced Message Queuing Protocol (AMQP), a protocol for message oriented mid-
dleware. It consists of a server providing the messaging functionalities and sev-
eral clients written in different programming languages. Developers can use the
RabbitMQ functionalities in their applications by embedding the client as an external
component. Available online documentation does not contain any formal description
of how to interact with RabbitMQ. There are several examples of basic use cases
and a comprehensive documentation of all the client’s methods. That kind of docu-
mentation is good to get a grasp about how to have the client work, but does not give
much information about what happens in special cases that arise when a particular
sequence of operations is executed. Moreover, the documentation of each class of the
Api presents methods in isolation, making it hard to understand how they interact and
how component’s state affects the outcome of an operation.

We considered the Java client and, more specifically, we modeled the behavior of
the class representing the communication channel. It is the main class of the client and
it is used to manage publish-subscribe queues as well as to send and receive messages.
In this work we focused on channel’s basic functionalities, selecting a set of methods
which enabled the core capabilities of RabbitMQ. Since our approach focuses on
models of single components in isolation, we ignored the most sophisticated features
which would require us to model the interaction of multiple components. The Api

we considered is reported in Listing 2. AMQP routes messages using named queues,

123



Detecting component changes at run time with behavior models 215

thus the Api have operations to declare and delete them. Queue names are, of course,
also required by the operations to publish and retrieve data. When the client is not
able to perform an operation, exceptions are thrown. Unfortunately, the client does
not use only checked exceptions, that must be declared in the method signature. This
may pose an issue in the understanding of the Api and may lead to errors which will
manifest themselves only at run time. Our approach is particularly useful when there
are unchecked (runtime) exceptions: Bems and Bems clearly show to the developers
when that kind of exceptions are thrown. Moreover, with run time monitoring, we can
help developers taking into account the unanticipated behavior as soon as it happens.

The state of the component under analysis is spread among the client itself and the
server. This means that we have to control both the operations executed on the client
and the internal state of the server in order to be able to model the RabbitMQ client.
In fact, if the internal state of the server changes, the same sequence of operations
may lead to different results depending on the active queues and on the messages they
contain. Considering only the state of the RabbitMQ client without taking into account
the fact that part of the state is held by the server may lead to different results for the
same sequence of operations performed at different times. From the client perspective,
this would result in an apparent non-deterministic behavior, while the whole system
composed of client and server still behaves deterministically. In this work we face this
issue by ensuring that each execution trace we consider starts from the same, clean,
server state. To ensure this, we specify a special finalizing operation to be used during
Bem generation. When the tool finishes to analyze an execution trace, it invokes the
finalizing operation that cleans up the server state by deleting all the still active queues.
Thus, all the execution traces behave as if they were performed on a just initialized
instance of the RabbitMQ server. In that way we get rid of non-deterministic effects
due to differences in server internal state.

6.1 Model inference

To infer initial models at design time we had to rely on instance pools provided by
users. The technique we developed to extract instances from test cases is not so effective
for RabbitMQ client because the class we want to model does not have related unit
tests. Each channel functionality is tested in isolation and there are other test cases
specifically designed to reproduce bugs. The high coupling between the internal state
of the server and the outcome of the operations on client is a possible motivation for
the choice of functional testing over unit testing. We then had to manually identify
suitable values for the parameter instances. Luckily this was not a hard task because the
considered operations accept any string value and there are not magic values triggering
particular behaviors. We hence considered two different queue names shared by all
the methods and a single message to be sent. We built the instance pool by looking at
the code snippets contained in the documentation.

Figure 5 reports the Pbm obtained for RabbitMQ Java client. The model contains
significant insights about the behavior of the component. For instance, the model
clearly shows that basicPublish does not ever throw an exception. Its result is normal
even when the channel is not ready to accept a message. This information is important

123



216 A. Mocci, M. Sangiorgio

Fig. 5 A Pbm of the RabbitMQ component

to developers which cannot assume that the normal outcome of the operation means
that other clients actually received the message. They have to use other strategies to
acknowledge the reception of a message. Moreover the method declares to throw an
IOException, which may be misleading. The inferred model presents scope effects
in states S3, S5 and S6. In the StorageService example we showed that they are
not harmful because they only describe the behavior of the component when all the
considered parameters are used. In the RabbitMQ example we can exploit the infor-
mation they provide for all the observed parameters in order to find other interesting

123



Detecting component changes at run time with behavior models 217

insights about component’s behavior that holds for all the possible input values. For
example, given the invariance of the modifier behavior abstraction for queueDeclare,
we can observe that the operation has an effect only the first time it is called with
any given parameter. S7 represents the state in which all the functionalities of the
component are disabled. Developers can put the component in that state by calling
the close operation, but that is not the only way to get to that state. The channel is
automatically closed every time an error occurs. Developers should be aware of this
behavior in order to avoid problems at run time when an exception will be thrown.
Other states represents the different combinations of behavior depending on queues
availability and on the messages published on each queue. The model also highlights
the dual operations of the component. When we declare a new queue we can go back
to the initial state by deleting it. The same applies for the pair basicPublish, basicGet.

6.2 Run time monitoring

The model inferred at design time for the RabbitMQ client covers all its observable
behavior. For this reason in this example we present only the change detection feature
of our tool. A similar situation should be the preferred way to use our tool. Ideally
developers should be able to get a full knowledge about the behavior of the component
at design time and leave only the change detection task to be performed at run time.

To simulate a change that may actually take place in the real RabbitMQ server,
we changed the interaction protocol with the component so that the queueDeclare
operation does not allow multiple redeclaration of a queue. In our implementa-
tion the redeclaration of a queue causes an error which blocks further interactions
with the component. A simple execution trace which unveils the change is Chan-
nel().queueDeclare(“q”).queueDeclare(“q”). basicPublish(“q”,“m”). Considering
the original component, the execution trace terminates normally. In fact we publish
a message on a properly declared queue; the redeclaration simply does not change
the state of the server. Conversely, with the modified version of the component the
outcome of the last operation is exceptional because of the error due to the queue
redeclaration. That violation is then easily identified as a functional change when we
replay an execution trace containing a queue redeclaration.

7 Related work

The models discussed and proposed in this paper describe the behavior of a soft-
ware component by making explicit which operations are enabled in different states.
This underlying idea has been introduced quite some time ago through the concept
of Typestate in [30]. The most similar abstraction has been proposed in [7], which
presents a technique called Contractor to build an enabledness model from declar-
ative pre/postcondition-based specifications (contracts) through static analysis. The
goal here is instead to validate software components seen as black boxes. From a
formal point of view, Bems can be seen as an extension of enabledness models pre-
sented in [7]; however, the concept of enabledness, in our case, is deeply rooted
on what the client can observe, that is, normal or exceptional behaviors. Instead, in

123



218 A. Mocci, M. Sangiorgio

Contractor , the concept of enabledness is given in terms of satisfaction of operation
preconditions, as typically expressed through contracts. Moreover, the models we pro-
pose also provide a more precise abstraction mechanism for operations with parame-
ters.
Tautoko [5] generates finite state machine models starting from an existing test
suite; in that approach, the abstraction is not based on operation enabledness. Our
tool does not infer the model directly from a particular set of test execution traces, as
Tautoko ; it rather generates execution traces starting from instance pools.

Several works have been proposed to infer finite state models of software com-
ponents through dynamic or static analysis [17,31]. For example, the work in [17]
synthesizes a finite state machine representing legal sequences of operations from a
set of legal traces. The resulting finite state machines model legal sequences of oper-
ations but without using any state abstraction; thus, there is no direct link to what
the client can observe and what the state of the component is. Another approach that
dynamically infers behavior model is Adabu [6]. Like our approach it infers model
through dynamic analysis, but there are difference in states characterization. The val-
ued returned from a class observers are abstracted depending on their data type. State
characterization is obtained by combining the abstraction for all the observer of the
analyzed class.

Dynamic analysis techniques to build behavioral models are rooted in the more
general methodologies to infer an automaton from a set of traces it has to accept.
Techniques to infer finite state machine from a set of observation were first introduced
in [1]. Further works on that topic are [10,24] which present incremental approaches.
Incrementality is very close to our idea of extending the model as soon as we discover
new behaviors.

Bertolino et al. [4] developed a technique to support web-service composition
through behavior protocol models. They combine a data-type based model synthe-
sis with a testing phase to assess the conformance of the inferred models with the
actual service behavior. State-based models have also been used for testing purposes
only. For instance in [19] they are used to test ajax web applications. That work com-
bines static and dynamic analysis to generate behavior models. Test cases are then
generated accordingly to the information contained in the model.

Rosu et al. [27] presented Monitoring Oriented Programming. They defined a
methodology in which runtime monitoring becomes a basic design principle. Their
framework is then able to generate the monitors and to integrate them with the actual
system. With the analysis of the data collected by the monitors, system execution can
be validated. Monitoring also enables reaction to the violation of certain user-defined
properties.

Monitoring of both functional and non-functional properties of service-based sys-
tems are described in [3]. Our technique is based on Bems and Bems, therefore we
are able to model and monitor very precisely functional properties of a software com-
ponent. Invite [22] proposed and developed the idea of runtime testing, pointing out
the requirements the running system has to satisfy in order to make it possible. In this
work we also introduced a technique to encode test cases in Bems and to select the
ones that can highlight a behavioral change.

123



Detecting component changes at run time with behavior models 219

Tracer [18] builds runtime models from execution traces enabling richer and more
detailed analysis at a higher abstraction level. In [15] models are used to monitor system
executions and to detect deviation from the desired behavior of consumer electronic
products. Our approach combines these two aspects providing a methodology able to
both detect violations and build models according to the information gathered at run
time.

Diva [21] leverages the usage of models at runtime to support dynamic adaptation.
The monitoring carried on by Diva focuses on the parameters describing the execution
environment of the application while we are concerned about functional correctness.
Both these approaches are required in the development of reliable and dynamically
adapting systems. The Diva framework takes into account all the aspects of dynamic
adaptation and it is based on a model driven engineering approach. In our work we
target existing software that is not necessarily engineered with in a model driven
fashion, therefore we had to introduce model inference methodologies and limit the
application domain of our prototype to change detection.

8 Conclusions and future work

Behavior models can be useful throughout all the lifecycle of a software component.
Like other software models, behavior models are traditionally used at design time to
support system designers in their reasoning. However, they can also play a significant
role after the application is deployed by monitoring its execution and checking system
properties. This is particularly useful in the context of systems in which verification
must extend to run time, because unexpected changes may occur dynamically.

This work focuses on the runtime aspects, extending the original scope of behavior
models to running systems. The models and methodology proposed can maintain an
updated representation of the behavior of the component considering observations
made during the actual execution of a running system. Our approach is also able to
detect and notify the system designer concerning behavioral changes in the moni-
tored components. Preliminary experiments focusing on Java classes show that our
approach is effective and can deal with non-trivial components. Further research is
going to enhance the models removing current limitations and thus making it possible
to monitor an even broader class of software components.

In this work, we considered isolated deterministic components. It would be useful to
extend our approach to model the interaction of multiple components. With interaction
models we would be able to describe the complex behaviors which arise when there are
several components sharing somehow their state. For example, in RabbitMQ, we may
want to describe the interaction of multiple clients with the server as well as how the
channel works together with a message listener. Another interesting research direction
that is worth investigating is the re-definition of Bems to describe non-deterministic
behaviors.

Albeit there are a lot of the components accessible through remote Apis which allow
the instantiation of multiple instances which we can use as shadow components, we
might develop techniques to relax the requirement of the availability of other instances.
With that improvement we would be able to apply our approach even to model and

123



220 A. Mocci, M. Sangiorgio

monitor Apis which allows the interaction with systems that only present a single
instance shared by all the clients.

Other possible further directions concern reasoning at run time. Usually, runtime
reasoning require a trade off between precision and the time required to perform the
computation. Examples of these techniques are the ones providing exact solutions
based on optimization algorithms and other, much faster, based for instance on heuris-
tics or evolutionary techniques.

In this work, we relied on an exact reasoning technique which is more suitable for
our application domain since we want to detect exact information about changes in
the monitored components. Reasoning at the protocol level also provides relatively
fast conformance checking against the behavior models. However, to monitor more
complex properties in a possible extension of the current work, we may take into
account also an a hybrid approach to try to get the benefits from both exact and
approximate reasoning approaches.

Finally, we should also plan an empirical evaluation of the quality and the usefulness
of the inferred models. We should provide our models to developers which actually
have to use a software component. We then would evaluate whether developers can
get a better understanding of the behavior of the component by looking at the models
rather than by leveraging the knowledge they can get in other ways.

Acknowledgments This research has been partially funded by the European Commission, Programme
IDEAS-ERC, Project 227977-SMScom.

References

1. Angluin D (1987) Learning regular sets from queries and counterexamples. Inf Comput 75(2):87–106
2. Baresi L, Ghezzi C (2010) The disappearing boundary between development-time and run-time.

In: FoSER ’10, New York, NY, USA
3. Baresi L, Guinea S (2011) Self-supervising bpel processes. IEEE Trans Softw Eng
4. Bertolino A, Inverardi P, Pelliccione P, Tivoli M (2009) Automatic synthesis of behavior protocols for

composable web-services. In: Proceedings of the the 7th joint meeting of the European software engi-
neering conference and the ACM SIGSOFT symposium on the foundations of software engineering,
ESEC/FSE ’09. ACM, New York, pp 141–150

5. Dallmeier V, Knopp N, Mallon C, Hack S, Zeller A (2010) Generating test cases for specification
mining. In: ISSTA ’10: proceedings of the (2010) ACM SIGSOFT international symposium on software
testing and analysis, Trento, Italy

6. Dallmeier V, Lindig C, Wasylkowski A, Zeller A (2006) Mining object behavior with adabu.
In: Proceedings of the 2006 international workshop on dynamic systems analysis, WODA ’06. ACM,
New York, pp 17–24

7. de Caso G, Braberman V, Garbervetsky D, Uchitel S (2012) Automated abstractions for contract
validation. IEEE Trans Softw Eng 38(1):141–162

8. Di Nitto E, Ghezzi C, Metzger A, Papazoglou M, Pohl K (2008) A journey to highly dynamic, self-
adaptive service-based applications. ASE

9. Doong R, Frankl PG (1994) The ASTOOT approach to testing object-oriented programs. ACM Trans
Softw Eng Methods 3(2):101–130

10. Dupont P (1996) Incremental regular inference. In: Proceedings of the third ICGI-96. Springer, Berlin,
pp 222–237

11. Ghezzi C, Mocci A, Monga M (2009) Synthesizing intensional behavior models by graph transforma-
tion. In: Proceedings of the 31st international conference on software engineering, ICSE ’09. IEEE
Computer Society, Washington, pp 430–440

123



Detecting component changes at run time with behavior models 221

12. Ghezzi C, Mocci A, Sangiorgio M (2011) Runtime monitoring of functional component changes with
behavior models. In: Models@run.time ’11, Wellington, New Zealand

13. Goguen J, Malcolm G (2000) A hidden agenda. Theor Comput Sci 245(1):55–101
14. Guttag J, Liskov B (2001) Program development in Java: abstraction, specification and object-oriented

design. Addison-Wesley, New York
15. Hooman J, Hendriks T (2007) Model-based run-time error detection. In: Models@run.time ’07,

Nashville, USA
16. Jackson D (2011) Software abstractions: logic, language, and analysis. MIT Press, Boston
17. Lorenzoli D, Mariani L, Pezzè M (2008) Automatic generation of software behavioral models.

In: Proceedings of the 30th international conference on software engineering, ICSE ’08. ACM, New
York, pp 501–510

18. Maoz S (2009) Using model-based traces as runtime models. IEEE Computer
19. Marchetto A, Tonella P, Ricca F (2008) State-based testing of ajax web applications. In: 1st International

conference on software testing, verification, and validation, pp 121–130
20. Mocci A (2010) Behavioral modeling, inference and validation for stateful component specifications.

PhD thesis, Politecnico di Milano, Milano, Italy
21. Morin B, Barais O, Jezequel J-M, Fleurey F, Solberg A (2009) Models@ run.time to support dynamic

adaptation. Computer
22. Murphy C, Kaiser G, Vo I, Chu M (2009) Quality assurance of software applications using the in vivo

testing approach. In: Proceedings of the 2009 international conference on software testing verification
and validation, ICST ’09. IEEE Computer Society, Washington, pp 111–120

23. Oracle, java se 6.0 doc (2011) http://download.oracle.com/javase/6/docs/index.html
24. Parekh R, Nichitiu C, Honavar V (1998) A polynomial time incremental algorithm for learning dfa.

In: Proceedings of the fifth ICGI-98
25. Rabbitmq website (2011) http://www.rabbitmq.com/
26. Rivest RL, Schapire RE (1989) Inference of finite automata using homing sequences. In: Proceedings

of the twenty-first annual ACM symposium on theory of computing, STOC ’89. ACM, New York,
pp 411–420

27. Roşu G, Chen F (2012) Semantics and algorithms for parametric monitoring. Logical Methods Comput
Sci 8(1):1–47, 2012. Short version presented at TACAS 2009

28. Sannella D, Tarlecki A (2010) Foundations of algebraic specification and formal software development.
EATCS monographs on theoretical computer science. Springer, Berlin

29. Spy at runtime (2011) http://home.dei.polimi.it/sangiorgio/spy/index.xhtml
30. Strom RE, Yemini S (1986) Typestate: a programming language concept for enhancing software

reliability. IEEE Trans Softw Eng 12:157–171
31. Whaley J, Martin MC, Lam MS (2002) Automatic extraction of object-oriented component interfaces.

In: Proceedings of the 2002 ACM SIGSOFT international symposium on Software testing and analysis,
ISSTA ’02. ACM, New York, pp 218–228

32. Xie T, Martin E, Yuan H (2006) Automatic extraction of abstract-object-state machines from unit-
test executions. In: International conference on software engineering, research demos, pp 835–838,
May 2006

123

http://download.oracle.com/javase/6/docs/index.html
http://www.rabbitmq.com/
http://home.dei.polimi.it/sangiorgio/spy/index.xhtml

	Detecting component changes at run time with behavior models
	Abstract
	1 Introduction and motivations
	2 Motivating example and approach overview
	3 Behavioral equivalence and protocol models
	3.1 Behavioral equivalence models
	3.2 Protocol behavior models

	4 Design phase: model inference
	4.1 Generation of the initial behavioral equivalence model
	4.2 Synthesis of the protocol behavior model

	5 Runtime phase: monitoring and change detection
	5.1 Monitoring
	5.2 Response to violations
	5.2.1 Model updates
	5.2.2 Change detection


	6 RabbitMQ example
	6.1 Model inference
	6.2 Run time monitoring

	7 Related work
	8 Conclusions and future work
	Acknowledgments
	References


