
ORIGINAL PAPER

A simulation-based method to evaluate the impact of product
architecture on product evolvability

Jianxi Luo1

Received: 10 June 2014 / Revised: 28 August 2015 / Accepted: 31 August 2015 / Published online: 8 September 2015

� Springer-Verlag London 2015

Abstract Products evolve over time via the continual

redesigns of interdependent components. Product archi-

tecture, which is embodied in the structure of interactions

among components, influences the ability for the product to

be subsequently evolved. Despite extensive studies of

change propagation via inter-component connections, little

is known about the specific influences of product archi-

tecture on product evolvability. Related metrics and

methods to assess the evolvability of products with given

architectures are also under-developed. This paper pro-

poses a simulation-based method to assess the isolated

effect of product architecture on product evolvability by

analyzing a design structure matrix. We define product

evolvability as the ability of the product’s design to sub-

sequently generate heritable performance-improving vari-

ations, and propose a quantitative measure for it. We

demonstrate the proposed method by using it to investigate

a wide spectrum of model-generated DSMs representing

products with varied architectures, and show that modu-

larity and inter-component influence cycles promote pro-

duct evolvability. Our primary contribution is a repeatable

method to assess and compare alternative product archi-

tectures for architecture selection or redesign for evolv-

ability. A second contribution is the simulation-based

evidence about the impacts of two particular product

architectural patterns on product evolvability. Both con-

tributions aim to aid in designing for evolvability.

Keywords Product architecture � Product evolvability �
Design structure matrix � Simulation

1 Introduction

Products or engineering systems continually evolve over

time via heritable design changes, which can be either

initiated or emergent (Otto and Wood 1998; Eckert et al.

2004; Fricke and Schulz 2005; Rajan et al. 2005). Product

evolvability reduces long-term difficulties for design

advancements over the product’s life span. It is particularly

desirable in industries where innovation dynamism is high

and product redesign is a norm (Suh 1990; Silver and de

Weck 2007; Beesemyer et al. 2011), and for start-up

companies for which markets are uncertain and frequent

redesigns are foreseeable. Different product designs may

inherit different degrees of evolvability. Knowledge about

the determinants of product evolvability and the methods to

assess it are needed to guide designing for evolvability.

The engineering design literature has suggested that

product architecture, i.e., the pattern of interdependences

following which components influence each other, can

affect the ability of a product’s design to be evolved in the

future (Ulrich 1995; Whitney et al. 2004; Tilstra et al.

2012). In particular, many studies on product architecture

and design changes have been based on the analysis of

design structure matrix (DSM) in different forms (Clarkson

et al. 2004; Eppinger and Browning 2012; Tilstra et al.

2012). However, quantitative methods to assess alternative

product architectures in terms of product evolvability are

still lacking. As a result, our knowledge of the impact of

product architecture on product evolvability is limited.

In this paper, we focus on the evolvability of a product

and investigate how it can be conditioned by product

& Jianxi Luo

luo@sutd.edu.sg

1 Engineering Product Development Pillar and SUTD-MIT

International Design Centre, Singapore University of

Technology and Design, Singapore, Singapore

123

Res Eng Design (2015) 26:355–371

DOI 10.1007/s00163-015-0202-3

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/78071445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00163-015-0202-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00163-015-0202-3&domain=pdf

architecture. The concept of evolvability arose in biology.

In a Darwinian evolutionary process, variations that have

fitness improvements are most likely to be selected and

heritable (Wagner and Altenberg 1996; Kirschner and

Gerhart 1998). Following an analogy between how the

interactions of genes condition their variations in biological

evolution and how the interdependences among compo-

nents condition their design changes in product evolution,

we define ‘‘product evolvability’’1 as the ability of a given

product design to subsequently generate heritable perfor-

mance-improving variations in design configuration, i.e.,

alternative combinations of design choices of all

components.

Our aimed contribution is a simulation-based method

that analyzes a design structure matrix to assess the isolated

effects of product architecture on product evolvability. The

core of the method was drawn from the ‘‘NK model,’’

which was originally created to study organism evolution

via genome mutations (Kauffman and Weinberger 1989;

Kauffman 1993) and later adopted into the field of orga-

nization sciences (Levinthal 1997). We also propose a

metric of product evolvability, based on the NK framework.

The model and metric are based on simulating and ana-

lyzing the overall landscapes of performances (or fitness)

mapped from the total design choice space of a given

product. This method is then applied to assessing the

evolvability of a wide spectrum of model-generated net-

works (or DSMs) that represent products with gradually

varied architectures.

The simulation exercises lead to our second contribu-

tion—evidence about the impacts of two particular product

architectural patterns, including component influence

cycles and interaction density, on product evolvability.

‘‘Cycle’’ is the set of components which have an influence

or dependency path to every other2 (MacCormack et al.

2006; Sosa et al. 2013). Prior research has shown that

component cycles require iterative problem solving and

give rise to product defects (Smith and Eppinger 1997a, b;

Mihm et al. 2003; Sosa et al. 2013). Instead, herein we are

interested in the impact of component dependence cycles

on product evolvability. Component interaction density

denotes the number of dependences among a given set of

components and has been used as a proxy of product

modularity in the literature (Martin and Ishii 2002;

MacCormack et al. 2006; Sosa et al. 2007, 2013). If a

component is influenced by or dependent on fewer other

components (implying a lower interaction density), it is

more modular.

The remainder of the paper is organized as follows. In

Sect. 2, we review the relevant literature. Section 3 intro-

duces the simulation-based method to assess a product’s

evolvability by DSM analysis. Section 4 applies the

method to assessing a wide spectrum of simulated DSMs

that represent products with gradually varied architectures,

followed by a discussion of theoretical and practical

implications in Sect. 5. Section 6 concludes with the con-

tributions and limitations of the present paper, and future

research directions.

2 Literature review

This article aims to contribute to the extensive quantitative

studies on design change propagation based on design

structure matrix (DSM) analysis and the relatively small

and scattered literature on engineering system design for

evolvability.

2.1 Change propagation through component

interactions

A major stream of change propagation analysis has been

based on the view that the design change of one component

can propagate through the interdependence relationships

between components, requiring redesigns of many other

components until all components can work together to

perform the intended function (Clarkson et al. 2004; Jarratt

et al. 2011; Hamraz et al. 2013). Many change propagation

studies use the component-based design structure matrix

(DSM) to model the linkages between components in a

complex product (Eppinger and Browning 2012).

In an early paper, Cohen et al. (2000) used matrices to

represent the inter-influences between design decisions

related to the key attributes of a product design to predict

change propagation when an attribute is changed. To pre-

dict the amount of redesign effort for future changes,

Martin and Ishii (2002) assessed the direct dependencies

between components using a component-based DSM that

1 Biological and technological evolution processes are not exactly the

same. One major difference is that technologies are indeed con-

sciously ‘‘designed’’ by ‘‘intelligent designers,’’ whereas biology

evolution relies on natural selection. The technology evolution

process may experience more occasions of non-sequential inheritance

and leaps then biological evolution because of the role and decisions

of designers on technologies, even though both processes are

incremental and generally slow. Readers interested in contrasting

the biological and technology evolution processes may refer to Kelly

(2010) and Beesemyer et al. (2011). In the present paper, we do not

study processes, dynamics and influences from designer’s choices, but

the evolvability of a product at a time, given by its architecture at the

time. Our analogy focuses on (1) variation of elements (genes vs.

components), (2) how inter-element interactions constrain variations

(to make use of the NK model) and (3) preferential selection of

fitness-improving variations (to define our evolvability metric).

Section 2 provides more detailed review of related concepts of

biological and product evolutions.
2 For example, if the design choice of component A influences the

working of B, which influences C, which influences A, components

A, B and C form a cycle.

356 Res Eng Design (2015) 26:355–371

123

captures degrees of coupling between components. Suh

et al. (2007) proposed a change propagation index (CPI),

calculated as the difference between the total numbers of

changes propagated from and received by a component.

Smaling and de Weck (2007) developed a component-

based Change DSM, i.e., DDSM, to quantify the amount of

design changes required to accommodate a new technology

or invasiveness of new technology. These studies do not

assess change propagation via indirect dependencies of

components.

The Change Prediction Method (CPM) developed by

Clarkson et al. (2004) was likely the first to evaluate

indirect change propagation via the influence paths

between components. CPM also considers the likelihood

and impact of change propagation from one component to

another, using a probabilistic path-finding algorithm to

analyze DSMs whose entries capture both likelihood and

impact of change propagation between pairs of compo-

nents. Since Clarkson et al. (2004), there has been a surge

of publications on DSM-based assessment of change

propagation, many of which can be considered as deriva-

tives of CPM.

For example, Rutka et al. (2006) considered the indirect

paths of change propagation, with specified types and

degrees of change for the linkages in a DSM. Koh et al.

(2012) integrated the house of quality and CPM to model

the effects of potential change propagation brought about

by different change options. Hamraz et al. (2012) and

Ahmad et al. (2013) applied procedures similar to CPM to

different types of multi-domain or domain mapping

matrices (Danilovic and Browning 2007) that capture the

interdependences within and between multiple domains,

such as components, functions, requirements, processes

and organizations. The step-based CPM of Koh et al.

(2013) considers the reachability of change propagation,

i.e., the ability of a change-initiating component to prop-

agate changes to a sink component, to limit the maximum

length of change propagation paths to be examined.

Recently, network-based techniques and metrics have

been increasingly adopted to investigate change propaga-

tion. MacCormack et al. (2006), Sosa et al. (2007) and

Cheng and Chu (2012) used graph-theoretic metrics, such

as degree and betweenness centrality, reachability and

clustering coefficients, as indicators of a component’s

propensity to propagate changes to other components

through direct linkages and indirect paths. Giffin et al.

(2009) analyzed various motifs and graph-theoretic indices

of the network of change requests connected by parent–

child or sibling relationships. Pasqual and de Weck (2012)

proposed a repository of network-based techniques and

graph-theoretic metrics to assess change propagation

within and between the coupled product, change and

organizational domains.

In general, these studies have focused on measuring the

changeability of components by considering change prop-

agation via direct or indirect influences between them. Part

of the measurement efforts is the development of indices,

such as the Change Propagation Index (CPI) (Suh et al.

2007) and the Incoming Change Likelihood (ICL),

Incoming Change Impact (ICI) and Outgoing Change Risk

(OCR) indices (Koh et al. 2013), which are used to dif-

ferentiate components that exhibit different propagation

behavior, such as multipliers, absorbers, carriers and con-

stants (Eckert et al. 2004). In turn, knowledge about the

differentiated change-related properties of components is

useful to support design decisions, such as which compo-

nents to standardize, modularize or embed flexibility to

address design changes (Martin and Ishii 2002; Eckert et al.

2004; Suh et al. 2007; Cardin et al. 2013; Koh et al. 2013),

as well as what change modes are most suitable (Rajan

et al. 2005; Keese et al. 2009).

For comprehensive reviews of change propagation

research, please refer to Jarratt et al. (2011) and Hamraz

et al. (2013). In brief, changeability of components has

been the main level of analysis in prior studies, despite the

consideration of inter-component interactions. However,

the changeability of a system is not a simple sum of the

changeability of components, because their interdepen-

dence relationships are often complex, intricate and non-

linear. Despite DSM data on component interdependences

being used to assess the change-related properties of

components, the overall architectural pattern (i.e., topol-

ogy) of such interdependences or influences, which

embody product architecture, has not been explicitly

investigated as key variables affecting product change-

ability. Knowledge on how the architecture of a product

affects its overall changeability is lacking. Relevant

methods for assessment need to be developed. In addition,

inquiry into changeability at the system level is relevant to

the relatively less developed, but growing literature on

engineering system evolvability that we will review in

Sect. 2.2.

2.2 Product evolvability and design for evolvability

As stated in the introduction section, the focus of the

present paper is on evolvability, which is a specific type of

changeability. The concept of evolvability arose originally

in biology. One formal definition of biological evolvability

is ‘‘an organism’s capacity to generate heritable phenotypic

variations’’ (Kirschner and Gerhart 1998). Another defini-

tion is the ‘‘ability of a population to both generate and use

genetic variation to respond to natural selection’’ (Cola-

grave and Collins 2008). These definitions and many

similar others (Wagner and Altenberg 1996; Hansen 2003)

emphasize variations with some level of heritability with

Res Eng Design (2015) 26:355–371 357

123

prior configurations and the selection of competing new

variations to future generations according to their levels of

fitness with the environment (Ziman 2000).

Evolvability of products or engineering systems can be

defined analogically. For instance, Butterfield et al. (2008)

considered evolvability as the ‘‘ability of the architecture to

handle future upgrades.’’ Beesemyer et al. (2011) formally

defined evolvability of a technological system as its

‘‘ability to change an inherited design across generations

over time.’’ Fulcoly (2012) defined it as ‘‘the ability of an

architecture to be inherited and changed across generations

[over time].’’ Following them, herein, we generally con-

sider evolvability as the ability of a design to generate

heritable variations with improved fitness (i.e., perfor-

mance, value).

The concept of ‘‘product evolvability’’ differentiate

itself from the definitions of general design changeability

(Fricke and Schulz 2005; Ross et al. 2008) and design

flexibility (Rajan et al. 2005; de Neufville and Scholtes

2011; Tilstra et al. 2013) by emphasizing heritance, path

dependences and fitness-improving selection from an

evolutionary perspective. Traditional engineering design

change literature concerns changes in general, not differ-

entiating positive (i.e., performance-improving) and nega-

tive (i.e., performance-reducing) changes. Existing design

flexibility literature has taken into account the effects from

certain specific changes, but the assessment of the overall

potential of a present product design to generate perfor-

mance-improving changes is lacking. The concept of pro-

duct evolvability is closely related to the ‘‘adaptability’’

that Engel and Reich (2013) defined as the ability of a

system to be changed to fit varied circumstances, whereas

Fulcoly (2012) specifically considered adaptability as ‘‘the

ability of a system to be changed by a system-internal

change agent with intent.’’ Fulcoly’s interpretation of

‘‘adaptability’’ addresses changes introduced by system-

internal agent, while products evolve via the changes and

redesigns introduced by designers, who are not internal in

the product or system.

Ideally, the evolvability of a product design allows

design engineers to continually and easily discover per-

formance-improving (or value-creation in general) variants

of the present products. In some cases, a design with

weaker traditional functional performance but better

evolvability than alternative designs may achieve a higher

longer-term value (de Neufville et al. 2004; Engel and

Reich 2013). Therefore, in addition to assessing and

designing for traditional functional performances in a

design iteration, engineers should also assess and design

for evolvability because it affects the life cycle value of

their products (Silver and de Weck 2007).

Assessing product evolvability requires proper metrics

to inform the potential of a design to generate fitness-

improving variations. Beesemyer et al. (2011) and Fulcoly

(2012) analyzed the potential of a few existing metrics,

which were originally developed to measure complexity,

modularity, changeability, flexibility, etc., to be adopted as

evolvability metrics. However, these metrics address gen-

eral changeability, instead of evolvability which empha-

sizes heritance, path dependences and fitness-improving

selection. Some existing metrics require well-defined

comprehensive model of the system, such as the state

functions of all system parameters. It is unlikely because

engineers face many uncertainties in typical design pro-

cesses. Taken together, in the literature there exists no

metric that directly addresses the definition of product

evolvability in the present paper and similar others

(Beesemyer et al. 2011; Fulcoly 2012).

Designing for evolvability also requires related design

principles to inform the design decisions and processes

(Beesemyer et al. 2011; Ricci et al. 2014). Indeed, many

design principles for changeability and flexibility are

naturally relevant. The related literature provides a rich

set of candidate design principles for evolvability, such as

(just to name a few) modularity and autonomy (Ulrich

1995; Baldwin and Clark 2000; Dahmus et al. 2001;

Hölttä-Otto et al. 2012), scalability (Fricke and Schulz.

2005; Tilstra et al. 2013), redundancy (Fricke and Schulz

2005; de Neufville and Scholtes 2011), reconfigurability

and extensibility (Siddiqi and de Weck 2008; Singh et al.

2009; Saleh et al. 2009; de Neufville and Scholtes 2011),

as well as product platform (Simpson et al. 2001, 2013).

On that basis, Tilstra et al. (2013) proposed a catego-

rization of actionable guidelines for implementing these

design principles for product flexibility. Beesemyer et al.

(2011), Fulcoly (2012) and Ricci et al. (2014) provide

brief reviews of engineering system design principles for

evolvability.

One general strategy for implementing these design

principles is to apply them to certain components, and

various techniques and indices for identifying suitable

components for embedding the above-mentioned ‘‘ilities’’

have been proposed (Suh et al. 2007; Cardin et al. 2013;

Koh et al. 2013). A complementary strategy is to design or

choose the overall product architecture (Henderson and

Clark 1990; Ulrich 1995; Fixson and Park 2008; Tilstra

et al. 2012) that best facilitates later heritable variations.

Product architecture is the arrangement of components

interacting to perform specified functions (Ulrich and

Eppinger 2011; Eppinger and Browning 2012). It is com-

monly accepted that the architecture of a product or system

influences its later evolutionary paths and dynamics (Si-

mon 1962; Ulrich 1995; Whitney et al. 2004), and a

‘‘modular architecture’’ is often favored for facilitating

product variation and evolution (Ulrich 1995; Baldwin and

Clark 2000; Dahmus et al. 2001).

358 Res Eng Design (2015) 26:355–371

123

Some techniques have been developed to assist the

assessment of product architectures for design flexibility.

For instance, Tilstra et al. (2012) proposed the high-defi-

nition design structure matrix (HDDSM) and illustrated its

utilities in assessing and comparing product architectures

for flexibility to facilitate later redesigns. Rajan et al.

(2005; Keese et al. 2009) proposed the Change Mode and

Effect Analysis (CMEA) methodology and showed how it

can be practically implemented to examine detailed change

modes (including the ones related to product architecture)

for quantifying and comparing the flexibility of different

products. Engel and Reich (2013) considered components’

option values and interface costs to assess the adaptability

of different architectural assignments of components into

modules.

Taken together, the literatures on changeability and

evolvability are summarized and compared in Table 1. The

literature review reveals two opportunities for the research

on product evolvability. First, despite vast research on

changeability, flexibility and other related concepts, the

methods andmetrics that directly assess product evolvability

are still lacking and need to be developed. Second, although

we conceptually accept that product architecture influences

product evolvability, quantitative methods to assess and

guidelines to design product architectures for the interest of

product evolvability are underdeveloped. Our knowledge on

which specific product architectural patterns and how they

affect product evolvability is still ambiguous.

The present paper addresses these gaps. Specifically, we

will introduce a simulation-based method and metric to

assess the isolated influence of product architecture on its

evolvability in the next section. Our analysis of product

architecture is based on DSM and primarily concerns the

topology of dependences between components. Nonethe-

less, the functional dimension of product architecture is

embodied in the physical components and their pattern of

interactions. The pattern of component interactions is

assessed as a design or decision variable, and two particular

characteristic architectural patterns will be evaluated in a

simulation exercise. The new understanding about the

impacts of these architectural patterns on product evolv-

ability can be used as product architecture design guideli-

nes for evolvability.

3 Simulation-based assessment of product
evolvability

Our evolvability assessment method is based on analyzing

the shape characteristics of the simulated fitness landscapes

mapped from the total design space of a product with a given

architecture. In engineering practices, it is normally impos-

sible to obtain performance data from experiments or cal-

culations for all possible combinations of design choices of

individual components in the total design space and forming

the fitness landscape. Simulations can aid in exploring the

total design space and the fitness landscapes mapped to it,

and systemically assessing design potentials inherited in the

architecture of a present design or prototype.

The architecture of a product is assessed based on a basic

component interaction DSM. In such a design structure

matrix, the cell (i, j) at row i and column j is 1 if the design

choice of component j can affect the functional performance

or value of component i, indicating the requirement for co-

redesign or change propagation; the cell is 0 when there is no

influence or change propagation from component j to i. The

DSM is asymmetric by default because component i does not

necessarily affect j, when j can influence i. Such an asym-

metric DSM can be alternatively represented as a directed

network (Keller et al. 2006), in which an arrowed link is

created from node j to node i when the design choice of

component j influences component i.

Our method of analyzing the DSM or network of com-

ponents draws on the NK model originally created to study

organism evolution (Kauffman and Weinberger 1989;

Kauffman 1993) and later adopted into the field of man-

agement sciences (Levinthal 1997). In a potential NK

model framework for products, a product has

Table 1 Comparison of changeability and evolvability studies

Changeability Evolvability

Definition The ability to be changed The ability to be changed with performance

improvements

Type of change Changes in general, with many studies addressing

performance-destroying changes and associated

risks

Implicit focus on performance-improving changes

that designers would prefer and select

Level of analysis Components Product or system as a holistic whole

Variables of interest Individual components’ interactions Overall product or system architecture

Theoretical foundation Engineering and physics Evolution theory

Metric Various metrics No direct metric of product evolvability

Design guideline Modular design, flexible design, etc. No direct guideline for product evolvability

Res Eng Design (2015) 26:355–371 359

123

N components, each of which has xi alternative design

choices and Ki other components that it can influence.

Components in actual products may have multiple design

choices (i.e., alternative mechanisms such as chemical

battery vs. ultra-capacitor for an electrical vehicle), and

design choices can be continuous, such as length, weight

and temperature. Without loss of generality, in our later

analysis, we consider the simplest case that each compo-

nent has two alternative design choices, 0 and 1 (indicating

xi = 2 for all i), for computational ease.3 The design

choice of a component is mutated between 0 and 1

whenever there is an emergent or initiated change that may

significantly affect the functional performance of the

component.

Thus, the configuration of a product of N components

can be described by an N-digit string of 1 s or 0 s, denoted

as si = d1d2…dN, with di = 0 or 1, for i = 1, 2, 3…2N.

The combinatory design space of N components has a total

of 2N unique design configurations. The total design space

includes all possible variations through the mutations of

design choices of all components, following the same

inherited architecture of interactions between components.

That is, product architecture is preserved or inherited when

design choices of components are mutated to generate

variations in total design configuration, throughout the total

design space.4

Within each design configuration denoted by the N-digit

string, the fitness of a specific component is randomly

drawn from a uniform distribution [0, 1] each time its

design is changed or the design of any other component

that can influence it changes. The fitness of the overall

design configuration is evaluated as the mean of the fitness

values of all components. These model settings are the

standard ones of the general NK models in biology

(Kauffman 1993) and organization sciences (Levinthal

1997; Rivkin and Siggelkow 2007).5 Clearly in practices

alternative fitness functions can be used if the engineer has

accurate information about the functions. But in most cases

engineers do not have such knowledge given many

uncertain factors to affect fitness. For our purpose of

comparing alternative product architectures in general, a

uniform distribution [0, 1] of fitness values, as used in the

standard NK model, delivers the simplest, tractable and

general results. The fitness values of all design configura-

tions in the design space constitute the fitness landscape.

The ‘‘smoothness’’ or ‘‘ruggedness’’ of the fitness land-

scapes has been a central interest in prior NK analyses

(Kauffman 1993; Levinthal 1997). A landscape with many

‘‘hills’’ and ‘‘valleys’’ is rugged.

Because the fitness values of components are randomly

drawn under the only constraint imposed by their inter-

influence relationships, NK simulations create a mapping

from the structure of inter-component influences (indicat-

ing product architecture) to a fitness landscape, and more

specifically, the shape characteristics of the fitness land-

scape, such as smoothness versus ruggedness. In other

words, statistically, the architectural patterns of the inter-

component influences are the only determinants of the fit-

ness landscape, in the NK framework. For instance, Rivkin

and Siggelkow (2007), using NK model-based simulation,

showed that a shift in a few commonly observed interde-

pendence patterns (e.g., centralization, small-world, scale-

free, hierarchy) in general system architectures can sig-

nificantly alter the ruggedness of their fitness landscapes.

Focusing on the impacts of network structures, the NK-

based simulations only require the input of the most basic

form of DSM data in which the inter-component influences

are denoted dichotomously, i.e., 0 or 1, because it is suf-

ficient to capture the topology of the inter-component

influence structure. This topology is the single factor that

our method aims to analyze with regard to its impact on

product evolvability. In the meantime, the fitness or per-

formance impacts of all other variables related to

3 The number of design choices for individual components affects the

size of the design space, but does not affect the qualitative results on

the isolated influences of different product architectures on evolv-

ability. The pioneers and leading scholars of NK model had written

about the consequences of using xi = 2 for all i. Kauffman and

Weinberger (1989), who first published the NK model, wrote that,

‘‘although it is difficult to draw a picture of such high dimensional

spaces, a sense of their structure can be captured by considering

proteins with only two amino acids, e.g., alanine and glycine.’’

Levinthal (1997), who introduced NK model to the field of

organization sciences, wrote that, ‘‘the model can be extended to an

arbitrary finite number of possible values of an attribute, but the

qualitative properties of the model are robust to such a generaliza-

tion.’’ In this paper, the focus is to assess the isolated impact of

product architecture rather than the size of design space, setting

xi = 2 provides the simplest and most tractable model for this

purpose.
4 That means the component design choices in consideration are

those that do not alter the pattern of interactions among the

components. In real-world design practices, potential design choices

of a component may require new interactions or eliminate existing

interactions with other components. Such design choices are not

included in the design space resulting from a given architecture that

we focus on to assess. That is, the design space given by architecture

only constitutes of those design choices of individual components

complying with the architecture.

5 Our method follows the NK model specifically to use the random

fitness function to simulate the fitness landscape. In theory, the fitness

function can have other forms. If the engineer has a deterministic

fitness function, he can obtain a fixed landscape given specific product

architecture. The fixed landscape, rather than a sample of random

landscapes, will be assessed using the evolvability metric in Eq. (2).

In addition, if the engineer has total knowledge of the fixed fitness

landscape, he/she can choose the global optimal design directly.

However, this is normally not the case of real engineering practices.

Often engineers are unable to have a deterministic fitness function. In

such most cases, random fitness functions can be used to assess the

influence of product architecture on evolvability.

360 Res Eng Design (2015) 26:355–371

123

component linkages, such as types (e.g., energy, informa-

tion, material and spatial) (Pimmler and Eppinger 1994;

Koh et al. 2012), physical laws of change propagation

(Ollinger and Stahovich 2004), likelihood of impact

(Clarkson et al. 2004) and sensitivity of impact (Yassine

and Falkenburg 1999), are neutralized when we randomly

draw fitness or performance values for component design

choices. Thus, the impacts of additional factors in reality

are neutralized in the statistical analysis of the association

between product architecture and the simulated fitness

landscapes, based on a large sample of simulation data.

Here, we use an example product of three components

and three ‘‘influence’’ connections (Fig. 1) to demonstrate

how to simulate a fitness landscape given its dichotomous

DSM or network.

Following the network structure in Fig. 1, the sub-string

that matters for each component is determined as follows:

• Component 1 is affected by itself, 2 and 3; the fitness of

component 1 is randomly drawn from [0, 1] when the

design of itself or the design of component 2 or 3 is

changed, i.e., p1 = p1 (d1d2d3);

• Component 2 is affected by itself and 1; the fitness of

component 2 is randomly drawn from [0, 1] when the

design of itself or the design of component 1 is

changed, i.e., p2 = p2 (d1d2).

• Component 3 is only affected by itself, despite the fact

that it can affect component 1; the fitness of component

3 is randomly drawn from [0, 1] when the design of

itself changes, i.e., p3 = p3 (d3).

For each of the three components, we create a list of all

possible configurations of the sub-string that affects its

fitness and give a random fitness value in [0, 1] to each sub-

string configuration. This procedure results in Table 2.

Then, Table 2 is used to search for the fitness value of

each component, by matching its sub-string configuration

with the corresponding digits in the 3-digit total product

design configuration. For instance, when the entire pro-

duct’s design configuration is ‘‘101,’’ the fitness of com-

ponent 1 is determined by sub-string d1d2d3 = ‘‘101’’ and

Table 2-A gives p1 = 0.20. Likewise, the fitness of com-

ponent 2 is determined by sub-string d1d2 = ‘‘10,’’ so

Table 2-B gives p2 = 0.80. Sub-string d3 = ‘‘1’’ determi-

nes p3 = 0.60 in Table 2-C. This procedure leads to results

in Table 3, which lists the fitness of each component

determined by the sub-string that is relevant to it under

each total design configuration.

The rightmost column of Table 3 lists the fitness level of

each total design configuration, calculated as the mean of

all component fitness values, and constitutes a simulated

‘‘fitness landscape’’ for the given network or DSM which

embeds a product architecture or topology. In the land-

scape, if the fitness of a configuration (e.g., 001) is better

than any of its 1-mutant neighbors (e.g., 101, 011, 000), the

configuration is a local peak. If a local peak’s fitness is the

highest among all configurations in the design space, it is

also a global peak. For the landscape given in Table 3,

alternatively represented in a 3D diagram in Fig. 2, design

configuration 001 is a local peak, and 111 is a global peak.

The number of peaks indicates the ‘‘ruggedness’’ (i.e.,

opposite of ‘‘smoothness’’) of a fitness landscape (Kauff-

man 1993; Levinthal 1997). A better measure of rugged-

ness might be the density of peaks on a fitness landscape,

i.e., peak density, which can be calculated as

Initiating
 1 2 3

Af
fe

ct
ed

 1 x x x

2 x x

3 x

1

2 3

Initiating
 1 2 3

Af
fe

ct
ed

 1 x x x

2 x x

3 x

1

2 3

Fig. 1 DSM and network representations of an example product of

three components and three influence interactions

Table 2 Sub-strings and

randomly drawn fitness values

for each component

(A) Component 1 (B) Component 2 (C) Component 3

d1d2d3 p1 d1d2 p2 d3 p3

000 0.50 00 0.20 0 0.25

001 0.90 01 0.30 1 0.60

010 0.80 10 0.80

011 0.30 11 0.50

100 0.10

101 0.20

110 0.05

111 0.70

Res Eng Design (2015) 26:355–371 361

123

Peak density ¼ Number of peaks on landscape

Size of landscape
ð1Þ

For a general product of N components in which compo-

nent i has xi design choices, the size of the landscape

(equal to the size of the design space) is
Q

i=1
N xi. In the

most generic case when xi = 2 for all i, the landscape size

is 2N. Earlier NK studies have commonly found that the

interaction density of components gives rise to the

ruggedness of the system’s fitness landscapes (Kauffman

1993; Levinthal 1997; Rivkin and Siggelkow 2007). And in

the extreme situation that all components are independent

from each other, i.e., having no interaction, there is only

one single peak on the fitness landscape.

For a highly rugged landscape where there are many

local peaks, an average starting point (i.e., the initial

design) will have a high chance to include a local peak in

its neighborhood or be close to a local peak. Thus, ‘‘hill-

climbing’’ adaptive redesigns via one-component-redesign-

at-a-time for higher fitness will quickly reach and stabilize

at a local peak closest to an average starting point (i.e.,

initial design configuration), get stuck at local optima and

cease evolving. As a result, only modest performance is

expected. An example of such design lock-in might be the

automobile that has been stuck at a local optimum char-

acterized by a dominant design of an internal combustion

engine and accompanying subsystems and components, for

more than a century, despite that there are potentially

higher peaks elsewhere in the landscape, such as the ones

characterized by hydrogen-powered or battery-powered

powertrains.

In contrast, for a not-so-rugged or even single-peak

landscape, the hill-climbing redesign process searching for

performance improvements may sprawl over a wide por-

tion of the fitness landscape for a long period of time,

because it is more likely that the neighborhood of an

average starting point includes a design configuration with

higher fitness due to the lack of local peaks. This may lead

to more sustainably foreseeable design improvement

opportunities and a higher chance to reach a design con-

figuration with sufficiently high fitness, than a process that

quickly stabilizes at a local optimum.

In brief, the ruggedness of a fitness landscape given by

specific product architecture implies a systematic con-

straint on its ability or potential to subsequently generate

heritable design configuration variations with higher fit-

ness. Therefore, peak density is a reverse indicator of

product evolvability. Based on this understanding, we

propose a metric for the evolvability of product architec-

ture in the NK model framework as

Product evolvability ¼ 1

Peak density

¼ 2N

Average number of peaks
ð2Þ

For a generalized product in which each component i has

xi design choices, the numerator is
Q

i=1
N xi. The denomi-

nator is the average number of peaks of an ensemble of

fitness landscapes simulated based on the same DSM, using

the procedure described above. Each random landscape in

the same ensemble differs in details from all the others, but

all result from the same product architecture and must

share common properties that are only determined by the

architecture.

Note that, the product evolvability metric captures the

potential of a product design, given its architecture, to have

fitness-improvement design variations, instead of the extent

to which the product design has evolved. In addition to the

ruggedness of the landscape determined by only the

Table 3 Fitness values

corresponding to product

configurations in the landscape

Sj d1d2d3 p1 p2 p3 P Sj
� �

¼ 1
N

PN
n¼1 pnðsjÞ

j = 1 000 0.50 0.20 0.25 0.32

j = 2 001 0.90 0.20 0.60 0.57 (local peak)

j = 3 010 0.80 0.30 0.25 0.45

j = 4 011 0.30 0.30 0.60 0.40

j = 5 100 0.10 0.80 0.25 0.38

j = 6 101 0.20 0.80 0.60 0.53

j = 7 110 0.05 0.50 0.25 0.27

j = 8 111 0.70 0.50 0.60 0.60 (global peak)

Local Peak

001
(0.57)

000
(0.32)

100
(0.38)

010
(0.45)

011
(0.40)

111
(0.60)

110
(0.27)

101
(0.53)

Global Peak

Fig. 2 A simulated fitness landscape for the example product

362 Res Eng Design (2015) 26:355–371

123

architecture, the scope of search of the designer, i.e., the

number of components to be redesigned at a time, in the

design space may also affect a product’s actual evolu-

tionary process and path. Intuitively, simultaneous rede-

signs of many more components, indicating more global or

exploratory search, create a greater chance to discover a

design configuration with dramatic fitness improvement. In

contrast, a myopic local search process, in which only one

or small number of components are redesigned at a time,

exhausts the improvement opportunities and becomes stuck

at a local peak quickly. In fact, the one-at-a-time redesign

process is the most common in actual design practices, due

to the natural limitations in experimentation resources and

the designer’s vision required for broader search, among

many other factors.

Taken together, the structure of the landscape and the

scope of components for simultaneous redesign together co-

determine the eventual path of product evolution as a search

process. In contrast to the scope of components for simul-

taneous redesign, which is a choice of the designer limited by

his/her capability and resources and is extrinsic to the

physical product, the shape characteristics of the landscape

are determined by the product architecture, which is intrinsic

to the product. Landscape ruggedness imposes a systemic

constraint on the product’s evolvability. Lower evolvability

of a product’s architecture will require broader exploration

of the designer, i.e., redesigning more components at a time,

and as a result requiresmore experimental resources, in order

to improve the fitness of the product.

In the next section, we will apply the foregoing fitness

landscape generation procedure and the evolvability metric

to assessing the isolated intrinsic impacts of product

architecture on evolvability of a wide spectrum of ran-

domly generated networks with varied but controlled

topologies representing different product architectures.

4 Simulation results: assessing evolvability
of products with gradually varied architectures

4.1 Model-generated component interaction

networks

Weuse a tunable networkmodel to generate awide spectrum

of random directed networks with gradually varied network

structures, which represent the component interaction net-

works of products with varied architectures (i.e., component

interaction network topology). The mathematical details of

the model and some properties of the model-generated net-

works are provided in ‘‘Appendix’’. One advantage of sim-

ulated component networks is that they can be controlled to

have continually varied architectures and allow for the

exploration of a wide spectrum of product architectures. In

contrast, empirically we could only have small samples of

and scattered data of actual products for inductive analysis.

In particular, these networks are randomly generated

with controls for various (1) component interaction density

and (2) amount of cyclic influences among components.

Interaction density (K) is the average number of com-

ponents that each component influences. For a product with

N components and M influence links, K = M/N. It equals

the average nodal degree in network sciences (Newman

2003) and the average interaction density, denoted as K in

the original NK model (Kauffman 1993). In the context of

product design, it is an indicator of product integrality or

reverse indicator of product modularity (MacCormack

et al. 2006; Hölttä-Otto et al. 2012; Sosa et al. 2013). If

there are few inter-influences between components (i.e.,

low K), the redesign of one component propagates few

change to others. Such product architecture with low K is

highly modular. A product’s architecture is integral if there

are many inter-influence links among components. As a

result of high K, the redesign of one component will

propagate changes to many other components.

To measure the amount of cyclic inter-component

influences or dependences embedded in product architec-

ture, we define a metric called ‘‘cyclic degree (C)’’ and

calculate it as the percentage of directed influence links

that are in at least one cycle,

C ¼
PM

i¼1 ei

M
ð3Þ

where M is the number of links in the network, and ei = 1

if link i is in a cycle and 0 otherwise.

When cyclic degree C = 0, the network is purely acyclic

(see examples A, B and C in Fig. 3). In such networks,

components influence each other in a serial or sequential

manner, implying that design changes can propagate in only

one direction from upstream to downstream (Sosa et al.

2013). When C = 1, any influence link is in at least one

cycle. Thus, the network is purely cyclic (example F in

Fig. 3), and components in such a network can propagate

changes to every other. Such a cyclic product architecture

may call for more iterative problem solving (Smith and

Eppinger 1997a, b;Mihmet al. 2003; Sosa et al. 2013).When

0\C\ 1, the network is partially cyclic (see examples D

and E in Fig. 3). Such a network has a mix of sequential and

cyclic interdependences or influences.

Our network generation model incorporates a tuning

parameter (see details in ‘‘Appendix’’) to control and

adjust the amount of cycles to be generated in the net-

works. The network generation model begins by creating a

random directed network with purely sequential (i.e.,

acyclic) dependence relationship among components and

then randomly chooses some component links to rewire

and form cycles to the extent determined by the tuning

Res Eng Design (2015) 26:355–371 363

123

parameter. ‘‘Appendix’’ includes mathematical details of

the tuning parameter, the model and a sensitivity analysis

of the model parameters, which shows that cyclic degree

monotonically increases with the tuning parameter.

Figure 4 presents the DSMs of a series of prototypical

networks simulated using the model (‘‘Appendix’’) with

varied cyclic degrees. On both horizontal and vertical axes,

components are ordered according to ‘‘visibility,’’ i.e., the

count of all other directly and indirectly reachable com-

ponents (MacCormack et al. 2006). In doing so, the ones in

the same cycle will be placed together on the axes due to

their equal visibility. The rectangular boxes drawn in the

DSM encapsulate strong components (Newman 2003), in

which all components and links are on cycles with one

another. The simulated networks tend to develop a single

strongly connected core component. In a purely acyclic

DSM, all of the dots are above the main diagonal (see

Fig. 4a). In (partially) acyclic DSMs, there are always

some dots below the main diagonal regardless of the per-

mutation of rows and columns (see Fig. 4b–d).

4.2 Simulation results

Now, we use the method introduced in Sect. 3 to assess the

evolvability of a wide spectrum of model-generated com-

ponent interaction networks with varied degrees of inter-

action density (K) and cyclic degree (C). In the simulation

exercises, we fix N = 12 and tune K from 2 to 5 by step of

1. For each given combination of simulation controls or

inputs, including K and the cycle tuning parameter, we

simulate a sample of 2000 networks and calculate their

average cyclic degree (C). For each network in the sample,

we generate 200 fitness landscapes and calculate their

average evolvability degree (E).

4.2.1 Impact of component cycles on product evolvability

The results first show that an increase in the extent to which

inter-component influences are cyclic, i.e., cyclic degree (C),

gives rise to product evolvability (E), when holding fixed

interaction density (K) (Fig. 5). Vice versa, more acyclic

product architectures tend to be less evolvable. That is, inter-

component influence cycles promote product evolvability.

Two detailed patterns on the cycle–evolvability rela-

tionship are noteworthy. First, cyclic degree and evolv-

ability are fairly linear correlated. The Pearson correlation

coefficients between them range from 0.980 for K = 5 to

0.983 for K = 2. Second, when interaction density is

lower, evolvability increases faster with the increase in

cycles. The slope of the cycle–evolvability linear regres-

sion curve is 286.59 for K = 2 and much higher than the

slope of 48.22 for K = 5. The expanding gaps between

lines for the various K values shown in Fig. 5 indicate a

constraining effect of interaction density on the promoting

effect of cycles on product evolvability.

4.2.2 Impact of interaction density on evolvability

Figure 5 also shows that evolvability declines with the

increase in the levels of interaction density (K). This

relationship is consistent with prior NK analysis findings

that local peaks proliferate when interaction density

increases (Kauffman 1993; Levinthal 1997). This finding

indicates that more modular product architecture, with

lower component interaction density, gives rise to higher

product evolvability. Our analysis here provides evidence

for the prior argument in the literature that modular product

architecture facilitates future product evolution (Ulrich

1995; Baldwin and Clark 2000). Conversely, more integral

product architecture, implying that many components can

influence each other, limits product evolvability.

These results from simulation exercises demonstrate the

value of the proposed method to capture different influ-

ences of different product architectures, by showing that

architectures with more component dependence cycles and

higher modularity give rise to product evolvability. In the

following section, we discuss the theoretical as well as

practical implications.

5 Discussion

First, the negative impact of component interaction density

on product evolvability is intuitive. It supports the assertion

that modular product architecture promotes product

5 7

(A) C=0

1

2

4 5

3

6 7

(B) C=0

1

2

4 5

3

6 7

(C) C=0

5

6

1

4

7

2

3

8

9

(D) C=0.6

1

2

4 5

3

6 7

(E) C= 0.43

1

2

3

45

(F) C=1

Partially Cyclic Purely Cyclic

Purely Acyclic

Fig. 3 Example networks and their cyclic degrees

364 Res Eng Design (2015) 26:355–371

123

evolution, whereas integral product architecture limits

product evolution. When the design change of one com-

ponent affects the performance of many other components

or requires design changes of many other components, it

will be more difficult for the overall system designers to

find a heritable performance-enhancing variation in overall

design configuration. One example is the slow evolution of

automobiles given their highly integral architecture, which

have a dominant design that has existed for more than a

century, despite enormous R&D efforts aimed to improve

automobile technologies.

Contemporary automobiles are highly integral complex

systems (Whitney 1996; Clark and Fujimoto 1991). A

single change of one component affects the functioning of

and requires design changes of many other components due

to the systemic requirements for energy efficiency, emis-

sion, safety, etc. The high inter-component influence den-

sity (indicated by high K defined in this paper) of

automobile components and parts may provide a partial

explanation to its limited evolvability. Thus, it is difficult

to achieve higher ‘‘fitness’’ of the overall system without

systemic and coordinated changes.

In contrast, contemporary electronics products are

highly modular systems (Baldwin and Clark 2000), in

which the design change of one component does not affect

performances and does not require design changes of many

other components. Without a high degree of

(A) C=0 (B) C=0.25

(C) C=0.50 (D) C=0.75

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Fig. 4 DSMs of model-generated networks with varied cyclic degrees (fixed N = 30, K = 6)

0

50

100

150

200

250

300

350

400

0.0 0.2 0.4 0.6 0.8 1.0

Ev
ol

va
bi

lit
y

(E
)

Cyclic Degree (C)

K=2
K=3
K=4
K=5

Fig. 5 Impact of inter-component influence cycles on product

evolvability

Res Eng Design (2015) 26:355–371 365

123

interdependences, individual component design changes

that improve their own performances also improve overall

system fitness and thus can be easily selected and inherited

into future product generations. The low inter-component

influence density, or modularity, of electronics products

provides a partial explanation to their high evolvability.

Second, the impact of component influence cycles on

product evolvability is relatively less intuitive than that of

interaction density. Indeed, our finding about it is consis-

tent with the assertion of Herbert Simon (1962) that hier-

archy in a complex system facilitates the search process

toward stability. Cycles imply reciprocal or cyclic inter-

dependences that violate pure hierarchy, so reduce stabil-

ity. An earlier empirical study of the call graph architecture

of open source software also found that functional call

cycles among code files in the Linux kernel diminished

over years of evolution (Luo and Magee 2011). That

indicates, as the product matures and evolves, product

architectures (i.e., less cyclic ones) promoting stability

rather than evolvability were increasingly favored and

selected.

System designers and architects can potentially make

use of the now understood impacts of (1) component

interaction density and (2) influence cycles on product

evolvability to adjust product architectures for desirable

evolvability. They can be used as product architecture

design guidelines for evolvability. First, concerning the

impact of interaction density, system architects may pur-

posefully pursue component interface standardization to

reduce the inter-influences between components, improv-

ing modularity (Martin and Ishii 2002), in order to derive

higher evolvability of their product designs. In addition,

with understanding the impact of component cycles, sys-

tem architectures may explore and maintain reciprocal or

cyclic influence relationships between components to

achieve higher product evolvability.

If product architectures are not to be changed, the

designer’s interest in product evolution may call for

simultaneous and coordinated changes of a broader set of

components. Changing a set of components at the same

time, rather than one at a time, will allow searching beyond

the direct neighbors and local peaks, exploring a wider area

of the fitness landscape and sustaining the search process

for a longer while, along with a higher chance to reach

sufficiently high fitness configurations. For example, we

might achieve a higher chance for the design of automo-

biles to evolve to a potentially higher optimum, perhaps the

one characterized by hydrogen- or battery-powered elec-

trical powertrains, if coordinated design changes related to

energy source, transmission and infrastructure, etc., can be

experimented simultaneously. In the other words, a product

architecture that determines low product evolvability may

require broader search for product evolution. However, it is

often costly and difficult to coordinate the simultaneous

redesign of many components or subsystems. Especially,

the components of a product or system may be designed by

various companies and organizations, implying the diffi-

culty for coordination and co-design. This again implies the

importance of appropriate product architecting for evolv-

ability in early design phases.

Furthermore, evolvability is not always favorable for all

engineers or companies. For instance, in such industries as

the aerospace industry, where safety and reliability are of

paramount importance, a high level of evolvability might

be undesirable for system engineers. Instead, they might be

more interested in tighter system integration, which results

in a higher interaction density, and favor sequential inter-

dependences among components by streamlining them

through a hierarchical architecture, which, in turn, results

in limited influence cycles among components.

6 Concluding remarks

Product evolvability is particularly important for start-up

companies which face high uncertainty in market demands,

and the companies in highly dynamic industries. This study

makes both methodological and theoretical contributions to

the studies of product evolvability, as well as changeabil-

ity. Our proposed method and theories are useful for the

assessment, comparison and selection of alternative or

competing product architectures, in addition to the redesign

of product architecture purposefully for either improving or

reducing evolvability, depending on the interests of the

engineers or system architects.

Methodologically, we have presented a repeatable

method and a quantitative metric of product evolvability to

assess the isolated impact of product architecture on the

product’s evolvability. The method and metric incorporate

the emphases of the evolvability concept on inheriting the

architecture and selecting fitness-improving variations,

beyond the general changeability concept, and measure

evolvability as the potential of a product design, given its

architecture, to have fitness-improving variations, instead

of the extent to which the product has evolved. The

assessment method can be potentially embedded into CAD/

CAE software and existing DSM software as an additional

function of DSM analysis, to aid in designing for evolv-

ability. Note that our simulation-based method is easy to

implement because it only requires the most basic binary

DSM data that capture the topological pattern of compo-

nent interactions. With focusing on the impact of product

architecture on evolvability, the impacts of other physical,

social and probabilistic aspects of component interactions

are all randomized in the simulations and thus neutralized

when statistically associating product architecture with

366 Res Eng Design (2015) 26:355–371

123

evolvability. Such randomization reduces the barriers for

the application of the proposed method in practices.

Theoretically, this paper also provides evidence on the

specific impacts of two product architectural patterns on

product evolvability. Specifically, product evolvability is

promoted by component influence cycles, but is limited by

component interaction density. Such understandings allow

engineers and system architects to infer and predict the

evolvability of their products using only the most basic

DSM data. The new understanding also provides guidance

on redesigning product architectures purposefully to adjust

fitness landscape ruggedness for the desired level of pro-

duct evolvability or guidance on product redesign strate-

gies (e.g., one or many component changes at a time) for

fixed product architectures. In the other words, such

knowledge provides architecture design guidelines for

evolvability. In brief, both of our methodology and theo-

retical contributions aid in designing for evolvability.

Note that, this paper examines the evolvability of a

product at a given point of time, as determined by its

component DSM. The present analysis is static in nature.

The real product evolution process and dynamics are not

investigated, and the evolution of evolvability itself and

product architectures over time are also not investigated.

As the next step, we plan to develop a dynamic model of

product evolution processes to investigate alternative evo-

lutionary trajectories and long-run performances of product

designs conditioned by different product architectures and

redesign strategies.

This paper has only analyzed two exemplary architec-

tural lenses, i.e., cycle and density, to demonstrate the

influences of product architecture on evolvability, whereas

product architectures vary and be characterized in many

more ways. Future research may investigate the influences

of additional product architecture patterns on evolvability

and develop more design guidelines for evolvability. We

also hope this study can stimulate the development of more

and better product evolvability metrics and calculation

methods. By then, test cases will be needed to assess and

compare alternative metrics and methods. In addition,

future research should validate the proposed method in real

engineering design practices and investigate the effective-

ness of adding evolvability assessment of product archi-

tectures into the prototype evaluation and selection

activities of engineers and system architects, in the proto-

typing process.

Acknowledgments I am grateful to Kristin Wood, Kevin Otto,

Katja Otto, Richard de Neufville, Karen Wilcox, Christopher Magee,

Daniel Whitney, Oliver de Weck, Jason Woodard, Carliss Baldwin

and other colleagues at Singapore University of Technology &

Design, Massachusetts Institute of Technology, and Harvard

University. The enormous discussions with them have greatly

inspired and shaped this research. This work was funded, in part, by

the SUTD-MIT International Design Centre, http://idc.sutd.edu.sg.

Appendix

The network generation model is revised on the basis of a

mathematical model that replicates ecological networks

(Williams and Martinez 2000). The simulation model uses

three input parameters, which may represent different

architectural properties of a product.

(1) Network size (N): the total number of components in

the product.

(2) Interaction density (K): the average number of

components that each component influences. For a

product with N components and M influence links,

K = M/N. In the context of product design, it is an

indicator of product integrality or reverse indicator

of product modularity.

(3) Influence diversity (D): the scope of other compo-

nents that an average component can influence in an

ideal and hypothesized product hierarchy (Fig. 6a)

or a ‘‘serial design chain,’’ as Sosa et al. (2013) put

it. Its reverse concept is ‘‘influence specificity,’’

which indicates the degree to which a component’s

influences concentrate on a subset of components

that are proximate to each other in the product

hierarchy. As influence diversity increases, inter-

influence relationships among components will

gradually deviate from the pure serial or upstream–

downstream manner.

Baseline Scenario (D 5 0)

We begin by creating an ideal and hypothesized sequential

(upstream–downstream) influence or dependence relation-

ship between components in their interaction network,

which will be rewired later to generate more general and

cyclic networks. To do this, each of the N components is

assigned to a uniformly distributed random position ki,
along an axis ranging from 0 to 1 (Fig. 6a). Consider a

focal component i with position value ki, the entire

downstream interval for component i has a length (1 - ki).
The component’s ‘‘influence niche’’ range ri is the interval

containing the components that it can influence, as defined

by

ri ¼ Xð1� kiÞ ð4Þ

where X is a random variable between 0 and 1, and the

probability distribution of X is component independent (to

be set up later).

Res Eng Design (2015) 26:355–371 367

123

http://idc.sutd.edu.sg

The focal component’s influence niche range can be

located anywhere downstream. The position parameter bi
fixes the location of component i’s niche range by defining

its left most point. bi is assumed to be uniformly distributed

between ki and (1 - ri). Networks generated this way are

strictly acyclic; there is no influence cycle among any

components. Thus, they can be used as the basis for later

rewiring to introduce cycles.

The niche range of a particular component ri, as

defined in Eq. (4), is a random variable whose statistical

properties are affected by the number of components (N)

and interaction density (K) of the product. Now we

explain this association further. First, the density of

components on the entire segment is N. Because the dis-

tribution of these components is uniform, the expected

number of components in the niche for component i is as

follows:

EðKiÞ ¼ N � EðriÞ ð5Þ

For the entire system, excluding the rightmost compo-

nent, the sum of the expected number of component that

each component can influence is as follows:

EðMÞ ¼
XN�1

i¼1

EðKiÞ ¼ N
XN�1

i¼1

EðriÞ ð6Þ

In addition, the expected average number of components

that each components influences is simply

EðKÞ ¼ EðMÞ
N

¼
XN�1

i¼1

EðriÞ ¼
XN�1

i¼1

Eð1� kiÞEðXÞ

¼ ðN � 1Þ
2

EðXÞ ð7Þ

Thus, the random variable X is not only constrained to

be between 0 and 1, but its expected value is

EðXÞ ¼ 2EðKÞ
N � 1

ð8Þ

E(K) is given as the input variable K to the network

construction model. Note that, although Ki is component-

specific and randomly distributed, K is the average and

an empirically measurable property of a given product’s

component network. To generate a network, we need to

choose an appropriate functional form for the distribution

of X and then impose the constraint of Eq. (8). For

computational ease, a beta-distribution with parameters

(1, b) is used for the random variable X. This allows

E(X) to be in a computationally convenient form, 1/

(1 ? b). Given K and N as inputs, b will be determined

by

b ¼ N � 1

2K
� 1 ð9Þ

Then, a random niche range constrained by (4) can be

given to each of the aforementioned array of components

randomly organized between 0 and 1 on the axis. The focal

component is then linked to each component in its influ-

ence niche.

Hybrid (0 < D < 1): Random rewiring

When ‘‘influence diversity (D)’’ is greater than zero

(D[0), a portion D of influence links of a component,

which assumedly go into its hypothesized niche, become

nonspecific and are wired to components anywhere in

Affected
component

Influence-initiating
component

Unaffected
component

Influence
Link

0 1

i

Niche
iriλ

Lower bound of the nicheib

0 1

i

Niche
ir

Upstream Downstream

iλ

Lower bound of the nicheib

~ (,1)i i ib u λ λ− ~ (1,)X Beta β)1(ii Xr λ−=ir

(a) baseline

(b) rewiring

Fig. 6 Network rewiring model

368 Res Eng Design (2015) 26:355–371

123

the product hierarchy (including the preassigned niche).6

Figure 6b demonstrates a hybrid configuration after

rewiring. Thus, influence diversity D is operationalized

as the percentage of a component’s influence links that

can deviate away from its predefined niche of compo-

nents as given in the baseline scenario, and is the control

for the extent of rewiring. Now, cycles can emerge to the

degree of rewiring determined by D.

Tuning parameters N, K and D, the model generates

random networks with gradually varied cyclic degrees (C).

We statistically assessed the basic regularity in the rela-

tionship between N, K, D and C via simulations7 before

using the simulated networks to investigate evolvability.

First, the cyclic degree appears almost unaffected by

changes in N when N is sufficiently large. Second, the

cyclic degree is an increasing function of both K and

D. The average cyclic degree of randomly generated net-

work samples as a function of the inputs K and D (when

N = 100) is plotted in Fig. 7. In particular, because the

relationship between K or D and C is monotonic, one can

infer the nominal ‘‘influence diversity’’ of an actual product

from its empirically measurable interaction density (K) and

cyclic degree (C).

References

Ahmad N, Wynn DC, Clarkson JP (2013) Change impact on a product

and its redesign process: a tool for knowledge capture and reuse.

Res Eng Design 24:219–244

Baldwin CY, Clark KB (2000) Design rules, vol 1., the power of

modularityMIT Press, Cambridge

Beesemyer JC, Fulcoly DO, Ross AM, Rhodes DH (2011) Develop-

ing methods to design for evolvability: research approach and

preliminary design principles. In: 9th conference on systems

engineering research, Los Angeles, CA

Butterfield MI, Pearlman JS, Vickroy SC (2008) A system-of-systems

engineering GEOSS: architectural approach. IEEE Syst J

2(3):321–332

Cardin MA, Kolfschoten GL, Frey DD, de Neufville R, de Weck OL,

Geltner DM (2013) Empirical evaluation of procedures to

generate flexibility in engineering systems and improve lifecycle

performance. Res Eng Design 24:277–295

Cheng H, Chu X (2012) A network-based assessment approach for

change impacts on complex product. J Intell Manuf

23(4):1419–1431

Clark K, Fujimoto T (1991) Product development performance:

strategy, organization, and management in the world auto

industry. Harvard Business School Press, Boston

Clarkson J, Simons C, Eckert C (2004) Predicting change propagation

in complex design. ASME J Mech Des 126(5):788–797

Cohen T, Navathe SB, Fulton RE (2000) C-FAR, change favorable

representation. Comput Aided Des 32(5):321–338

Colagrave N, Collins S (2008) Experimental evolution: experimental

evolution and evolvability. Heredity 100:464–470

Dahmus JB, Gonzalez-Zugasti JP, Otto KN (2001) Modular product

architecture. Des Stud 22(5):409–424

Danilovic M, Browning TR (2007) Managing complex product

development projects with design structure matrices and domain

mapping matrices. Int J Project Manage 25:300–314

de Neufville R, Scholtes S (2011) Flexibility in engineering design.

The MIT Press, Cambridge

de Neufville R, de Weck OL, Frey D, Hastings D, Larson R, Simchi-

Levi D, Oye K, Weigel A, Welsch R (2004) Uncertainty

management for engineering systems planning and design. In:

MIT engineering systems division monograph, engineering

systems symposium, Cambridge, MA

Eckert C, Clarkson P, Zanker W (2004) Change and customization in

complex engineering domains. Res Eng Design 15:1–21

Engel A, Reich Y (2013) Architecting systems for optimal lifetime

adaptability. In: International conference on engineering design,

Seoul, Korea

Eppinger SD, Browning TR (2012) Design structure matrix: methods

and applications. The MIT Press, Cambridge

Fixson SK, Park JK (2008) The power of integrality: linkages

between product architecture, innovation, and industry structure.

Res Policy 37:1296–1316

Fricke E, Schulz AP (2005) Design for changeability (DFC):

principles to enable changes in systems throughout their entire

lifecycle. Systems Engineering 8(4):342–359

Fulcoly DO (2012) A normative approach to designing for evolvability:

methods and metrics for considering evolvability in systems

engineering.Master’sThesis,Massachusetts Institute ofTechnology

0
0.2

0.4
0.6

0.8
1

0
5

10
15

20
0

0.2

0.4

0.6

0.8

1

Cy
cl

ic
 D

eg
re

e
(C

)

Fig. 7 Impact of influence diversity and interaction density on cycle

degree

6 Ki of each component is still preserved, whereas the component’s

influence links are now totally nonspecific to any predefined niche. In

addition, the resulted networks with D = 1 are not purely random.

The components that are primarily in more upstream of a product

hierarchy have a broader scope of influence than components that are

more downstream. By a simple robustness checking simulation

exercise, we found that if the networks are rewired without preserving

each component’s preassigned number of outgoing influences (Ki)

when rewiring, the main conclusions of the paper still hold.
7 The model is repeatedly run to simulate many network samples. For

each given combination of inputs (N, K, G), we simulate 2,000

networks and calculate the average cyclic degree of each sample of

2,000 networks. To improve the fitness of the randomly generated

networks, only the ones with the given N components fully connected

and K within 3% of the target value were accepted as valid trials.

Res Eng Design (2015) 26:355–371 369

123

Giffin M, Keller R, Eckert C, de Weck OL, Bounova G, Clarkson PJ

(2009) Change propagation analysis in complex technical

systems. J Mech Des 131(8):081001

Hamraz B, Caldwell NHM, Clarkson PJ (2012) A multi-domain

engineering change propagation model to support uncertainty

reduction and risk management in design. J Mech Design

134(10):100905.01

Hamraz B, Caldwell NHM, Clarkson PJ (2013) A holistic framework

for categorisation of literature in engineering change manage-

ment. Syst Eng 16(4):473–505

Hansen TF (2003) Is modularity necessary for evolvability? Remarks

on the relationship between pleiotropy and evolvability. Biosys-

tems 69(2–3):83–94

Henderson RM, Clark KB (1990) Architectural innovation: the

reconfiguration of existing product technologies and failure of

established firms. Adm Sci Q 35:9–30

Hölttä-Otto K, Chiriac N, Suh ES, Lysy D (2012) Comparative

analysis of coupling modularity metrics. J Eng Des 23:10–11

Jarratt TAW, Eckert CM, Caldwell NHM, Clarkson PJ (2011)

Engineering change: an overview and perspective on the

literature. Res Eng Design 22(2):103–124

Kauffman SA (1993) The origins of order: self-organization and

selection in evolution. Oxford University Press, New York

Kauffman SA, Weinberger DE (1989) The NK model of rugged

fitness landscapes and its application to maturation of the

immune response. J Theor Bio 141:211–245

Keese D, Seepersad C, Wood KL (2009) Product flexibility

measurement with enhanced change modes and effects analysis

(CMEA). Int J Mass Cust 3(2):115–145

Keller R, Eckert CM, Clarkson PJ (2006) Matrices or node-link

diagrams: which visual representation is better for visualising

connectivity models. Inf Vis 5:62–76

Kelly K (2010) What technology wants. Viking, New York

Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci USA

95:8420–8427

Koh ECY, Caldwell NHM, Clarkson PJ (2012) A method to assess

the effects of engineering change propagation. Res Eng Design

23(4):329–351

Koh ECY, Caldwell NHM, Clarkson PJ (2013) A technique to assess

the changeability of complex engineering systems. J Eng Des

24(7):477–498

Levinthal DA (1997) Adaptation on rugged landscapes. Manag Sci

43(7):934–950

Luo J, Magee CL (2011) Detecting evolving patterns of self-

organizing networks by flow hierarchy measurement. Complex-

ity 16(6):53–61

MacCormack A, Rusnak J, Baldwin CY (2006) Exploring the

structure of complex software designs: an empirical study of

open source and proprietary code. Manage Sci

52(7):1015–1030

Martin MV, Ishii K (2002) Design for variety: developing standard-

ized and modularized product platform architectures. Res Eng

Design 13:213–235

Mihm J, Loch C, Huchzermeier A (2003) Problem-solving oscilla-

tions in complex engineering projects. Manage Sci

49(6):733–750

Newman MEJ (2003) Structure and function of complex networks.

SIAM Rev 45:167

Ollinger GA, Stahovich TF (2004) RedesignIT—a model-based tool

for managing design changes. J Mech Des 126(2):208–216

Otto KN, Wood KL (1998) Product evolution: a reverse engineering

and redesign methodology. Res Eng Design 10(4):226–243

Pasqual MC, deWeck OL (2012) Multilayer network model for

analysis and management of change propagation. Res Eng

Design 23(4):305–328

Pimmler TU, Eppinger SD (1994) Integration analysis of product

decompositions. In: Proceedings of ASME 6th international

conference on design theory and methodology, Minneapolis, MN

Rajan P, Van Wie M, Wood KL, Campbell MI, Otto KN (2005) An

empirical foundation for productflexibility.DesStud26(3):405–438

Ricci N, Rhodes RH, Roos AM (2014) Evolvability-related options in

military systems of systems. Proc Comput Sci 28:314–321

Rivkin JW, Siggelkow N (2007) Patterned interactions in complex

systems: implications for exploration. Manage Sci

53(7):1068–1085

Ross AM, Rhodes DH, Hastings DE (2008) Defining changeability:

reconciling flexibility, adaptability, scalability, modifiability,

and robustness for maintaining system lifecycle value. Syst Eng

11(3):246–262

Rutka A, Guenov M, Lemmens Y, Schmdit-Schaeffer T, Coleman P,

Rivi‘ere A (2006) Methods for engineering change propagation

analysis. In: Proceedings of the 25th congress of the international

council of the aeronautical sciences, ICAS, Stockholm, Sweden

Saleh JH, Mark G, Jordan NC (2009) Flexibility: a multi-disciplinary

literature review and a research agenda for designing flexible

engineering systems. J Eng Des 20(3):307–323

Siddiqi A, de Weck OL (2008) Modeling methods and conceptual

design principles for reconfigurable systems. J Mech Des

130:101102–101115

Silver M, de Weck OL (2007) Time-expanded decision networks: a

framework for designing evolvable complex systems. Systems

Engineering 10:167–186

Simon HA (1962) The architecture of complexity. Proc Am Philos

Soc 106:467–482

Simpson TW, Maier JRA, Mistree F (2001) Product platform design:

method and application. Res Eng Design 13(1):2–22

Simpson TW, Jiao J, Siddique Z, Hölttä-Otto K (2013) Advances in

product family and product platform design: methods and

applications. Springer, Berlin

Singh V, Skiles SM, Krager JE, Wood KL, Jensen D, Sierakowski R

(2009) Innovations in design through transformation: a funda-

mental study of transformation principles. J Mech Des

131(8):081010

Smaling R, de Weck OL (2007) Assessing risks and opportunities of

technology infusion in system design. Syst Eng 10(1):1–25

Smith RP, Eppinger SD (1997a) Identifying controlling features of

engineering design iteration. Manage Sci 43(3):276–293

Smith RP, Eppinger SD (1997b) A predictive model of sequential

iteration in engineering design. Manage Sci 43(8):1104–1120

Sosa ME, Eppinger SD, Rowles CM (2007) A network approach to

define modularity of components in complex products. J Mech

Des 129(11):1118–1129

Sosa ME, Mihm J, Browning TR (2013) Linking cyclicality and

product quality. Manuf Serv Oper Manag 15(3):473–491

Suh NP (1990) axiomatic design: the principles of design. Oxford

University Press, Oxford

Suh ES, de Weck OL, Chang D (2007) Flexible product platforms:

framework and case study. Res Eng Design 18(2):67–89

Tilstra A, Seepersad C, Wood KL (2012) High definition design

structure matrix for quantitative assessment of product architec-

ture. J Eng Des 23(10–11):767–789

Tilstra A, Backlund P, Seepersad C, Wood KL (2013) Principles for

design products with flexibility for future evolution. Int J Mass

Cust (forthcoming)

Ulrich KT (1995) The role of product architecture in the manufac-

turing firm. Res Policy 24(3):419–440

Ulrich KT, Eppinger SD (2011) Product design and development.

McGraw-Hill, New York

Wagner GP, Altenberg L (1996) Perspective: complex adaptations

and the evolution of evolvability. Evolution 50:967–976

370 Res Eng Design (2015) 26:355–371

123

Whitney DE (1996) Why mechanical design cannot be like VLSI

design. Res Eng Design 8(3):125–138

Whitney DE, Crawley E, deWeck O, Eppinger S, Magee C, Moses J,

Seering W, Schindall J, Wallace D (2004) The influence of

architecture in engineering systems. Engineering Systems

Monograph, MIT Engineering Systems Division, Cambridge

Williams R, Martinez N (2000) Simple rules yield complex food

webs. Nature 404:180–183

Yassine AA, Falkenburg DR (1999) A framework for design process

specifications management. J Eng Des 10(3):223–234

Ziman J (2000) Technological innovation as an evolutionary process.

Cambridge University Press, Cambridge

Res Eng Design (2015) 26:355–371 371

123

	A simulation-based method to evaluate the impact of product architecture on product evolvability
	Abstract
	Introduction
	Literature review
	Change propagation through component interactions
	Product evolvability and design for evolvability

	Simulation-based assessment of product evolvability
	Simulation results: assessing evolvability of products with gradually varied architectures
	Model-generated component interaction networks
	Simulation results
	Impact of component cycles on product evolvability
	Impact of interaction density on evolvability

	Discussion
	Concluding remarks
	Acknowledgments
	Appendix
	Baseline Scenario (D = 0)
	Hybrid (0 lessthan D lessthan 1): Random rewiring

	References

