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Abstract This paper shows the utility of a new interval cooperative game theory as an
effective water diplomacy tool to resolve competing and conflicting needs of water users from
different sectors including agriculture, domestic, industry and environment. Interval parameter
programming is applied in combination with cooperative game theoretic concepts such as
Shapley values and the Nucleolus to provide mutually beneficial solutions for water allocation
problems under uncertainty. The allocation problem consists of two steps: water resources are
initially allocated to water users based on the Nash bargaining model and the achieved
nonlinear interval parameter model is solved by transforming it into a problem with a
deterministic weighted objective function. Water amounts and net benefits are reallocated to
achieve efficient water usage through net benefit transfers. The net benefit reallocation is done
by the application of different cooperative game theoretical methods. Then, the optimization
problem is solved by linear interval programming and by converting it into a problem with two
deterministic objective functions. The suggested model is then applied to the Zarrinehrud sub-
basin, within Urmia Lake basin in Northwestern Iran. Findings suggest that a reframing of the
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problem using cooperative strategies within the context of water diplomacy framework -
creating flexibility in water allocation using mutual gains approach - provides better outcomes
for all competing users of water.

Keywords Waterdiplomacy.Cooperativegames . Intervalparameter.Uncertainty.UrmiaLake

1 Introduction

Allocation of and access to water is becoming increasingly complex because of population
growth, uneven temporal and spatial distribution of water, rapid urbanization, ecosystem
degradation, biodiversity losses, and global climate change. Many water-related problems
are framed from a contested terrain in which many actors (individuals, communities, busi-
nesses, NGOs, states, and countries) compete to protect their own and often conflicting
interests. Water-related problems are complex not only because they involve various stake-
holders (e.g., farmers, industrial users, urban developers, environmental activists) who are
competing for a limited and common resource but also because they cross multiple boundaries
(e.g., physical, disciplinary, jurisdictional). As a result, there is rarely an acceptable solution for
most water problems with multiple objectives and competing needs.

Water resources allocation - with competing and often conflicting needs of various users
with different values, goals, and interests - is a complex wicked problem (Islam and Susskind
2015). The reason that water allocation remains a major problem is not the lack of sufficient
scientific information to determine the likely impacts of climate change or certainty about
hydrological variations in the future. Rather, water allocation will continue to be a problem
because of population growth, current allocation practices, unchecked demand for water, and
underinvestment in infrastructure and technology to increase efficiency of water use. An
effective way to address complex water allocation problems is to reframe them as joint
decision-making problems- from identifying and defining the problem to innovating and
implementing mutual gains options for resolutions - tasks that can generate politically legit-
imate policies and projects based on science with active participation of all involved parties.
The Water Diplomacy Framework (WDF) is emerging as an alternative to traditional techno-
or values-focused approach to water management (Islam and Susskind 2013). The WDF
diagnoses water problems, identifies intervention points, and proposes sustainable resolutions
that are sensitive to diverse viewpoints and uncertainty as well as changing and competing
demands.

In solving these types of multi-criteria multi-decision maker water problems, game theory
provides an attractive alternative to traditional optimization methods. Game theory is an
elegant mathematical formulation of competition and cooperation. Games can be classified
as cooperative or non-cooperative. In cooperative games, players cooperate in bargaining or by
forming coalitions and coordinating strategies to increase their benefits. In non-cooperative
games, players make decisions independently when they cannot or do not want to coordinate
their strategies or bargaining plans (Tisdell and Harrison 1992). The cooperative game
approach can define efficient and fair solutions that provide the appropriate incentives among
the parties involved (Sechi et al. 2013).

In the past decades, many studies have been carried out for developing deterministic
cooperative game models for water resources allocation problems. Wang et al. (2003) pro-
posed a cooperative game theoretic framework for obtaining equitable, efficient and
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sustainable short term water allocation schemes among competing water users in a river basin.
Kucukmehmetoglu and Guldmann (2004) presented a linear programming model using
cooperative game-theoretic concepts in the three riparian countries (Turkey, Syria and Iraq).
Dinar et al. (2006) applied a role-playing game to a water allocation problem in the Kat
watershed in South Africa by combining the companion modeling approach and a negotiation
procedure as a cooperative game that can be mirrored as a mediated mechanism.

Madani and Dinar (2011) applied several commonly used cooperative game theoretic
solution concepts through a numerical groundwater example. Mahjouri and Ardestani (2011)
developed two cooperative and noncooperative methodologies for a large-scale water alloca-
tion problem in Southern Iran. Abed-Elmdoust and Kerachian (2012) utilized two fuzzy
cooperative games for modeling equitable and efficient water allocation among water users
in both inter-basin and intra-basin water allocation problems. Jafarzadegan et al. (2013)
developed a new solution concept, called Fuzzy Variable Least Core, to model the fuzzy
cooperative games. This solution concept is used for water and benefit allocation, considering
the uncertainties associated with their benefit coefficients. Safari et al. (2014) applied a
Stackelberg model to maximize the net benefit with the Iran Water Resources Management
Company as the leader and agricultural, domestic, and industrial users as followers subject to
the system’s constraints. The Stackelberg (leader-follower) game is the hierarchical relation-
ship between two autonomous, and possibly conflictual, decision makers (Colson et al. 2007).
The suggested method is then applied to a case study in Iran, showing how cooperation
in a water negotiation could create more value. However this paper does not consider the
coalition among the followers and also does not model the uncertainty in the input
variables. Roozbahani et al. (2014) proposes a multi-objective optimization model for
sharing water among stakeholders of a transboundary river, assuming that the stakeholders
cooperate.

In water resources management problems many parameters are often uncertain.
Uncertainties might come from the conflicting water division, the randomness of rainfall
events in spatial and temporal, the instability of water demand in different periods and the
incongruity of strategies in the social and economic development (Zhang and Li 2014). In this
case the cooperation is difficult to attain because of uncertainty in parameters and variables.
Therefore, several inexact optimization techniques were developed to deal with the complex-
ities in water resources systems, such as fuzzy and stochastic methods (Li and Huang 2008). In
most cases, no sufficient data are available to estimate the probability density functions (PDFs)
and/or membership functions, and only upper and lower bounds of the uncertain inputs are
known. In this case, interval-parameter programming is effective in tackling uncertainties
expressed as intervals with known lower and upper bounds but unknown distribution functions
(Wang et al. 2012).

Recently, interval parameter method was introduced for handling uncertainty efficiently.
Details of linear interval parameter can be found in Huang (1996). This paper provides an
interval parameter water quality management model. The model allows uncertain information,
presented as interval numbers, to be effectively imbedded into the optimization process and the
resulting solutions. Moreover, several interval parameter models have been introduced in the
literature of water resources decision making (Li et al. 2006; Lu et al. 2010; Fan et al. 2012;
Wang and Huang 2012, 2013, 2014). The results indicated that interval solutions can be used
in modeling the objective function and decision variables. In the context of nonlinear interval
parameter models, very few studies have been conducted. Li and Huang (2008) developed an
interval parameter two-stage stochastic nonlinear programming method for supporting water-
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resources allocation within a multi-reservoir system. This model can deal with nonlinear-
ities in the objective function such as the economies-of-scale effects. Nikoo et al.
(2012) proposed a new methodology for simultaneous allocation of water and waste
load in river basins. A nonlinear interval number optimization model is used to
incorporate the uncertainties of model inputs and parameters.

This paper explores a new interval cooperative game model as an effective tool for WDF
among competing users under uncertainty. This study combines key features of interval
parameter methods and cooperative games to extend previously developed models for water
allocation under uncertainty. In reality, there are nonlinear relationships among water resources
systems and also noncooperative models cannot guarantee stability of allocation over time,
thus this newly developed model considers both linear and nonlinear uncertainties in cooper-
ative water allocation. Considering both linear and nonlinear relationships and using the Nash
bargaining solution to find initial allocation are the main novelties of this paper. The total net
benefit is then reallocated to the water users using cooperative game theoretic concepts. There
are many cooperative solution methodologies; the Shapley values appear to be the most
frequently used methodology in applications. In this study, in addition to Shapley values
two variants of the nucleolus methodology are used. The Zarrinehrud sub-basin including its
water resources system is modeled as a real case study to demonstrate the effectiveness of the
model and solution methodology.

In the next section the fundamentals of interval parameter models and different cooperative
game theoretic approaches will be described. Then in Section 3 the case study will be
presented in details. Section 4 discusses the results from this study and concluding remarks
are provided in Section 5.

2 Methodology

Water issues are complex because they cross multiple boundaries and involve various stake-
holders with competing needs. The origin of many water issues is a dynamic consequence of
competition, interconnections, and feedback among variables and processes in multiple
sectors. When viewed as a limited resource, water lends itself to destructive conflicts over
its division; knowledge of water use and allocation, however, can transform a finite water
quantity into a flexible resource. To generate such a transformative knowledge base for water,
we need a framework to synthesize explicit (scientific) and tacit (contextual) water knowledge.
Such a framework must build on scientific objectivity and be cognizant of contextual
differences inherent to water issues - Water Diplomacy Framework (WDF) proposed in
Islam and Susskind (2013) is a step in that direction. The WDF is based on the following
four propositions:

& water is not a fixed resource; knowledge of water can be shared across scales to make it a
flexible resource;

& water issues are contextual and continuously changing in terms of their couplings with
natural, societal and political forces;

& uncertainty, variability, nonlinearity, and feedback are not exogenous but rather linked in
real world situations and must be accounted for;

& cooperative rather than competitive approaches to decision-making about water can
provide an alternative to zero-sum thinking necessary for resolving water conflicts.
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Key features of the WDF are presented in Fig. 1. To tackle the uncertainty and non-linearity
issues related to water allocation for competing uses, the interval parameter programming
approach will be used in this paper. To model the effect of cooperation, three different tools of
cooperative game theory will be used to show how mutual gains can initiate trust building
among involved parties compared to non-cooperative and zero-sum games.

2.1 Interval Parameter Programming

Because of the uncertainties in water resources management, interval programming model is
considered to be a suitable approach to address cooperative water allocation problems. Let x
denote a closed and bounded set of real numbers. An interval number x± is defined as an
interval with known upper and lower bounds but unknown distribution membership informa-
tion (Huang 1996):

x� ¼ x−; xþ½ � ¼ t∈xjx− ≤ t≤xþf g ð1Þ
where x− and x+ are the lower and upper bounds of x±, respectively. When x−=x+ then x±

becomes a deterministic number.

2.1.1 Linear Interval Parameter Programming

Let R± denote a set of interval numbers. A linear interval number programming model can be
defined as follow (Huang 1996):

Maximize f � ¼ C�X� ð2Þ

Fig. 1 The main ideas in the water diplomacy framework (Islam and Susskind 2013)
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subject to:

A�X�≤B� ð3Þ

X�≥0 ð4Þ
A robust two-step method was developed to solve this problem (Fan and Huang 2012). In

this method a conservative submodel will be solved first; then an optimistic submodel will be
derived based on solutions from the conservative submodel.

Assume n interval coefficients Cj
± (j=1, 2,…, n) in the objective function of the model. If

the first k of them are positive, the rest are negative, then, the following expressions can be
developed for the conservative submodel;

Max f − ¼
X k

j¼1
c−j x

−
j þ

X n

j¼kþ1
c−j x

þ
j ; ð5Þ

subject to:

X k

j¼1
ai j
�� ��þSign aþi j

� �
x−j þ

X n

j¼kþ1
ai j
�� ��Sign ai j

� �
xþj ≤b

−
i ∀i ð6Þ

x−j ≥0; j ¼ 1; 2;…; k ð7Þ

xþj ≥0; j ¼ k þ 1; k þ 2;…; n ð8Þ
xjopt
− (j=1,2,…,k) and xjopt

+ (j=k+1,k+2,…,n) will be obtained from conservative submodel.
The optimistic submodel can be formulated as follows (assumebj

±>0, f±>0):

Max f þ ¼
X k

j¼1
cþj x

þ
j þ

X n

j¼kþ1
cþj x

−
j ð9Þ

subject to:

X k

j¼1
ai j
�� ��Sign a−i j

� �
xþj þ

X n

j¼kþ1
ai j
�� ��þSign aþi j

� �
x−j ≤b

þ
i i ¼ 1; 2;…;m: ð10Þ

X li1

j¼1
a−i jx

þ
j þ

X k

j¼li1þ1
a−i jx

−
jopt þ

X li2

j¼kþ1
a−i jx

−
j þ

X n

j¼li2þ1
a−i jx

þ
jopt ≤b

þ
i ð11Þ

xþj ≥x
−
jopt j ¼ 1; 2;…; k ð12Þ

x−j ≤x
þ
jopt j ¼ k þ 1; k þ 2;…; n ð13Þ

xþj ≥0; j ¼ 1; 2;…; k ð14Þ

x−j ≥0; j ¼ k þ 1; k þ 2;…; n ð15Þ

ai j
�� �� ¼ min a−i j; a

þ
i j

n o
; ai j

�� ��þ ¼ max a−i j; a
þ
i j

n o
∀i ð16Þ

4290 M. Zarghami et al.



where aij
±≥0 (j=1,2,…,li1;j=li2+1,…,n), aij

±≤0 (j=li1+1,li1+2,…,li2) and li1≤k, and
li2≥k.

Therefore, solutions xj opt
± =[xj opt

_ ,xj opt
+ ] and fj opt

± =[fj opt
_ ,fj opt

+ ] are the ultimate solutions for
model (2).

2.1.2 Nonlinear Interval Parameter Programming

A general nonlinear interval number programming problem with uncertain interval coefficients
both in the objective function and in the constraints is defined as follows:

Minimize f X ;Uð Þ ð17Þ
Subject to:

gi X ;Uð Þ≥ ¼ ≤ð Þ νLi ; ν
R
i

� �
; i ¼ 1;…; l; ð18Þ

X∈Ωn; U ¼ UL;UR
� �

; Ui ¼ UL
i ;U

R
i

� �
; i ¼ 1; 2;…; q; ð19Þ

where f is objective function of X (decision vector) andU (uncertain vector). gi is ith constraint.
νi is the allowable interval number of ith constraint. To solve this nonlinear interval number
programming problem the method of Jiang et al. (2008) can be applied. Based on an order
relation of interval numbers, the uncertain objective function is transformed into a model with
two deterministic objective functions. By this transformation, the uncertainty will be decreased
and this objective function provides an accurate estimation of the sensitivity of outputs to the
fluctuation of the uncertain input coefficients, thus the robustness of the decisions is also
considered.

Through a modified possibility degree, the uncertain inequality and equality
constraints are changed to deterministic inequality constraints. The possibility degree
of interval number represents certain degree for comparing interval numbers. Zhang
et al. (1999) introduced an approach using the possibility degree for comparing any
two intervals. Thus the uncertain objective function can be transformed into a two-
objective optimization problem as follows:

Minimize m f X ;Uð Þð Þ;w f X ;Uð Þð Þ½ �; ð20Þ
where

m f X ;Uð Þð Þ ¼ 1

2
f L Xð Þ þ f R Xð Þ� � ð21Þ

w f X ;Uð Þð Þ ¼ 1

2
f L Xð Þ− f R Xð Þ� � ð22Þ

With a certain value of X, f(X,U) is an interval number, when its bounds fL(X), fR(X) can be
obtained (Ma 2002) as

f L Xð Þ ¼ minU∈Γ f X ;Uð Þ; f R Xð Þ ¼ maxU∈Γ f X ;Uð Þ ; ð23Þ

U∈Γ ¼ U jUL≤U ≤UR
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We require that the inequality constraint gi(X,U)≥[νiL,νiR] in Eq. (18) is satisfied with a
possibility degree level, and reformulate it as a deterministic inequality:

PC ≥D≥λi; C ¼ gLi Xð Þ; gRi Xð Þ� �
; D ¼ νLi ; ν

L
i

� �
; ð24Þ

where PC≥D is the possibility degree of the ith constraint. 0≤λi≤1 is a predetermined
possibility degree level. C is the interval of the constraint function at X and its bounds can
be obtained through two deterministic optimization processes:

gL Xð Þ ¼ minU∈Γg X ;Uð Þ; gR Xð Þ ¼ maxU∈Γg X ;Uð Þ ð25Þ
Thus Eq. (12) can be transformed into an unconstraint and single-objective optimization

problem in terms of a penalty function ~f ;

Minimize ~f ¼ 1−βð Þ m f X ;Uð Þð Þ þ ξð Þ
ϕ

þ β w f X ;Uð Þð Þ þ ξð Þ
φ

þ σ
X k

i¼1
φ PMi ≥Ni−λið Þ; ð26Þ

where

ϕ ¼ minX∈Ωn m f X ;Uð Þð Þ þ ξð Þ; φ ¼ minX∈Ωn w f X ;Uð Þð Þ þ ξð Þ ; ð27Þ

0≤β≤1 is a weighting factor of the two objective functions (Zarghami and Szidarovszky
2011), furthermore ξ is a number which makes m(f(X,U))+ξ and w(f(X,U))+ξ non-negative. In
addition, ϕ and φ are two normalization factors, σ is the penalty factor which is usually
specified as a large value and φ is a function with the following form (Jiang et al. 2008):

φ PMi ≥Ni−λið Þ ¼ max 0;− PMi ≥Ni−λið Þð Þð Þ2 ð28Þ

The water resource allocation mechanism is designed in two stages. In Fig. 2, the proposed
methodology is explained in details. The users could select the noncooperative solution such as
Nash equilibrium or might choose a cooperative solution such as Shapley value or Nucleolus.
In the first step of allocation, an economic objective function is used to find an initial
water allocation scheme to the stakeholders. The initial allocation scheme is subject to
the systems constraints. Since the players make their decisions simultaneously, a
logical assumption is that the players select the Nash bargaining solution (Nash
1953). Nash proposed his bargaining solution for two-person games, when the players
maximize the product of their gains over what each would receive without agreement.
This is the only solution satisfying certain properties such as efficiency, symmetry,
independence of unit changes and independence of irrelevant alternatives (Nash 1953).
In the second stage, cooperative game theoretical concepts are applied to this model.
In cooperative games, the actors are the coalitions. They may range from non-
cooperative coalitions where the players act to maximize only their own benefits, to
full cooperative coalitions where all players act cooperatively to maximize the coali-
tion’s benefit. Partial coalitions, with certain subsets of players, may also be formed.
In applying cooperative games, we have to determine the characteristic function value
for each possible coalition. The discrete function given by the costs or benefits of
every coalition is called the characteristic function and represents a key element of the
cooperative game solution (Sechi and Zucca 2015).
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In the first stage, the water allocation model maximizes the net benefits derived
for the various water users, including agricultural, domestic and industrial consump-
tion. In the second stage the characteristic function values of the various coalitions
are first calculated, and then the concepts of Shapley values or Nucleolus are used
to obtain optimal cost allocations. There are other alternative methods and concepts
to solve cooperative games, they can be used similarly to the cases presented in this
paper.

2.2 The Shapley Values

The Shapley Value is a solution concept that prescribes a single payoff for each
player. It is the average of all marginal contributions of that player to each coalition
he or she can be a member of (Shapley 1953). The Shapley Value is a unique
solution concept in cooperative game theory that allocates the total surplus generated
by the grand coalition to each member based on each player’s average contribution to

Characterizing the 
parameter uncertainty 

and gathering data 

Initial allocation by 
Nash bargaining 

solution

Developing a 
deterministic 

weighted objective 
function

Forming coalitions of 
players 

Developing 
characteristic functions 

of coalitions 

Reallocation using 
cooperative concepts

Final benefits of 
players 

Initial benefits 
of players

Interval 
programming 

Nonlinear interval 
parameter model

Linear interval 
parameter model

Fig. 2 Framework of the proposed methodology

Cooperative Games Under Uncertainty for Water Diplomacy 4293



all coalitions in that game (Dinar and Nigatu 2013). The Shapley Value for player i is
defined as

φi νð Þ ¼
X

S⊆N

s−1ð Þ! N−sð Þ!
N !

ν Sð Þ−ν S−iÞð �½ ð29Þ

where S runs through all coalitions containing player i, S−{i} is the coalition obtained by
excluding i, s is the number of players in coalition S,N is the total number of players, ν(S) is the
characteristic function value of coalition S. In (29), the first part gives the probability of a
particular player joining coalition S and the bracketed expression gives the contribution that the
particular player can make to the coalition by joining.

2.3 The Nucleolus

The Nucleolus concept is based on the idea of excesses. The Nucleolus is the reward
vector for which the excesses for all coalitions are as small as possible uniformly.
That is, this concept makes all players less unhappy uniformly, so it can serve as a
mutually acceptable solution concept. The Nucleolus allocation is a single solution
that is always in the Core, if the Core is non-empty and provides a fair and efficient
allocation of benefits (Madani and Dinar 2011). An excess is the amount by which
the worth of a coalition exceeds the aggregate payoff to its members in isolation. The
excess of coalition S with respect to payoff vector x is defined as

e S; xð Þ ¼ ν Sð Þ−
X

S
xi ð30Þ

The Nucleolus minimizes lexicographically the maximum excess of the coalitions by
sequentially solving the following problem (Schmeidler 1969):

Minimize e ð31Þ
subject to:

X
i∈S

xi≥ν Sð Þ−e for remaining coalitionsð Þ ð32Þ

X
i∈N

xi ¼ ν Nð Þ ð33Þ

This optimization problem is first solved involving all coalitions. The coalition for which
e(S, x) equals the critical value is eliminated from constraint (32) in the next step and this
reduced model is then solved. Continuation in this manner reduces the number of constraints
by one at each step. The procedure terminates if either a unique optimal solution is obtained or
all coalitions are eliminated.

2.4 The Normalized Nucleolus

In applying Normalized Nucleolus (Lejano and Davos 1995) the excess is replaced by the ratio

of the excess and the total payoff of the coalition: en ¼ ν Sð Þ−∑Sxi
∑Sxi

. Then the Normalized

Nucleolus is found by replacing problem (31)–(33) by the following:

Minimize en ð34Þ
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subject to:

X
i∈S

xi≥ν Sð Þ= 1þ enð Þ for remaining coalitionsð Þ ð35Þ
X

i∈N
xi ¼ ν Nð Þ ð36Þ

An important property of the normalized nucleolus is that it is monotonic in the aggregate
in a proportional manner.

3 Case Study

The Zarrinehrud river basin with an area of about 11,578 km2 is in Northwestern Iran. It is
located among four provinces of West Azerbaijan, East Azerbaijan, Kurdistan and Zanjan but
its largest share belongs to West Azerbaijan (Fig. 3a). The motivation to select this basin is due
to its importance in Northwestern part of Iran. This basin is the major water supplier to the
Urmia Lake, the second largest salt lake on earth (Encyclopædia Iranica 2014). The lake is
now under critical condition because of over-using its fresh recharging water resources by
agriculture, domestic and industrial firms. In addition to higher number of dams on the rivers
inside the basin, climate change has also a significant effect.

The length of the Zarrinehrud River is 240 km and the average montly discharge of the river
is about 139.5 MCM (West Azerbaijan Regional Water Authority 2006). The Martyr
Kazemi dam was built on this river in 1970, which also called the Zarrinehrud dam.
This dam provides the required water amount to the Mianduab plain, a part of Bonab
and the Malekan plains. Gross agriculture area of this basin is 64,640 and 58,171 ha
from this area is irrigable.

In addition to agriculture consumption, the Zarrinehrud River supplies more than 40 % of
the domestic water demand of Tabriz city by a pipeline. Maximum annual water transmission
value according to the design is 157 MCM for domestic consumption and industrial uses.
Figure 3b presents a systematic sketch of the Zarrinehrud Sub-Basin.

In the first step for initial allocation, we used the Nash bargaining solution. Since the users
make decisions simultaneously without knowing those of the other users and compete for
limited resources, a logical assumption is that the users select a bargaining solution such as the
Nash solution which satisfies Nash fairness axioms. In this game, three players are considered:
Player 1 is the agricultural section, Player 2 is the domestic section and Player 3 is the
industrial stakeholder. A crucial issue for the water allocation is the protection of the environ-
mental needs of the Zarrinehrud River and Urmia Lake. The lake’s surface area has been
estimated to have been as large as 6100 km2 but since 1995 it has generally been declining and
was estimated from Landsat satellite data to be only 2366 km2 in August of 2011 (UNEP and
GEAS 2012) and just about 1400 km2 in July 2015.

Therefore, the model should include the minimum environmental requirements of the
Urmia Lake and Zarrinehrud River as constraints. The environmental constraints were used
in the optimization models for finding minimum values of the objectives so they were not
explicitly used in determining the disagreement point, they were implicitly taken into account
as constraints.

We assume that the stakeholders select the Nash bargaining solution. In the initial water
allocation model, the constraints include the water continuity equation in the Shahid Kazemi
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reservoir, the constraints related to the environmental flow of the Zarrinehrud River and other
physical constraints. There is a significant uncertainty in the inflow to the reservoir because of
its high dependency on climate variability. Moreover, cost data are seldom available as
deterministic values or reliable probability distributions. In this case, inflow and uncertain

(a)

(b)

Fig. 3 Location of the Zarrinehrud river sub-basin within the Urmia lake basin, Iran (a) The sketch of the
Zarrinehrud main streams and hydro-structures (b)
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economic inputs can hardly specified as with a PDF and/or fuzzy membership
function however they can be expressed as intervals. Therefore interval parameter
programming is the effective method to handle these uncertain parameters. The
variations for the ranges of uncertain parameters are determined by combining histor-
ical data and engineering judgment. The lower and upper bounds of long-term average
monthly inflows to the reservoir are presented in Table 1. The problem is modeled for
a 12 months planning periods. Therefore, this leads to the following nonlinear interval
parameter optimization model:

MaximizeZ� ¼ ∏ NB�
1;m−d1;m

� �
NB�

2;m−d2;m
� �

NB�
3;m−d3;m

� �
ð37Þ

subject to:

Rm ¼
X n

i¼1
wi;m þ denv;m; ð38Þ

S�mþ1 ¼ S�m þ I�m−Rm−Lm ; ð39Þ

Smin≤S�m ≤Smax; ð40Þ

wi;m;min≤wi;m≤wi;m;max; ð41Þ
where NBi,m

± (i=1,2,3) ,Im
± , Sm

± and also Z± are interval numbers. Here NB1,m
± , NB2,m

± , NB3,m
± are

the net benefit functions of agricultural, domestic and industrial demands in month m, d1,m,
d2,m, d3,m are the corresponding disagreement values. It is assumed that the disagreement
points are calculated using the following equation when the decision makers are unable to
reach an agreement (Kerachian and Karamouz 2007):

di;m ¼ NBi xi;min

� � ð42Þ

Table 1 The lower and upper bounds of the monthly long-term inflow to the reservoir (MCM)

Month Lower bound Upper bound

January 16.61 19.50

February 30.21 35.46

March 194.35 228.14

April 193.34 226.96

May 54.26 63.70

June 17.66 20.74

July 14.65 17.19

August 13.6 15.96

September 10.71 12.57

October 7.86 9.22

November 16.59 19.47

December 21.52 25.26
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where xi,min is the minimum acceptable value of xi for decision maker i. By this assumption, in
disagreement point, each decision maker achieves the minimum value of available resources.
The minimum values of monthly consumption data of previous years are estimated as xi,min.
Furthermore denv,m is the minimum environmental requirement of the Urmia Lake and
Zarrinehrud River in month m, wi,m is the allocated water volume to section i in month m
and wi,m,min, wi,m,max are its minimum and maximum values, Rm is the reservoir release in
month m, Im

± is the inflow to the reservoir in month m, Lm is the amount of reservoir
evaporation, Sm

± , Sm+1
± are the reservoir storage amounts in months m, m+1 and Smin, Smax

are the common minimum and maximum values of Sm
± .

The net benefits are the differences of the gross benefits (Bi), derived from agricultural,
domestic and industrial water uses in the basin and the costs (Ci) of water supply (Abrishamchi
et al. 2011).

The total net benefit of water usage to agriculture is:

NB�
1;m ¼

X n

j¼1
Y j;mpj;m−C

�
j;m

h i
Aj;m; ð43Þ

where

n Number of crops
NB1,m

± Net benefit in month m (IR Rails)
j Crop index
Aj,m Area of crop j (ha) as a function of water amount allocated to its demand in

month m
pj,m Price of crop j in month m (IR Rials/kg)
Yj,m Yield of crop j in month m (kg/ha)
Cj,m
± Uncertain cost of crop j production in month m (IR Rials /ha).
The net benefit function to domestic water usage is defined as follows:

NB�
2;m ¼ w2;m

� �� s2;m−r�2;m
� �

ð44Þ

where

NB2,m
±

Benefit received by domestic users in month m (IR Rials)

w2,m Amount of water consumed by domestic users in month m (MCM)
s2,m Domestic water charge (IR Rials/m3)
r2,m
± Price of water for domestic demand presented by the Iran Ministry of Energy (IRMOE

2010)

NB�
3;m ¼ w3;m

� �� s3;m−r�3;m
� �

ð45Þ
where

NB3,m
± Benefit of water consumption to industrial users in month m (IR Rials)

w3,m Amount of water consumed by industrial demand in month m (MCM)
s3,m Industrial demand water charge (IR Rials/m3)
r3,m
± Price of water delivery to the industrial section presented by the IRMOE (2010)

(IR Rials/m3).
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In model (26) ξ is a number which makes m(f(X,U))+ξ and w(f(X,U))+ξ non-negative. In
this model, m(f(X,U))+ξ and w(f(X,U))+ξ are non-negative and ξ selected as zero. The
normalizing factors ϕ and ψ in Eq. (26) are specified as 5.63E+15 and 7.73E+14 by solving
Eq. (27). The weighting factor β can be determined by any standard approach known for the
literature of multiobjective programming. To simplify, in this work we assumed equal prefer-
ences for two objective functions and the weighting factor β is set to be 0.5. The penalty factor

σ is assumed to be 1000 as a large number in comparison to ∑k
i¼1φ PMi ≥Ni−λið Þ and 0.80 is

selected for λ that is a acceptable possibility degree level in this model. In this problem the
reliability and security are the most important issues, therefore a relatively large satisfactory
degree level is specified. The required data are provided by the West Azerbaijan Agriculture
Jihad Organization and West Azerbaijan Regional Water Authority.

4 Results and Discussion

The general algebraic modeling system (GAMS), a widely used modeling language is
employed to optimize the deterministic weighted objective function (Brooke et al. 1998).
Fig. 4 shows the numerical results.

According to several meetings by the officials working in the region of case study, a
cooperative water management system will be the strategic solution for the lake. Therefore
cooperative game theoretic concepts are applied next to this allocation problem. The seven
possible coalitions of the players are listed in Table 2.

In the next step we calculate the characteristic function values for all coalitions. The
characteristic function value is the best possible outcome of a coalition without the cooperation
of the other players. Each coalition solves the corresponding optimization problem to maxi-
mize its net benefit obtained from the use of the available water by all participating stake-
holders in each coalition with the assumption that the players outside the coalition do not
cooperate. The linear interval optimization model will be used to calculate the characteristic
function values of these coalitions. This model is based on interactive algorithm resulting in
two deterministic sub models, which correspond to the lower and upper bounds of the values
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Fig. 4 Initial monthly water allocations based on the Nash bargaining solution (MCM)

Cooperative Games Under Uncertainty for Water Diplomacy 4299



of the objective functions and the constraints. Table 2 summarizes the ranges of overall annual
net benefits for all possible coalitions.

Since the water shares are calculated based on achieving the highest total net revenue, the
net benefit proportions to the different users is not necessarily equal. Hence, the reallocation of
the net benefits among the water users is carried out in order to provide a relatively fair
condition (Mahjouri and Ardestani 2011). Next the total net benefit is reallocated to the water
users using cooperative game theoretical approaches such as the Shapley values, the Nucleolus
or the Normalized Nucleolus. The calculation is based on the data of the years 2000–2010.
Table 3 shows the upper and lower bounds of the reallocated total net benefits in a year for
players based on the different cooperative solution concepts and the results for the Nash
bargaining solution. For comparison, the result of using deterministic model is also calculated.
These results are obtained for all four methods however to save the space, the results shown in
the last column of Table 3 is for the Shapley value.

As shown in Table 3, the solutions under the four methods present different benefits
intervals. In all patterns, the total benefit of allocation to the agriculture sector is higher than
allocation to the domestic and industrial users. In certain cooperative games sum of the
Shapley values equals the total benefit of the grand coalition (Shapley 1953). This property
is not necessarily true in this interval parameter model as it is shown by the numerical results,
however the interval of the total benefit in the Shapley values contains the interval obtained
based both versions of the nucleolus. Therefore the Shapley values have larger uncertainty.
This observation might show a difficulty in using Shapley values in certain cases. In this case,
the results using the Nucleolus are very similar to those based on the Normalized Nucleolus
but the Shapley values have very large intervals of the objective values and therefore they are

Table 3 Reallocation of annual benefits according to the Shapley value, the Nucleolus, the normalized
nucleolus, the Nash bargaining solution and the deterministic Shapley value in the Zarrinehrud River (million
IR Rials/year)

Player Shapley value Nucleolus Normalized
nucleolus

Nash bargaining
solution

Deterministic
Shapley value

Agriculture [196729, 274004] [215517, 236797] [213495, 235270] [201652, 222402] 215598

Domestic [142906, 217674] [168270, 192940] [167520, 192410] [142870, 151970] 201679

Industry [12851, 83444] [36633, 77453] [39405, 79510] [6600, 6800] 50398

Total [352486, 575122] [420420, 507190] [420420, 507190] [351122, 381172] 467675

Table 2 All possible coalitions after satisfying the environmental needs and the annual ranges of characteristic
function values of the coalitions (million IR Rials/year)

No. Players in coalitions Coalition type Characteristic function values

1 Agriculture Non-cooperative [201652, 222402]

2 Domestic Non-cooperative [142870, 151970]

3 Industry Non-cooperative [6600, 6800]

4 Agriculture + Domestic Partial Cooperation [391500, 437520]

5 Agriculture + Industry Partial Cooperation [259860, 322030]

6 Domestic + Industry Partial Cooperation [212620, 278180]

7 Agriculture + Domestic + Industry Full Cooperation [420420, 507190]
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not applicable due to large uncertainty in the results. Table 3 also describes the initial net
benefits for each stakeholder based on the nonlinear interval parameter model. The upper
bounds in the three cooperative solutions are always higher than the upper bound obtained by
the Nash bargaining solution. The same holds for the lower bounds as well, except for the
Shapley values.

The industrial water user has the lowest total benefit among the sectors. It is necessary to
mention that this benefit is for the sector and not benefit per water unit. Therefore, the
participation of the industrial sector in any coalition, results in a considerable increase in its
benefit and therefore this sector should join the coalition.

The characteristic function value for the grand coalition is f±=[420420, 507190] ×106 IR
Rials which means that the system benefit would change between f− and f+ as the decision
variables take different values within their lower and upper bounds. In fact, the decision maker
can acquire a higher system benefit in the upper values, however it will lead to a higher risk for
the optimization model and make the water resource management system more unstable.
Conversely, lower values of the objective function and the constraints would decrease the risk
and enhance the system stability, however they would generate lower system benefits and also
may lead to less use of the available water resources. Consequently this solution can generate
appropriate decision alternatives for the decision makers. Therefore, the decision makers could
adjust the level of the uncertainty within their lower and upper bounds to reach a tradeoff
between risk and system benefit, and then generate appropriate decision alternatives depending
on the optimism degree of the decision makers.

5 Conclusions

This paper introduces the concept of cooperative game theory in combination with interval
parameter programming for a water allocation problem in the Zarrinehrud river basin, Iran.
Since many of the factors have uncertain features, and may be known only as interval
numbers, a new interval parameter cooperative game theoretic model is formulated for this
problem. In this game, the agricultural, domestic and industrial users are competing for their
equitable share of water while satisfying the environmental constraint. The paper offers a method-
ology based on game theory that can encourage innovative problem-solving where the players join
in forming a coalition for mutual gains in the midst of uncertainties. The Shapley values, the
Nucleolus and the Normalized Nucleolus approach lead to efficient water usage and improved
efficiency through water transfers to achieve maximum benefits for the basin as a whole.

The results show that water allocation agreement can improve the efficiency of water
allocation if the benefits of cooperation are distributed properly. This is an incentive to reach an
agreement and it decreases the player’s probability to leave the coalition. Therefore, the new
model provides stable and more sustainable solutions to the problem. However, to ensure the
stability and sustainability of the cooperation, suitable laws or authorizations should be
introduced by the governmental organization based on the findings of this research. Overall,
the results presented above indicate that there is an increase in benefit to all players through
cooperation in comparison to their gains under the Nash bargaining solution. The benefits
interval according to the Nucleolus are [215517, 236797], [168270, 192940] and [36633,
77453], and based on the Nash bargaining solution are [201652, 222402], [142870, 151970]
and [6600, 6800] for the agriculture, domestic and industrial users, respectively. Actually, the
total net benefit obtained in the cooperative water allocation models (Shapley and Nucleolus)
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is higher than the total net benefit in the initial allocation model (Nash Bargaining). Findings
suggest that use of cooperative game theory could objectively demonstrate creation of mutual
gains to achieve an effective negotiated agreement for water allocation. In addition, these
results indicate that, through the proposed modeling approach, uncertain information can be
effectively incorporated by using the interval parameter programming into the cooperative
water allocation processes. It is then clear that modeling the uncertainty within the cooperative
game theoretic approaches encourage players to join coalitions to achieve overall maximum
and reliable benefits in the basin. The paper also does not provide a comparison between the
two cooperative game solutions of Shapley and the Nucleolus. Another limitation of the paper
is that it does not consider recent decision made by the Urmia Lake Restoration Program, for
example, effects of restoring the lake by temporarily taking some of the farmlands out of
agricultural use – to enhance water flow to the lake – by providing rent to the owner. We plan
to explore this creative option in our future study.
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