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Abstract We compute the one-point probability distribution for the stationary KPZ
equation (i.e. initial data H(0, X) = B(X), for B(X) a two-sided standard Brown-
ian motion) and show that as time T goes to infinity, the fluctuations of the height
function H(T , X) grow like T 1/3 and converge to those previously encountered in
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the study of the stationary totally asymmetric simple exclusion process, polynu-
clear growth model and last passage percolation. The starting point for this work is
our derivation of a Fredholm determinant formula for Macdonald processes which
degenerates to a corresponding formula for Whittaker processes. We relate this to
a polymer model which mixes the semi-discrete and log-gamma random polymers.
A special case of this model has a limit to the KPZ equation with initial data given
by a two-sided Brownian motion with drift β to the left of the origin and b to the
right of the origin. The Fredholm determinant has a limit for β > b, and the case
where β = b (corresponding to the stationary initial data) follows from an analytic
continuation argument.

Keywords Kardar-Parisi-Zhang · Stochastic heat equation · Tracy-widom
distributions

Mathematics Subject Classification (2010) 82C22 · 82B23 · 60H15

1 Introduction

In their seminal 1986 paper [62], Kardar, Parisi and Zhang (KPZ) proposed the
stochastic evolution equation for a height function H(T , X) ∈ R (T ∈ R+ is time
and X ∈ R is space)

∂T H(T , X) = 1
2∂2

XH(T , X) + 1
2 (∂XH(T , X))2 + ξ(T , X).

The randomness ξ models the deposition mechanism and it is taken to be space-time
Gaussian white noise, so that formally E[ξ(T , X)ξ(S, Y )] = δ(T −S)δ(X−Y ). The
Laplacian reflects the smoothing mechanism and the non-linearity reflects the slope-
dependent growth velocity of the interface. Using earlier physical work of Forster,
Nelson and Stephen [52], KPZ predicted that for large time T , the height func-
tion H(T , X) has fluctuations around its mean of order T 1/3 with spatial correlation
length of order T 2/3. Since then, the exact nature of these fluctuations has been a
subject of extensive study. For additional background, see the reviews [33, 71, 75].

For general initial data, it is expected that the solutions to the KPZ equation
are locally Brownian in space [36, 56, 72]. Therefore, making direct sense of the
non-linearity in the equation is a challenge [13, 56]. The physically relevant notion
[3, 14, 33, 39, 56, 71, 74] of a solution to the KPZ equation is therefore defined
indirectly via the well-posed stochastic heat equation (SHE) with multiplicative
noise,

∂T Z(T , X) = 1
2∂2

XZ(T , X) + Z(T , X)ξ(T , X)

with initial condition Z(0, X) = Z0(X) = eH(0,X). The Cole–Hopf solution of
the KPZ equation is then defined as H(T , X) = ln(Z(T , X)). On account of this
definition, we will talk about the SHE and KPZ equation interchangeably, stating
most of our main results (with the exception of those in this first section) in terms of
the SHE.
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By a version of the Feynman–Kac formula, the solution of the SHE can be
formally written as

Z(T , X) = ET ,X

[
Z0(b(0)) : exp :

{
−
∫ T

0
ξ(b(S), S)dS

}]

where the expectation ET ,X is over a Brownian motion b(·) going backwards in time
from b(T ) = X, and where : exp : is the Wick ordered exponential [33, Section 4.2].
This provides an interpretation for Z(T , X) as the partition function of the continuum
directed random polymer (CDRP) [2, 3].

Formally, the spatial derivative U(T , X) = ∂XH(T , X) of the KPZ equation
satisfies the stochastic Burgers equation

∂T U(T , X) = 1
2∂2

XU(T , X) + 1
2∂X

(
U(T , X)

)2 + ∂Xξ(T , X),

which can be thought of as a continuum version of an interacting particle system [11,
14].

Let B(X) be a two-sided Brownian motion with B(0) = 0 and zero drift. Sta-
tionary (zero drift) initial data H(0, X) = B(X) for the KPZ equation corresponds
with SHE initial data Z(0, X) = eB(X) and stochastic Burgers equation initial data
U(0, X) = ∂XB(X). This is called stationary, because for any later time T , U(T , ·) is
marginally distributed as another spatial Gaussian white-noise. In terms of the KPZ
equation, for fixed T > 0, H(T , ·) is marginally distributed as B̃(·)+H(T , 0) where
B̃(·) is a two-sided Brownian motion (though not independent of B or H(T , 0)).

The first rigorous confirmation of the T 1/3 fluctuation scale prediction for the
KPZ equation was provided by [11], showing that there exist constants c0 > 0 and
0 < c1 < c2 < ∞ such that for all T > c0,

c1T
2/3 � Var

(
H(T , 0)

)
� c2T

2/3.

A similar fluctuation scale result was demonstrated recently in [36] (and applies
equally well for a broad class of KPZ initial data) based on the KPZ line ensemble
construction.

The present work provides an exact formula for the one-point probability distribu-
tion of the stationary solution to the KPZ equation, and a limit theorem for H(T , X)

after proper centering and scaling by T 1/3. The following theorem and corollary are
special cases (drift b = 0 and position X = 0) of Theorem 2.13, Proposition 2.14
and Theorem 2.17.

Theorem 1.1 LetH(T , X) be the stationary (zero drift) solution to the KPZ equation
and let K0 denote the modified Bessel function [1]. Then, for T > 0, σ = (2/T )1/3

and S > 0,

E

[
2σK0

(
2
√

S exp
{

T
24 +H(T , 0)

})] = � (S, 0, σ ) ,

where the function� is given in Definition 2.11. Equivalently, for any r ∈ R, we have

P

(
H(T , 0) + T

24

(T /2)1/3
� r

)
= 1

σ 2

1

2π i

∫
−δ+iR

dξ

	(−ξ)	(−ξ + 1)

∫
R

dx exξ/σ �
(
e−

x+r
σ , 0, σ

)
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for any δ > 0.

Theorem 1.2 For any r ∈ R,

lim
T→∞P

(
H(T , 0) + T

24

(T /2)1/3
� r

)
= F0(r),

where F0 is given in Definition 2.16 with τ = 0.

Inherent in the work of KPZ was the premise that a larger class of growth pro-
cesses than just their eponymous equation should display the same T 1/3 and T 2/3

scaling exponents. The class of such models is referred to as the KPZ universality
class. Generally speaking, the universality belief is that a growth model will belong
to the KPZ class if it has the same physical properties as the KPZ equation, namely
local growth dynamics, a smoothing mechanism and irreversibility arising from the
condition that the speed of growth as a function of the slope has non-zero second
derivative.

It took a quarter of a century to prove that the KPZ equation was in the KPZ uni-
versality class itself (via demonstrating the 1/3 and 2/3 exponents) [3, 11, 15, 16, 36,
38, 74]. Before this, starting with the 1999 work of [6, 60], a few growth models in
the KPZ universality class were rigorously analyzed. These models were the polynu-
clear growth model (PNG), totally asymmetric simple exclusion process (TASEP)
and last passage percolation (LPP) with special exponential, geometric or Bernoulli
weights. Beyond the T 1/3 and T 2/3 scaling, the limit distributions and spatial pro-
cesses for these models were determined. These statistical properties agreed between
the models, but depended non-trivially on the type of initial data or geometry for the
growth models, such as curved [6, 10, 21, 22, 60, 61, 68], flat [10, 21, 23–25, 43, 48,
73] or stationary [7–9, 47, 49, 57, 69]. All these results strongly used the underlying
determinantal structure that these models all enjoy (see the reviews [26, 33, 44–46]
for further references and details).

The KPZ equation does not seem to have a full-blown determinantal structure
(as opposed to PNG, TASEP and LPP). However, in the last few years a number
of new exactly solvability methods have been developed which have led to explicit
formulas for the one-point marginal distribution of the solution to the KPZ equation
with specific types of initial data and verified the 1/3 exponent for general initial data
(also the 2/3 exponent has been verified for specific initial data). With the exception
of the non-rigorous replica method (method 2, below), the other (rigorous) methods
have all proceeded via analysis of exactly solvable discretizations or regularizations
of the KPZ equation such as the (partially) asymmetric simple exclusion process
(ASEP), the q-deformed totally asymmetric simple exclusion process (q-TASEP), or
the O’Connell-Yor semi-discrete directed random polymer (see the review [35] and
references therein). These stochastic processes converge to the KPZ equation under
special weakly asymmetric or weak noise scaling. It should be emphasized that the
developed methods are presently only adapted to study certain types of initial data
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(except in the case of method 5, the KPZ line ensemble). As we summarize them
below (for a partial list of references to subsequent developments and extensions, see
[35]), we will first focus on narrow wedge initial data for the KPZ equation, which
means starting the SHE with Z(0, X) = δX=0.

(1) [79–81] used Bethe ansatz to compute transition probabilities for the N-particle
ASEP, extracted a one-point marginal distribution formula suitable for the
N to infinity limit corresponding with step initial data, and manipulated the
resulting formula into a Fredholm determinant formula amenable to asymp-
totic analysis. This served as the starting point for the rigorous derivation in
[3] of the one-point distribution for the KPZ equation with narrow-wedge ini-
tial data (see also [74] for a parallel and independent, though non-rigorous,
derivation of this).

(2) [40] and [32] computed exact formulas for moments of the SHE with
Z(0, X) = δX=0 using the connection with the delta Bose gas and the Bethe
ansatz. From these moments they derived a formula for the Laplace transform
of Z(T , X) and hence, by inverting the transform, the distribution of H(T , X).
This physics replica method derivation suffers from being quite non-rigorous
since the moments, in fact, grow too fast to determine the Laplace transform
and distribution.

(3) [15] introduced Macdonald processes and connected them to certain 2d growth
processes (and 1d marginals like q-TASEP) as well as provided exact Fred-
holm determinant formulas for one-point distributions amenable to asymptotic
analysis. A limit transition connects these processes to the Whittaker pro-
cesses which, in [65], had been introduced and related to the O’Connell–Yor
semi-discrete directed random polymer via a geometric lifting of the RSK cor-
respondence. This method was used in [16] to rederive the narrow wedge KPZ
one-point distribution formula.

(4) [20] used Markov dualities of ASEP and q-TASEP, as well as the Bethe ansatz
to compute explicit formulas for expectations of a large class of observables
of these models, when started from step initial data. From these expectations,
they derived a formula for a q-deformed Laplace transform of the one-point
distribution. This provides an alternative to the methods of [79–81] as well as a
rigorous regularization of the replica method used in [40] and [32].

(5) [36] constructed a line ensemble extension to the fixed time T solution to the
narrow wedge initial data KPZ equation which enjoys a distributional invariance
called the H -Brownian Gibbs property as well as certain uniform regular-
ity under T 1/3, T 2/3 scaling as T goes to infinity. From this they proved the
validity of the 2/3 spatial exponent for the narrow wedge initial data KPZ
equation and proved the 1/3 fluctuation exponent for a wide class of KPZ
initial data.

A brief review and comparison of methods 1, 2 and 4 can be found in [34], whereas
some aspects of method 3 are reviewed in [26, 28]. See also the review [35].

Besides the narrow-wedge initial data, there are a few other types of initial data for
which these methods have proved successful in computing exact formulas for KPZ
equation one-point distributions.
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(1) Half Brownian KPZ initial data corresponds with Z(X, 0) = eB(X)1X≥0, B(·)
being a one-sided Brownian motion. It was rigorously analyzed via method 1
in [38] and method 3 in [16], as well as non-rigorously analyzed via method 2
in [58]. A family generalizing half Brownian initial data was further rigorously
analyzed via method 3 in [16].

(2) Flat and half-flat KPZ initial data corresponds with Z(X, 0) = 1. It was non-
rigorously analyzed via method 2 in [30, 31, 42]. No rigorous confirmation of
these results have appeared yet.

(3) Stationary KPZ initial data, the subject of this paper, corresponds with
Z(X, 0) = eB(X), B(·) being a two-sided Brownian motion fixed at B(0) = 0.
It was non-rigorously analyzed via method 2 in [59]. In Remark 2.10 we
address the question of comparing the formula derived therein to that proved
in Theorem 1.1.

Using these exact one-point formulas, it has further been confirmed in all of the
above cases of initial data that the large T one-point distribution converges to
the same distribution as observed in the determinantal models of PNG, TASEP
and LPP. Presently it is only for determinantal models that multi-point dis-
tributions and limit processes have been computed (see, however, nonrigorous
work of [41, 70]). Besides the specific types of initial data discussed above,
using method 5, [36] proved that up to certain rather weak hypothesis on ini-
tial data, the KPZ equation always has order T 1/3 fluctuations as T goes to
infinity.

1.1 Outline

In this paper we build on method 3, Macdonald processes, in order to prove Theorem
1.1. It is not clear presently how to arrive at this result via the other rigorous methods
(1, 4, or 5). Let us outline the main steps to prove Theorem 1.1 as well as make note
of some of the other results of interest which we attain herein:

Section 2: We introduce the O’Connell–Yor semi-discrete directed random
polymer with log-gamma boundary sources and the associated multi-path exten-
sions to its partition functions. Theorem 2.1 provides a Fredholm determi-
nant formula for the Laplace transform of the partition function of the poly-
mer model. Theorem 2.9 gives the analogue of Theorem 2.1, but for the
SHE/KPZ equation; Theorem 2.13 gives a corresponding formula for the station-
ary version of the model; and Theorem 2.17 demonstrates the KPZ universality
(T 1/3 scaling and limiting one-point probability distribution) of the stationary
model.

Theorem 1.1 is, in fact, a special case of Theorem 2.13. As such, the rest of the
paper divides naturally into two parts. The first part, comprised of Sections 3, 4, and
5, provides a proof of Theorem 2.1. The second part, comprised of Sections 6, 7,
and 8, provides asymptotic analysis of our semi-discrete directed random polymer
results to prove the SHE/KPZ equation results of Theorems 2.9 and 2.13, as well as
Theorem 2.17.
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Section 3: We introduce the q-Whittaker processes (equivalently, t = 0 Mac-
donald processes) with q ∈ (0, 1). These are measures on interlacing partitions

or Gelfand–Tsetlin patterns
{
λ

(k)
j

}
1≤j≤k≤N

. For a certain class of q-Whittaker

nonnegative specializations of the processes (indexed by α̃, β̃ and γ̃ parameters) we
prove Theorem 3.3, a Fredholm determinant formula for the eq -deformed Laplace

transform of the random variable q−λ
(N)
1 . This is done following the general approach

introduced in [15] and used there to prove a similar type of formula for qλ
(N)
N . Unlike

for qλ
(N)
N , studied in [15], q−λ

(N)
1 is an unbounded random variable which only has

finitely many moments. This would appear to be a major impediment in implement-
ing the approach of [15] since it relies upon taking a generating function of explicit

formulas for moments E

[(
q−λ

(N)
1
)k] in order to recover the distribution. This issue

of moment divergence does not arise for the so-called pure β̃ specializations, and so
in that case we can follow the approach of [15] to prove this special case of Theo-
rem 3.3 (this is recorded as Proposition 3.11). It is the α̃, γ̃ specialization (for which
moments diverge) which, however, we are really after due to its relationship with the
semi-discrete directed random polymer with log-gamma boundary sources. In order
to extend Theorem 3.3 to those specializations as well, we observe that the equal-
ity of the β̃ specialization eq -Laplace transform with the corresponding Fredholm
determinant actually implies a formal series (in Newton power sum symmetric poly-
nomials) identity. The α̃, γ̃ specialization of this identity yields convergent series on
both sides and hence proves the equivalence of the α̃, β̃, γ̃ specialized eq -Laplace
transform with the claimed Fredholm determinant in Theorem 3.3. In this way, we

see the power of relating our observable of interest, q−λ
(N)
1 , to the larger structure of

q-Whittaker processes and symmetric polynomials.
This rigorous eq -deformed Laplace transform derivation should be contrasted to

the non-rigorous derivations (in method 2) of the Laplace transform of Z(T , 0) from

the moments E
[(
Z(T , 0)

)k]which grow too quickly to uniquely identity the distribu-

tion. Under the various limit transitions which relate q−λ
(N)
1 to Z(T , 0) (i.e. Theorems

4.3 and 6.2) we lose the tools of symmetric functions which saved us. In particular,
it is not clear how the β̃ specialization behaves under these limit transitions, and the
notion of formal series identities seems to be lost.

Section 4: We introduce Whittaker processes, measures on
{
T

(k)
j

}
1≤j≤k≤N

. The-

orem 4.3 uses results of [37, 65] to relate these processes to the O’Connell–Yor
semi-discrete directed random polymer with log-gamma boundary sources from

Section 2. In particular, this implies that the random variable eT
(N)
1 (for a suitable

Whittaker process specialization) and the polymer partition function ZN,M(τ) have
the same distribution. Theorem 4.6 shows how the α̃, γ̃ specialized q-Whittaker pro-
cesses converges as q → 1 to the Whittaker processes (under special scaling), and

thus (up to scaling) how q−λ
(N)
1 converges to eT

(N)
1 . The pure γ̃ specialization ver-

sion of this convergence result was proved as [15, Theorem 4.1.21], and the pure α̃

specialization version was proved (modulo a decay estimate which was not checked)
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as [15, Theorem 4.2.4]. By combining these specializations, it becomes unnecessary
to check the omitted decay estimate from [15, Theorem 4.2.4]. So as not to be too
obtuse, we provide the steps in this proof, even though they closely mimic those from
[15].

Section 5: We prove Theorem 2.1 by combining Theorem 4.3 with Theorem 5.1.
Theorem 5.1 provides a Fredholm determinant formula for the Laplace transform

under Whittaker processes of eT
(N)
1 . It is proved in this section by asymptotic analy-

sis of the corresponding Fredholm determinant formula for the eq -Laplace transform

under q-Whittaker processes of q−λ
(N)
1 (given as Proposition 5.3) along with the

process convergence result of Theorem 4.6.
Section 6: We turn here to studying the asymptotic behavior of the semi-

discrete directed random polymer with boundary sources, as relates to the SHE/KPZ
equation. Theorem 6.2 records a result of [51] showing how the semi-discrete
model converges to the SHE/KPZ equation. Theorem 6.3 then provides the cor-
responding asymptotic analysis of the Fredholm determinant for the semi-discrete
model with log-gamma boundary sources coming from Theorem 2.1. These con-
siderations prove Theorem 2.9 which gives the Laplace transform of Zb,β(T , X),
SHE/KPZ equation solution with initial data Z0(X) = exp(B(x)) where B(X)

is a two-sided Brownian motion with drift β on the left of 0 and drift b on the
right of 0 for β > b.

Section 7: We now take the limit as β ↘ b in order to recover Zb(T , X), the
solution to the SHE/KPZ equation with stationary initial data Z0(X) = exp(B(x))

where B(X) is a two-sided Brownian motion with drift b (on both sides). Taking
the corresponding limit of Theorem 2.9 requires some care (in particular an ana-
lytic continuation argument similar to that used previously in the rigorous analysis
of stationary TASEP in [47] and in the non-rigorous replica analysis of the KPZ
equation in [59]) and is given as Theorem 2.13.

Section 8: We prove Theorem 2.17, which demonstrates a universality result,
namely that in the large time limit we recover the T 1/3 fluctuation scaling and
the one-point probability distribution function previously obtained previously for
stationary PNG and TASEP [9, 47, 57, 69].

2 Models and Main Results

2.1 Semi-discrete Directed Random Polymer with Boundary Sources

To obtain our main result, the one-point probability distribution functions for the sta-
tionary KPZ equation (Theorem 1.1 and more generally, Theorem 2.13), we start by
studying a semi-discrete directed random polymer model with log-gamma bound-
ary sources. This is a mixture of models introduced by O’Connell and Yor [67] and
Seppäläinen [76]. Indeed, taking M = 0 and τ > 0 recovers the semi-discrete
directed random polymer of [65] while taking M > 0 and τ = 0 recovers the
log-gamma discrete directed random polymer of [76].
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For θ > 0, a random variable X is distributed as 	(θ) (written X ∼ 	(θ)) if it has
density with respect to Lebesgue measure given by

d

dx
P(X � x) = 1{x>0}

1

	(θ)
x−θ−1e−x

and a random variable W is distributed as − ln 	(θ) (written W ∼ − ln 	(θ)) if
W = − ln X for X ∼ 	(θ).

Fix N ≥ 1 and M ≥ 0. Let a = (a1, . . . , aN) ∈ R
N and α = (α1, . . . , αM) ∈(

R>0
)M be such that αm − an > 0 for all 1 ≤ n ≤ N and 1 ≤ m ≤ M . Consider the

setting as in Fig. 1, where the horizontal axis is discrete on the left of 0 and continuous
on the right of 0, while the vertical axis is discrete. In this semi-discrete setting we
introduce randomness in the following way. For all 1 ≤ m ≤ M and 1 ≤ n ≤ N let
ω−m,n ∼ − ln 	(αm−an) be independent log-Gamma random variables specified by
the parameters a, α; and for all 1 ≤ n ≤ N let Bn be independent Brownian motions
with drift an. The ω−m,n can be thought of as sitting at the lattice points (−m, n)

while the Bn can be thought of as sitting along the horizontal rays from (0, n). We
denote by P and E the probability measure and expectation with respect to these
random variables.

A discrete up-right path φd from (i1, j1) to (i�, j�) (written as φd : (i1, j1) ↗
(i�, j�)) is an ordered set of points

(
(i1, j1), (i2, j2), . . . , (i�, j�)

)
with each (ik, jk) ∈

Z
2 and each increment (ik, jk) − (ik−1, jk−1) either (1, 0) or (0, 1). A semi-discrete

up-right path φsd from (0, n) to (τ, N) (written as φsd : (0, n) ↗ (τ, N)) is a union
of horizontal line segments

(
(0, n) → (sn, n)

) ∪ ((sn, n + 1) → (sn+1, n + 1)
) ∪

· · · ((sN−1, N) → (τ, N)
)

where 0 ≤ sn < sn+1 < · · · < sN−1 ≤ τ . It is convenient
to think of φsd as a surjective non-decreasing function from [0, τ ] onto {n, . . . , N}.

As we are working with a mixture of a discrete and semi-discrete lattice, our up-
right paths φ will be composed of discrete portions φd adjoined to a semi-discrete

Fig. 1 Illustration of the semi-discrete directed random polymer with log-gamma boundary sources. The
thick solid line is a possible directed random polymer path φ from (−M, 1) to (τ,N). Its energy is given
by (2.1). The random variables ω−k,n are distributed as − ln 	(αk − an), while the Brownian motions
B1, . . . , BN have drifts a1, . . . , aN respectively
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portions φsd in such a way that for some 1 ≤ n ≤ N , φd : (−M, 1) ↗ (−1, n) and
φsd : (0, n) ↗ (τ, N). To such a path we associate an energy

E(φ) =
∑

(i,j)∈φd

ωi,j +
∫ τ

0
dBφsd (s)(s)

=
∑

(i,j)∈φd

ωi,j + Bn(sn) +
(
Bn+1(sn+1) − Bn+1(sn)

)+ . . . + (BN(τ) − BN(sN−1)
)
.

(2.1)

This energy is random, as it is a function of the ωi,j and Bk random variables. We
associate a Boltzmann weight eE(φ) to each path φ. The polymer measure on φ is
proportional to this weight. The normalizing constant, or polymer partition function,
is written as ZN,M(τ) and is equal to the integral of the Boltzmann weight over the
background measure on the path space φ. Explicitly it can be written as

ZN,M(τ) = ZN,M
1 (τ ) =

N∑
n=1

∑
φd :(−M,1)↗(−1,n)

∫
φsd :(0,n)↗(τ,N)

eE(φ)dφsd

where dφsd represents the Lebesgue measure on the simplex 0 ≤ sn < sn+1 < · · · <

sN−1 ≤ τ with which φsd is identified. Though we do not pursue it, let us note that
for M fixed, as a function of τ and N , ZN,M(τ) satisfies a semi-discrete SHE (for
more on this, see [15, Section 5.2] or [20, Section 6]).

In the spirit of the geometric lifting of the Robinson–Schensted–Knuth correspon-
dence considered in [37, 65] (and for later use in the statement of Theorem 4.3) we
define a multi-path extension of this polymer and its partition function. For M ≥ 0
fixed and 1 ≤ j ≤ k ≤ N define

Zk,M
j (τ ) =

∑
1�n1<···<nj�k

∑
φd

1 ,...,φd
j

φd
a ∩φd

b =∅ fora =b

φd
a :(−M,a)↗(0,na)

∫
(φsd

1 ,...φsd
j )∈D

k,τ
j (n1,...,nj )

eE(φ1)+···+E(φj )dφsd
1 · · · dφsd

j

where D
k,τ
j (n1, . . . , nj ) is the set of (φsd

1 , . . . φsd
j ) with φsd

a : (0, na) ↗ (τ, k−j+a)

such that for all a = b and s ∈ [0, τ ], φsd
a (s) = φsd

b (s) (i.e. the paths are

non-intersecting). Each φsd
a can be identified via the jumping times 0 ≤ s

(a)
na

<

· · · < s
(a)
k−j+a ≤ τ , and dφsd

1 · · · dφsd
j is the Lebesgue measure on the Euclidean

set
(
s
(1)
n1 , . . . , s

(1)
k−j+1, s

(2)
n2 , . . . , s

(2)
k−j+2, . . . , s

(j)
nj

, . . . , s
(j)
N

)
. Note that ZN,M(τ) =

ZN,M
1 (τ ).
Finally, for M ≥ 0 fixed and 1 ≤ j ≤ k ≤ N define

Fk,M
j (τ ) = ln

(
Zk,M

j (τ )

Zk,M
j−1(τ )

)
(2.2)

with the convention that Zk,M
0 (τ ) ≡ 1.
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The following Fredholm determinant formula for the Laplace transform of
ZN,M(τ), proven in Section 5, is based on the developments of Sections 3 and 4. The
restriction that N ≥ 9 is likely purely technical and arises in the proof of Proposition
3.11 as helpful in establishing certain convergence bounds. Since all of our asymp-
totics based off of this theorem involve sending N to infinity, this restriction becomes
inconsequential.

Theorem 2.1 Fix N ≥ 9, M ≥ 0 and τ > 0. Let a = (a1, . . . , aN) ∈ R
N and

α = (α1, . . . , αM) ∈ (R>0
)M

be such that αm − an > 0 for all 1 ≤ n ≤ N and
1 ≤ m ≤ M . For 1 ≤ m ≤ M and 1 ≤ n ≤ N let ω−m,n ∼ − ln 	(αm − an)

be independent log-Gamma random variables and for all 1 ≤ n ≤ N let Bn be
independent Brownian motions with drift an. Then for all u ∈ C with positive real
part

E

[
e−uZN,M(τ)

]
= det(1+ Ku)L2(Ca;α;ϕ)

where the operator Ku is defined in terms of its integral kernel

Ku(v, v′) = 1

2π i

∫
Dv

ds 	(−s)	(1 + s)

N∏
n=1

	(v − an)

	(s + v − an)

M∏
m=1

	(αm − v − s)

	(αm − v)

usevτs+τs2/2

v + s − v′ .

The contour Ca;α;ϕ is given in Definition 2.4 with any ϕ ∈ (0, π/4), as is the contour
Dv .

Remark 2.2 Let us make clear our usage of the notion of a Fredholm determinant.
Fix a Hilbert space L2(X, μ) where X is a measure space and μ is a measure on
X. When X = 	, a simple (anticlockwise oriented) smooth contour in C, we write
L2(	) where for z ∈ 	, dμ(z) is understood to be dz

2π i . When X is the product of a
discrete set D and a contour 	, dμ is understood to be the product of the counting
measure on D and dz

2π i on 	. Let K be an integral operator acting on f (·) ∈ L2(X)

by Kf (x) = ∫
X

K(x, y)f (y) dμ(y). K(x, y) is called the kernel of K and we
will assume throughout that K(x, y) is continuous in both x and y. Assuming its
convergence, the Fredholm determinant expansion of 1+ K is defined as

det(1+ K)L2(X) = 1 +
∞∑

n=1

1

n!
∫

X

· · ·
∫

X

det
[
K(xi, xj )

]n
i,j=1

n∏
i=1

dμ(xi).

Note that we do not require K to be trace-class, and only use the notation det(1 +
K)L2(X) as a shorthand for the right-hand side of the above equation.

Remark 2.3 The condition that τ > 0 is important to ensure that the integral defining
the kernel Ku is finite (cf. the estimates in Section 5.3). It seems that as long as
M ≥ N , it is possible to take the limit τ → 0. By continuity of the function ZN,M(τ)

in τ , this provides a Fredholm determinant formula for ZN,M(0), or in other words,
the log-gamma polymer partition function. A similar formula to this appeared in
[19], though involving a small (finite) contour in place of Ca;α;ϕ (see also [78]). That
formula was used therein for asymptotics of the free energy, though only for a certain
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Fig. 2 (Left) The contour Cη;ϕ (dashed) where the black dots symbolize the set of singularities of
Ku(v, v′) in v at ∪1≤n≤N {an, an − 1, . . . } coming from the factors 	(v − an). The contour v +Dv is the
solid line. (Right) The contour Dv where the light gray dots are the singularities at {1, 2, . . . } and the dark
gray dots are those at ∪1≤m≤M {αm − v, αm + 1 − v, . . . } coming from 	(αm − v − s).

range of parameters. The large (infinite) contour formula we arrive at here may be
useful in removing that parameter range restriction in a parallel manner as [16] used
such contours to remove similar restrictions present in [15].

The contours in Theorem 2.1 are defined as follows.

Definition 2.4 Let a = (a1, . . . , aN) ∈ R
N and α = (α1, . . . , αM) ∈ (R>0

)M be
such that αm − an > 0 for all 1 ≤ n ≤ N and 1 ≤ m ≤ M . Set μ = 1

2 max(a) +
1
2 min(α) and η = 1

4 max(a) + 3
4 min(α). Then, for all ϕ ∈ (0, π/4), we define

the contour Ca;α;ϕ = {μ + ei(π+ϕ)y}y∈R+ ∪ {μ + ei(π−ϕ)y}y∈R+ . The contours are
oriented so as to have increasing imaginary part. For every v ∈ Ca;α;ϕ we choose
R = −Re(v) + η, d > 0, and define a contour Dv as follows: Dv goes by straight
lines from R − i∞, to R − id, to 1/2 − id, to 1/2 + id, to R + id, to R + i∞.
The parameter d is taken small enough so that v + Dv does not intersect Ca;α;ϕ .
See Fig. 2 for an illustration.

To eventually access the stationary KPZ equation, we need to choose our a and α

parameters appropriately.

Definition 2.5 For what follows, we set M = 1, a1 = a, an ≡ 0 for n > 1,
α1 = α > a and define Z(τ, N) as the semi-discrete directed random polymer
partition function in which the weight ω−1,1 is replaced by zero.

Corollary 2.6 For α > a,

E

[
2
(
u Z(τ, N)

) α−a
2 K−(α−a)

(
2
√

u Z(τ, N)
)]

= 	(α − a)E
[
e−uZN,1(τ )

]
(2.3)

where Kν is the modified Bessel function of order ν, cf. [1].
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Proof Since all polymer paths φ must go through the point (−1, 1), it follows that

ZN,1(τ ) = eω−1,1 Z(τ, N). (2.4)

By the definition of the log-gamma distribution, e−ω−1,1 has gamma distribution with
parameter α − a and density xα−a−1e−x/	(α − a) on R+. Using this along with
the independence of ω−1,1 and Z(τ, N), we may rewrite the Laplace transform of
ZN,1(τ ) using (2.4) as

E

[
e−uZN,1(τ )

]
= E

[
e−ue

ω−1,1 Z(τ,N)
]

= E

[∫ ∞

0

e−uZ(τ,N)x−1
xα−a−1e−x

	(α − a)
dx

]

= 1

	(α − a)
E

[
2
(
uZ(τ, N)

) α−a
2 K−(α−a)

(
2
√

uZ(τ, N)
)]

.

The last equation follows from the identity∫ ∞

0
e−x−cx−1

x−ν−1dx = 2cd/2Kν

(
2
√

c
)
, c > 0,

which can be derived from the integral representation 9.6.24 of the modified Bessel
function in [1].

Remark 2.7 If we further specialize Z(τ, N) so that α = a, we arrive at a model
which is stationary. This fact can be gathered from the results of [77] and is explicitly
explained in Appendix A.

At this point we have a choice to make. We seek to study the stationary SHE/KPZ
equation. One way to access that is through a suitable scaling limit of the stationary
semi-discrete directed random polymer with log-gamma boundary sources, described
in Remark 2.7. Alternatively, we could take a suitable limit of the semi-discrete
directed random polymer with log-gamma boundary sources with α > a. This leads
the SHE/KPZ equation with nearly stationary initial data (in fact, two sided Brow-
nian initial data with drifts β > b). Subsequently, we can take β → b to recover
the stationary SHE/KPZ equation. We opt for taking the second route. In either case,
there is a technical challenge which we must overcome. Let us presently illustrate
this issue for taking the limit α → a, even though it is the other route which we actu-
ally pursue. The expectation in the right-hand side of (2.3) is given by a Fredholm
determinant in Theorem 2.1. In the limit α → a, this Fredholm determinant goes
to zero linearly in α − a, compensating the divergence of 	(α − a) so as to have a
non-trivial limit. To take this limit, however, it is necessary to analytically continue
our formulas in the quantity α − a (initially in R>0) and use uniqueness of analytic
continuations to justify the extension to α − a = 0.

Remark 2.8 In principle, Theorem 2.1 could be utilized for a variety of other asymp-
totics which we do not pursue here. For instance, it should be possible to access some
of the one-point probability distribution functions which were previously studied in
the case of last passage percolation with boundary conditions in [27]. It should also
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be possible to take limits to study analogous situations for the SHE/KPZ equation
which would involve two-sided version of the initial data considered in [16] with the
inclusion of extra log-gamma weights (see also, [59] for a special case of such initial
data).

2.2 SHE/KPZ Equation with Two-sided Brownian Initial Data

Theorem 6.2 (a result quoted from [51]) describes the special scaling under which the
(M = 1, a1 = a, an ≡ 0 for n > 1, and α1 = α > a) semi-discrete directed random
polymer with log-gamma boundary sources converges to the SHE/KPZ equation with
two-sided Brownian motion initial data. The following analogue of Corollary 2.6 is
proven in Section 6.

Theorem 2.9 Let us denote by Zb,β(T , X) the solution to the SHE/KPZ equation
with initial data Z0(X) = exp(B(X)), where B(X) is a two-sided Brownian motion
with drift β to the left of 0 and drift b to the right of 0, with β > b, that is,
B(X) = 1X≤0

(
Bl(X) + βX

)+ 1X>0
(
Br(X) + bX

)
where Bl : (−∞, 0] → R is a

Brownian motion without drift pinned at Bl(0) = 0, and Br : [0,∞) → R is an
independent Brownian motion pinned at Br(0) = 0. Then, for S > 0,

E

⎡
⎣2

(
Se

X2
2T

+ T
24 Zb,β (T , X)

) β−b
2

K−(β−b)

(
2

√
Se

X2
2T

+ T
24 Zb,β (T , X)

)⎤⎦
= 	(β − b) det(1− Kb+X/T,β+X/T )L2(R+) (2.5)

where Kν(z) is the modified Bessel function of order ν and the kernel on the right-
hand side is given by

Kb,β(x, y) = 1

(2π i)2

∫
dw

∫
dz

σπSσ(z−w)

sin(σπ(z − w))

ez3/3−zy

ew3/3−wx

	(β − σz)

	(σz − b)

	(σw − b)

	(β − σw)
(2.6)

where

σ = (2/T )1/3. (2.7)

The integration contour for w is from − 1
4σ

− i∞ to − 1
4σ

+ i∞ and crosses the real

axis between b and β. The other contour for z goes from 1
4σ

− i∞ to 1
4σ

+ i∞, it also
crosses the real axis between b and β and it does not intersect the contour for w.

Remark 2.10 Let us compare the above result to that derived (non-rigorously via the
replica method) in [59, Proposition 1]. The initial data considered therein is two-
sided Brownian, plus a log-gamma distributed (independent) height shift. We may
use Theorem 2.9 and reverse the proof of Corollary 2.6 so as to prove a one-point
formula for this initial data. Inspection reveals that the resulting formula matches that
of [59]. As we soon explain, in order to go from this formula to the stationary initial
data formula requires work and the final formula shown in [59] is not as readily
compared to the final formula proved herein as Theorem 2.13.
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2.3 SHE/KPZ Equation with Stationary Initial Data

The stationary initial conditions for the KPZ equation are the two-sided Brownian
motions with a fixed drift. For the SHE this means to let Z0(X) = exp(B(X)) with B

a two-sided Brownian motion with drift b ∈ R. Call the resulting solution to the SHE
Zb(T , X). We can get the result by carefully taking the β → b limit in Theorem 2.9.
This limit is accomplished by analytically continuing the expressions on both sides of
(2.5). In order to be able to state our main result of the paper we need a few notations.

Definition 2.11 For b ∈
(
− 1

4 , 1
4

)
, define on R+ the function

qb(x) = 1

2π i

∫
− 1

4σ
+iR

dw
σπSb−σw

sin(π(b − σw))
e−w3/3+wx 	(σw − b)

	(b − σw)
(2.8)

and for b ∈ R, let
rb(x) = eb3/(3σ 3)−bx/σ . (2.9)

Further, for b ∈
(
− 1

4 , 1
4

)
, define the kernel

K̄b(x, y) = 1

(2π i)2

∫
− 1

4σ
+iR

dw

∫
1

4σ
+iR

dz
σπSσ(z−w)

sin(σπ(z − w))

ez3/3−zy

ew3/3−wx

	(b − σz)

	(σz − b)

	(σw − b)

	(b − σw)
. (2.10)

Finally, letting γE = 0.577 . . . represent the Euler–Mascheroni constant, define

�(S, b, σ ) = − det(1− K̄b)
[
b2/σ 2 + σ(2γE + ln S)

+ 〈
(1− K̄b)

−1(K̄br−b + qb), rb
〉+ 〈(1− K̄b)

−1(r−b + qb), q−b

〉]
. (2.11)

where the determinants and scalar products are all meant in L2(R+).

Remark 2.12 By using the general identity

det(1− K)
〈
(1− K)−1f, g

〉 = det(1− K) − det(1− K − f ⊗ g),

it is also possible to write � as a linear combination of Fredholm determinants:

�(S, b, σ ) = det
(
1− K̄b − (K̄br−b + qb) ⊗ rb

) + det
(
1− K̄b − (r−b + qb) ⊗ q−b

)
− det(1− K̄b)

[
2 + b2/σ 2 + σ(2γE + ln S)

]
.

Note that � also depends on S implicitly through K̄b and q±b. The right-hand side of
(2.11) is well-defined for any admissible choice of the parameters, see Remark 7.2.

The following result (which implies Theorem 1.1 when b = X = 0) is proven in
Section 7.

Theorem 2.13 Let Zb(T , X) be the solution to the SHE with initial data Z0(X) =
eB(X) with B a two-sided Brownian motion with B(0) = 0 and drift b ∈ R. Let K0
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denote the modified Bessel function and consider X ∈ R, T > 0 and b ∈ R such that

b + X
T

∈
(
− 1

4 , 1
4

)
. For S > 0,

E

[
2σK0

(
2

√
Se

X2
2T

+ T
24 Zb(T , X)

)]
= �

(
S, b + X

T
, σ

)
(2.12)

where the function � is defined in (2.11).

We remark that the condition b + X
T

∈
(
− 1

4 , 1
4

)
could be weakened to b + X

T
∈

(−1, 1) in a slightly more technical way, but the formulation (2.11) is not convergent
outside the latter regime. See Remark 7.4 for more details.

The integral transform that appears on the left-hand side of (2.12) is the Mellin
transform [64] of the stationary (drift b) KPZ equation solution

Hb(T , X) = lnZb(T , X). (2.13)

It is possible to recover the distribution function from (2.12) using a double inverse
Mellin transform (proven in Appendix E).

Proposition 2.14 Consider T > 0, X ∈ R, and b ∈ R such that b + X
T

∈
(
− 1

4 , 1
4

)
.

For any r ∈ R,

P

(
Hb(T , X) + T

24 + X2

2T

(T /2)1/3
� r

)

= 1

σ 2

1

2π i

∫
−δ+iR

dξ

	(−ξ)	(−ξ + 1)

∫
R

dx exξ/σ �

(
e−

x+r
σ , b + X

T
, σ

)

for any δ > 0.

Proof This follows from applying Proposition E.1 with R = σ(Hb(T , X) +
T/24 + X2/(2T )) and x = −σ ln S. The finite negative exponential moment
E(exp(−δR/σ)) is ensured by Lemma 7.1 for any δ > 0.

This formula should be compared to [59, Theorem 2] in which the non-rigorous
replica method was utilized to study the stationary KPZ equation (see Remark 2.10).

Remark 2.15 Comparing (2.12) for different values of b and X shows

Zb−X/T (T , X) = e−
X2
2T Zb(T , 0) (2.14)

in distribution. This rotational invariance property can be explained directly from the
definition of the SHE, as in [16, Section 3.2].

In the large T limit one expects, by the universality belief, that limiting one-point
probability distribution functions for the KPZ equation should converge to those pre-
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viously determined in the context of TASEP or in the polynuclear growth model for
analogous types of initial data [9, 47, 57, 69]. Here we use the same notations as in
[7, Theorem 1.2] specialized to the one-point setting.

Definition 2.16 Recall the Airy function Ai, cf. [1]. For τ, s ∈ R, define

R = s + e−
2
3 τ 3
∫ ∞

s

dx

∫ ∞

0
dy Ai(x + y + τ 2) e−τ(x+y),

�(y) = e
2
3 τ 3+τy −

∫ ∞

0
dx Ai(x + y + τ 2) e−τx ,

�(x) = e−
2
3 τ 3
∫ ∞

0
dλ

∫ ∞

s

dy Ai(x + τ 2 + λ) Ai(y + τ 2 + λ) e−τy −
∫ ∞

0
dy Ai(y + x + τ 2) eτy .

Let Ps be the projection operator Ps(x) = 1{x>s}, the Airy kernel with shifted
entries by

K̂Ai(x, y) =
∫ ∞

0
dλ Ai(x + λ + τ 2) Ai(y + λ + τ 2), (2.15)

and define the function

g(τ, s) = R− 〈(1− PsK̂AiPs)
−1Ps�, Ps�

〉
. (2.16)

Finally, let

Fτ (r) = ∂

∂r

(
g(τ, r) det

(
1− PrK̂AiPr

)
L2(R)

)
. (2.17)

In the large T limit, the fluctuations of Hb(T , X) are governed by Fτ , as shown in
the following result (proven in Section 8).

Theorem 2.17 Let b ∈ (− 1
4 , 1

4 ) be fixed and consider any τ ∈ R. Define σ =
(2/T )1/3 and consider the scaling

X = −bT + 2τ

σ 2
. (2.18)

Then, for any r ∈ R,

lim
T→∞P

(
Hb(T , X) + T

24 (1 + 12b2) − 21/3bτT 2/3

(T /2)1/3
� r

)
= Fτ (r).

3 Ascending q-whittaker Processes

3.1 Defining the Processes

The ascending q-Whittaker processes Mã;ρ are special cases of the ascending Mac-
donald processes [15] in which the Macdonald parameters t = 0 and q ∈ (0, 1). The
q-Whittaker measures MMã;ρ are marginals of the ascending q-Whittaker processes.
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We provide a brief account of these objects as well as the q-Whittaker (or Macdon-
ald t = 0) symmetric functions used to define them. For a more involved discussion
and background, see [15, Sections 2.2 and 3.1].

Fix N ≥ 1. The q-Whittaker process Mã;ρ is a probability measure on sequences
of interlacing partitions

∅ ≺ λ(1) ≺ λ(2) ≺ · · · ≺ λ(N)

(equivalently Gelfand–Tsetlin patterns, or column-strict Young tableaux) param-
eterized by positive reals1 ã = {ã1, . . . , ãN }, a single q-Whittaker nonnegative
specialization ρ of the algebra of symmetric function, and the Macdonald parameter
q ∈ (0, 1). The probability measure is given by

Mã;ρ
(
λ(1), . . . , λ(N)

) = Pλ(1) (ã1)Pλ(2)/λ(1) (ã2) · · ·Pλ(N)/λ(N−1) (ãN )Qλ(N)(ρ)

�(ã1, . . . , ãN ; ρ)
.

We write EMã,ρ
for the expectation with respect to this measure (though sometimes

may drop the Mã,ρ subscript when it is clear).
Some explanation of notation is in order. A partition λ is an integer sequence

λ = (λ1 ≥ λ2 ≥ . . . ≥ 0) with finitely many nonzero entries, and we say that μ ≺ λ

if the two partitions interlace: μi ≤ λi ≤ μi−1 for all meaningful i’s. In Young
diagram terminology, μ ≺ λ is equivalent to saying that the skew partition λ/μ is a
horizontal strip.

The functions P• and Q• are q-Whittaker symmetric functions (i.e. Macdonald
symmetric functions with parameter t = 0) which are indexed by (skew) partitions
and implicitly depend on the Macdonald parameter q ∈ (0, 1). The remarkable prop-
erties of Macdonald symmetric functions are developed in [63, Section VI], and all of
the relevant facts to which we appeal are also reviewed in [15, Section 2.1]. The eval-
uation of a q-Whittaker symmetric function on a positive variable ã (as in Pλ/μ(ã))
means to restrict the function to a single nonzero variable and then substitute the value
ã in for that variable. This is a special case of a q-Whittaker nonnegative special-
ization ρ which is an algebra homomorphism of the algebra of symmetric functions
Sym → C that takes skew q-Whittaker symmetric functions to nonnegative real
numbers (notation: Pλ/μ(ρ) ≥ 0, Qλ/μ(ρ) ≥ 0 for any partitions λ and μ). Restrict-
ing the q-Whittaker symmetric functions to a finite number of nonzero variables (i.e.
considering q-Whittaker polynomials) and then substituting nonnegative numbers for
these variables constitutes such a specialization. We will work with a more general
class of specializations which can be thought of as unions and limits of such finite
length specializations as well as dual specializations. Let α̃ = {α̃i}i≥1, β̃ = {β̃i}i≥1,
and γ̃ be nonnegative reals such that

∑∞
i=1(α̃i + β̃i) < ∞. Let ρ = ρ(α̃; β̃; γ̃ ) be a

specialization of Sym defined by

∑
n�0

gn(ρ)un = eγ̃ u
∏
i�1

1 + β̃iu

(α̃iu; q)∞
=: �

(
u; ρ(α̃; β̃; γ̃ )

)
. (3.1)

1The reason we use tildes for the parameters of this measure is because they will eventually be expressed in
terms of parameters without tildes, when we perform a q → 1 scaling limit to their Whittaker counterparts.
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Here u is a formal variable, gn = Q(n) is the q-analog of the complete homogeneous
symmetric function hn, and (ã; q)n =∏n−1

i=0 (1 − qi ã) is the q-Pochhammer symbol
(with obvious extension when n = ∞). Since {gn}n≥0 form an algebraic basis of
Sym, this uniquely defines the specializations ρ. Such ρ are q-Whittaker nonnegative
(see [15, Section 2.2.1] for more details). Alternatively, one can specify the above
specializations ρ(α̃; β̃; γ̃ ) in terms of the values they take on the Newton power sum
symmetric functions pk =∑

i (xi)
k via

p1
(
ρ(α̃; β̃; γ̃ )

) �→ (1 − q)γ̃ +
∑

i

(
α̃i + (1 − q)β̃i

)
,

pk

(
ρ(α̃; β̃; γ̃ )

) �→∑
i

(
(α̃i)

k + (−1)k−1(1 − qk)(β̃i)
k
)

, k � 2.

We can also express �(u; ρ) in terms of these Newton power sum symmetric
functions as

�(u; ρ) = exp

( ∞∑
k=1

uk pk(ρ)

(1 − qk)k

)
.

When it is clear which specialization we are discussing, we will just write ρ rather
than ρ(α̃; β̃; γ̃ ).

The normalization for the ascending q-Whittaker process is given by

∑
λ(N)

Pλ(N)(ã)Qλ(N)(ρ) = �(ã; ρ) =
N∏

n=1

�(ãn; ρ),

as follows from a generalization of Cauchy’s identity for Schur functions (corre-
sponding to the case q = 0). It is not hard to see that for ρ = ρ(α̃; β̃; γ̃ ) the condition
of the partition function �(ã; ρ) to be finite is equivalent to ãnα̃m < 1 for all n,m,
and hence we will always assume that this holds.

The projection of Ma;ρ to a single partition λ(k), k ∈ {1, . . . , N}, is the
q-Whittaker measure given by

MMã;ρ
(
λ(k)

) = Pλ(k) (ã1, . . . , ãk)Qλ(k) (ρ)

�(ã1, . . . , ãk; ρ)
.

In what follows we will be concerned primarily with the marginal distribution of
λ

(N)
1 .

3.2 Fredholm Determinant Formula

In order to state the main theorem of the section, we must specify parameters for the
q-Whittaker measure as well as various contours which participate.

Definition 3.1 For N ≥ 1 consider non-negative reals ã = {ã1, . . . , ãN }. We will
work with q-Whittaker non-negative specializations ρ = ρ(α̃; β̃; γ̃ ) as in (3.1) where
α̃ = {α̃1, . . . , α̃Mα }, β̃ = {β̃1, . . . , β̃Mβ } and γ̃ satisfy that for all i, α̃i , β̃i , γ̃ ≥ 0 and

max(α̃), max(β̃) < min(ã−1), where ã−1 = {ã−1
1 , . . . , ã−1

N }.
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Definition 3.2 For ã, α̃ and β̃ as in Definition 3.1 and an angle ϕ ∈ (0, π/2] define
C̃ã;α̃,β̃;ϕ = {μ̃ + e−iϕ sgn(y)y, y ∈ R} (oriented so as to have decreasing imaginary

part) where μ̃ = 1
2 max(α̃∪ β̃)+ 1

2 min(ã−1). For w ∈ C̃ã;α̃,β̃;ϕ , we choose R, d > 0

and the contour D̃w as follows: D̃w goes by straight lines from R − i∞, to R − id,
to 1/2 − id, to 1/2 + id, to R + id, to R + i∞. We choose R and d such that the
following holds: For all s ∈ D̃w, qsw lies to the left of C̃ã;α̃,β̃;ϕ and encloses all α̃

and β̃; and for |w| large, R ≈ ln |w| and d ≈ |w|−1 (here ≈ means up to a posi-
tive constant bounded from zero and infinity). See Fig. 3 for an illustration of these
contours.

We are prepared to state the central result of this section. The (most likely techni-
cal) condition that N ≥ 9 (which comes from some convergence estimates used in
the proof of Proposition 3.11) is not much of a limitation since we will ultimately be
concerned in studying the large N limit of this formula.

Theorem 3.3 Fix N ≥ 9 and ã, α̃, β̃, γ̃ as in Definition 3.1. Then for all ζ ∈ C\R+

EM
ã,ρ(α̃;β̃;γ̃ )

[
1(

ζq−λ
(N)
1 ; q)∞

]
= det(1+ K̃ζ )L2(C̃

ã;α̃,β̃;ϕ)
(3.2)

where C̃ã;α̃,β̃;ϕ as in Definition 3.2 with any ϕ ∈ (0, π/2]. The operator K̃ζ is defined
in terms of its integral kernel

K̃ζ (w, w′) = 1

2π i

∫
D̃w

	(−s)	(1 + s)(−ζ )sgw,w′(qs) ds (3.3)

Fig. 3 The contour C̃ã;α̃,β̃;ϕ (from Definition 3.2) is depicted along with the contour corresponding to

qsw for w ∈ C̃ã;α̃,β̃;ϕ and s ∈ D̃w .
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where

gw,w′ (qs ) = 1

qsw − w′
�(w; a)

�(qsw; a)

�
(
(qsw)−1; ρ(α̃; β̃; γ̃ )

)
�
(
(w)−1; ρ(α̃; β̃; γ̃ )

)

= exp
(
γw−1(q−s − 1)

)
qsw − w′

N∏
i=1

(qswai ; q)∞
(wai ; q)∞

Mα∏
i=1

(
(w)−1αi ; q

)
∞(

(qsw)−1αi ; q
)
∞

Mβ∏
i=1

1 + (qsw)−1βi

1 + (w)−1βi

, (3.4)

the contour D̃w is as in Definition 3.2 and the function � is defined as in (3.1).

Remark 3.4 This formula bares many similarities to that for the eq -Laplace trans-

form for qλN
N in [15, Theorem 3.2.11] and [16, Theorem 4.13]. The λN

N are closely
related to the particle system q-TASEP [15, Section 3.3.2], and hence these formulas
served as the starting point for large time asymptotic analysis of q-TASEP [12, 50].
It was shown in [29] that λN

1 relates to the particle system q-PushTASEP. The above
theorem may (in a similar manner as in [12, 50]) be of use in asymptotic analysis of
this system.

The remainder of this section is devoted to the proof of this theorem. The start-
ing point for this proof is the approach described in [15, Section 3.2] to compute

the eq -Laplace transform of qλ
(N)
N . Rather quickly, though, we encounter challenges

not previously present requiring new ideas. The approach from [15, Section 3.2]

for the random variable qλ
(N)
N starts by utilizing Macdonald difference operators

to compute nested contour integral formulas for the moments E

[
qkλ

(N)
N

]
(the sub-

script Mã,ρ(α̃;β̃;γ̃ ) is suppressed here). Since the random variable qλ
(N)
N ∈ (0, 1],

its moments determine its distribution, and its eq -Laplace transform can be com-
puted via a suitable moment generating series. Plugging the explicit formulas for
these moments into the eq -Laplace transform moment generating series results (after
further manipulations) in a Fredholm determinant.

For q−λ
(N)
1 , this approach (of [15, Section 3.2]) runs into a major issue in the first

step. The random variable λ
(N)
1 is part of a partition and hence a non-negative integer.

Since q ∈ (0, 1), it follows that q−λ
(N)
1 ≥ 1. Moreover, if any of the specialization

parameters α̃ are non-zero (i.e. α̃i > 0 for some i) then q−λ
(N)
1 will only have a finite

number of finite moments (Lemma 3.5). Therefore, recovering the distribution or eq -
Laplace transform from these finitely many moments is impossible. But we need the
case where some of these α̃ parameters are strictly positive as it relates after various
limit transition to the stationary KPZ equation. Therefore, we must overcome this
apparent obstacle.

In this case (where some αi > 0), for k small enough E

[
q−kλ

(N)
1

]
< ∞ and

there still exist nested contour integral moment formulas (coming from Macdon-
ald difference operators). These formulas involve k in a straightforward manner and
one can try to extend the formula for k to be an arbitrary integer. For those k for
which the moments are infinite, there fail to exist suitable choices of contours upon
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which to integrate. If one neglects this (important) impediment, it is possible to
mimic the approach of [15, Section 3.2]. The outcome of this formal calculation is
the statement of Theorem 3.3 (with some additional guess to work out which con-
tours to use in the final answer). Of course, this is not a mathematically justified
calculation since it involves summing infinitely many terms which are themselves
infinite and ill-defined. The outcome, however, is an equality between two finite
quantities.

The challenge is to turn this into a meaningful rigorous result, and hence prove
Theorem 3.3. This is done in two steps:

Step 1: Apply the approach of [15, Section 3.2] to prove a Fredholm determinant

formula for the eq -Laplace transform of q−λ
(N)
1 in the special case where all α̃i ≡ 0

(we also take γ̃ = 0 for this step). By studying the q-Whittaker measure under the
pure β̃ specialization, we can prove a priori that λ

(N)
1 ≤ Mβ (recall, Mβ is the number

of non-zero entries in β̃). This bound shows that E
[
q−kλ

(N)
1

]
≤ q−kMβ , and hence

we may adapt the approach from [15, Section 3.2] to prove the pure β̃ specialization
Fredholm determinant.

Step 2: Interpret the pure β̃ specialization Fredholm determinant formula for the
eq -Laplace transform as a formal series identity in the Newton power-sum symmetric
functions. Then, apply the ρ(α̃; β̃; γ̃ ) specialization to this formal series identity
and observe that both sides of the identity form convergent series, hence proving the
desired numerical identity which is Theorem 3.3.

The key fact which lets us succeed here is that we are working with symmet-
ric functions. This situation should be compared to the non-rigorous physics replica
method. There, the problem is to compute the distribution (via the Laplace transform)
of the solution to the stochastic heat equation Z(T , X). It is possible to compute
similar sorts of moment formulas as those above for E

[
Z(T , X)k

]
. These moments

remain finite for all k, but grow like eck3
for some constant c > 0. This means that the

moment problem is ill-posed and these moments do not determine the distribution of
Z(T , X). However, in the replica method calculations (e.g. [32, 40]) one can still try
to compute E

[
eζZ(T ,X)

]
through these moments via expanding the exponential and

interchanging the expectation and infinite summation. Though the Laplace transform
is necessarily finite, the associated moment generating series (coming from the math-
ematically unjustifiable interchange of expectation and the summation in the Taylor
expansion of the exponential) is divergent. After some additional manipulations, this
divergent generating function is ‘summed’ to a finite expression – a Fredholm deter-
minant. At least in the case of Z0(X) = δX=0, the resulting formulas agree with
those proved in [3].

In light of these similarities, one might hope to find a way to implement a variant

of the rigorous justification we provide in the study of q−λ
(N)
1 into the setting of

the SHE. However, this seems unlikely. The justification we provide draws heavily

upon the relationship between our observable q−λ
(N)
1 and the q-Whittaker processes

/ symmetric functions. Such structures do not clearly survive the limit transitions
which eventually relate to the SHE (see however [36, 66] for some trace of these
structures). Furthermore, the pure β̃ specialization which is used to justify the formal
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identity we prove, does not (as of yet) have any analog (or limit) in the SHE (or even
semi-discrete directed polymer) setting.

3.3 Step 1: Pure β̃ Fredholm Determinant Formula

For this step, we will focus on the q-Whittaker proceses with specializations ρ =
ρ(0; β̃; 0) and β̃ = (β̃1, . . . β̃M) with M ≥ 1 arbitrary (note that in Step 1b and
1c we return to considering general specializations to provide moment formulas).
For these specialization, the q-Whittaker function Qλ(ρ) = 0 unless λ1 ≤ M (see
[15, Section 2.2.1]). This provides the a priori bound that under the q-Whittaker

process, q−λ
(N)
1 ≤ q−M . Due to this bound, we will assume in Steps 1a–1e that

|ζ | < (1 − q)qM, (3.5)
though in Steps 1d–1e we will impose an additional condition on |ζ |.

3.3.1 Step 1a: Relating eq -Laplace Transform to Moments Generating Series

Observe that for ζ satisfying (3.5), the function

ζ �→ 1(
ζq−λ

(N)
1 ; q)∞

(which can be rewritten as eq

(
ζ(1 − q)−1q−λ

(N)
1
)
, cf. Appendix G) is always finite

and analytic in ζ . Using the q-Binomial theorem (cf. Appendix G) we may expand

1(
ζq−λ

(N)
1 ; q)∞

=
∞∑

k=0

(
ζ/(1 − q)

)k
kq ! q−kλ

(N)
1 (3.6)

where the q-deformed factorial is defined as

kq ! = (q; q)k

(1 − q)k
.

Due to (3.5), it follows that each summand on the right-hand side of (3.6) can be
bounded deterministically by a corresponding summand of a convergent geomet-
ric series. This justifies the interchange of expectation and summation necessary to
establish the equality

EM
ã,ρ(0;β̃;0)

[
1(

ζq−λ
(N)
1 ; q

)
∞

]
=

∞∑
k=0

(
ζ/(1 − q)

)k
kq ! EM

ã,ρ(0;β̃;0)

[
q−kλ

(N)
1

]
(3.7)

for those ζ satisfying (3.5).

3.3.2 Step 1b: Nested Contour Integral Formulas for Moments

In Step 1b–1c, we temporarily return to the general ρ(α̃; β̃; γ̃ ) specialization and
prove nested contour integral formulas for moments (when they exist). Let us first

describe conditions on ã, α̃, β̃ under which moments of q−λ
(N)
1 are finite, or infinite.
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Lemma 3.5 Fix N ≥ 1 and ã, α̃, β̃, γ̃ as in Definition 3.1. For k ≥ 1, if
maxi,j ãi α̃j < qk , then

EM
ã,ρ(α̃;β̃;γ̃ )

[
q−kλ

(N)
1

]
< +∞.

On the other hand, if maxi,j ãi α̃j > qk , then

EM
ã,ρ(α̃;β̃;γ̃ )

[
q−kλ

(N)
1

]
= +∞.

Proof We first address the case that maxi,j ãi α̃j < qk . We can bound

EM
ã,ρ(α̃;β̃;γ̃ )

[
q−kλ

(N)
1
] =

∑
λ(N)

q−kλ
(N)
1 Mã,ρ(α̃;β̃;γ̃ )(λ

(N))

�
∑
λ(N)

q−k|λ(N)|Mã,ρ(α̃;β̃;γ̃ )(λ
(N))

=
∑
λ(N)

Mq−k ã,ρ(α̃;β̃;γ̃ )(λ
(N)) < ∞.

The equality on the first line is by definition; the inequality on the second line is from
the fact that λ

(N)
1 ≤ |λ(N)|, where |λ| = ∑

λi ; the equality on the third line comes
from the fact that cPλ(ρ) = Pλ(cρ); the final inequality on the third line comes
from the fact that the q-Whittaker process Mq−k ã,ρ(α̃;β̃;γ̃ ) is well-defined as long as

q−kãi α̃j < 1.
Turning now to the case that maxi,j ãi α̃j > qk , assume (without loss of gen-

erality) that ã1 = max(ã) and α̃1 = max(α). By the interlacing inequalities,

λ
(1)
1 ≤ λ

(N)
1 . This means that if we show EM

ã,ρ(α̃;β̃;γ̃ )

[
q−kλ

(1)
1

]
= +∞, then so

too must EM
ã,ρ(α̃;β̃;γ̃ )

[
q−kλ

(N)
1

]
= +∞. To further simplify considerations, observe

that the q-Whittaker process Mã1,ρ(α̃1;0;0) is stochastically dominated by the q-
Whittaker process Mã1,ρ(α̃;β̃;γ̃ ). This can be seen, for instance, in light of dynamics
[15, Section 2.3] which maps the first process to the second process by only
increasing coordinates. Owing to this stochastic domination, it suffices to prove that

EMã1,ρ(α̃1;0;0)

[
q−kλ

(1)
1

]
= +∞. This expectation, however, is computable quite explic-

itly since P
λ

(1)
1

(ã1) = (ã1)
λ

(1)
1 , Q

λ
(1)
1

(α̃1) = (α̃1)
λ

(1)
1 (q; q)−1

λ
(1)
1

and �(ã1; α̃1) =
(ã1α̃1; q)−1∞ . Therefore, we find that

EMã1,ρ(α̃1;0;0)

[
q−kλ

(1)
1

]
=

∑
λ

(1)
1 �0

q−kλ
(1)
1 Mã1,ρ(α̃1;0;0)(λ

(1)
1 )

=
∑

λ
(1)
1 �0

q−kλ
(1)
1 (ã1α̃1)

λ
(1)
1

(ã1α̃1; q)∞
(q; q)

λ
(1)
1

,

which is seen to diverge to +∞ under the condition that q−kã1α̃1 > 1.
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The following proposition provides explicit formulas for those moments which
are necessarily finite due to Lemma 3.5. It should be observed that suitable contours
in the statement of the proposition exist under the same conditions as the finiteness
of moments.

Proposition 3.6 Fix N ≥ 1 and ã, α̃, β̃, γ̃ as in Definition 3.1. For k ≥ 1, if
maxi,j ãi α̃j < qηk for some η > 1, then

EM
ã,ρ(α̃;β̃;γ̃ )

[
q−kλ

(N)
1

]
= (−1)kq

k(k−1)
2

(2π i)k

∫
C1

· · ·
∫

Ck

∏
1�A<B�k

zA − zB

zA − qzB

k∏
i=1

g(zi)

g(qzi)

dzi

zi

(3.8)
where

g(z) =
N∏

i=1

1

(ãiz; q)∞
1

�
(
(z)−1; ρ(α̃; β̃; γ̃ )

) =
N∏

i=1

1

(ãiz; q)∞
eγ̃ z−1

Mα∏
i=1

(α̃iz
−1; q)∞

Mβ∏
i=1

1

1 + β̃i z−1
.

(3.9)

The contours C1, . . . , Ck are defined by Ci = qη(k−i)Ck where Ck = {c +
e−iϕ sgn(y), y ∈ R} (oriented so as to have decreasing imaginary part) with any
ϕ ∈ (0, π/2] and with any c ∈ R satisfying q−ηk max(α) < c < min(a−1).

Proof We provide a brief proof, as this result has essentially appeared before in [15,
Remark 2.2.11] and [17, Theorem 4.6] (in the more general Macdonald processes
language). The proof is based on a simple observation. Assume we have a linear
operator D on the space of functions in N variables whose restriction to the space
of symmetric polynomials acts diagonally in the basis of q-Whittaker polynomials:
DPλ = dλPλ for any partition λ with length �(λ) ≤ N . Then we can apply D to both
sides of the identity (acting in the ã variables)

∑
λ

Pλ(ã)Qλ(ρ) = �(ã; ρ).

Dividing the result by �(ã; ρ), we obtain

EMã,ρ
[dλ] = D�(ã; ρ)

�(ã; ρ)
.

This equality is valid so long as the expectation on the left-hand side is finite. If we
apply D several times, we obtain

EMã,ρ

[
(dλ)

k
]
= Dk�(ã; ρ)

�(ã; ρ)
.

If we have several possibilities for D we can obtain formulas for averages of the
observables equal to products of powers of the corresponding eigenvalues. One of
the remarkable features of Macdonald polynomials is that there exists a large family
of such operators. These are the Macdonald difference operators.
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We will consider a slight variant of the t = 0 (N − 1)-st difference operator. For
any u ∈ R and 1 ≤ i ≤ N define the shift operator Tu,xi

via its action
(
Tu,xi

F
)
(x1, . . . , xN) = F(x1, . . . , uxi, . . . , xN).

The operator D̃ which we utilize is given by

D̃ =
N∑

j=1

N∏
i=1
i =j

xj

xj − xi

Tq−1,xj
.

The q-Whittaker polynomials diagonalize this operator [15, Remark 2.2.11], so that
for all λ of length �(λ) ≤ N ,

D̃Pλ(x1, . . . , xN) = q−λ1Pλ(x1, . . . , xN).

Thus, using the procedure described above, we find that

EMã,ρ

[
q−kλ

(N)
1

]
= D̃k�(ã; ρ)

�(ã; ρ)
. (3.10)

This equality is true assuming that the left-hand side is finite. Lemma 3.5 provides
the conditions for ρ = ρ(α̃; β̃; γ̃ ) such that this expectation is finite.

To complete the proof we must identify the right-hand side of (3.8) with the
right-hand side of (3.10). This identification follows from residue calculus. The con-
tour Ck (along which zk is integrated) can be deformed to cross the set ã−1. This
deformation crosses poles and the integral is thus expanded as a sum of residues
at these poles and a remaining integral over a new contour which lies to the right
of the ã−1. The remaining integral evaluates to zero, as can be seen by using
Cauchy’s theorem and the at least quadratic decay of the integrand (as zk goes
to infinity in the right half of C). Each of the residue terms involves k − 1 inte-
grals, and this procedure can be repeated for the zk−1 through z1 integrals. The
resulting residue expansion of the integrals match exactly the formula on the right-
hand side of (3.10). See [15, Section 2.2.3] for more details of this type of residue
bookkeeping.

3.3.3 Step 1c: Unnesting the integrals

Proposition 3.7 provides a nested contour integral formula for the moments of q−λ
(N)
1

under the general ρ(α̃; β̃; γ̃ ) specialization. Here we record the effect of deforming
all of the contours to lie upon the same fixed contour.

Proposition 3.7 Fix N ≥ 1 and ã, α̃, β̃, γ̃ as in Definition 3.1. For k ≥ 1, if
maxi,j ãi α̃j < qηk for some η > 1, then

EM
ã,ρ(α̃;β̃;γ̃ )

[
q−kλ

(N)
1
] =∑

μ�k

1

m1!m2! · · ·
(1 − q)k

(2π i)�(μ)

∫
C

· · ·
∫

C

det

[
1

wiqμi − wj

]�(μ)

i,j=1

�(μ)∏
j=1

g(wj )

g(qμj wj )
dwj
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where μ is a partition of k (hence the notation μ � k) of length �(μ) and mul-
tiplicities mi = |{j : μj = i}|, the function g is given by (3.9), and the contour
C = {c + e−iϕ sgn(y), y ∈ R} (oriented so as to have decreasing imaginary part) with
any ϕ ∈ (0, π/2] and with any c ∈ R satisfying max(α) < c < min(a−1).

Proof This is essentially proved as [15, Proposition 3.2.1], or [18, Proposition
7.4]. The contours Ck−1 through C1 (on the right-hand side of (3.10)) are sequen-
tially deformed to lie along Ck . This deformation involves crossing certain strings
of poles (recorded by the partition μ). The resulting formula comes from bookkeep-
ing these residues. Note that once all integration contours coincide with Ck , these
contours can be simultaneously deformed (without crossing any poles or changing
the value of the integrals) to any choice of contour C as specified in the statement
of the proposition.

3.3.4 Step 1d: Summing the Moment Generating Series

We return now to studying the case of the pure β̃ specialization. (3.7) of Step 1a

shows that the eq -Laplace transform of q−λ
(N)
1 is equal to a generating series of

the moments E

[
q−kλ

(N)
1

]
provided |ζ | < (1 − q)qM . Proposition 3.7 of Step 1c

(in the pure β̃ specialization) provides explicit formulas for these moments. The
following proposition shows how plugging these formulas into the moment gen-
erating series results in a Fredholm determinant formula. In order for this sum
to converge, we must impose some further restrictions on |ζ |. We also assume
N ≥ 2 here as it is helpful for the technical aspects of the argument of the proof to
proceed.

Proposition 3.8 Fix N ≥ 2, ã, β̃ as in Definition 3.1, ϕ ∈ (0, π/2], and a contour
C̃ã;0,β̃;ϕ as in Definition 3.2. Specialize g from (3.9) to the pure β̃ specialization as

g(w) =
N∏

i=1

1

(ãiw; q)∞
1

�
(
(w)−1; ρ(0; β̃; 0)

) =
N∏

i=1

1

(ãiw; q)∞

M∏
i=1

1

1 + β̃iw−1
.

Define f (w) = g(w)
g(qw)

and the constant

C1 = sup
��1,w∈C̃

ã;0,β̃;ϕ
|f (q�w)|. (3.11)

Then for all ζ ∈ C \ R+, such that |ζ | < min
{
(1 − q)qM, C−1

1

}
,

EM
ã,ρ(0;β̃;0)

[
1(

ζq−λ
(N)
1 ; q)∞

]
= det(1+ Kζ )L2(Z>0×C̃

ã;0,β̃;ϕ)
.

The operator Kζ is defined in terms of its kernel

Kζ (n1, w1; n2, w2) = ζ n1

qn1w1 − w2

g(w1)

g(qn1w1)
.
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Proof In light of (3.7) and the bound |ζ | < (1 − q)qM , it suffices to prove that

∞∑
k=0

(
ζ/(1 − q)

)k
kq ! EM

ã,ρ(0;β̃;0)

[
q−kλ

(N)
1

]
= det(1+ Kζ )L2(Z>0×C̃

ã;0,β̃;ϕ)
.

Using Proposition 3.7 for the pure β̃ specialization, we can rewrite (see [15, Propo-
sition 3.2.8] or [16, Proposition 4.12]) the k-th term in this moment generating series
as

(
ζ/(1 − q)

)k
kq ! EM

ã,ρ(0;β̃;0)

[
q−kλ

(N)
1

]

=
∑
L�0

1

L!
∫
C̃

ã;0,β̃;ϕ
· · ·
∫
C̃

ã;0,β̃;ϕ

∑
n1 ,...,nL�1∑

ni=k

det

[
1

wiqni − wj

]L

i,j=1

L∏
j=1

ζ nj
g(wj )

g(qnj wj )

dwj

2π i
.

Summing over k yields

∞∑
k=0

(
ζ/(1 − q)

)k
kq ! EM

ã,ρ(0;β̃;0)

[
q−kλ

(N)
1

]

=
∑
L�0

1

L!
∫
C̃

ã;0,β̃;ϕ
· · ·
∫
C̃

ã;0,β̃;ϕ

∑
n1,...,nL�1

det

[
1

wiqni − wj

]L

i,j=1

L∏
j=1

ζ nj
g(wj )

g(qnj wj )

dwj

2π i
(3.12)

which is the Fredholm determinant expansion of det(1+ Kζ )
L2
(
Z>0×C̃

ã;0,β̃;ϕ
).

The convergence of this Fredholm determinant expansion, as well as the manip-
ulations used in reaching it require some justifications. (After all, the manipulations
involved rearranging an infinite summation.) Note that by assumptions on the con-
tour C̃ã;0,β̃;ϕ , the function qni wi/wj − 1 remains bounded from 0 uniformly as

wi, wj ∈ C̃ã;0,β̃;ϕ and ni ≥ 1 vary. It follows then from Hadamard’s inequal-

ity that there exists a constant B1 > 0 such that for all wi, wj ∈ C̃ã;0,β̃;ϕ and
L, n1, . . . , nL ≥ 1 ∣∣∣∣∣det

[
1

wiqni − wj

]L

i,j=1

∣∣∣∣∣ � BL
1 LL/2.

We may also show that for all wj ∈ C̃ã;0,β̃;ϕ and nj � 1,∣∣∣∣ g(wj )

g(qnj wj )

∣∣∣∣ � C
nj

1 C2w
−N
j

where C1 is defined in (3.11) and

C2 = C−1
1 sup

w∈C̃
ã;0,β̃;ϕ

f (w)wN.

This is shown by writing (recall f (w) = g(w)
g(qw)

)

g(wj )

g(qnj wj )
= f (wj )f (qwj ) · · · f (qnj−1wj)
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and using the definition of C1 and C2. The finiteness of these constants is easily
verified.

Combining these observations, we may bound in absolute value the L-th summand
in (3.12) by

1

L!B
L
1 LL/2

⎛
⎝∑

n�1

C2(C1ζ )n
∫
C̃

ã;0,β̃;ϕ

|dw|
2π

|w|−N

⎞
⎠

L

.

As we have assumed N ≥ 2, the integral in |dw| is bounded by a constant B2 > 0.
Since, by hypothesis, |ζ | < C−1

1 we can also bound the summation in n by another
constant B3 > 0. Therefore, the above expression is bounded by

1

L! (C2B1B2B3)
LLL/2.

Since the summation of this over L ≥ 0 is finite, the Fredholm determinant expansion
(3.12) is absolutely convergent. Using similar bounds as described above, we can
also justify all of the interchanging of summands necessary to complete the proof of
the proposition.

3.3.5 Step 1e: Rewriting as a Fredholm determinant of desired type

We will now prove Theorem 3.3 in the case of pure β̃ specialization subject to the
condition that ζ ∈ C\R+ satisfies |ζ | < min

{
(1−q)qM, C−1

1

}
, with C1 from (3.11).

Proposition 3.9 Fix N ≥ 2 and ã, β̃ as in Definition 3.1. Then for all ζ ∈ C \ R+
satisfying |ζ | < min

{
(1 − q)qM, C−1

1

}
, with C1 from (3.11),

EM
ã,ρ(0;β̃;0)

[
1(

ζq−λ
(N)
1 ; q)∞

]
= det(1+ K̃ζ )L2(C̃

ã;0,β̃;ϕ)

with C̃ã;0,β̃;ϕ as in Definition 3.2 with any ϕ ∈ (0, π/2]. The operator K̃ζ is defined
in terms of its integral kernel given in (3.3) with gw,w′(qs) from (3.4) explicitly given
in the pure β̃ specialization by

gw,w′(qs) = 1

qsw − w′
N∏

i=1

(ãiq
sw; q)∞

(ãiw; q)∞

M∏
i=1

1 + β̃i (q
sw)−1

1 + β̃i (w)−1
. (3.13)

Proof The convergent Fredholm expansion of det(1 + Kζ )L2(Z>0×C̃
ã;0,β̃;ϕ)

can be

written as

det(1+Kζ )
L2(Z>0×C̃

ã;0,β̃;ϕ)
=
∑
L�0

1

L!
∫
C̃

ã;0,β̃;ϕ

dw1

2π i
· · ·
∫
C̃

ã;0,β̃;ϕ

dwL

2π i
det

[ ∞∑
n=1

ζ ngwi ,wj
(qn)

]L

i,j=1

where gw,w′(qs) is from the statement of the proposition.
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Fig. 4 Left: The contour Ck composed of the union of two parts – the first part is the portion of the
contour D̃w which lies within the ball of radius k + 1/2 centered at the origin; the second part is the arc of
that ball which causes the union to be a closed contour which encloses {1, 2, . . . , k} and no other integers.
Right: The symmetric difference between Ck and D̃w is given by two parts: a semi-circle arc which we
call Carc

k and a portion of R + iR with magnitude exceeding k + 1/2 which we call C
seg
k

We will have proved the proposition if we can show that
∞∑

n=1

ζ ngw,w′(qn) = 1

2π i

∫
D̃w

	(−s)	(1 + s)(−ζ )sgw,w′(qs) ds. (3.14)

To show this, we will apply the following Mellin–Barnes representation.

Lemma 3.10 For all functions g, all negatively oriented (with respect to the points
1, 2, . . .) contours C1,2,... and all ζ ∈ C \ R+ which satisfy the conditions below, we
have the identity

∞∑
n=1

g(qn)ζ n = 1

2π i

∫
C1,2,...

	(−s)	(1 + s)(−ζ )sg(qs) ds

where the function ζ �→ (−ζ )s on the right-hand side is defined with respect to a
branch cut along ζ ∈ R+. The conditions which must be satisfied are as follows:
for k large, there must exist positively oriented contours Ck which enclose the points
1, 2, . . . , k, which do not enclose any singularities of g(qs), and which are such that
the integral above taken along the symmetric difference of C1,2,... and Ck goes to zero
as k goes to infinity.

Proof The identity follows from Res
s=k

	(−s)	(1 + s) = (−1)k+1.

We apply Lemma 3.10 to prove (3.14). Let C1,2,... = D̃w and let Ck be composed
of the union of two parts – the first part is the portion of the contour D̃w which lies
within the ball of radius k + 1/2 centered at the origin; the second part is the arc
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of the boundary of that ball which causes the union to be a closed contour which
encloses {1, 2, . . . , k} and no other integers. The contours Ck are oriented positively
and illustrated in the left-hand side of Fig. 4. We may assume k is large enough so
that the circle of radius k + 1/2 intersects D̃w on its vertical component. By the
definition of the contours C̃ã;0,β̃;ϕ and D̃w we are assured that the contours Ck do not
contain any poles of (−ζ )sgw,w′(qs). This is due to the fact that the contours have
been chosen such that as s varies, qsw stays entirely to the left of C̃ã;0,β̃;ϕ and hence
does not touch w′.

In order to apply the above lemma we must estimate the integral along the sym-
metric difference of C1,2,... and Ck . Identify the part of the symmetric difference
given by the circular arc as Carc

k and the part given by the portion of R + iR with
magnitude exceeding k + 1/2 as C

seg
k (see the right-hand side of Fig. 4). We will

estimate the integrand on each of these contours.
Concerning the term (−ζ )s , we may write −ζ = reiσ with σ ∈ (−π, π) and

r > 0. Then we have (−ζ )s = rseisσ . Writing s = x+iy we have |(−ζ )s | = rxe−yσ .
Note that our assumptions on ζ imply r < min

{
(1 − q)qM, C−1

1

}
, with C1 from

(3.11), and σ ∈ (−π, π).
Concerning the product of Gamma functions, one readily confirms that there exists

c > 0 such that for all s with dist(s,Z) ≥ 1/2∣∣∣	(−s)	(1 + s)

∣∣∣ � c

eπ | Im(s)| .

Focusing on s ∈ C
seg
k , the above bounds imply
∣∣∣	(−s)	(1 + s)(−ζ )s

∣∣∣ � crRe−yσ−π |y|

as dist(s,Z) ≥ 1/2 and x = R along C
seq
k (recall s = x + iy). As s varies along

C
seq
k , qsw cycles around a circle of fixed radius containing the origin and hence we

may bound |gw,w′(qs)| < C for some constant C > 0 independent of s ∈ C
seq
k and

k. That implies∣∣∣∣∣
1

2π i

∫
C

seq
k

	(−s)	(1 + s)(−ζ )sgw,w′(qs) ds

∣∣∣∣∣ �
∫

C
seq
k

|ds|
2π

CcrRe−yσ−π |y|.

Since σ ∈ (−π, π), the integrand decays exponentially as |y| increases (recall s =
x + iy). This means that as k goes to infinity, the above integral converges to zero.

Focusing on s ∈ Carc
k , the earlier bounds imply
∣∣	(−s)	(1 + s)(−ζ )s

∣∣ � crxe−yσ−π |y|

as dist(s,Z) ≥ 1/2 along C
seq
k . By inspection, we may bound |gw,w′(qs)| < C′q−xM

for some constant C′ > 0 independent of s ∈ Carc
k and k. To see this, observe that

as s ∈ Carc
k and k varies, (qsw − w′)−1 stays uniformly bounded, and since |aiq

sw|
stays uniformly bounded strictly below 1, each term (aiq

sw; q)∞ remains uniformly
bounded by a constant (the denominator (aiw; q)∞ remains constant as s and k vary).
The term 1 + βi

qsw
is bounded by a constant times q−x where s = x + iy (and the
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corresponding term in the denominator 1 + βi

w
remains constant as s and k vary).

Combining these considerations leads to the claimed bound.
This bound implies

∣∣∣∣∣
1

2π i

∫
Carc

k

	(−s)	(1 + s)(−ζ )sgw,w′(qs) ds

∣∣∣∣∣ �
∫

Carc
k

|ds|
2π

C′crxq−xMe−yσ−π |y|.

By assumption, rq−M < e−ν for some ν > 0, implying that rxq−xM ≤ e−νx .
Plugging this in, and using the fact that σ ∈ (−π, π), we see that the integrand decays
exponentially as both |y| and x increase. This means that as k goes to infinity, the
above integral converges to zero. This completes the verification necessary to apply
Lemma 3.10 and hence (3.14) follows and the proposition is proved.

3.3.6 Step 1f: Analytic Continuation

We show that for ã, β̃ fixed, we may use analytic continuation to extend the domain
of applicability of Proposition 3.9 to hold for all ζ ∈ C \ R+. This proves Theorem
3.3 in the case of a pure β̃ specialization.

Proposition 3.11 Fix N ≥ 9 and ã, β̃ as in Definition 3.1. Then for all ζ ∈ C \ R+

EM
ã,ρ(0;β̃;0)

[
1(

ζq−λ
(N)
1 ; q)∞

]
= det(1+ K̃ζ )L2(C̃

ã;0,β̃;ϕ)
(3.15)

with C̃ã;0,β̃;ϕ as in Definition 3.2 with any ϕ ∈ (0, π/2]. The operator K̃ζ is defined
in terms of its integral kernel given in (3.3) with gw,w′(qs) from (3.4) explicitly given
in the pure β̃ specialization by (3.13).

Proof In order to prove this result, we demonstrate that both sides of (3.15) are ana-
lytic in ζ as it varies within C \ R+. The identity for |ζ | small enough follows from
Proposition 3.9 and the general ζ result then follows from uniqueness of analytic con-
tinuations. Throughout, let ã, β̃ be fixed and let D ⊂ C\R+ be any compact domain
bounded away from R+. Also, let ϕ ∈ (0, π/2] be fixed as well as the contours
C̃ã;0,β̃;ϕ and D̃w for each w ∈ C̃ã;0,β̃;ϕ .

To establish the analyticity of the right-hand side of (3.15) observe that

EM
ã,ρ(0;β̃;0)

[
1(

ζq−λ
(N)
1 ; q)∞

]
=

∞∑
n=0

Mã,ρ(0;β̃;0)

(
λ

(N)
1 = n

)
(ζq−n; q)∞

is analytic over ζ ∈ C \ {q�}�∈Z. This follows from the fact that for any region of C
bounded away from {q�}�∈Z, the function ζ → (ζ ; q)∞ is uniformly bounded from
zero and analytic. This means that the above series is uniformly convergent in any
such region. Since each term is analytic in ζ , the series is as well. To establish the
analyticity of the left-hand side of (3.15), we show that ζ �→ det(1+ K̃ζ )L2(C̃

ã;0,β̃;ϕ)

is an analytic function of ζ in any domain D bounded away from R+. Consider the
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Fredholm determinant expansion

det(1+ K̃ζ )L2(C̃
ã;0,β̃;ϕ)

=
∑
L�0

1

L!
∫
C̃

ã;0,β̃;ϕ

dw1

2π i
· · ·
∫
C̃α̃,ϕ

dwL

2π i
det
[
K̃ζ (wi, wj )

]L
i,j=1.

(3.16)
We will show that for each L ≥ 0, the corresponding summand is an analytic

function of ζ ∈ D and that uniformly over ζ ∈ D, the above series in L is absolutely
convergent. From this it will follow that the series itself is also analytic. Let us write
FL(ζ ) for the Lth summand in (3.16):

FL(ζ ) = 1

L!
∫
C̃

ã;0,β̃;ϕ

dw1

2π i
· · ·
∫
C̃

ã;0,β̃;ϕ

dwL

2π i

∫
D̃w1

ds1

2π i
· · ·
∫
D̃wn

dsL

2π i
det

[
1

qsi wi − wj

]L

i,j=1

×
L∏

j=1

(
	(−sj )	(1 + sj )(−ζ )sj

N∏
i=1

(qsj wj ãi ; q)∞
(wj ãi ; q)∞

M∏
i=1

1 + β̃i (q
sj wj )

−1

1 + β̃i (wj )−1

)
.

We utilize the following readily proved estimates for the integrand in (3.16). There
exists C0 > 0 such that for all w ∈ C̃ã;0,β̃;ϕ and all s ∈ D̃w∣∣∣∣∣

N∏
i=1

(qsj wj ãi; q)∞
(wj ãi; q)∞

M∏
i=1

1 + β̃i (q
sj wj )

−1

1 + β̃i(wj )−1

∣∣∣∣∣ � C0
(|w|q)−Nx/2

q−Mx

where we recall the notation s = x + iy and M = Mβ is the number of non-zero
elements of β̃. Note that the constant C0 depends on ã, β̃ and the exact choice of
contours. We may bound 	(−s)	(1 + s)(−ζ )s as in Step 1e. For s on the vertical
portion of D̃w (with real part R), there exists a constant C1 > 0 such that∣∣∣	(−s)	(1 + s)(−ζ )s

∣∣∣ � C1y
−1rRe−yσ−π |y|

where we write ζ = reiσ with σ ∈ (−π, π). For s on the rest of D̃w, there exists a
constant C2 > 0 such that∣∣∣	(−s)	(1 + s)(−ζ )s

∣∣∣ � C2d
−1rx,

where d comes from Definition 3.2.
Finally, from Hadamard’s inequality and the conditions we have imposed on D̃wj

there exists a constant C3 > 0 such that∣∣∣∣∣det

[
1

qsi wi − wj

]L

i,j=1

∣∣∣∣∣ � CL
3 LL/2.

Let us see how these bounds imply the analyticity of the fixed L summand in
(3.16) as well as the uniform absolute convergence of the series. The integrand in
(3.16) is clearly analytic in ζ ∈ C \R+. Likewise holds true for the integral in (3.16)
when w1, . . . , wL and s1, . . . , sL are restricted to compact portions of their respective
contours. To show that the entire integral in (3.16) is analytic over ζ ∈ D (for some
compact domain D bounded away from R+) it suffices to show uniform integrability
of the integrand as ζ ∈ D varies. See also Lemma B.3.

Writing ζ = reiσ , let r∗ represent the maximal r over ζ ∈ D and σ ∗ represent
the σ which is closest to ±π over ζ ∈ D. Then (with possibly modified values



20 Page 34 of 95 Math Phys Anal Geom (2015) 18: 20

for C1, C2, C3 to account for the approximations that for |w| large, R ≈ ln |w| and
d ≈ |w|−1) we find that for s on the vertical portion of D̃w (with real part R) there is
a constant C4 > 0 such that

∣∣∣∣∣	(−s)	(1 + s)(−ζ )s
N∏

i=1

(qswãi; q)∞
(wãi; q)∞

M∏
i=1

1 + β̃i (q
sw)−1

1 + β̃i (w)−1

∣∣∣∣∣
� C0C1y

−1e−|y|(π−σ ∗)(r∗|w|−N/2q−N/2−M
)C4 ln |w|

,

whereas for s on the rest of D̃w

∣∣∣∣∣	(−s)	(1 + s)(−ζ )s
N∏

i=1

(qswãi; q)∞
(wãi; q)∞

M∏
i=1

1 + β̃i (q
sw)−1

1 + β̃i (w)−1

∣∣∣∣∣ � C0C2|w|(r∗|w|−N/2q−N/2−M
)x

.

Performing the integrals over s1, . . . , sL we find that some constants C5, C6 > 0,

∫
D̃w1

ds1

2π i
· · ·
∫
D̃wn

dsL

2π i

∣∣∣∣ det

[
1

qsi wi − wj

]L

i,j=1

×
L∏

j=1

(
	(−sj )	(1 + sj )(−ζ )sj

N∏
i=1

(qsj wj ãi; q)∞
(wj ãi; q)∞

M∏
i=1

1 + β̃i (q
sj wj )

−1

1 + β̃i (wj )−1

) ∣∣∣∣

� CL
3 LL/2

L∏
i=1

(
C5 ln |w|(r∗|wi |−N/2q−N/2−M

)C4 ln |w| + C6|w|
(
r∗|wi |−N/2q−N/2−M

)1/2

ln(r∗|wi |−N/2q−N/2−M
)
)

.

The right-hand side above decays in large |w| like |w|1−N/4 (up to logarithmic
corrections). Thus, given that N ≥ 9, we find that for some constant C7 > 0,

1

L!
∫
C̃

ã;0,β̃;ϕ

dw1

2π i
· · ·
∫
C̃

ã;0,β̃;ϕ

dwL

2π i

∫
D̃w1

ds1

2π i
· · ·
∫
D̃wn

dsL

2π i

∣∣∣∣ det

[
1

qsi wi − wj

]L

i,j=1

×
L∏

j=1

(
	(−sj )	(1 + sj )(−ζ )sj

N∏
i=1

(qsj wj ãi ; q)∞
(wj ãi ; q)∞

M∏
i=1

1 + β̃i (q
sj wj )

−1

1 + β̃i (wj )−1

) ∣∣∣∣ � CL
3 LL/2

L! C7.

This implies FL(ζ ) is analytic, and it also shows that |FL(ζ )| ≤ CL
3 LL/2

L! C7 uniformly
over ζ ∈ D. Hence follows the uniform absolute convergence and analyticity of the
full series det(1+ K̃ζ )L2(C̃

ã;0,β̃;ϕ)
as well by Lemma B.3.

3.4 Step 2: Formal Series Identity

In this step, we will complete the proof of Theorem 3.3 for general α̃, β̃, γ̃ spe-
cializations. Recall that the algebra of symmetric functions Sym in formal variables
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X = (x1, x2, . . .) is algebraically generated by Newton power sums (for more
background, see [63, Chapter 1])

pk(X) =
∑

i

(xi)
k, k = 1, 2, . . . .

For any partition λ, set pλ(X) =∏
i pλi

(X). These form a linear basis for Sym.
In order to prove the theorem, we must show that the identity in (3.2) holds for

general specializations satisfying the conditions of Definition 3.1. We do this in three
lemmas. In Lemma 3.12 we establish that the left-hand side of (3.2) can be expanded
into a series in the ρ(α̃; β̃; γ̃ ) specialization of pλ(X) functions with coefficients
�λ(ζ, q, ã) which are independent of said specialization. In Lemma 3.13 we do the
same for the right-hand side of (3.2) with coefficients rλ(ζ, q, ã). In Lemma 3.14 we
observe that since Proposition 3.11 amounts to the identity (3.2) for all pure β̃ spe-
cializations, this implies the equality of all coefficients �λ(ζ, q, ã) = rλ(ζ, q, ã) in
the pk expansions. This along with the two previous lemmas, however, implies that
(3.2) holds for all specializations for which the pk expansions are absolutely con-
vergent – in particular for the general ρ(α̃; β̃; γ̃ ) specialization satisfying Definition
3.1. This completes the proof of Theorem 3.3.

What remains, therefore, is to state and prove the three lemmas.

Lemma 3.12 There exist coefficients �λ = �λ(ζ, q, ã), depending on ζ ∈ C \ R+,
q ∈ (0, 1) and ã (but not ρ(α̃; β̃; γ̃ )) such that, for all specializations ρ(α̃; β̃; γ̃ )

satisfying Definition 3.1,

EM
ã,ρ(α̃;β̃;γ̃ )

[
1(

ζq−λ
(N)
1 ; q)∞

]
=
∑
λ

�λ pλ

(
ρ(α̃; β̃; γ̃ )

)
.

Moreover, the right-hand side is an absolutely convergent series for all such
ρ(α̃; β̃; γ̃ ).

Proof Let us first work in terms of the formal variables X and the algebra Sym.
Since the pλ form a linear basis of Sym, there are coefficients cλ,μ with |λ| = |μ|
such that

Qλ(X) =
∑

μ:|μ|=|λ|
cλ,μpλ(X).

Similarly, we can express �(ã;X) =∑
λ Pλ(ã)Qλ(X) via the pλ(X) basis as

�(ã;X) = exp

( ∞∑
k=1

pk(ã)pk(X)

(1 − qk)k

)
. (3.17)

Using these expansions in pλ(X) functions we can write
∑
λ(N)

1(
ζq−λ

(N)
1 ; q)∞

Pλ(ã)Qλ(X)

�(ã;X)
=
∑
λ

�λ(ζ, q, ã) pλ(X). (3.18)

To establish the equality, we have used the above expansions of Q and � into the pλ

functions. It is easy to see that for each pλ(X) there are only a finite number of terms
from these expansions which combine to form the coefficient �λ(ζ, q, ã).
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This determines the value of the coefficients �λ(ζ, q, ã). It is, moreover, evident
that the expansions are absolutely convergent for specializations ρ(α̃; β̃; γ̃ ) satisfy-
ing Definition 3.1. The specialization of the right-hand side of (3.18) is identified
with

EM
ã,ρ(α̃;β̃;γ̃ )

[
1(

ζq−λ
(N)
1 ; q)∞

]
,

hence completing the proof of the lemma.

Lemma 3.13 There exist coefficients rλ = rλ(ζ, q, ã), depending on ζ ∈ C \ R+,
q ∈ (0, 1) and ã (but not ρ(α̃; β̃; γ̃ )) such that, for all specializations ρ(α̃; β̃; γ̃ )

satisfying Definition 3.1,

det(1+ K̃ζ )L2(C̃
ã;α̃,β̃;ϕ)

=
∑
λ

rλ pλ

(
ρ(α̃; β̃; γ̃ )

)
.

Moreover, the right-hand side is an absolutely convergent series for all such
ρ(α̃; β̃; γ̃ ).

Proof Recall that the Fredholm determinant means the expansion

det(1+ K̃ζ )L2(C̃
ã;α̃,β̃;ϕ) =

∑
L�0

1

L!
∫
C̃

ã;α̃,β̃;ϕ

dw1

2π i
· · ·
∫
C̃

ã;α̃,β̃;ϕ

dwL

2π i
det
[
K̃ζ (wi, wj )

]L
i,j=1

.

The kernel is defined in (3.3) as

K̃ζ (w, w′) = 1

2π i

∫
D̃w

	(−s)	(1 + s)(−ζ )sgw,w′(qs) ds

where, as in (3.4),

gw,w′(qs) = 1

qsw − w′
�(w; a)

�(qsw; a)

�
(
(qsw)−1; ρ(α̃; β̃; γ̃ )

)
�
(
(w)−1; ρ(α̃; β̃; γ̃ )

) .

For specializations ρ(α̃; β̃; γ̃ ) satisfying Definition 3.1, we can choose the contours
C̃ã;α̃,β̃;ϕ and D̃w as in Definition 3.2 in such as way that

∣∣∣∣ α̃

qsw

∣∣∣∣,
∣∣∣∣ α̃w
∣∣∣∣,
∣∣∣∣ β̃

qsw

∣∣∣∣,
∣∣∣∣ β̃w
∣∣∣∣ < 1

for all w ∈ C̃ã;α̃,β̃;ϕ and s ∈ D̃w. These conditions imply that the ρ(α̃; β̃; γ̃ ) special-
ization of the identities in (3.17) remain valid (with convergent right-hand sides). In
particular, we find that the term in the formula for gw,w′(qs) is

�
(
(qsw)−1; ρ(α̃; β̃; γ̃ )

)
�
(
(w)−1; ρ(α̃; β̃; γ̃ )

) = exp

( ∞∑
k=1

pk

(
(qsw)−1

)
pk

(
ρ(α̃; β̃; γ̃ )

)
(1 − qk)k

− pk

(
(w)−1

)
pk

(
ρ(α̃; β̃; γ̃ )

)
(1 − qk)k

)
.
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We can substitute this convergent expansion into gw,w′(qs) and thus express the Fred-
holm determinant expansion in terms of a convergent series in the pλ

(
ρ(α̃; β̃; γ̃ )

)
:

det(1+ K̃ζ )L2(C̃
ã;α̃,β̃;ϕ)

=
∑
λ

rλ(ζ, q, ã) pλ

(
ρ(α̃; β̃; γ̃ )

)
.

It is easily checked that the Lth term in the Fredholm determinant expansion con-
tributes to pλ’s with |λ| ≥ L, and hence each coefficient is well-defined and
finite. The convergence of this sum follows from the convergence of the expansion
into the pk

(
ρ(α̃; β̃; γ̃ )

)
as well as the convergence of the Fredholm determinant

expansion.

Lemma 3.14 For any ζ ∈ C \ R+, q ∈ (0, 1) and ã, we have

�λ(ζ, q, ã) = rλ(ζ, q, ã)

for all partitions λ.

Proof Proposition 3.11 implies that the left-hand sides of the identities in Lem-
mas 3.12 and 3.13 are equal for all pure β̃ specializations. The right-hand sides
of the identities in Lemmas 3.12 and 3.13 are therefore also equal under these
specializations:

∑
λ

�λ(ζ, q, ã) pλ

(
ρ(0; β̃; 0)

) =∑
λ

rλ(ζ, q, ã) pλ

(
ρ(0; β̃; 0)

)
.

View both sides as power series in individual β̃j ’s. The equality implies equality of
parts of fixed degree. Moreover, pλ

(
ρ(0; β̃; 0)

)
for fixed |λ| are linearly independent

for sufficiently many nonzero β̃j ’s. Therefore, since this equality holds for general β̃

specializations, it implies equality of the expansion coefficients.

4 Whittaker Processes

4.1 Defining the Processes

Let us introduce some notation. Write T for the triangular array
(
T

(k)
j

)
1≤j≤k≤N

with entries in R. Alternatively, write T = (
T (1), . . . , T (N)

)
with

T (k) = (
T

(k)
1 , . . . , T

(k)
k

)
. Also, write ν = (ν1, . . . , νN) ∈ R

N .

Definition 4.1 As shown by Givental [53], the class-one glN -Whittaker functions
admit the following integral representation:

ψν(T
(N)) =

∫
R

N(N−1)
2

eFν (T )
∏

1�j�k�N−1

dT
(k)
j
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where the integral is over all T with fixed T (N), and where

Fν(T ) = i
N∑

n=1

νn

(
n∑

i=1

T
(n)
i −

n−1∑
i=1

T
(n−1)
i

)
−

N−1∑
n=1

n∑
i=1

(
eT

(n)
i −T

(n+1)
i + eT

(n+1)
i+1 −T

(n)
i

)
.

We now define a class of Whittaker processes which are composites of those which
arose in [37, 65].

Definition 4.2 Fix integers N ≥ 1, M ≥ 0, vectors a = (a1, . . . , aN), α =
(α1, . . . , αM), and τ ≥ 0, such that αm > 0 for all 1 ≤ m ≤ M and αm + an > 0
for all 1 ≤ n ≤ N and 1 ≤ m ≤ M . The Whittaker process corresponding to these

parameters is a probability measure on R
N(N+1)

2 with density function (with respect
to Lebesgue measure) given by

W(a;α,τ)(T ) = e−τ
∑N

n=1
a2
n
2

N∏
n=1

M∏
m=1

1

	(αm + an)
eFia(T )θα,τ (T

(N))

with

θα,τ (T
(N)) =

∫
RN

ψν(T
(N))e−τ

∑N
n=1

ν2
n
2

N∏
n=1

M∏
m=1

	(αm − iνn)mN(ν) dν1 . . . dνN,

and the Skylanin measure mN defined as

mN(ν) = 1

(2π)NN !
∏

1�j =k�N

1

	(iνk − iνj )
.

The Whittaker measure WM(a;α,τ)(T
(N)) is the marginal of the Whittaker process

W(a;α,τ)(T ) on T (N) as defined in [15, Definition 4.1.16].

4.2 Whittaker Processes and the Semi-discrete Directed Random Polymer

The following result connects the developments of Sections 3 and 4 with the study of
the partition function for the semi-discrete directed random polymer with log-gamma
boundary sources.

Theorem 4.3 Fix integers N ≥ 1, M ≥ 0 and τ ≥ 0. Let a = (a1, . . . , aN) ∈ R
N

and α = (α1, . . . , αM) ∈ (R>0
)M

be such that αm − an > 0 for all 1 ≤ n ≤ N and

1 ≤ m ≤ M . Recall Fk,M
j (τ ) defined in (2.2). Then

{
Fk,M

j (τ )
}

1≤j≤k≤N
is distributed

according to the Whittaker process W(−a;α,τ), where −a = (−a1, . . . ,−aN).

Proof This result relies on a combination of the work of [65] on the semi-discrete
directed random polymer and of [37] on the log-gamma discrete directed polymer.
Those papers use geometric liftings of the Robinson–Schensted–Knuth correspon-
dence to relate the polymer partition functions to pure γ̃ and pure α̃ specialized
Whittaker processes. The present result follows by combining [37, Theorems 3.7 and
3.9] with [65, Theorem 3.1]. See also [15, Section 5.2.1] for the M = 0 case.
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Remark 4.4 It follows from Theorem 4.3 that the Whittaker process is positive and
integrates to 1. It should also be possible to show this directly in the manner of [15,
Proposition 4.1.18].

4.3 Convergence of q-whittaker Processes to Whittaker Processes

We start by recording how q-Whittaker polynomials limit to Whittaker functions.
Note that in the scalings which we describe below, it is understood that when it is
necessary to work with integers, we take the integer part of ε dependent expressions.

Proposition 4.5 (Theorem 4.1.7 of [15]) For N ≥ 1, consider the scalings

q = e−ε, A(ε) = −ε−1 π2

6
− 1

2
ln

ε

2π

and for 1 ≤ n ≤ N

zn = eiενn, λ(N)
n = (N − 2n)ε−1 log ε−1 + ε−1T (N)

n .

Define rescaled (and index, variable flipped) q-Whittaker functions by

ψε
ν (T (N)) = ε

N(N−1)
2 e

N(N+2)
2 A(ε)Pλ(N)(z).

Then, for all ν ∈ R
N , we have the following:

(1) For each σ ⊂ {1, . . . , N − 1}, there exists a polynomial RN,σ of N variables
(chosen independently of ν1, . . . , νN and ε) such that for all T (N) ∈ R

N with

σ = σ(T (N)) := {
n ∈ {1, . . . , N − 1} : T (N)

n − T
(N)
n+1 � 0

}
,

we have the following estimate: for some c∗ > 0
∣∣ψε

ν (T (N))
∣∣ � RN,σ(T (N))(T

(N))
∏

n∈σ(T (N))

exp
{
−c∗e−(T

(N)
n −T

(N)
n+1)/2

}
.

(2) For (T (N)) varying in a compact domain of RN , ψε
ν (T (N)) converges (as ε goes

to zero) uniformly to ψν(T
(N)).

Theorem 4.6 Fix integers N ≥ 1, M ≥ 0, vectors a = (a1, . . . , aN), α =
(α1, . . . , αM) and τ > 0 such that αm > 0 for all 1 ≤ m ≤ M and αm + an > 0 for
all 1 ≤ n ≤ N and 1 ≤ m ≤ M . Introduce the following ε > 0 dependent scalings:

q = e−ε, γ̃ = τε−2, ãn = e−anε, 1 � n � N, α̃m = e−αmε, 1 � m � M,

λ
(k)
j = τε−2 + Mε−1 ln ε−1 + (k + 1 − 2j)ε−1 ln ε−1 + T

(k)
j ε−1, 1 � j ≤ k � N. (4.1)

The q-Whittaker process Mã,ρ(α̃;0;γ̃ )

(
λ(1), . . . , λ(N)

)
induces an ε-indexed measure

on T which converges weakly, as ε → 0, to the Whittaker process W(a;α,τ)(T ).

Remark 4.7 The above theorem only deals with convergence of the α̃, γ̃ specialized
q-Whittaker process. It is presently unclear whether the β̃ specialized process admits
a non-trivial limit as q → 1.
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Proof This proof is quite similar to that of [15, Theorems 4.1.12 and 4.2.4] which
work with (respectively) the pure γ̃ and pure α̃ cases. It should be noted, however,
that the pure α̃ case [15, Theorem 4.2.4] was stated modulo a decay estimate which
was not checked. By combining the γ̃ with the α̃ specialization, the necessary decay
is easily shown to hold. On account of the similarities to those theorems, we only
include the steps of the proof and refer to the proofs from [15] for the justification of
the estimates.

The q-Whittaker process which we seek to asymptotically analyze is given as

Mã,ρ(α̃;0;γ̃ )

(
λ(1), . . . , λ(N)

) = Pλ(1) (ã1)Pλ(2)/λ(1) (ã2) · · ·Pλ(N)/λ(N−1) (ãN )Qλ(N)

(
ρ(α̃; 0; γ̃ )

)
�
(
ã; ρ(α̃; 0; γ̃ )

) .

Through the association of the λ
(k)
j with the T

(k)
j given in (4.1), this measure is pushed

forward to one on T . It suffices to show that for any compact set D ∈ R
N(N+1)

2 , the
convergence (as ε goes to zero) is uniform as T varies in D. This is due to the positiv-
ity of the measure and our independent knowledge (see Remark 4.4) that the limiting
density integrates to 1. In order to estimate the behavior of the q-Whittaker process,
we split it up into three lemmas, the combination of which proves the theorem.

Lemma 4.8 Fix any compact subset D ∈ R
N(N+1)

2 . Then

Pλ(1) (ã1)Pλ(2)/λ(1) (ã2) · · ·Pλ(N)/λ(N−1) (ãN ) =
(
e−

(N−1)(N−2)
2 A(ε)e−ε−1τ

∑N
n=1 anεM

∑N
n=1 an

)
Fia(T )eo(1)

where the o(1) error goes uniformly (with respect to T ∈ D) to zero as ε goes to zero.

Proof This is proved by combining the computations of [15, Lemmas 4.1.23 and
4.2.5].

Lemma 4.9 We have

�
(
ã; ρ(α̃; 0; γ̃ )

) = (
eτNε−2

e−ε−1τ
∑N

n=1 an

N∏
n=1

M∏
m=1

1

eA(ε)ε1−αm−an

)
eτ
∑N

n=1 a2
n/2

N∏
n=1

M∏
m=1

	(αm+an)e
o(1)

where the o(1) error goes to zero as ε goes to zero.

Proof This is proved by combining the computations of [15, Lemmas 4.1.24 and
4.2.6].

Lemma 4.10 Fix any compact subset D ∈ R
N(N+1)

2 . Then

Qλ(N)

(
ρ(α̃; 0; γ̃ )

) = (
e

(N−1)(N−2)
2 A(ε)eτNε−2

ε
N(N+1)

2

M∏
m=1

εN(αm−1)
)
θα,τ (T

(N))eo(1)

where the o(1) error goes uniformly (with respect to T ∈ D) to zero as ε goes to zero.
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Proof This is proved by combining the computations of [15, Lemmas 4.1.25 and
4.2.7]. However, since the result of [15, Lemma 4.2.7] was stated modulo a decay
estimate, we will provide the steps to prove the above result. That decay estimate is
readily confirmed in the present case because of the presence of the γ̃ specialization,
which provides ample decay. In [15], the proof of these analogous lemmas split into
four steps. It is only in the fourth step where a bit more justification is needed, which
we give.

We employ the torus scalar product [15, Section 2.1.5] with respect to which the
Macdonald polynomials are orthogonal (we keep t = 0 and use the notation T

N to
represent the torus {z : |z1|, . . . , |zN | = 1}):

〈f, g〉′N =
∫
TN

f (z)g(z)m
q
N(z)

N∏
n=1

dzn

zn

, m
q
N(z) = 1

(2π i)NN !
∏

1�j =k�N

(zj z
−1
k ; q)∞.

Note that taking t = 0 [15, equation (2.8)] yields

〈Pλ(N) , Pλ(N)〉′N =
N−1∏
n=1

(qλ
(N)
n −λ

(N)
n+1+1; q)−1∞ .

Recalling the definition of �, we may write

Qλ(N)(ρ) = 1

〈Pλ(N) , Pλ(N)〉′N
〈
�(z1, . . . , zN ; ρ), Pλ(N)(z1, . . . , zN)

〉′
N

.

Therefore, in order to study the asymptotic behavior of Qλ(N)

(
ρ(α̃; 0; γ̃ )

)
, we will

study the torus scalar product above. Let us introduce one additional scaling to those
in (4.1) that for 1 ≤ n ≤ N , zn = eεiνn .

In Step 1 we show that 〈Pλ, Pλ〉′N = eo(1) where the o(1) error goes uniformly
(with respect to T ∈ D) to zero as ε goes to zero. The proof from [15, Lemma 4.1.25]
applies just as well here.

In Step 2 we find that for any compact subset V ⊂ R
N ,

�
(
z1, . . . , zN ; ρ(α̃; 0; γ̃ )

) = E�e−τ
∑N

n=1 ν2
n/2

N∏
n=1

M∏
m=1

	(αm − iνn)e
o(1),

E� = eτNε−2
eτε−1i

∑N
n=1 νn

N∏
n=1

M∏
m=1

1

eA(ε)ε1−αm+iνn
,

and, using Proposition 4.5, we find

Pλ(N)(z1, . . . , zN) = EP ψν(T
(N))eo(1),

EP = ε−
N(N−1)

2 e−
(N−1)(N+2)

2 A(ε)eτε−1i
∑N

n=1 νnε−M
∑N

n=1 iνn

where the o(1) error goes uniformly (with respect to T ∈ D and ν ∈ V ) to zero as ε

goes to zero. The proof from [15, Lemma 4.1.25] applies just as well here.
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In Step 3 we find that for any compact subset V ⊂ R
N ,

m
q
N(z)

N∏
n=1

dzn

zn

= EmmN(ν)

N∏
n=1

dνne
o(1), Em = εN2

eN(N−1)A(ε)

where the o(1) error goes uniformly (with respect to ν ∈ V ) to zero as ε goes to zero.
The proof from [15, Lemma 4.1.25] applies just as well here.

In Step 4 we find that

〈
�(z1, . . . , zN ; ρ), Pλ(N) (z1, . . . , zN )

〉′
N

=
(

e
(N−1)(N−2)

2 A(ε)eτNε−2
ε

N(N+1)
2

M∏
m=1

1

εN(1−αm)

)
θτ (T

(N))eo(1)

where the o(1) error goes uniformly (with respect to T ∈ D) to zero as ε goes to zero.
The proof from [15, Lemma 4.1.25] applies just as well here, though we need to check
that the following inequality still holds: for all νn ∈ [−ε−1π, ε−1π ], 1 ≤ n ≤ N ,∣∣∣∣�(z1, . . . , zN ; ρ)

E�

∣∣∣∣ � e−τ
∑N

n=1 ν2
n/6. (4.2)

This was checked in Step 4 of the proof of [15, Lemma 4.1.25] for ρ = ρ(0; 0; γ̃ ). It
is, however, easily confirmed that including the α̃ specialization as well as the γ̃ one
does not increase the left-hand side of (4.2). In particular, this amounts to showing
that for all ν ∈ [−ε−1π, ε−1π ] (and α > 0 fixed),

eA(ε)ε1−α+iν

(e−εαeεiν; e−ε)∞
= 	q(α − iν)

is bounded by a constant (cf. Appendix G for more on the q-Gamma function). This
is easily checked, hence Step 4 proceeds and the lemma is proved as in [15, Lemma
4.1.25].

As in the proof of [15, Theorems 4.1.12 and 4.2.4], the above three lemmas (along

with the Jacobian factor of ε
N(N+1)

2 coming from the rescaling of the q-Whittaker
process) implies Theorem 4.6.

5 Semi-discrete Polymer with Boundary Sources – Proof of Theorem 2.1

Theorem 5.1 Fix N ≥ 9, M ≥ 0, τ > 0 and vectors a = (a1, . . . , aN) ∈ R
N and

α = (α1, . . . , αM) ∈ R
M so that αm − an > 0 for all 1 ≤ m ≤ M , 1 ≤ n ≤ N . Then

for all u ∈ C with positive real part

EW(−a;α,τ)

[
e−ue

T
(N)
1
]
= det(1+ Ku)L2(Ca;α;ϕ) ,

where the operator Ku is defined as in Theorem 2.1 and the contour Ca;α;ϕ is given
in Definition 2.1 with any ϕ ∈ (0, π/4).
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Before proving this theorem, let us see how, combined with the earlier result of
Theorem 4.3, the above theorem yields Theorem 2.1.

Proof of Theorem 2.1 Theorem 4.3 implies that ZN,M
1 (τ ) is equal in distribution to

eT
(N)
1 where T is distributed according to the Whittaker process W(−a;α,τ). Theo-

rem 5.1provides a Fredholm determinant formula for the Laplace transform of eT
(N)
1

which implies Theorem 2.1.

Proof of Theorem 5.1 The proof of Theorem 5.1 follows a similar line as that of
[16, Theorem 4.5]. We proceed in two steps. In the first step we prove:

Lemma 5.2 Under the scalings from (4.1) and with ζ = −εM+Ne−ε−1τ u, for all
u ∈ C with positive real part

lim
ε→0

EM
ã−1,ρ(α̃;0;γ̃ )

[
1(

ζq−λ
(N)
1 ; q)∞

]
= EW(−a;α,τ)

[
e−ue

T
(N)
1
]

(5.1)

In the second step we prove:

Proposition 5.3 Under the scalings from (4.1) and with ζ = −εM+Ne−ε−1τ u, for
all u ∈ C with positive real part

lim
ε→0

det(1+ K̃ζ )L2(C̃
ã−1;α̃,0;ϕ)

= det(1+ Ku)L2(Ca;α;ϕ).

Combining these two results along with Theorem 3.3 (which shows the equiv-
alence of the left-hand sides of these two results) immediately yields Theorem
5.1.

5.1 Step 1: Proof of Lemma 5.2

Rewrite the left-hand side of (5.1) as

lim
ε→0

EM
ã−1,ρ(α̃;0;γ̃ )

[
1(

ζq−λ
(N)
1 ; q)∞

]
= lim

ε→0
EM

ã−1,ρ(α̃;0;γ̃ )

[
eq(xq)

]

where
xq = (1 − q)−1ζqλ

(N)
1 = −ue−T

(N)
1 ε/(1 − q)

and

eq(x) = 1(
(1 − q)x; q)∞

is a q-exponential (cf. Appendix G). Combine this with the fact that eq(x) →
ex uniformly on x ∈ (−∞, 0) to show that, considered as a function of T

(N)
1 ,

eq(xq) → e−ue
−T

(N)
1 uniformly over T

(N)
1 ∈ R. By Theorem 4.6, the measure
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on T induced from the q-Whittaker process on λ(1), . . . , λ(N) converges weakly
in distribution to the Whittaker process W(−a;α,τ). Combining this weak con-
vergence with the uniform convergence of eq(xq) and Lemma F.2completes the
proof of Lemma 5.2.

5.2 Step 2: Proof of Proposition 5.3

Employing the change of variables w = qv and w′ = qv′
, the kernel in the left-hand

side of Proposition 5.3 can be rewritten as

det(1+ K̃ζ )L2(C̃
ã−1;α̃,0;ϕ)

= det(1+ Kε
u)L2(Cε

a;α;ϕ).

Here, the kernel Kε
u is given by

Kε
u(v, v′) = 1

2π i

∫
D̃qv

hq(s) ds (5.2)

where (cf. Appendix G for the definition of 	q )

hq(s) = 	(−s)	(1 + s)

( −ζ

(1 − q)M+N

)s
qv ln q

qs+v − qv′ e
γ̃ q−v (q−s−1)

×
N∏

n=1

	q(v − an)

	q(s + v − an)

M∏
m=1

	q(αm − s − v)

	q(αm − v)
. (5.3)

The contour on which this kernel Kε
u acts is the image of the contour C̃ã−1;α̃;ϕ under

the map x �→ lnq x and the contour D̃qv is as in Definition 3.2. There was some free-
dom in specifying the contour C̃ã−1;α̃;ϕ . It will be convenient for us to fix a particular

contour in performing asymptotics. Let μ = 1
2 max(a) + 1

2 min(α). Then we define
the contour Cε

a;α;ϕ as the image of qμ + e±ϕi
R+ under the map x �→ lnq x. This

contour is illustrated in Fig. 5. Note that as ε → 0 this contour converges locally uni-
formly to Ca;α;ϕ from Definition 2.4, as can readily be seen by Taylor expanding the
map x �→ lnq x.

It follows from the above observation that the contour on which the kernel Kε
u is

defined converges as ε → 0 to the contour Ca;α;ϕ on which the kernel in Theorem
5.1 is defined. Let us now likewise demonstrate the pointwise convergence of the
integrand in the integral (5.2) defining kernel Kε

u to that of the kernel Ku.
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Consider the behavior of each term as q → 1 (or equivalently as ε → 0 as
q = e−ε):

eτsε−1
( −ζ

(1 − q)N+M

)s

→ us , (5.4)

qv ln q

qs+v − qv′ → 1

v + s − v′ , (5.5)

	q(v − am)

	q(v + s − am)
→ 	(v − am)

	(s + v − am)
, (5.6)

	q(αm − s − v)

	q(αm − v)
→ 	(αm − s − v)

	(αm − v)
, (5.7)

e−τsε−1
exp

(
γ̃ q−v(q−s − 1)

)→ evτs+τs2/2 . (5.8)

Combining these pointwise limits together gives the integrand of the kernel Ku given
in Theorem 2.1. In order to prove convergence of the Fredholm determinant, one
needs more than just pointwise convergence.

There are four things we must do to complete Step 2 and prove convergence of the
determinants. In proving convergence of Fredholm determinants it is convenient to
have the contour on which the operators act be fixed as ε varies.

In Step 2a we deform Cε
a;α;ϕ to a contour Cε

a;α;ϕ;r with a portion Ca;α;ϕ;<r (of
distance < r to the origin) which coincides with the limiting contour Ca;α;ϕ .

Then in Step 2b we show that for any fixed κ > 0, by choosing ε0 small enough
and r0 large enough, for all ε < ε0 and r > r0 the determinant restricted to
L2(Ca;α;ϕ;<r) differs from the entire determinant on L2(Cε

a;α;ϕ;r ) by less than κ .
Thus, at an arbitrarily small cost of κ , we can restrict to a sufficiently large radius on
which the contour is independent of ε.

In Step 2c we show that for any κ > 0, for ε small, the Fredholm determinant of
Kε

u restricted to L2(Ca;α;ϕ;<r) differs by at most κ from the Fredholm determinant
of Ku restricted to the same space.

Finally, Step 2d shows that for r0 large enough, for all r > r0 the Fredholm deter-
minant of Ku restricted to L2(Ca;α;ϕ;<r) differs from the Fredholm determinant of
Ku on L2(Ca;α;ϕ) by at most κ . Summing up the steps, we deform the contour, cut
the contour to be finite, take the ε → 0 limit, and then repair the contour to its final
form – all with error at most 3κ for κ arbitrarily small.

Step 2a: We must define the contour to which we want to deform Cε
a;α;ϕ , and then

justify that this deformation does not change the value of the Fredholm determinant.

Definition 5.4 Fix ϕ ∈ (0, π/4), r > 0, and real numbers a = {a1, . . . , aN } and
α = {α1, . . . , αM } such that αm − an > 0 for all 1 ≤ n ≤ N and 1 ≤ m ≤ M .
Define the finite contour Ca;α;ϕ;<r to be {μ+ te(π+ϕ)i : 0 ≤ t ≤ r} ∪ {μ+ te(π−ϕ)i :
0 ≤ t ≤ r} where we have set μ = 1

2 max(a) + 1
2 min(α). The maximal imaginary

part along Ca;α;ϕ;<r is r sin(ϕ). Define the infinite contour Cε
a;α;ϕ;r (oriented with

increasing imaginary part) to be the union of Ca;α;ϕ;<r with Cε
a;α;ϕ;>r

and Cε
a;α;ϕ;=r

.
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Fig. 5 Left: The infinite contour Cε
a;α;ϕ and the limiting contour Ca;α;ϕ . Right: The infinite contour

Cε
a;α;ϕ;r (which we deform from Cε

a;α;ϕ )

Here, the contour Cε
a;α;ϕ;>r

is the portion of the contour Cε
a;α;ϕ which has imaginary

part exceeding r sin(ϕ) in absolute value; and the contour Cε
a;α;ϕ;=r

is composed of
the two horizontal line segments which join Ca;α;ϕ;<r with Cε

a;α;ϕ;>r
. These contours

are illustrated in Fig. 5.

Now we justify replacing the contour Cε
a;α;ϕ by Cε

a;α;ϕ;r .

Lemma 5.5 For any r > 0 there exists ε0 > 0 such that for all ε < ε0,

det(1+ Kε
u)L2(Cε

a;α;ϕ) = det(1+ Kε
u)L2(Cε

a;α;ϕ;r ).

Proof The two contours differ only by a finite length modification. We can continu-
ously deform between the two contours. We will employ Lemma C.1 which says that
as long as the kernel is analytic in a neighborhood of the contour as we continuously
deform then the Fredholm determinant remains unchanged throughout the deforma-
tion. The only things which could threaten the analyticity of the kernel are the poles
coming from the left-hand side terms of (5.5), (5.6) and (5.7). On account of the con-
dition satisfied by the contour D̃qv (see Definition 3.2), it follows that these poles are
avoided. By choosing ε small enough, the two contours we are deforming between
can be made as close as desired. Taking them close enough ensures it is possible then
to deform between them while avoiding poles of the kernel in v or v′ – hence proving
the lemma.

Step 2b: We must now show that we can, with small error, restrict our Fred-
holm determinant to acting on the finite, fixed contour Ca;α;ϕ;<r . This requires us
choosing r > r0 for r0 large enough, and also choosing ε < ε0 for ε0 small
enough.
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Proposition 5.6 Fix ϕ ∈ (0, π/4). For any κ > 0 there exist r0 > 0 and ε0 > 0 such
that for all r > r0 and ε < ε0∣∣∣∣det(1+ Kε

u)
L2
(
Cε

a;α;ϕ;r
) − det(1+ Kε

u)L2(Ca;α;ϕ;<r )

∣∣∣∣ � κ.

The proof of this proposition is fairly technical and is given in Section 5.5.
Step 2c: Having restricted our attention to the finite contour Ca;α;ϕ;<r which does

not change with ε, we may now take the limit of Fredholm determinants on the
restricted L2 space as ε → 0.

Proposition 5.7 Fix ϕ ∈ (0, π/4). For any κ > 0 and any r > 0 there exists ε0 > 0
such that for all ε < ε0∣∣∣det(1+ Kε

u)L2(Ca;α;ϕ;<r )
− det(1+ Ku)L2(Ca;α;ϕ;<r )

∣∣∣ � κ

where Ku(v, v′) is given in Theorem 2.1.

The proof of this proposition is also fairly technical and is given in Section 5.4.
Step 2d: Finally, we show that post-asymptotics we can return to the simple

infinite contour Ca;α;ϕ .

Proposition 5.8 Fix ϕ ∈ (0, π/4). For any κ > 0 there exists r0 > 0 such that for
all r > r0 ∣∣∣det(1+ Ku)L2(Ca;α;ϕ;<r )

− det(1+ Ku)L2(Ca;α;ϕ)

∣∣∣ � κ.

The proof of this proposition is given in Section 5.3. It is a fair amount more
straightforward than the previous two proofs and hence is given first.

Having completed the four substeps, we may combine Propositions 5.6, 5.7 and
5.8 to show that for any κ > 0, there exists ε0 > 0 such that for all ε < ε0,∣∣∣∣det(1+ K̃ζ )L2(C̃

ã−1;α̃,0;ϕ)
− det(1+ Ku)L2(Ca;α;ϕ)

∣∣∣∣ � 3κ

where det(1+ K̃ζ ) is as in the right-hand side of Proposition 5.3. Since κ is arbitrary
this shows that

lim
ε→0

det(1+ K̃ζ )L2(C̃
ã−1;α̃,0;ϕ)

= det(1+ Ku)L2(Ca;α;ϕ).

The above result completes the proof of Proposition 5.3 modulo proving Proposi-
tions 5.6, 5.7 and 5.8.

5.3 Proof of Proposition 5.8

By virtue of Lemma C.2, it suffices to show that for some c, C > 0,∣∣Ku(v, v′)
∣∣ � Ce−c|v| (5.9)
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as v, v′ varies along Ca;α;ϕ .
Before proving this let us recall the contours with which we are dealing. The

variable v lies on Ca;α;ϕ and hence can be written as v = μ − κ cos(ϕ) ± iκ sin(ϕ),
for κ ∈ R+ where the ± represents the two rays of the contour. The s variables lie on
Dv which depends on v and has two parts: The portion (which we denote by Dv;�)
with real part bounded between 1/2 and R and imaginary part between ±d for d

sufficiently small, and the vertical portion (which we denote by Dv;|) with real part
R. Recall that R = −Re(v) + η where η = 1

4 max(a) + 3
4 min(α).

Let us denote by h(s) the integrand through which Ku(v, v′) is defined. We split
the proof into two steps. Step 1: We show that the integral of h(s) over s ∈ Dv;�
is bounded by an expression with exponential decay in |v|, uniformly over v′. Step
2: We show the integral of h(s) over s ∈ Dv;| is bounded by an expression with
exponential decay in |v|, uniformly over v′. The combination of these two steps imply
the inequality (5.9) and hence complete the proof.

Step 1: We deal with the various terms in h(s) separately and develop bounds for
each. Write s = x + iy and note that along the contour Dv;�, y ∈ [−d, d] for d

small, and x ∈ [1/2, R].
Let us start with evτs+τs2/2. The norm of this is bounded by the exponential of the

real part of the exponent. For s along Dv;�

Re(vs + s2/2) = x Re(v) + x2

2
− y Im(v) − y2

2
.

Given our choice of R = −Re(v) + η, by taking d sufficiently small and using the
bound Re(v) ≤ c̃′ − c′|v| for some constants c′, c̃′ (depending on ϕ), we may deduce
that

Re(vs + s2/2) � c̃ − c|v|x
for some constants c, c̃ > 0. From this it follows that

|evτs+τs2/2| � Ce−cτ |v|x.

Turning to the other terms in h(s), we have that

|us | � ex ln |u|−y arg(u)

and we may also bound∣∣∣∣ 	(v − am)

	(s + v − am)

∣∣∣∣ ,
∣∣∣∣	(αm − v − s)

	(αm − v)

∣∣∣∣ ,
∣∣∣∣ 1

v + s − v′

∣∣∣∣ , |	(−s)	(1 + s)| � const (5.10)

for some constant const > 0. The first two bounds come from the functional equation
for the Gamma function, and the last from the fact that s is bounded away from Z.
Let us explain in some further detail the first bound (the second follows in a similar
manner). Just for this argument, call ṽ = v + am. It follows that ṽ = μ̃− κ cos(ϕ)±
iκ sin(ϕ) with μ̃ real and strictly positive. We can write s = t + r where t ∈ Z≥0
and r has real part bounded in [0, 1) and imaginary part bounded between ±d. The
functional equation for the Gamma function then implies that

	(ṽ)

	(s + ṽ)
= 1

s − 1 + ṽ

1

s − 2 + ṽ
· · · 1

r + ṽ

	(ṽ)

	(r + ṽ)
.
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As ṽ varies along its contour, all of the factors 1
s−j+ṽ

, j ∈ Z≥1, are bounded in norm
by a constant (uniform as ṽ and s vary along their contours), and, in fact, all but two
of those factors are bounded in norm by 1. This implies that the product of these
factors is bounded by a constant (uniform as ṽ and s vary along their contours). As
for the remaining factor 	(ṽ)

	(r+ṽ)
, as r varies with real part in [0, 1) and imaginary part

in [−d, d], and as ṽ varies along its contour, this ratio remains uniformly bounded
by a constant. This implies the first bound in (5.10). The second follows in a similar
manner.

Combining the bounds from (5.10) together shows that for |v| large, the portion of
the integral of h(s) for s in Dv;� is bounded by (recall s = x + iy)

∫
Dv;�

|ds|const · e−cτ |v|x+x ln |u|−arg(u)y � Ce−c|v|

for some constants c, C > 0.
Step 2: As above, we consider the various terms in h(s) separately and develop

bounds for each. Let us write s = R + iy and note that s ∈ Dv;| corresponds to
y varying over all |y| ≥ d. As in Step 1, the most important bound will be that of
evτs+τs2/2.

Observe that

Re(vs + s2/2) = Re(v)R − Im(v)y + R2

2
− y2

2
= − (y + Im(v))2

2
+ Im(v)2

2
+ R2

2
+ Re(v)R.

Observe that because ϕ ∈ (0, π/4) and R = −Re(v) + η,

Im(v)2

2
+ R2

2
+ Re(v)R ≤ c̃ − c|v|2

for some constants c, c̃ > 0. Thus

Re(vs + s2/2) � − (y + Im(v))2

2
+ c̃ − c|v|2. (5.11)

Let us now turn to the other terms in h(s). We bound

|us | � eR ln |u|−y arg(u).

By standard bounds for the large imaginary part behavior, we can show∣∣∣∣ 	(v − am)

	(s + v − am)

∣∣∣∣ � Ce
π
2 |y|,

∣∣∣∣	(αm − v − s)

	(αm − v)

∣∣∣∣ � Ce−( π
2 −ε)|y| � C

for some constant C > 0 sufficiently large and ε > 0 small enough. Also, |1/(v +
s − v′)| ≤ C for a fixed constant. Finally, the term

|	(−s)	(1 + s)| � Ce−π |y|

for some constant C > 0.
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Combining these together shows that the integral of h(s) over s in Dv;| is bounded
by a constant times∫

R

exp

(
−τ

(y + Im(v))2

2
− τc|v|2 + R ln |u| − y arg(u) − π |y| + N

π

2
|y|
)

dy.

(5.12)
We can factor out the terms above which do not depend on y, giving

exp
(
−τc|v|2 + R ln |u|

) ∫
R

exp

(
−τ

(y + Im(v))2

2
− y arg(u) + N

π

2
|y|
)

dy.

Notice that the prefactors on y and |y| in the integrand’s exponential are fixed con-
stants. We can therefore use the following bound that for a fixed and b ∈ R, there
exists a constant C such that∫

R

e−ν(y+b)2+a|y|dy � Ce|ab|, ν > 0. (5.13)

For a < 0 this inequality is obvious, so let us assume a > 0 and consider which
y maximizes the exponential in the integrand on the left-hand side of the inequality.
Without loss of generality, we may take b > 0 as well. It is clear that the maximizing
y will be negative, so we are looking for the maximum over y < 0 of −ν(y+b)2−ay.
This is achieved when y + b = − a

2ν
which means that the maximal argument of

the exponential is a2

4ν
+ ab. It is easy to see that there is rapid decay away from this

maximal value and hence the integral is bounded by a constant time e
a2
4ν

+ab. Since
a is fixed, this is itself like a constant time eab. The argument for b < 0 likewise
produces a bound by a constant times e−ab, hence inequality (5.13) follows.

Using inequality (5.13), we find that we can upper-bound (5.12) by

exp
(
−τc|v|2 + R ln |u| + c′|v|

)
.

For |v| large enough, the Gaussian decay in the above bound dominates, and hence
integral of h(s) over s in Dv;| is bounded by

Ce−c|v|

for some constants c, C > 0.

5.4 Proof of Proposition 5.7

Fix κ, r > 0. We are presently considering the Fredholm determinant of the kernels
Kε

u and Ku restricted to the fixed finite contour Ca;α;ϕ;<r . By Lemma C.3, we only
need to show convergence of the kernel Kε

u(v, v′) to Ku(v, v′) as ε → 0, uniformly
over v, v′ ∈ Ca;α;ϕ;<r . This is achieved via showing that for all κ ′ > 0 there exists
ε0 > 0 such that for all ε < ε0 and for all v, v′ ∈ Ca;α;ϕ;<r ,∣∣Kε

u(v, v′) − Ku(v, v′)
∣∣ � κ ′. (5.14)

The kernels Kε
u and Ku are both defined via integrals over s. The contour on which

s is integrated can be fixed for (ε < ε0) to equal Dv , which is the s contour used to
define Ku. The fact that the s contours are the same for Kε

u and Ku is convenient. The
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proof of (5.14) will follow from three lemmas. The first deals with the uniformity of
convergence of the integrand defining Kε

u to the integrand defining Ku for s restricted
to any fixed compact set.

Before stating this lemma, let us define some notation.

Definition 5.9 Let Dv;>L = {s ∈ Dv : |s| ≥ L} be the portion of Dv of magnitude
greater than L and similarly let Dv;<L = {s ∈ Dv : |s| < L}. Let us assume L

is large enough so that Dv;>L is the union of two vertical rays with fixed real part
R = −Re(v) + η (recall η = 1

4 max(a) + 3
4 min(α)). Assuming this, we will write

s = R + iy. Then for yL = (L2 −R2)1/2, the contour Dv;>L = {R + iy : |y| ≥ yL}.

Lemma 5.10 For all κ ′′ > 0 and L > 0 there exists ε0 > 0 such that for all ε < ε0,
for all v, v′ ∈ Ca;α;ϕ;<r , and for all s ∈ Dv;<L,

∣∣∣∣∣hq(s) − 	(−s)	(1 + s)

N∏
n=1

	(v − an)

	(s + v − an)

M∏
m=1

	(αm − v − s)

	(αm − v)

usevτs+τs2/2

v + s − v′

∣∣∣∣∣ � κ ′′ (5.15)

where hq is given in (5.3).

Proof This is a strengthened version of the pointwise convergence in (5.4) through
(5.8). It follows from the uniform convergence of the 	q function to the 	 function
on compact regions away from the poles (cf. Appendix G, as well as standard Taylor
series estimates. The choice of contours is such that the pole arising from 1/(v + s −
v′) is uniformly avoided in the limiting procedure as well.

It remains to show that for L large enough, the integrals defining Kε
u(v, v′) and

Ku(v, v′) restricted to s in Dv;>L, have negligible contribution to the kernel, uni-
formly over v, v′ and ε. This must be done separately for each of the kernels and
hence requires two lemmas.

Lemma 5.11 For all κ ′ > 0 there exist L0 > 0 and ε0 > 0 such that for all ε < ε0,
for all v, v′ ∈ Ca;α;ϕ;<r , and for all L > L0,∣∣∣∣

∫
Dv;>L

dshq(s)

∣∣∣∣ � κ ′.

Proof We will use the notation introduced in Definition 5.9 and assume L0 is large
enough so that Dv;>L is only comprised of two vertical rays.

Let us first consider the behavior of the left-hand side of (5.8). The magnitude of
this term is bounded by the exponential of

Re
(
−τε−1s + ε−2τq−v(q−s − 1)

)
.

This quantity is periodic in y (recall s = R + iy) with a fundamental domain y ∈
[−πε−1, πε−1]. For ε−1π > |y| > y0 for some y0 which can be chosen uniformly
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in v and ε, the following inequality holds

Re
(
−τε−1s + ε−2τq−v(q−s − 1)

)
� −τy2/6.

This can is proved by careful Taylor series estimation and the inequality that for
x ∈ [−π, π ], cos(x)−1 ≤ −x2/6. This provides Gaussian decay in the fundamental
domain of y.

Turning to the ratio of q-Gamma functions in (5.6), observe that away from its
poles, the denominator∣∣∣∣ 1

	q(s + v − am)

∣∣∣∣ � cec′dist(Im(s),2πε−1
Z) (5.16)

where c, c′ are positive constants independent of ε and v (as it varies in its com-
pact contour). This establishes a periodic bound on this denominator, which grows at
most exponentially in the fundamental domain. The numerator 	q(v−am) in (5.6) is
bounded uniformly by a constant. This is because the v contour was chosen to avoid
the poles of the Gamma function, and the convergence of the q-Gamma function to
the Gamma function is uniform on compact sets away from those poles.

Similarly,

|	q(αm − s − v)| � ce−c′′dist(Im(s),2πε−1
Z) � c

where c, c′′ are positive constants. This is from the uniform convergence of the q-
Gamma function to the Gamma function which implies that 	q(αm − v) remains
uniformly bounded from below as v ∈ Ca;α;ϕ;<r varies.

Finally, the magnitude of (5.4) corresponds to |us | and behaves like
e−R ln |u|+y arg(u). Thus, we have established the following inequality which is uni-
form in v, v′ and ε as y varies:

∣∣∣∣∣∣
( −ζ

(1 − q)N

)s
qv ln q

qs+v − qv′ e
γ̃ qv(qs−1)

N∏
i=1

	q(v + lnq (ã−1
i ))

	q(s + v + lnq (ã−1
i ))

M∏
j=1

	q(lnq (α̃j ) − s − v)

	q(lnq (α̃j ) − v)

∣∣∣∣∣∣
� c̃ e

−
(

dist(Im(s),2πε−1
Z)
)2

/6+c′N
∣∣dist(Im(s),2πε−1

Z)

∣∣
(5.17)

for some constant c̃ > 0. Notice that this inequality is periodic with respect to the
fundamental domain for y ∈ [−πε−1, πε−1].

The last term to consider is 	(−s)	(1 + s) = −π
sin(πs)

which is not periodic in

y and decays like e−π |y| for y ∈ R. Since Dv;>L is only comprised of two vertical
rays, we must control the integral of hq(s) for s = R + iy and |y| > yL. By making
sure L is large enough, we can use the periodic bound (5.17) to show that the integral
over yL < |y| < ε−1π is less than κ (with the desired uniformity in v, v′ and
ε). For the integral over |y| > ε−1π , we can use the above exponential decay of
	(−s)	(1 + s). On shifts by 2πε−1

Z of the fundamental domain, the exponential
decay of 	(−s)	(1 + s) can be compared to the boundedness of the other terms
(which is certainly true considering the bounds we established above). The integral
of each shift can be bounded by a term in a convergent geometric series. Taking ε0
small then implies that the sum can be bounded by κ ′ as well.
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Lemma 5.12 For all κ ′ > 0 there exists L0 > 0 such that for all v, v′ ∈ Ca;α;ϕ;<r ,
and for all L > L0,

∣∣∣∣∣
∫
Dv;>L

ds	(−s)	(1 + s)

N∏
n=1

	(v − an)

	(s + v − an)

M∏
m=1

	(αm − v − s)

	(αm − v)

usevτs+τs2/2

v + s − v′

∣∣∣∣∣ � κ ′.

Proof The desired decay here comes easily from the behavior of vs + s2/2 as s

varies along Dv;>L. As before, assume that L0 is large enough so that this contour is
only comprised of two vertical rays and set s = R + iy for y ∈ R for |y| > yL. As in
the proof of Proposition 5.8 given in Section 5.3, one shows that

|evτs+τs2/2| � Ce−cy2

uniformly over v, v′ ∈ Ca;α;ϕ;<R , and for all L > L0. This behavior should be com-
pared to that of the other terms: |	(−s)	(1 + s)| ≈ e−π |y|; |us | = e−R ln |u|+y arg(u);∣∣∣ 	(v−an)
	(s+v−an)

∣∣∣ ≤ Ce|y|π/2;
∣∣∣	(αm−v−s)

	(αm−v)

∣∣∣ ≤ Ce|y|(π/2−ε); and |1/(v + s + v′)| ≤ C as

well. Combining these observations we see that the integral decays in |y| at worst like
Ce−cy2+c′|y|. Thus, by choosing L large enough so that yL � 1, we can be assured
that the integral over |y| > yL is as small as desired, proving the lemma.

Let us now combine the above three lemmas to finish the proof of the Proposition
5.7. Choose κ ′ = κ/3 and fix L0 and ε′0 as specified by the second and third of the
above lemmas. Fix some L > L0 and let � equal the length of the finite contour
Dv;<L. Set κ ′′ = κ ′

3�
and apply Lemma 5.10. This yields an ε0 (which we can assume

is less than ε′0) so that (5.15) holds. This implies that for ε < ε0, and for all v, v′ ∈
Cα,ϕ;<r ,

∣∣∣∣
∫
Dv;<L

hq(s) ds

−
∫
Dv;<L

	(−s)	(1 + s)

N∏
n=1

	(v − an)

	(s + v − an)

M∏
m=1

	(αm − v − s)

	(αj − v)

usevτs+τs2/2

v + s − v′ ds

∣∣∣∣ � κ ′/3.

From the triangle inequality and the three factors of κ ′/3 we arrive at the claimed
result of (5.14) and thus complete the proof of Proposition 5.7.

5.5 Proof of Proposition 5.6

The proof of this proposition is essentially a finite ε (recall q = e−ε) perturbation of
the proof of Proposition 5.8 given in Section 5.3. The estimates presently are a little
more involved since the functions involved are q-deformations of classic functions.
However, by careful Taylor approximation with remainder estimates, all estimates
can be carefully shown. By virtue of Lemma C.2, it suffices to show that for some
c, C > 0,

|Kε
u(v, v′)| � Ce−c|v|. (5.18)
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Before proving this, let us recall from Definition 5.4 the contours with which we
are dealing. The variable v lies on Cε

a;α;ϕ;r for ϕ ∈ (0, π/4). The s variables lies
on Dv from Definition 2.4 which depends on v and can be divided into two parts:
The portion (which we denote by Dv,�) with real part bounded between 1/2 and
R and imaginary part between −d and d for d sufficiently small; and the vertical
portion (which we denote by Dv,|) with real part R where R = −Re(v) + η and
η = 1

4 max(a) + 3
4 min(α).

Let us recall that the integrand in (5.2), through which Kε
u(v, v′) is defined, is

denoted by hq(s). We split the proof into two steps. Step 1: We show that the integral
of hq(s) over s ∈ Dv,� is bounded for all ε < ε0 by an expression with exponential
decay in |v|, uniformly over v′. Step 2: We show that the integral of hq(s) over
s ∈ Dv,| is bounded for all ε < ε0 by an expression with exponential decay in |v|,
uniformly over v′. The combination of these two steps implies the inequality (5.18)
and hence completes the proof.

Step 1: We consider the various terms in hq(s) separately (in particular we con-
sider the left-hand sides of (5.4) through (5.8)) and develop bounds for each which
are valid uniformly for ε < ε0 and ε0 small enough. Let us write s = x + iy and note
that along the contour Dv,�, y ∈ [−d, d] for d small, and x ∈ [1/2, R].

Let us start with the left-hand side of (5.8) which can be rewritten as

exp
(
τ(−ε−1s + ε−2q−v(q−s − 1))

)
.

The norm of the above expression is bounded by the exponential of the real part of the
exponent. For ϕ ∈ (0, π/4), one shows (as a perturbation of the analogous estimate in
Step 1 of the Proof of Proposition 5.8) via Taylor expansion with remainder estimates
that

τ Re(−ε−1s + ε−2q−v(q−s − 1)) � c̃ − τc|v|x
for some constants c, c̃. The above bound implies∣∣∣exp

(
τ(−ε−1s + ε−2q−v(q−s − 1))

)∣∣∣ � Ce−τc|v|x.

Let us now turn to the other terms in hq(s). We bound the left-hand side of (5.4) as∣∣∣∣eτsε−1
( −ζ

(1 − q)M+N

)s∣∣∣∣ � C|us | � Cex ln |u|−y arg(u).

We may also bound the left-hand sides of (5.5), (5.6) and (5.7), as well as the
remaining product of Gamma functions by constants:

∣∣∣∣∣
	q(v + lnq (ã−1

m ))

	q(s + v + lnq (ã−1
m ))

∣∣∣∣∣ ,
∣∣∣∣	q(lnq (α̃m) − s − v)

	q(lnq (α̃m) − v)

∣∣∣∣ ,
∣∣∣∣ qv ln q

qs+v − qv′

∣∣∣∣ , |	(−s)	(1 + s)| � const

for some constant const > 0 (which may be different in each case). The first two
bounds come from the functional equation for the q-Gamma function (cf. Appendix
G), and the last from the fact that s is bounded away from Z.
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Combining these together shows that for |v| large,∣∣∣∣∣
∫
Dv,�

hq(s) ds

∣∣∣∣∣ �
∫
Dv,�

Ce−τc|v|Re(s)+x ln |u|−y arg(u)|ds| � C′e−c′|v|

for some constants c′, C′ > 0, while for bounded |v| the integral is just bounded as
well.

Step 2: As above, we consider the various terms in hq(s) separately and develop
bounds for each. Let us write s = R + iy and note that s ∈ Dv,| corresponds to y

varying over all |y| ≥ d. Four of the terms we consider (corresponding to the left-
hand sides of (5.5), (5.6), (5.7) and (5.8)) are periodic functions in y with fundamental
domain y ∈ [−π−1, πε−1]. We will first develop bounds on these four terms in this
fundamental domain, and then turn to the non-periodic terms.

We start by controlling the behavior of the left-hand side of (5.8) as y varies in its
fundamental domain. For each ϕ < π/4 there exists a sufficiently small (yet positive)
constant c′ such that as y varies in its fundamental domain

τ Re(−ε−1s + ε−2q−v(q−s − 1)) � c′τ Re(vs + s2/2).

On account of this, we can use the bound (5.11) from the proof of Proposition 5.8.
This implies that

τ Re(−ε−1s + ε−2q−v(q−s − 1)) � lc′τ
(
− (y + Im(v))2

2
− c|v|2

)
.

Let us now turn to the other y-periodic terms in hq(s). By bounds for the large
imaginary part behavior of the q-Gamma function, we can show∣∣∣∣∣

	q(v + lnq(ã−1
m ))

	q(s + v + lnq(ã−1
m ))

∣∣∣∣∣ � Cec·dist(Im(s+v),2πε−1
Z)

for some constants c, C > 0. Note that as opposed to (5.16) when |v| was bounded,
in the above inequality, we write dist(Im(s + v), 2πε−1

Z) in the exponential on the
right-hand side. This is because we are presently considering unbounded ranges for
v.

One has similarly the bound∣∣∣∣	q(lnq(α̃m) − v − s)

	q(lnq(α̃m) − v)

∣∣∣∣ � Ce−c′dist(Im(s+v),2πε−1
Z)

for other positive constants C and c′.
Also, we can bound ∣∣∣∣ qv ln q

qs+v − qv′

∣∣∣∣ � C

for some constant C > 0.
The parts of hq(s) which are not periodic in y can easily be bounded. We bound

the left-hand side of (5.4) as in Step 1 by∣∣∣∣e−τsε−1
( −ζ

(1 − q)N

)s∣∣∣∣ � C|us | � Cex ln |u|−y arg(u).
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Finally, the term

|	(−s)	(1 + s)| � Ce−π |y|

for some constant C > 0.
We may now combine the estimates above. The idea is to first prove that the inte-

gral on the fundamental domain y ∈ [−πε−1, πε−1] is exponentially small in |v|.
Then, by using the decay of the two non-periodic terms above, we can get a simi-
lar bound for the integral as y varies over all of R. For j ∈ Z, define the j shifted
fundamental domain as Dj = jε−12π + [−ε−1π, ε−1π ]. Let

Ij :=
∫

Dj

hq(R + iy) dy

and observe that combining all of the bounds developed above, we have that

|Ij | � C

∫ ε−1π

−ε−1π

F1(y)F2(y) dy

where

F1(y) = exp

(
c′τ
(
− (y + Im(v))2

2
− c|v|2

)
+ c′′dist(Im(s + v), 2πε−1

Z) + x ln |u|
)

,

F2(y) = exp
(
−(y + jε−12π) arg(u) − π |y + jε−12π |

)
.

The term F1(y) is from the periodic bounds while F2(y) from the non-periodic terms
(hence explaining the jε−12π shift in y). By assumption on u, we have − arg(u) −
π = δ ≤ c for some δ. Therefore F2(y) ≤ Ce−cε−1|j | for some constants c, C > 0.
Thus

|Ij | � Ce−cε−1|j |
∫ ε−1π

−ε−1π

F1(y) dy.

Just as in the end of Step 2 in the proof of Proposition 5.8, we can estimate the integral

∫ ε−1π

−ε−1π

F1(y) dy � Ĉe−ĉ|v|

for some constants Ĉ, ĉ > 0. This implies |Ij | ≤ ĈCe−cε−1|j |e−ĉ|v|. Finally, observe
that ∣∣∣∣∣

∫
D̃v,|

hq(s) ds

∣∣∣∣∣ �
∑
j∈Z

|Ij | � ĈCe−ĉ|v|∑
j∈Z

e−cε−1|j | � C′e−ĉ|v|

where C′ is independent of ε as long as ε < ε0 for some fixed ε0. This is the bound
desired to complete this step.
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6 SHE/KPZ Equation with Two-sided Brownian Initial Data – Proof of
Theorem 2.9

6.1 Convergence of the Laplace Transforms

Recall the special semi-discrete directed random polymer considered in Definition
2.5 in which M = 1 and a1 = a, an ≡ 0 for n > 1, and α1 = α > 0. We
denoted by Z(τ, N) the semi-discrete directed random polymer partition function in
which the weight ω−1,1 is replaced by zero. We will now observe how, by scaling
τ, N, a, α accordingly, it is possible to show convergence of this partition function
to the solution to the SHE with initial data related to the scalings of a, α. Towards
this end, let T > 0 and X ∈ R represent the limiting time and space variables for the
SHE and define the following N dependent scalings

κ =
√

T

N
+ X

N
, (6.1)

τ = κN = √
T N + X. (6.2)

Definition 6.1 Let �(z) = d
dz

ln 	(z) be the digamma function. For a given θ ∈ R+,
define

κ(θ) := � ′(θ), f (θ) := θ� ′(θ) − �(θ), c(θ) := (−� ′′(θ)/2)1/3.

We may alternatively parameterize θ ∈ R+ in terms of κ ∈ R+ as

θκ := (� ′)−1(κ) ∈ R+, fκ := inf
t>0

(κt − �(t)) ≡ f (θκ), cκ := c(θκ).

As given at the beginning of Section 6 in [16], the large θ asymptotics of κ and f are

κ(θ) = 1

θ
+ 1

2θ2
+ 1

6θ3
+O(θ−5), (6.3)

f (θ) = 1 − ln(θ) + 1

θ
+ 1

4θ2
+O(θ−4). (6.4)

Theorem 6.2 ([51]) Fix T > 0, X ∈ R and real numbers b < β. With Definition 6.1,
let ϑ = θ√T/N � √

N/T + 1
2 . Consider the semi-discrete directed random polymer

in Definition 2.5 with partition function Z(τ, N). Let the a and α parameters of the
polymer be defined as

a = ϑ + b, α = ϑ + β. (6.5)

Define the scaling factor

C(N, T , X) = exp

(
N + 1

2
(N − 1) ln(T /N) + 1

2

(√
T N + X

)
+ X

√
N/T

)
.

Then, as N goes to infinity,

Z(
√

T N + X,N)

C(N, T , X)
⇒ Zb,β(T , X).

The convergence is in distribution and Zb,β(T , X) is the solution to the SHE given
in the statement of Theorem 2.9.



20 Page 58 of 95 Math Phys Anal Geom (2015) 18: 20

Instead of ϑ in Theorem 6.2, we choose our scaling parameter for the analysis and
for (6.5) to be

θ = θκ �
√

N

T
− X

T
+ 1

2
(6.6)

which is the θκ given in Definition 6.1 that corresponds to κ given in (6.1). We rewrite
(6.5) as

a = θ + b + X/T, α = θ + β + X/T .

The scaling factor that appears in Theorem 6.3 below is

u = Se
−N− 1

2 (N−1) ln T
N
− 1

2

√
T N−X

√
N
T
+ T

24−X
2 +X2

2T . (6.7)

By comparing the exponents of C(N, T , X) and u and by Theorem 6.2,

uZ(τ, N) → Se
X2
2T

+ T
24 Zb,β(T , X) (6.8)

in distribution as N → ∞ where Zb,β(T , X) is the partition function of the continu-
ous directed random polymer (CDRP) with boundary drift b and β. The convergence
of the Fredholm determinant is the following.

Theorem 6.3 Fix S with positive real part, T > 0, b < β real numbers and assume
that X = 0. Set κ and τ as in (6.1) and (6.2), σ as in (2.7) and θ as in (6.6). Define
the parameters

a = θ + b, α = θ + β, (6.9)

and use u given in (6.7). Then

lim
N→∞ det(1+ Ku)L2(Ca+;α;π/4)

= det(1− Kb,β)L2(R+) (6.10)

where a+ = max{a, 0} and Kb,β is defined in (2.6).

Remark 6.4 The Fredholm determinant in the left-hand side of (6.10) is a special
case of the one in Theorem 2.1 where we specialized to a1 = a, a2 = a3 = . . . = 0,
α1 = α, M = 1. The condition ϕ ∈ (0, π/4) in Theorem 2.1 is to ensure that the
Fredholm series converges. ϕ = π/4 is the borderline and depending on where the
line crosses the real axis, the series might converge or not. In Theorem 2.1, we use
ϕ = π/4 and the crossing at the axis is chosen to be the critical point. For this case,
as one can see from the estimates in the proof (see e.g. Lemma 6.6), the Fredholm
series converges.

In order to keep the notation simpler, we prove the theorem above for X = 0; in
the X = 0 case, one can simply substitute b by b+ X

T
. The condition on the parameter

S comes from its appearance in the argument of the logarithm and as base of powers
with complex exponent. In order to avoid the different branches, we restrict it to the
halfplane with positive real part.

In order to prove Theorem 2.9 and 2.13, we need some bounds on the modified
Bessel function which are contained in the following lemma.

Lemma 6.5 For ν > 0 and x ∈ R+, it holds:
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(a) x �→ xνK−ν(x) is positive, continuous and decreasing in x ∈ R+,
(b) 0 ≤ xνK−ν(x) ≤ C(ν) with C(ν) = 2ν	(ν) ∼ ν−1 as ν → 0,
(c) 0 ≤ − d

dx
xνK−ν(x) = xνK1−ν(x) ≤ C|1 − ν|xβ with β = max{1, 2ν − 1},

(d) K−ν(x) � Ce−xx−1/2 as x → ∞ where C is independent of ν.

Proof By the integral representation 9.6.24 of [1],

Kν(x) =
∫
R+

dt cosh(νt)e−x cosh(t),

properties of (a) are trivially verified. To get (b), we bound the cosh by simple
exponential and obtain

xνK−ν(x) �
∫
R+

dtxνeνt e−xet /2 = 2ν	(ν, x/2)

where 	(a, z) is the incomplete Gamma function (where the last equality is obtained
by the change of variable τ = xet/2). In particular, 	(ν, 0) = 	(ν). As xνK−ν(x) is
monotone, (b) is shown. The bound in (c) is obtained using (b), subdividing the cases
ν ∈ (0, 1] and ν > 1 taking into account that Kν(x) = K−ν(x). Finally, the bound
(d) is formula 9.7.2 of [1].

Proof of Theorem 2.9 We start with (2.3). By Lemma 6.5, xνK−ν(x) is a con-
tinuous and bounded function. Then, the convergence in distribution (6.8) implies
that the left-hand side of (2.3) converges to that of (2.5). The convergence of the
right-hand side of (2.3) to that of (2.5) is exactly Theorem 6.3 which is proved
below.

The rest of this section is devoted to the proof of Theorem 6.3.

6.2 Formal critical point asymptotics

By using (6.6) and comparing (6.7) with (6.4), we have

u = S

θ
e−Nfκ+O(N−1/2),

that is, we can work with

u = S

θ
e−Nfκ (6.11)

instead to get the same limit.
To rewrite the kernel Ku, first we apply the identity 	(−s)	(1 − s) =

−π/ sin(πs). Then, we do a change of variable z̃ = s + v, to get

Ku(v, v′) = 1

2π i

∫
v+Dv

dz̃
π

sin(π(z̃ − v))

	(v)N−1

	(z̃)N−1

exp
(
− 1

2 τv2 − v ln u
)

exp
(
− 1

2 τ z̃2 − z̃ ln u
) 1

z̃ − v′
	(v − a)

	(z̃ − a)

	(α − z̃)

	(α − v)
.

(6.12)
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Let

G(z) = ln 	(z) − κ
z2

2
+ fκz. (6.13)

We are looking for the critical point of G, hence we are to solve the equation

G′(z) = �(z) − κz + fκ = 0.

It follows from Definition 6.1 that θκ is a double critical point, i.e. G′(θκ) =
G′′(θκ) = 0 and the Taylor series is

G(z) = G(θκ) − (cκ)3

3
(z − θκ) +O

(
(z − θκ)4

)
.

With the present choice of κ , we have cκ = σ−1N−1/3, hence

NG(θ + σw) = NG(θ) − 1

3
w3 +O

(
w4

θ

)
. (6.14)

We can rewrite the kernel in (6.12) using (6.11) and (6.13) as

Ku(v, v′) = − 1

2π i

∫
v+Dv

dz̃
πSz̃−v

sin(π(z̃ − v))

eNG(v)−NG(z̃)

z̃ − v′
	(v − a)

	(z̃ − a)

	(α − z̃)

	(α − v)

	(z̃)

	(v)

θv

θ z̃
.

We do the change of variables v = θ + σw, v′ = θ + σw′ and z̃ = θ + σz and
substitute (6.9) to get

Kθ(w,w′) = − 1

2π i

∫
Cz

dz
σπSσ(z−w)

sin(σπ(z − w))

eNG(θ+σw)−NG(θ+σz)

z − w′

× 	(σw − b)

	(σz − b)

	(β − σz)

	(β − σw)

	(θ + σz)

	(θ + σw)

θσw

θσz
.

As θ goes to infinity with N , for the last two factors,

	(θ + σz)

	(θ + σw)

θσw

θσz
→ 1.

Along with the Taylor expansion in (6.14), we get that

Kθ(w, w′) → −K̃b,β(w, w′)
where

K̃b,β(w, w′) = 1

2π i

∫
Cz

dz
σπSσ(z−w)

sin(σπ(z − w))

ez3/3−w3/3

z − w′
	(σw − b)

	(σz − b)

	(β − σz)

	(β − σw)
.

(6.15)
The Fredholm determinant of this kernel is rewritten in terms of a Fredholm
determinant on L2(R+) in Lemma 6.11.

6.3 Rigorous Asymptotic Analysis

Let us first assume that

b < −1

2
and β >

1

2
. (6.16)
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We will relax this assumption at the end of Section 6.4.
We follow the lines of the proof of Theorem 3.3 in [16]. We have to determine

limN→∞ det(1+ Ku)L2(Cv) where the contour Cv is defined below and it is different
from the contour given in Theorem 2.9. This change of notation only applies for this
section, so it will not cause difficulties. The contour Cv is chosen as

Cv = {θ − 1/4 + ir, |r| ≤ r∗} ∪ {θeit , t∗ ≤ |t | ≤ π/2} ∪ {θ − |y| + iy, |y| ≥ θ}
where

r∗ =
√

θ

2
− 1

16
, t∗ = arcsin

(√
1

2θ
− 1

16θ2

)
. (6.17)

The contour Cz̃ is set as

Cz̃ = {θ + p/4 + iỹ, ỹ ∈ R} ∪
�⋃

k=1

Bv+k (6.18)

where Bz is a small circle around z clockwise oriented and p ∈ {1, 2} depending on
the value of v, see Fig. 6. More precisely, for given v, we consider the sequence of
points S = {Re(v) + 1, Re(v) + 2, . . .} and we choose p = p(v) and � = �(v) as
follows:

(1) If the sequence S does not contain points in [θ, θ + 1/2], then let � ∈ N0 be
such that Re(v) + � ∈ [θ − 1, θ ] and we set p = 1.

(2) If the sequence S contains a point in [θ, θ + 3/8], then let � ∈ N such that
Re(v) + � ∈ [θ, θ + 3/8] and set p = 2.

(3) If the sequence S contains a point in [θ + 3/8, θ + 1/2], then let � ∈ N such
that Re(v) + � ∈ [θ − 5/8, θ − 1/2] and set p = 1.

With this choice, the singularity of the sine along the line θ +p/4+ iR is not present,
since the poles are at a distance at least 1/8 from it. Also, the leading contribution of
the kernel will come from situation (1) with � = 0 and p = 1.

This choice of the contours is identical to the one made in the unperturbed case in
[16]. If condition (6.16) holds, these contours can be used, since the extra singularities
coming from 	(v − a) are on the left-hand side of Cv and the poles coming from
	(α − z̃) are on the right-hand side of Cz̃. Otherwise the contours have to be locally
modified. This is made precise later.

With σ defined in (2.7), we do the change of variables

{v, v′, z̃} = {�(w), �(w′), �(z)} with �(z) := θ + zσ

and

Kθ(w,w′) := σKu(�(w),�(w′)) =
− 1

2π i

∫
Cz

dz
σπSσ(z−w)

sin(σπ(z − w))

eNG(θ+σw)−NG(θ+σz)

z − w′ × 	(σw − b)

	(σz − b)

	(β − σz)

	(β − σw)

	(θ + σz)

	(θ + σw)

θσw

θσz
.

(6.19)

After this change of variables, the contours Cw = �−1(Cv) and Cz = �−1(Cz̃) are
given by
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Fig. 6 Left: Integration contours Cv (dashed) and Cz̃ (the solid line plus circles at v+1, . . . , v+ �) where
the small black dots are poles either of the sine or of the gamma functions. Right: Integration contours
after the change of variables Cw (dashed) and Cz (the solid line plus circles at w + 1, . . . , w + �), with
p = p(w) ∈ {1, 2}

Cw = {−1/(4σ) + ir/σ, |r| � r∗} ∪ {(eit − 1)θ/σ, t∗ � |t | � π/2} ∪ {−|y| + iy, |y| � θ/σ }
(6.20)

and

Cz = {p/(4σ) + iy, y ∈ R} ∪
�⋃

k=1

Bw+k/σ

with r∗ and t∗ defined in (6.17), and Bz is a small circle around z clockwise oriented.
Then we have

det(1+ Ku)L2(Cv) = det(1+ Kθ)L2(Cw).

Thus, we need to prove that

lim
N→∞ det(1+ Kθ)L2(Cw) = det(1− Kb,β)L2(R+)

with Kb,β given in (2.6). The convergence of the kernel follows by Proposition 6.8
and the exponential bound by Proposition 6.9. We then obtain

lim
N→∞ det(1+ Kθ)L2(Cw) = det(1− K̃b,β)L2(Cw) (6.21)

with K̃b,β given in (6.15). Note that by definition (6.20), the contour Cw itself
depends on θ . With a slight abuse of notation, we will denote by Cw also the contour
on the right-hand side of (6.21) that appears in the θ → ∞ limit, which is − 1

4 + iR
with a possible local perturbation close to 0 that will be given later. Lemma 6.11
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shows that the limiting Fredholm determinant is equal to det(1 − Kb,β)L2(R+) and
thus completes the proof of Theorem 6.3 for the case of (6.16).

6.4 Pointwise Convergence and Bounds

Proposition 6.8 and 6.9 in this section are the analogues of Propositions 6.1 and 6.2
in [16]. For the sake of completeness, we give the proof of them putting emphasis on
the new factors that appear in the kernel. These are the following gamma ratios in the
definition (6.19) of Kθ :

	(σw − b)

	(σz − b)

	(β − σz)

	(β − σw)

	(θ + σz)

	(θ + σw)

θσw

θσz
.

As in [16], the scale of the steep descent analysis is Nθ = O(N3/2). The main
contribution of the Fredholm determinant det(1+ Kθ)L2(Cw) comes from the regime
when the variables v, v′ and z̃ are in the neighbourhood of θ , i.e. w, w′ and z are
in the neighbourhood of 0. The function that gives the leading contribution to the
integral in the steep descent analysis is

G̃(z) = G(θ + θz)

θ
.

It has a double critical point at 0, and for further derivatives, it holds

G̃(3)(0) = −1 +O(θ−1),

G̃(n)(0) = O(1), n � 4. (6.22)

We will denote the real part of G̃ by

g̃(x, y) := Re(G̃(x + iy)). (6.23)

The statements of the following lemma are completely taken from Lemma 6.3, 6.4
and 6.5 of [16].

Lemma 6.6 .

(1) For any fixed X ≥ 0, the function Y �→ g̃(X, Y ) is strictly increasing for Y > 0
with ∂Y g̃(X, Y ) ≥ ∂Y g̃(0, Y ).

(2) For X ≥ 0,
g̃(X, Y ) � g̃(X, 0) + Y 4/12 +O(Y 4/θ, Y 6).

(3) The function t �→ g̃
(

cos(t) − 1, sin(t)
)
is strictly decreasing for t ∈ (0, π/2].

For t ∈ [0, π/2] and θ large enough,

g̃
(

cos(t) − 1, sin(t)
)− g̃(0, 0) � − sin(t)4/16.

(4) The function Y �→ g̃(−Y, Y ) is strictly decreasing for Y > 0. For Y → ∞, we
have

∂Y g̃(−Y, Y ) � − ln Y.

Notational remark: O(Y 4/θ, Y 6) in Lemma 6.6 is the error term coming from
Taylor expansion around Y = 0.



20 Page 64 of 95 Math Phys Anal Geom (2015) 18: 20

We will also use the following properties of the gamma function.

Lemma 6.7

(1) For any u, v ∈ R,
∣∣∣∣	(u + iv)

	(u)

∣∣∣∣
2

= 	(u + iv)	(u − iv)

	(u)2
=

∞∏
n=0

(
1 + v2

(u + n)2

)−1

. (6.24)

(2) For any u, v, w ∈ R,∣∣∣∣	(u + iw)

	(v ± iw)

∣∣∣∣ � |w|u−v as |w| → ∞ (6.25)

where � means that the ratio of the two sides converges to 1.

Proof Part (1) is Formula 6.1.25 in [1]. To get (2), we use Formula 6.1.45 in [1]

lim|y|→∞(2π)−1/2|	(x + iy)|e|y|π/2|y|1/2−x = 1

for x and y real. (6.25) is a straightforward consequence.

Proposition 6.8 Uniformly for w, w′ in a bounded set of Cw,

lim
N→∞Kθ(w, w′) = −K̃b,β(w, w′)

where K̃b,β is given by (6.15).

Proof The dependence on N of the kernel Kθ in (6.19) appears in the factors

eNG(θ+σw)−NG(θ+σz) 	(θ + σz)

	(θ + σw)

θσw

θσz
= e(N−1)G(θ+σw)− κ

2 (θ+σw)2+fκ (θ+σw)+σw ln θ

e(N−1)G(θ+σz)− κ
2 (θ+σz)2+fκ (θ+σz)+σz ln θ

= e(N−1)θG̃( wσ
θ

)− κθ2
2 (1+ wσ

θ )
2+fκ θ(1+ wσ

θ )+θ wσ
θ

ln θ

e(N−1)θG̃( zσ
θ

)− κθ2
2 (1+ zσ

θ )
2+fκ θ(1+ zσ

θ )+θ zσ
θ

ln θ
. (6.26)

One can already see that the scale of the steep descent analysis is N3/2. By (6.3)
and (6.4), we have κθ2/2 = O(θ) and fκθ = O(θ), which shows that we have to
investigate the real part of G̃ along the contour Cz.

For N large enough and for w in a fixed bounded subset of Cw, Re(wσ +1) > 1/2
and Re((z − w)σ) ∈ (0, 1) so that we have � = 0 and p = 1, i.e. in this case
Cz = { 1

4σ
+ iy, y ∈ R}. Taylor expansion around w = 0 give us

NG(θ + σw) = NθG̃
(wσ

θ

)
= NθG̃(0) + Nθ

6
G̃(3)(0)

(σw

θ

)3 +O(Nθw4/θ4)

= NθG̃(0) − Nθσ 3

2θ3

w3

3
+O(w4/θ, Nθw3/θ4)

= NθG̃(0) − w3

3
+O(w4/θ) (6.27)

where we used (6.22).



Math Phys Anal Geom (2015) 18: 20 Page 65 of 95 20

We divide the integral over z into two parts: (a) | Im(z)| > θ1/3 and (b) | Im(z)| ≤
θ1/3.

(a) Contribution of the integration over | Im(z)| > θ1/3. We will show that the
integral can be bounded as

∫
|z|>θ1/3

dze
Nθ
(
g̃(0,0)−g̃

(
1

4σθ
,

Im(z)
θ

))
+O(1/θ) = O(θ)

∫ ∞

θ−2/3
dye

Nθ
(
g̃(0,0)−g̃

(
1

4σθ
,
y
θ

))
+O(1/θ)

.

(6.28)

This can be seen as follows. We have to work with the z-dependent part of the left-
hand side of (6.26). Therefore,

eNG(θ)−NG(θ+σz) = eNθ
(
G̃(0)−G̃( zσ

θ )
)
= e

Nθ
(
g̃(0,0)−g̃

(
1

4σθ
,

Im(z)
θ

))

by the definition (6.23). Then

	(θ + σz)

	(θ + σw)

θσw

θσz
= 	(θ + σz)

	(θ + 1/4)

θ1/4

θσz

	(θ + 1/4)

	(θ + σw)

θσw

θ1/4
.

By (6.24), ∣∣∣∣ 	(θ + σz)

	(θ + p/4)

θp/4

θσz

∣∣∣∣ ≤ 1,

and from (6.25),

	(θ + 1/4)

	(θ + σw)

θσw

θ1/4
= 1 +O

(
(1/4 − w)2

θ

)

as θ → ∞ which can be controlled by O(1/θ) in the exponent in (6.28).
The remaining z-dependent factor 	(β − σz)/	(σz − b) is only polynomial

in Im(z) along Cz by (6.25). Hence using the first part of Lemma 6.6 about
the decay of y �→ g̃(1/(4σθ), y), we see that the integral in (6.28) can be
bounded by

e
Nθ
(
g̃(0,0)−g̃

(
1

4σθ
,θ−2/3

))
+O(θ−1) � e

Nθ
(
g̃(0,0)−g̃

(
1

4σθ
,0
)
− θ−8/3

12 +O(θ−11/3)
)
+O(θ−1)

.

(6.29)
Exploiting the relation g̃(1/(4σθ), 0) = g̃(0, 0) + O(θ−3), we get the exponential
decay

6.29 � O(1) exp(−cN1/6)

with some c > 0.
(b) Contribution of the integration over | Im(z)| ≤ θ1/3. As in [16], one can see

that in the expansion

−NθG̃
(zσ

θ

)
= −NθG̃(0) + z3

3
+O(z4/θ)

for z = 1/(4σ) + iy, the real part

Re

(
z3

3

)
= − y2

4σ 2
+ 1

192σ 3

dominates the error term O(z4/θ) for large θ .
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(b.1) θ1/6 ≤ | Im(z)| ≤ θ1/3. From the previous observation,

∣∣∣∣∣
1

2π i

∫
θ1/6�| Im(z)|�θ1/3

dz
σπSσ(z−w)

sin(σπ(z − w))

ez3/3−w3/3+O(w4/θ,z4/θ,1/θ)

z − w′
	(σw − b)

	(σz − b)

	(β − σz)

	(β − σw)

∣∣∣∣∣
� O

(
e−cθ1/3

)
= O

(
e−c′N1/6

)

for some c, c′ > 0.
(b.2) | Im(z)| ≤ θ1/6. This contribution of the integral is

− 1

2π i

∫
1

4σ
+iy,|y|�θ1/6

dz
σπSσ(z−w)

sin(σπ(z − w))

ez3/3−w3/3+O(w4/θ,z4/θ)

z − w′
	(σw − b)

	(σz − b)

	(β − σz)

	(β − σw)
. (6.30)

For |y| ≤ θ1/6, O(z4/θ) = O(θ−1/3). Using |ex − 1| ≤ |x|e|x| for x = O(z4/θ)

and then for x = O(w4/θ), we can delete the error term by making an error of order
O(θ−1/3) = O(N−1/6). Thus,

(6.30) = O(N−1/6) − 1

2π i

∫
1

4σ
+iy,|y|�θ1/6

dz
σπSσ(z−w)

sin(σπ(z − w))

ez3/3−w3/3

z − w′
	(σw − b)

	(σz − b)

	(β − σz)

	(β − σw)
.

Finally, extending the last integral to 1
4σ

+ iR, we make an error of order O(e−cθ1/3
)

for some constant c > 0.
Putting all the above estimates together we obtain that, for w, w′ ∈ Cw in a

bounded set around 0,

Kθ(w,w′) = O(N−1/6) − 1

2π i

∫
1

4σ
+iR

dz
σπSσ(z−w)

sin(σπ(z − w)

ez3/3−w3/3

z − w′
	(σw − b)

	(σz − b)

	(β − σz)

	(β − σw)

which completes the proof.

Proposition 6.9 For any w, w′ in Cw, uniformly for all N large enough,

|Kθ(w, w′)| � Ce−| Im(w)|

for some positive constant C.

Proof We follow the lines of the proof of Proposition 6.2 in [16]. First, we can
rewrite the kernel as

Kθ (w,w′) = S−σweNG(θ+σw)−NG(θ) 	(σw − b)

	(β − σw)

	(θ + p/4)

	(θ + σw)

θσw

θp/4

× −1

2π i

∫
Dv

dz
σπSσz

sin(σπ(z − w))

eNG(θ)−NG(θ+σz)

z − w′
	(σz − b)

	(β − σz)

	(θ + σz)

	(θ + p/4)

θp/4

θσz
(6.31)

where we have separated the dependence on w and z.
The dependence on w′ is marginal because we can choose the integration variable

z such that |z − w′| ≥ 1/(4σ) and because we will get the bound through evaluating
the absolute value of the integrand of (6.31).
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Case 1: w ∈ {−1/(4σ) + iy, |y| ≤ r∗/σ } with r∗ given in (6.17). The integration
contour for z is 1/(4σ) + iR (p = 1) and no extra contributions from poles of the
sine are present. The factor 1/ sin(σπ(z−w)) is uniformly bounded from above. By
taking z = 1

4σ
+ iYθ

σ
, we get

|Kθ(w, w′)| � O(1)

∣∣∣∣eNθ
(
G̃( wσ

θ )−G̃(0)
)	(θ + 1/4)

	(θ + σw)

θσw

θ1/4

∣∣∣∣
∫
R

dY
eNθ(g̃(0,0)−g̃(ε̃,Y ))θ

(1 + | Im(w)|)(b+β)+ 1
2

� O(1)

∣∣∣∣eNθ
(
G̃( wσ

θ )−G̃(0)
)	(θ + 1/4)

	(θ + σw)

θσw

θ1/4

∣∣∣∣ (1 + | Im(w)|)−(b+β)− 1
2 (6.32)

where ε̃ = 1/(4σθ). The integral over Y is finite by Proposition 6.8. The last factor
above (1 + | Im(w)|)−(b+β)−1/2 is due to∣∣∣∣	(σw − b)

	(β − σw)

∣∣∣∣ � (σ Im(w))−(b+β)− 1
2

as | Im(w)| → ∞ which follows from (6.25). In order to avoid the possible diver-
gence of this bound around Im(w) = 0, we use (1 + | Im(w)|) instead of | Im(w)|
in (6.32). The factor (1 + | Im(w)|)−(b+β)−1/2 will be negligible since we prove
exponential decay in | Im(w)|.

We rewrite the estimate (6.32) as in (6.26):

∣∣∣∣eNθ
(
G̃( wσ

θ )−G̃(0)
) 	(θ + 1/4)

	(θ + σw)

θσw

θ1/4

∣∣∣∣ = e(N−1)θ Re G̃( wσ
θ

)− κθ2
2 (1+ wσ

θ )
2+fκ θ(1+ wσ

θ )

e(N−1)θG̃(0)− κθ2
2 +fκ θ

∣∣∣∣	(θ + 1/4)

	(θ)
θ−1/4

∣∣∣∣ .
(6.33)

Since |wσ/θ | = O(θ−1/2), we use the Taylor expansion of (6.27) to get that

(N − 1)θG̃
(wσ

θ

)
= (N − 1)θG̃(0) − w3

3
+O(w4/θ).

Substituting w = −1/(4σ) + iy and taking real part, we get

(N − 1)θ Re
(
G̃
(wσ

θ

)
− G̃(0)

)
= − 1

4σ
y2 +O(1) +O(y4/θ).

For |y| ≤ r∗/σ = O(θ1/2), the error term O(y4/θ) is dominated by the y2 term for
θ large enough. Hence we can write

(N − 1)θ Re
(
G̃
(wσ

θ

)
− G̃(0)

)
� − 1

8σ
y2 +O(1).

For the rest of the terms in the exponent of (6.33) after substituting w =
−1/(4σ) + iy, we find that

Re

(
− κθ2

2

(
1 + wσ

θ

)2 + κθ2

2
+ fκθ

(
1 + wσ

θ

)
− fκθ

)

= κθ2

2

(
−
(

1 − 1

4θ

)2

+ 1 + y2

θ2

)
− fκ

4
= κ

2
y2 +O(1) = O(y2/θ, 1).
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Putting these bounds together yields

|Kθ(w, w′)| ≤ O(1)e−
1

8σ
| Im(w)|2 � Ce−| Im(w)|.

Case 2: w ∈ {(eit − 1)θ/σ, t∗ ≤ |t | ≤ π/2} ∪ {−|y| + iy, |y| ≥ θ/σ }. We divide
the estimation of the bound by separating into the contributions from (a) integration
over p

4σ
+ iR with p ∈ {1, 2} depending on w (see the definitions after (6.18)) and

(b) integration over the circles Bw+k/σ , k = 1, . . . , �.
Case 2(a). First notice that the estimate (6.32) of Case 1 still holds with the minor

difference that ε̃ = p/(4θ) where p ∈ {1, 2} depending on the value of w, so that we
only need to estimate the exponent.

For w ∈ {(eit − 1)θ/σ, t∗ ≤ |t | ≤ π/2}, the third part of Lemma 6.6 shows that
g̃(cos(t) − 1, sin(t)) − g̃(0, 0) ≤ − sin(t)4/16. Replacing Im(w) = sin(t)θ/σ and
using | Im(w)| ≥ √

θ/2 − 1/16 we obtain

(N − 1)θ Re
(
G̃
(wσ

θ

)
− G̃(0)

)
� −c1| Im(w)|4/θ � −c2| Im(w)|2

if θ is large enough and for c1, c2 > 0.
Then we take w = (eit −1)θ/σ in (6.33) for the other terms of the exponent to get

Re
(κ

2
(−(θ + σw)2 + θ2) + fκ(θ + σw − θ)

)
= Re

(κ

2
(−θ2e2it + θ2) + fκ(θeit − θ)

)

= κθ2

2
(1 − cos(2t)) + fκθ(cos t − 1) � κθ2 sin2 t.

Since κ � 1/θ , this term becomes small compared to | Im(w)|2 = θ2 sin2 t/σ 2 as θ

gets large. It follows from Lemma 6.10 below that the ratio 	(σw − b)/	(β − σw)

decays along the semicircle {(eit − 1)θ/σ, t∗ ≤ |t | ≤ π/2}.
For w ∈ {−|y| + iy, |y| ≥ θ/σ }, it follows from the last statement of Lemma 6.6

that ∂Y g̃(−Y, Y ) ∼ − ln Y meaning that g̃(−Y, Y ) � −Y ln Y for Y large. What we
show is that the rest in the exponent is of smaller order. For w = −y + iy, we have

Re
(κ

2
(−(θ + σw)2 + θ2) + fκ(θ + σw − θ)

)

= Re
(κ

2
(−(θ − σy + iσy)2 + θ2) + fκ(θ − σy + iσy − θ)

)
= κθσy − fκσy

which simplifies in the leading order by (6.3)–(6.4), but it is certainly controlled by
the decay −Y ln Y in the exponent. The factor 	(σw − b)/	(β − σw) decreases as
| Im(w)| increases along {−|y|+ iy, |y| ≥ θ/σ } by Lemma 6.10. This shows that for
θ large enough, we have the bound

|Kθ(w, w′)| � Ce−| Im(w)|.

Case 2(b). The contribution of the integration over Bw+k/σ is (up to a ± sign
depending on k) given by

SkeNG(�(w))−NG(�(w+k/σ))

w + k/σ − w′
	(β − σw − k)

	(σw − b + k)

	(σw − b)

	(β − σw)

	(θ + σw + k)

	(θ + σw)

θσw

θσw+k
.
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It is shown in the last part of the proof of Proposition 6.2 in [16] that the first ratio
can be bounded by ∣∣∣∣∣

SkeNG(�(w))−NG(�(w+k/σ))

w + k/σ − w′

∣∣∣∣∣ � e−c| Im(w)| (6.34)

for an arbitrary c > 0 if N is large enough uniformly in k. For the rest of the factors,
we have

	(β − σw − k)

	(σw − b + k)

	(σw − b)

	(β − σw)
= 1

(σw − b)k↑(β − σw − k)k↑
(6.35)

and
	(θ + σw + k)

	(θ + σw)

θσw

θσw+k
= (θ + σw)k↑

θk
(6.36)

where (x)k↑ = x(x + 1) . . . (x + k − 1) is the rising factorial.
For a fixed w, (6.36) goes to 1 as θ → ∞, but the error is not uniform in θ .

Hence we regard (6.36) as a degree k polynomial in w. Since along the contour
{(eit − 1)θ/σ, t∗ ≤ |t | ≤ π/2} ∪ {−|y| + iy, |y| ≥ θ/σ }, |Re(w)| ≤ | Im(w)|, the
absolute value of (6.36) is also at most a degree k polynomial in | Im(w)|. The leading
coefficient is uniformly small for large θ .

On the other hand, the denominator of (6.35) is independent of θ , and the
imaginary part of each of the factors of the products is σ Im(w), hence∣∣∣∣ 1

(σw − b)k↑(β − σw − k)k↑

∣∣∣∣ � 1

σ 2k| Im(w)|2k
.

This cancels the polynomial coming from (6.36), and since k ≤ σ | Im(w)|, by choos-
ing c in (6.34) large enough, the product is still exponentially small. The sum of the
k residues is also bounded by e−| Im(w)| as required.

Lemma 6.10 For the function

w �→
∣∣∣∣	(σw − b)

	(β − σw)

∣∣∣∣ ,
the following holds:

(1) Along the semicircle w(t) = (eit − 1)θ/σ , it decreases for t∗ ≤ t ≤ π/2 and
increases for −π/2 ≤ t ≤ −t∗ if θ is large enough.

(2) Along the halflines w(y) = −y ± iy, it decreases for y ≥ θ/σ if θ is large
enough.

Proof Let us call

f (x, y) := Re(ln 	(x + iy)) =
∞∑

n=0

(
x

n + 1
− 1

2
ln
(
(x + n)2 + y2

)
+ ln(n)1n�1

)
− γEx
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where the second equation appears at the beginning of Section 5.2 in [16]. It follows
that

∂f (x, y)

∂x
=

∞∑
n=0

(
1

n + 1
− x + n

(x + n)2 + y2

)
− γE

∂f (x, y)

∂y
=

∞∑
n=0

− y

(x + n)2 + y2
.

(1) Let w(t) = (eit − 1)θ/σ . It is elementary to see that

∂

∂t
Re

(
ln

	(σw(t) − b)

	(β − σw(t))

)

= θ sin t

( ∞∑
n=0

( −θ − b + n

(θ(cos t − 1) − b + n)2 + θ2 sin2 t

+ θ + β + n

(θ(1 − cos t) + β + n)2 + θ2 sin2 t
− 2

n + 1

)
+ 2γE

)
. (6.37)

If we consider the above sum for n ≥ θ , then it is not hard to show by dominated
convergence that

∞∑
n= θ"

( −θ − b + n

(θ(cos t − 1) − b + n)2 + θ2 sin2 t
+ θ + β + n

(θ(1 − cos t) + β + n)2 + θ2 sin2 t
− 2

n + 1

)

→
∫ ∞

1
dx

(
x − 1

(cos t − 1 + x)2 + sin2 t
+ x + 1

(1 − cos t + x)2 + sin2 t
− 2

x + 1

)

as θ → ∞ for a fixed t ∈ (0, π/2]. The integrand on the right-hand
side is O(x−2) as x → ∞, hence the integral is finite. On the other hand,
the sum

 θ"∑
n=0

( −θ − b + n

(θ(cos t − 1) − b + n)2 + θ2 sin2 t
+ θ + β + n

(θ(1 − cos t) + β + n)2 + θ2 sin2 t

)

remains bounded as θ → ∞, since it converge to the corresponding integral
on [0, 1]. But

∑ θ"
n=0

2
n+1 � 2 ln θ which goes to infinity. This shows that the

derivative in (6.37) is negative for θ large enough if t ∈ (0, π/2]. For negative t ,
the argument is identical. The factor sin t on the right-hand side of (6.37) makes
the derivative positive. This is sufficient for the first assertion of the lemma.

(2) We set w(y) = −y + iy. A straightforward computation yields

1

σ

∂

∂y
Re

(
ln

	(σw(y) − b)

	(β − σw(y))

)

=
∞∑

n=0

( −2σy − b + n

(−σy − b + n)2 + (σy)2
+ 2σy + β + n

(σy + β + n)2 + (σy)2
− 2

n + 1

)
+ 2γE.

(6.38)
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As in the previous part of the proof, we have

∞∑
n= y"

( −2σy − b + n

(−σy − b + n)2 + (σy)2
+ 2σy + β + n

(σy + β + n)2 + (σy)2
− 2

n + 1

)

→
∫ ∞

1
dx

( −2σ + x

(−σ + x)2 + σ 2
+ 2σ + x

(σ + x)2 + σ 2
− 2

x + 1

)

as y → ∞ and the integral is finite, because the integrand is O(x−2). Sim-
ilarly to the first part of this proof, the first two summands on the right-hand
side of (6.38) summed over n ∈ [0,  y"] are finite, because the corresponding
integral on [0, 1] is finite. Hence the sum

∑ y"
n=0

2
n+1 makes the derivative neg-

ative for y large enough. The statement for the other branch of the contour can
be proved in the same way.

Proposition 6.8 and 6.9 together imply the convergence of the Fredholm determi-
nants

lim
N→∞ det(1+ Ku)L2(C(2a+α)/3,ϕ) = det(1− K̃b,β)L2(Cw) (6.39)

if assumption (6.16) holds. If (6.16) does not hold, then we modify locally the con-
tours Cv and Cz̃ around the critical point θ such that they cross the real axis strictly
between the poles a and α. The contours Cw and Cz are similarly modified. From
now on, we focus on the θ → ∞ limit of these contours, that is, we explain how to
modify the contour Cw starting from − 1

4σ
+ iR and Cz starting from 1

4σ
+ iR (since

p = 1). In order to keep the factor 1/ sin(σπ(z −w)) bounded in the limiting kernel
K̃b,β , the contour Cz has to be confined between ε + Cw and 1/σ − ε + Cw for an
arbitrarily small but fixed ε > 0 which might depend on b and β.

If β − b ≥ 1, then the distance of the poles at b
σ

and β
σ

is enough to let the
two contours run parallelly between them. In this case, for b > − 1

2 , replace the
| Im(w)| ≤ 2b+1

2σ
and | Im(z)| ≤ 2b+1

2σ
part of Cw and Cz by the parallel semicircles{

2b+1
2σ

eit − 1
4σ

,−π
2 ≤ t ≤ π

2

}
and

{
2b+1

2σ
eit + 1

4σ
,−π

2 ≤ t ≤ π
2

}
respectively. The

case β < 1
2 is handled symmetrically. If β − b < 1, then the contours will come

closer together between the poles, we chose them such that they intersect the real
axis at (2b + β)/(3σ) and at (b + 2β)/(3σ). This choice of the modified contours is
shown on Fig. 7.

The local modification of the contours has no influence on the bounds for large z

and/or for large w. This is because NG(θ + σb) − NG(θ) = O(1) and the contour
for z is the same away from a distance O(1) from the origin. This shows that (6.39)
remains valid for any b < β.

6.5 Reformulation of the Kernel

The following lemma about the reformulation along with its proof is the analogue of
Lemma 8.6 in [16].
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Fig. 7 A possible perturbation of the integration contours, compare with Figure 6 (right). The dots are the
singularities of 	(σw − b) at b/σ, (b − 1)/σ, . . . and those of 	(β − σz) at β/σ, (β + 1)/σ, . . .

Lemma 6.11 For the kernels K̃b,β defined in (6.15) and for Kb,β given in (2.6), it
holds

det(1− K̃b,β)L2(Cw) = det(1− Kb,β)L2(R+). (6.40)

Proof Assume first that (6.16) holds. For this choice of b and β, if w′ ∈ Cw and
z ∈ Cz, then Re(z − w′) > 0 and one can write

1

z − w′ =
∫
R+

dλe−λ(z−w′).

Using this equation, we have

K̃b,β(w, w′) =
∫
R+

dλA(w, λ)B(λ, w′)

where A : L2(Cw) → L2(R+) with

A(w, λ) = 1

2π i

∫
Cz

dz
σπSσ(z−w)

sin(σπ(z − w))
ez3/3−w3/3−λz 	(σw − b)

	(σz − b)

	(β − σz)

	(β − σw)

and B : L2(R+) → L2(Cw) with B(λ, w′) = eλw′
.

One checks easily that

BA(x, y) = 1

2π i

∫
Cw

dwB(x, w)A(w, y) = Kb,β(x, y),

and (6.40) follows since det(1− AB)L2(Cw) = det(1− BA)L2(R+).
It remains to relax condition (6.16). By Lemma B.1, both sides of (6.40) are ana-

lytic functions of the parameters b and β for b < β. We have proved above that the
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two analytic functions coincide if (6.16) holds, therefore (6.40) follows by analytic
continuation for any b < β.

7 SHE/KPZ Equation with Stationary Initial Data – Proof of Theorem
2.13

To prove Theorem 2.13 using the formula of Theorem 2.13, we need the following
lower tail estimate of the solution to the SHE proven in [36].

Lemma 7.1 Fix T > 0 and X ∈ R and consider Zb,β(T , X). For any b ∈ R and
δ > 0, there exist constants c1, c2, c3 > 0 such that for all β ∈ (b − δ, b + δ), and
all s ≥ 1

P
(
Zb,β(T , X) < e−c3s

)
� c1e

−c2s
3/2

.

Proof This follows the lower tail bound of [36, Corollary 1.13]. That result,
however, is stated in such a way that the constants c1, c2, c3 depend on β. The
lemma we are proving asks for constants which are independent as β varies in
(b − δ, b + δ). However, the desired uniformity follows via a simple coupling argu-
ment. The stochastic heat equation is attractive, it means that if we couple our initial
data Zb,β(0, X) = 1X≤0

(
Bl(X) + βX

)+ 1X>0
(
Br(X) + bX

)
to the same Brown-

ian motions Bl and Br (here Bl : (−∞, 0] → R is a Brownian motion without drift
pinned at Bl(0) = 0, and Br : [0,∞) → R is an independent Brownian motion
pinned at Br(0) = 0), then for β > β ′ since Zb,β ′(0, X) ≥ Zb,β(0, X) for all X ∈ R,
it follows that Zb,β ′(T , X) ≥ Zb,β(T , X) for all X ∈ R and T > 0. This immedi-
ately implies that to bound the lower tail of Zb,β(T , X) as β varies in (b − δ, b + δ),
it suffices to choose c1, c2, c3 > 0 corresponding to β = b + δ.

Proof of Theorem 2.13 We need to show the convergence of both sides of (2.5) to
the β = b expression. The convergence of the right-hand side of (2.5) to that of
(2.12) up to a factor of σ follows from Theorem 7.3 since limβ→b 	(β − b)(β −
b) = 1. Now consider the left-hand side of (2.5). Denote by c0 = 2

√
Se

X2
2T

+ T
24 ,

x = c0
√
Zb,β(T , X), and set ν = β − b. Then

l.h.s. of(2.5) = E(xνK−ν(x)) = −
∫
R+

dξξνK1−ν(ξ)P(x � ξ) (7.1)

where we used integration by parts. Let c1 be the constant in Lemma 7.1 and denote
by ξ0 = c0e

−c1/2. Decomposing the integral into [0, ξ0) and [ξ0,∞) and making the
change of variable ξ(s) = c0e

−c1s/2, we obtain

(7.1) = −
∫ ∞

ξ0

dξξνK1−ν(ξ)P(x � ξ)

− c0c1

2

∫ ∞

1
dse−c1s/2ξ(s)νK1−ν(ξ(s))P(Zb,β(T , X) � e−c1s).
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Using Lemma 6.5 (c) and (d), the first integral is bounded uniformly in ν and we can
therefore take ν → 0. The same lemma implies also that e−c1s/2ξ(s)νK1−ν(ξ(s)) is
bounded by ecs for some constant c independent of ν and by the bound on the tail
of the probability of Lemma 7.1, we also have that the second integrand is uniformly
bounded by an integrable function. Thus by dominated convergence, we can take the
ν → 0 limit inside and we obtain

lim
β→b

l.h.s. of(2.5) = −
∫
R+

dξK1(ξ)P(c0

√
Zb(T , X) � ξ) = E(K0(c0

√
Zb(T , X)))

where in the last step we integrated by parts.

Later in this section, we will work in L2(R+), so the functions are defined on R+
and the scalar product of two functions is meant as

〈f, g〉 =
∫
R+

dxf (x)g(x).

To extend the definition (2.8) for u, v ∈
(
− 1

4 , 1
4

)
, let us define on R+ the functions

qu,v(x) = 1

2π i

∫
− 1

4σ
+iR

dw
σπSv−σw

sin(π(v − σw))
e−w3/3+wx 	(σw − u)

	(v − σw)

= 1

2π i

∫
1

4σ
+iR

dz
σπSσz+v

sin(π(σz + v))
ez3/3−zx 	(−u − σz)

	(σz + v)
, (7.2)

and recall (2.9). Note that rs ∈ L2(R+) if s ≤ 0.

Further, to extend (2.10) for b, β ∈
(
− 1

4 , 1
4

)
, we introduce the kernel

K̄b,β(x, y) = 1

(2π i)2

∫
− 1

4σ
+iR

dw

∫
1

4σ
+iR

dz
σπSσ(z−w)

sin(σπ(z − w))

ez3/3−zy

ew3/3−wx

	(β − σz)

	(σz − b)

	(σw − b)

	(β − σw)
.

(7.3)

Note that the only difference between Kb,β and K̄b,β is the two integration contours.
The one for Kb,β is shown on the left-hand side of Fig. 8, for K̄b,β , they are vertical
lines. Note also that K̄b,b = K̄b of (2.10) and qb,b = qb of (2.8). Finally recall the
function � defined in (2.11).

Remark 7.2 We prove in Lemma D.3 that

det(1− K̄b,b)L2(R+) = 0. (7.4)

Together with Lemma 7.5 below, it shows that the right-hand side of (2.11) is finite
as follows. In the first scalar product, if b ≤ 0, then rb ∈ L2(R+) (if b ≥ 0, then
r−b ∈ L2(R+)), but by Lemma 7.5, K̄b,br−b decays exponentially with a faster rate
than rb might blow up. The second one is obviously finite. For the third one, we can
write 〈

(1− K̄b,b)
−1qb,b, rb

〉 = 〈qb,b, rb〉 +
〈
K̄b,b(1− K̄b,b)

−1qb,b, rb
〉
. (7.5)
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Fig. 8 The integration contours Cw and Cz for Kb,β are on the left. The other contours are: C′
w = − 1

4σ
+

iR, C′
z = 1

4σ
+ iR, C′′

w a small circle around b/σ and C′′
z a small circle around β/σ . By modifying the

contours as shown here and applying the residue theorem, one gets (7.9). The dots show the poles of the
integrands validating the manipulations of the contours

Using Lemma 7.5 again, qb,b decays exponentially with a faster rate than rb might
blow up, hence 〈qb,b, rb〉 is finite. On the other hand,

〈
K̄b,b(1− K̄b,b)

−1qb,b, rb
〉 = 〈

(1− K̄b,b)
−1qb,b, K̄−b,−brb

〉
,

since the adjoint of K̄b,b in the real L2(R+) is K̄−b,−b which can also be seen from
the representation (D.3). The function K̄−b,−brb is already in L2(R+), so the second
term on the right-hand side of (7.5) is also well-defined. A similar argument works
for the last scalar product in (2.11).

Fix b ∈
(
− 1

4 , 1
4

)
. The kernel Kb,β is defined for all β ∈

(
b, 1

4

)
by (2.6). The fol-

lowing theorem describes the behaviour of the corresponding Fredholm determinant
in the decreasing β → b limit which is that it goes to 0 linearly in β − b.

Theorem 7.3 Let b ∈
(
− 1

4 , 1
4

)
be fixed. For the kernel Kb,β , we have

lim
β→b

1

β − b
det(1− Kb,β) = 1

σ
�(S, b, σ ) (7.6)

with � defined in (2.11). Recall that the notation qb and K̄b from Definition 2.11 are
related to that above via qb = qb,b and K̄b = K̄b,b.

Remark 7.4 Theorem 7.3 is proved with the condition b ∈
(
− 1

4 , 1
4

)
for technical

convenience. One could likely extend the proof with minor modifications up to the
range b ∈ (−1, 1). Beyond this range the integration contours which appear implic-
itly on the right-hand side of (7.6) in the definitions of qb, q−b and K̄b have to depend
on b so that the w contours cross the real axis on the right of the singularities of
	(σw − b) at (b − 1)/σ, (b − 2)/σ, . . . whereas the z contours cross on the left of
the poles (b + 1)/σ, (b + 2)/σ, . . . coming from 	(b − σz). On the other hand, if b

is not in (−1, 1), then the kernel function K̄b(x, y) does not decay in x or y, hence
the right-hand side of (7.6) is not well-defined via (2.11).
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Before proving Theorem 7.3, we give the following decay estimates.

Lemma 7.5 For each ε > 0 fixed, there is a C which only depends on ε such that

for all b, β ∈
(
− 1

4 + ε, 1
4 − ε

)
, we have the following bounds:

∣∣K̄b,β(x, y)
∣∣ � Ce−

1
4σ

(x+y), (7.7)∣∣qb,β(x)
∣∣ � Ce−

1
4σ

x . (7.8)

Proof We can estimate by taking the absolute value of the integrand in (7.3) as
follows

∣∣K̄b,β(x, y)
∣∣

� 1

(2π)2

∫
− 1

4σ
+iR

|dw|
∫

1
4σ

+iR
|dz|

∣∣∣∣∣
σπSσ(z−w)

sin(σπ(z − w))

ez3/3

ew3/3

	(β − σz)

	(σz − b)

	(σw − b)

	(β − σw)

∣∣∣∣∣ ·
∣∣e−zy+wx

∣∣ .

The factor ez3/3/ew3/3 has Gaussian decay in | Im(w)| and in | Im(z)|, the other
factors are slower, in particular, see (6.25) for the gamma ratio. For any value of
w ∈ − 1

4 + iR and z ∈ 1
4 + iR,

∣∣e−zy+wx
∣∣ = e−

1
4σ

(x+y).

Since the integration paths pass at least ε far from the singularities of the integrand
for any given ε, one can choose a uniform constant C so that (7.7) holds. (7.8) can be
proved similarly.

Proof of Theorem 7.3 The first step is to rewrite the kernel Kb,β , since in the original
form given in (2.6), the two integration contours intersect the real axis between the
pole at b/σ and the pole at β/σ , so the two contours would collide in the β → b limit,
see also Fig. 8. Hence by using the residue theorem, we cross the pole at b/σ with
the w integration contour and cross the pole at β/σ with the z integration contour,
both manipulations resulting in a residue term.

If we assume that

−1

4
< b < β <

1

4
,

then the new integration contours can be chosen to be − 1
4σ

+ iR for w and 1
4σ

+ iR
for z as shown on Fig. 8. That is, with the notation (7.3), we can write

Kb,β(x, y) = K̄b,β (x, y) + 1

2π i

∫
− 1

4σ
+iR

dw
σπSβ−σw

sin(π(β − σw))

eβ3/(3σ 3)−βy/σ

ew3/3−wx

	(σw − b)

	(β − σw)

1

σ	(β − b)

+ 1

2π i

∫
1

4σ
+iR

dz
σπSσz−b

sin(π(σz − b))

ez3/3−zy

eb3/(3σ 3)−bx/σ

	(β − σz)

	(σz − b)

1

σ	(β − b)

+ σπSβ−b

sin(π(β − b))

eβ3/(3σ 3)−βy/σ

eb3/(3σ 3)−bx/σ

1

σ 2	(β − b)2
(7.9)

by the residue theorem.
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Using the functions defined in (7.2) and (2.9), we have

Kb,β(x, y) = K̄b,β(x, y) + qb,β(x)rβ(y)
1

σ	(β − b)
+ r−b(x)q−β,−b(y)

1

σ	(β − b)

+ σπSβ−b

sin(π(β − b))
r−b(x)rβ(y)

1

σ 2	(β − b)2
. (7.10)

The last equation shows that Kb,β is a finite rank perturbation of K̄b,β , i.e. we could
write

Kb,β(x, y) = K̄b,β(x, y) +
3∑

i=1

fi(x)gi(y)

with appropriate fi and gi . In this case, for the Fredholm determinants, the following
holds

det

(
1− K̄b,β −

3∑
i=1

fi ⊗ gi

)
L2(R+)

= det
(
1− K̄b,β

)
L2(R+)

det
[
δij −

〈(
1− K̄b,β

)−1
fi , gj

〉]3

i,j=1

(7.11)

where δij is the Kronecker’s delta provided that det(1 − K̄b,β)L2(R+) = 0. For β

close enough to b, this follows by continuity from (7.4).
By (7.10), we define

f1(x) = qb,β (x)

σ	(β−b)
, g1(y) = rβ(y),

f2(x) = r−b(x)
σ	(β−b)

, g2(y) = q−β,−b(y),

f3(x) = r−b(x)
σ	(β−b)

, g3(y) = πSβ−b

sin(π(β−b))

rβ (y)

	(β−b)
.

(7.12)

With this choice of fi and gi , the Fredholm determinant of Kb,β is equal to (7.11).
Since we are to take the limit of (β − b)−1 det(1 − Kb,β)L2(R+) as β → b, it is
enough to consider the Taylor series up to first order in the second determinant on the
right-hand side of (7.11). With the choice (7.12), this second determinant is equal to

det

⎡
⎢⎣

1 − β−b
σ

〈Rqb,β, rβ〉 − β−b
σ

〈Rqb,β, q−β,−b〉 − β−b
σ

〈Rqb,β, rβ〉
−1 +O(β − b) 1 − β−b

σ
〈Rr−b, q−β,−b〉 −1 − β−b

σ
(ξ + 〈RK̄b,βr−b, rβ 〉

−1 +O(β − b) − β−b
σ

〈Rr−b, q−β,−b〉 − β−b
σ

(ξ + 〈RK̄b,βr−b, rβ〉)

⎤
⎥⎦ (7.13)

where we neglect all the O((β − b)2) and higher order terms and we write R =
(1− K̄b,β)−1 for simplicity in the above formula. The value

ξ = b2/σ 2 + σ(2γE + ln S).

To obtain the first column of (7.13), we use that

〈
(1− K̄b,β)−1f2, g1

〉 = 〈f2, g1〉 +
〈
Kb,β(1− K̄b,β)−1f2, g1

〉

= eβ3/(3σ 3)−b3/(3σ 3)

(β − b)	(β − b)
+ 1

σ	(β − b)

〈
Kb,β(1− K̄b,β)−1r−b, rβ

〉
= 1 +O(β − b).
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The scalar product 〈(1− K̄b,β)−1f3, g1〉 is the same.
To get the last two entries in the third column of (7.13), we do the separation〈

(1− K̄b,β)−1f2, g3
〉 = 〈f2, g3〉 +

〈
K̄b,β(1− K̄b,β)−1f2, g3

〉
where the first scalar product on right-hand side is of order 1 whereas the rest is
O(β − b):

〈f2, g3〉 = σπSβ−b

sin(π(β − b))

eβ3/(3σ 3)−b3/(3σ 3)

	(β − b)2

∫ ∞

0
dxe−(β−b)x/σ

= 1 + (b2/σ 2 + 2σγE + σ ln S)
β − b

σ
+O((β − b)2).

This argument works again for f3 instead of f2.
The other terms in the determinant (7.13) are computed easily by (7.11) and (7.12).

Furthermore, all of these terms are finite which can be seen by using the idea of
Remark 7.2.

By expanding the determinant in (7.13) and considering the terms up to first order,
one can see that

1

β − b
det(1− Kb,β)L2(R+)

= − 1

σ
det(1− K̄b,β)L2(R+)

[
b2/σ 2 + σ(2γE + ln S) + 〈K̄b,β (1− K̄b,β )−1r−b, rβ

〉
+ 〈(1− K̄b,β )−1qb,β , q−β,−b

〉+ 〈(1− K̄b,β)−1qb,β , rβ
〉+ 〈(1− K̄b,β )−1r−b, q−β,−b

〉]
+O(β − b). (7.14)

What remains to show is that the right-hand side of (7.14) converges to �(S, b, σ )/σ .
To see that

det(1− K̄b,β)L2(R+) → det(1− K̄b,b)L2(R+), (7.15)

we use the Fredholm series expansion

det(1− K̄b,β)L2(R+) =
∞∑

n=0

(−1)n

n!
∫
R+

dx1 . . .

∫
R+

dxn det
[
K̄b,β(xi, xj )

]n
i,j=1 .

(7.16)
The n × n determinant on the right-hand side of (7.16) is bounded by∣∣∣det

[
K̄b,β(xi, xj )

]n
i,j=1

∣∣∣ � Cne−
1

2σ
(x1+···+xk)nn/2 (7.17)

using Lemma 7.5 and the Hadamard bound on determinants with bounded entries.
Hence the integrand in the nth term on the right-hand side of (7.16) can be dominated

uniformly as β varies in
(
− 1

4 + ε, 1
4 − ε

)
. In particular, by dominated convergence,

as β → b, the nth term of the expansion in (7.16) converges to the corresponding
term of the expansion of det(1 − K̄b,b). Further, by integrating the bound (7.17),
the absolute value of the nth term of the series (7.16) is at most (2σC)nnn/2/n!.
Since it is summable, a repeated application of the dominated convergence yields the
convergence of Fredholm determinants (7.15).
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The last step is to show the convergence of the scalar products in (7.14). For this
end, we first show that the resolvents converge in operator norm in L2(R+).

Lemma 7.6 If limβ→b ‖K̄b,β − K̄b,b‖ = 0 and ‖(1− K̄b,b)
−1‖ < ∞, then

lim
β→b

∥∥∥(1− K̄b,β)−1 − (1− K̄b,b)
−1
∥∥∥ = 0.

Proof
∥∥∥(1− K̄b,β)−1 − (1− K̄b,b)

−1
∥∥∥ =

∥∥∥∥
[(

1− (1− K̄b,b)
−1(K̄b,β − K̄b,b)

)−1 − 1

]
(1− K̄b,b)

−1
∥∥∥∥

�
∥∥∥(1− K̄b,b)

−1
∥∥∥∑

n�1

∥∥∥(1− K̄b,b)
−1(K̄b,β − K̄b,b)

∥∥∥n

which goes to 0 as β → b.

To finish the proof of Theorem 7.3, we first check the conditions of Lemma 7.6
and then we show that the right-hand side of (7.14) goes to �(S, b, σ )/σ .

To verify the convergence condition of Lemma 7.6, one can write K̄b,β − K̄b,b as
a common double integral with a difference of gamma ratios. This difference goes to
0 pointwise as β → b, hence the Hilbert–Schmidt norm of K̄b,β − K̄b,b goes to 0 by
dominated convergence as β → b. The finite norm condition for the resolvent is a
direct consequence of (7.4).

Since

qb,β → qb,b and q−β,−b → q−b,−b

as β → b in L2(R+) by dominated convergence, we have〈
(1− K̄b,β)−1qb,β, q−β,−b

〉→ 〈
(1− K̄b,b)

−1qb,b, q−b,−b

〉
. (7.18)

In the other scalar products, the functions rb and r−b appear in the limit which may
not be in L2(R+), therefore, as in Remark 7.2, we use again the identity

(1− K̄b,b)
−1 = 1+ (1− K̄b,b)

−1K̄b,b

and note that K̄b,brb and K̄b,br−b are already in L2(R+), so the rest of the argument
is the same as for (7.18) and the use of dominated convergence. This completes the
proof of Theorem 7.3.

8 SHE/KPZ Equation Universality – Proof of Theorem 2.17

In this section, we prove Theorem 2.17. Let

f (t) = K0(2et ) (8.1)

where K0 is the modified Bessel function and set

S = e−
τ2+r

σ . (8.2)
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Then using the scaling (2.18) and the notation (2.13), we have

∂

∂r
E

[
2σK0

(
2

√
Se

X2
2T

+ T
24 Zb(T , X)

)]

= ∂

∂r
E

[
2σf

(
1

2σ

(
Hb(T , X) + T

24 (1 + 12b2) − 21/3bτT 2/3

(T /2)1/3
− r

))]

= E

[
2σ

∂

∂r
f

(
1

2σ

(
Hb(T , X) + T

24 (1 + 12b2) − 21/3bτT 2/3

(T /2)1/3
− r

))]
. (8.3)

In the last step, we used the following property of the function f given in (8.1) along
with Lemma 7.1.

Lemma 8.1 If H is a random variable with exponential negative tail, that is, if
E[exp(−uH)] is finite for some u > 0, then

∂

∂r
Ef (−r + H) = E

[
∂

∂r
f (−r + H)

]
(8.4)

for the function f given in (8.1).

Proof The left-hand side of (8.4) is written as

lim
h→0

E

[
1

h
(f (−(r + h) + H) − f (−r + H))

]
.

Since f ′ ∈ [0, 1] and f ′(t) has a double exponential decay for large t and it is
bounded, the dominated convergence applies and yields the equality with the right-
hand side of (8.4).

To conclude the proof of Theorem 2.17, we use the rotational invariance formula
(2.14) with b → b + X/T and with the parameter setting (2.18):

Se
X2
2T

+ T
24 Zb(T , X)

d= Se
T
24 Zτσ (T , 0).

Substituting this on the left-hand side of (8.3), we see that

(8.3) = ∂

∂r
E

[
2σK0

(
2

√
Se

T
24 Zτσ (T , 0)

)]
= ∂

∂r
�

(
S = e−

τ2+r
σ , τσ, σ

)

where we applied Theorem 2.13 in the last step with S = e−(τ 2+r)/σ and b = τσ

(which is in
(
− 1

4 , 1
4

)
for T large enough). Then using Lemma 8.2 below and the

definition (2.17), we see that the right-hand side of (8.3) converges to Fτ (r) for each
r ∈ R. The functions {fT }T >0 with fT (x) = −f ′(x/(2σ)) are strictly decreasing in
x with a limit of 1 at x = −∞ and 0 at x = ∞, and for each δ > 0, on R \ [−δ, δ],
fT converges uniformly to 1(x ≤ 0). Hence by rewriting the right-hand side of (8.3)
with fT which converges to Fτ (r) and by using a continuous version of Lemma F.1,
we conclude the proof of Theorem 2.17.
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Lemma 8.2 We have

lim
T→∞ �

(
e−

τ2+r
σ , τσ, σ

)
= g(τ, r) det(1− PrK̂AiPr)L2(R) (8.5)

where g is defined by (2.16), the shifted Airy kernel K̂Ai is given by (2.15), and
Ps(x) = 1{x>s}.

Proof Let us introduce the following notation for this proof. Consider the operator

Br(x, y) = Ai(x + y + r)

acting on L2(R+) as an integral operator and the functions

eα(x) = eαx

for α ∈ R. Note that eα ∈ L2(R+) if α ≤ 0, but since it will always appear in this
proof together with Br , the fast decay of the Airy function makes all the integrals
convergent.

We take the T → ∞ limit on the left-hand side of (8.5) by using (2.11) with
S = e−(τ 2+r)/σ and b = τσ . If we take the T → ∞ limit of K̄τσ,τσ , we observe that

σπ

sin(σπ(z − w))
→ 1

z − w

since σ → 0. On the other hand, because 	(z) � z−1 as z → 0, we also have

	(τσ − σz)

	(σz − τσ )

	(σw − τσ )

	(τσ − σw)
→ 1.

Substituting (8.2), one obtains

K̄τσ,τσ (x, y) → 1

(2π i)2

∫
− 1

4σ
+iR

dw

∫
1

4σ
+iR

dz
ez3/3−z(y+r+τ 2)

ew3/w−w(x+r+τ 2)

1

z − w

= KAi(x + r + τ 2, y + r + τ 2) = B2
r (x + τ 2, y + τ 2)

pointwise. By using the same argument as in the proof of (7.15), we see that we also
have convergence in trace norm and hence the convergence of Fredholm determi-
nants. Moreover, by applying the analogue of Lemma 7.6, we obtain the convergence
of the resolvents.

Similarly, we have

qτσ,τσ (x) → −e−τ 3−τr 1

2π i

∫
− 1

4σ
+iR

dw
e−w3/3+w(x+r+τ 2)

τ − w

= −e−τ 3−τr

∫ ∞

0
dλ Ai(x + r + τ 2 + λ) e−λτ = −e−τ 3−τr (Bre−τ )(x + τ 2)

and
q−τσ,−τσ (x) → −eτ 3+τr (Breτ )(x + τ 2).

The convergence holds also in L2(R+) by the dominated convergence theorem.
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By writing rτσ (x) = e
4
3 τ 3

e−τ (x + τ 2) and r−τσ (x) = e− 4
3 τ 3

eτ (x + τ 2), we get
〈
(1− K̄τσ,τσ )−1qτσ,τσ , q−τσ,−τσ

〉

→
∫ ∞

0
dx

∫ ∞

0
dy(1− B2

r )−1(x + τ 2, y + τ 2)(Bre−τ )(y + τ 2)(Breτ )(x + τ 2), (8.6)

〈
(1− K̄τσ,τσ )−1qτσ,τσ , rτσ

〉

→ −eτ 3/3−τr

∫ ∞

0
dx

∫ ∞

0
dy(1− B2

r )(x + τ 2, y + τ 2)(Bre−τ )(y + τ 2)e−τ (x + τ 2), (8.7)

〈
(1− K̄τσ,τσ )−1r−τσ , q−τσ,−τσ

〉

→ −e−τ 3/3+τr

∫ ∞

0
dx

∫ ∞

0
dy(1− B2

r )(x + τ 2, y + τ 2)eτ (y + τ 2)(Breτ )(x + τ 2) (8.8)

and
〈
K̄τσ,τσ (1− K̄τσ,τσ )−1r−τσ , rτσ

〉

→
∫ ∞

0
dx

∫ ∞

0
dy

∫ ∞

0
dzB2

r (x + τ 2, y + τ 2)(1− B2
r )−1(y + τ 2, z + τ 2)eτ (z + τ 2)e−τ (x + τ 2). (8.9)

Finally observe that by (8.2)

(τσ )2/σ 2 + σ(2γE + ln S) → −r. (8.10)

To get a similar formulation on the right-hand side of (8.5), we substitute s = r to
the ingredients defining the function g:

K̂Ai(x + r, y + r) = B2
r (x + τ 2, y + τ 2),

R = r + eτ 3/3−τr

∫ ∞

0
dx(Bre−τ )(x + τ 2)e−τ (x + τ 2),

�(x + r) = eτ 3/3−τr

∫ ∞

0
dyB2

r (x + τ 2, y + τ 2)e−τ (y + τ 2) − (Breτ )(x + τ 2),

�(y + r) = e−τ 3/3+τr eτ (y + τ 2) − (Bre−τ )(y + τ 2). (8.11)

To obtain (8.5) one needs to substitute the limits (8.6)–(8.10) to (2.11), comparing the
result with the right-hand side of (8.5) using the expressions of (8.11), and rewriting
the scalar product in the definition of the function g in (2.16) as an integral.
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Appendix A. Stationary semi-discrete Directed Random Polymer

Though we will not draw upon this, it is worthwhile to explain why we used the term
‘stationary’ to describe the partition function Z(τ, N) described in Remark 7.2 (in
which M = 1, α = a1 = a and all other ai = 0). The following explanation goes
back to O’Connell and Yor [67] in the case of N = 2 and to Seppäläinen and Valkó
[77] for general N . Consider two-sided Brownian motions B1, . . . , BN where B1 has
drift α and Bi for i > 1 has drift 0. By a two sided Brownian motion with drift α,
we mean that for s ≤ 0, Bi(s) = B−

i (s) + αs and for s ≥ 0, Bi(s) = B+
i (s) + αs

where B±
i are independent Brownian motions. Denote by Bk(s, t) = Bk(t) − Bk(s)

the increment of the Brownian motion k between time s and t . Define

Z̃(τ, N) =
∫
−∞<s1<···<sN−1<τ

exp
[
B1(s1) + B2(s1, s2) + · · · + BN(sN−1, τ )

]
,

and, recursively, rk(τ ) by

k∑
j=1

rj (τ ) = ln
[
Z̃(τ, k + 1)

]
+ B1(τ ) − 2ατ. (1)

Let r(τ ) := {r1(τ ), . . . , rN−1(τ )}.
The following result is a subset of the results proved in Theorem 3.3 of [77] and

is an extension of the Output Theorem for M/M/1 queues (sometimes called the
Burke-type property).

Proposition A.1 (Theorem 3.3 of [77]) For a given τ , the random variables in each
component of the vector r(τ ) are independent and identically distributed as rk(τ ) ∼
log 	(α); and as a process in τ , r(τ ) is stationary.

As a consequence of this, we have the following.

Corollary A.2

(1) In law, Z(τ, N) = Z̃(τ, N),
(2) E[ln Z(τ, N)] = −Nψ(α) + ατ , where ψ is the digamma function,
(3) The ordered set of U(τ, k) := ln Z(τ, k + 1) − ln Z(τ, k) for 1 ≤ k ≤ N − 1

is stationary in τ with product measure of log 	(α) distributions in each
coordinate.

Proof To prove (1), we consider τ > 0 and note that we can partition the integral
defining Z̃(τ, N) based on for which k ∈ {1, . . . , N} the event {sk−1 < 0 < sk}
occurs (as convention set s0 = −∞). Thus

Z̃(τ, N) =
N∑

k=1

∫
−∞<s1<···<sk−1<0

exp
[
B1(s1) + B2(s1, s2) + · · · + Bk(sk−1, 0)

]

×
∫

0<sk<···<sN−1<τ

exp
[
Bk(0, sk) + Bk+1(sk, sk+1) + · · · + BN(sN−1, τ )

]
.
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By Proposition A.1, the first integral above equals exp
[∑k−1

j=1 rk(0)
]

and by the inde-

pendent increment property of Brownian motion, the second integral is independent
of the first. Using the fact that the rk(0) ∼ log 	(α) completes the identification of
Z̃ with Z̄.

To prove (2), take expectations of both sides in (1) and recall the mean of a Log-
Gamma distributed random variable, as well as the fact that B0 has drift α. To prove
(3), subtract (1) with k from (1) with k − 1 and use the stationarity and product
distribution of the rk(t) coming from Proposition A.1.

Appendix B. Analyticity of Fredholm Determinants

Lemma B.1 The Fredholm determinants det(1 − Kb,β)L2(R+) and det(1 −
K̃b,β)L2(Cw) are analytic functions of the parameters b and β as long as b < β.

The proof of the above lemma consists of two steps: first we show that the kernels
are analytic functions of b and β, then we prove it for the Fredholm determinants.
We use the following two complex analysis lemmas and Lemma B.4 for the decay
bound on the kernel Kb,β . The first one is a slight modification of Theorem 7.37 in
[54], hence for completeness, we give it with proof.

Lemma B.2 Let f (z, ζ ) be a complex function in two variables and suppose that

(1) f is defined on (z, ζ ) ∈ A × C where A is an open set and C is a (possibly
infinite) contour.

(2) For each z ∈ A, define the contour γ = {z + reit : 0 ≤ t ≤ 2π} with a
sufficiently small r such that also the disc around z with radius r lies in A.
Suppose that for each z ∈ A,

∫
C

∫
γ

|f (u, ζ )| |du| |dζ | < ∞. (B.1)

(3) For each ζ ∈ C, z �→ f (z, ζ ) is analytic in A.
(4) For each z ∈ A, ζ �→ f (z, ζ ) is continuous on C.

Then

F(z) =
∫

C

f (z, ζ ) dζ

is analytic in A with F ′(z) = ∫
C

∂
∂z

f (z, ζ ) dζ .

Proof By Cauchy’s integral formula for the analytic function z �→ f (z, ζ ), we get

F(z) = 1

2π i

∫
C

dζ

∫
γ

f (u, ζ ) du

u − z
(B.2)
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where γ is defined in condition (2) of the lemma. If we choose h such that |h| < r/2,
then |u − z| = r and |u − z − h| > r/2. From (B.2), we also have

F(z + h) = 1

2π i

∫
C

dζ

∫
γ

f (u, ζ ) du

u − z − h
,

so that

F(z + h) − F(z)

h
= 1

2π i

∫
C

dζ

∫
γ

f (u, ζ ) du

(u − z)(u − z − h)

= 1

2π i

∫
C

dζ

∫
γ

f (u, ζ ) du

(u − z)2
+ 1

2π i

∫
C

dζ

∫
γ

hf (u, ζ ) du

(u − z)2(u − z − h)
. (B.3)

The second term on the right-hand side of (B.3) is bounded as

∣∣∣∣ 1

2π i

∫
C

dζ

∫
γ

hf (u, ζ ) du

(u − z)2(u − z − h)

∣∣∣∣ ≤ 1

2π

|h|
r3/2

∫
C

∫
γ

|f (z, ζ )| |du| |dζ |

which tends to 0 as h → 0, because the double integral on the right-hand side is finite
by condition (2). Hence (B.3) converges as h → 0, that is,

F ′(z) = 1

2π i

∫
C

dζ

∫
γ

f (u, ζ ) du

(u − z)2
=
∫

C

∂

∂z
f (z, ζ ) dζ

where we used Cauchy’s differentiation formula in the last step.

The second complex analysis lemma is due to Weierstrass and it is proved in [5]
as Theorem 7.12, so we omit the proof here.

Lemma B.3 SupposeU is an open subset ofC and that {fn} is a sequence of analytic
functions on U that converges uniformly to a function f . Then f is analytic on U .

We provide the following bound on the kernel Kb,β .

Lemma B.4 Fix b < β so that β − b < 1. There is a finite constant C such that

|Kb,β(x, y)| ≤ C exp

(
−β

σ
y + b

σ
x

)

for x, y ∈ R+.

Proof In the general b < β case, the contours Cw and Cz are vertical lines with local
modifications at the origin, see Theorem 2.9 where the contours are defined. At least
one of b < 0 and β > 0 is true. Suppose that β > 0. The other case is similar.
We chose an integer k ≥ 0 such that the shifted contour Cw − k

σ
lies completely on

the left-hand side of the imaginary axis. Using the residue theorem for the poles at
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w = b
σ
, b−1

σ
, . . . , b−k+1

σ
and at w = z − 1

σ
, z − 2

σ
, . . . , z − k

σ
, we get

Kb,β(x, y) = 1

(2π i)2

∫
Cw− k

σ

dw

∫
Cz

dz
σπSσ(z−w)

sin(σπ(z − w))

ez3/3−zy

ew3/3−wx

	(β − σz)

	(σz − b)

	(σw − b)

	(β − σw)

+
k−1∑
l=0

1

2π i

∫
Cz

dz
πSσz−(b−l)

sin(π(σz − (b − l)))

ez3/3−zy

e(b−l)3/(3σ 3)−(b−l)x/σ

	(β − σz)

	(σz − b)

1

	(β − (b − l))

+
k∑

m=1

1

2π i

∫
Cz

dz(−1)mSm ez3/3−zy

e(z−m/σ)3/3−(z−m/σ)x

	(β − σz)

	(σz − b)

	(σz − b − m)

	(β − σz + m)
. (B.4)

The contour Cw − k
σ

intersects the real axis at a negative position. Without crossing
any pole coming from the sine in the denominator, we can replace the contours Cw− k

σ

and Cz by vertical lines crossing the real axis at the same positions as Cw − k
σ

and Cz

in (B.4) everywhere.
Since Cz is confined between Cw and Cw + 1

σ
up to an arbitrarily small error ε, and

because β − b < 1, we can move the vertical integration contour for z to the right-
hand side of the pole at z = β

σ
picking up a residue term from the Gamma fuction

but not from the sine. The new vertical contour crosses the real axis at β
σ
+ δ for a

small enough δ > 0, and a new residue term appears in each summand of (B.4) due
to putting the contour on the other side of the residue at z = β

σ
.

Then the largest x-dependent term comes from the residue at w = b
σ

resulting in
the bound ebx/σ in the exponential order. The largest y-dependence comes from the
residue picked up at z = β

σ
giving e−βy/σ in the exponent.

Proof of Lemma B.1 It is a consequence of Lemma B.2 that the kernels Kb,β and
K̃b,β are analytic functions of b and β as long as b < β holds. To apply the lemma,

the only non-trivial condition to check for Kb,β is (2). But ez3/3 decays along Cz as

e−c| Im(z)|2 . From (6.25), we get that

∣∣∣∣	(β − σz)

	(σz − b)

∣∣∣∣ � |z|β+b−2σ Re(z), (B.5)

so if we vary β in a small circle in the complex plane, we still have a uniform polyno-
mial bound in (B.5) which is enough to ensure the finiteness of the integral in (B.1)
for Kb,β . Checking the conditions of Lemma B.2 for K̃b,β can be done similarly.

What remains to prove is that the Fredholm determinants are also analytic. We
start with Kb,β and the series expansion

det(1− Kb,β)L2(R+) =
∞∑

n=0

(−1)n

n!
∫ ∞

0
. . .

∫ ∞

0
dx1 . . . dxn det

[
Kb,β(xi, xj )

]n
i,j=1.

(B.6)
We are to apply Lemma B.3 with the sequence of analytic functions {fn} being the
partial sums of the series on the right-hand side of (B.6).
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If we rewrite the n × n determinant in the series on the right-hand side of (B.6)
using the same C that appears in Lemma B.3, then we have

det
[
Kb,β(xi, xj )

]n
i,j=1 = Cne−

β−b
σ

∑n
i=1 xi det

[
C−1e

β
σ

xj− b
σ

xi Kb,β(xi, xj )
]n
i,j=1

.

(B.7)
The entries in the determinant on the right-hand side here are at most 1 in absolute
value due to Lemma B.4, hence the determinant is at most nn/2 by the Hadamard
bound. Therefore

1

n!
∣∣∣∣
∫ ∞

0
. . .

∫ ∞

0
dx1 . . . dxn det

[
Kb,β(xi, xj )

]n
i,j=1

∣∣∣∣ ≤ C̃nnn/2

n!
with C̃ = Cσ/(β − b) which is a summable upper bound, hence the series in (B.6)
converges uniformly. For the analyticity of the individual terms of the series, we use
Lemma B.2 again for the integrand det

[
Kb,β(xi, xj )

]n
i,j=1 for which (B.7) provides

the integrability condition (B.1). By using Lemma B.4 for β − b < 1, this proves the
analyticity of det(1 − Kb,β)L2(R+) in b and β. If β − b ≥ 1, recall from the end of

Section 6.4 that Cw and Cz intersect the real axis at b+ 1
4σ

and at b+ 3
4σ

respectively.

Hence in the bound of Lemma B.4, b
σ

and β
σ

in the exponent are replaced by b + 1
4σ

and b + 3
4σ

respectively, but the rest of the proof remains the same.
The argument for det(1 − K̃b,β)L2(Cw) is similar, but instead of the bound in

Lemma B.4, one can see the stronger bound

|K̃b,β(w, w′)| ≤ Ce−c| Im(w)|2

for w, w′ ∈ Cw even more directly without modifying the contours.

Appendix C. Fredholm determinant bounds coming from kernel
estimates

Lemma C.1 (Proposition 1 of [81]) Suppose t → 	t is a deformation of closed
curves and a kernel L(η, η′) is analytic in a neighborhood of 	t × 	t ⊂ C

2 for each
t . Then the Fredholm determinant of L acting on 	t is independent of t .

Lemma C.2 (Lemma B.2 of [16]) Consider the Fredholm determinant det(1 +
K)L2(	) on an infinite complex contour 	 and an integral operator K on 	. Param-
eterize 	 by arc length with some fixed point corresponding to 	(0). Assume that
|K(v, v′)| ≤ C for some constant C and for all v, v′ ∈ 	 and that the following
exponential decay condition holds: there exists constants c, C > 0 such that

|K(	(s), 	(s′))| ≤ Ce−c|s|.

Then the Fredholm series defining det(1+K)L2(	) is well-defined. Moreover, for any
κ > 0 there exists an r0 > 0 such that for all r > r0

| det(1+ K)L2(	) − det(1+ K)L2(	r )
| ≤ κ

where 	r = {	(s) : |s| ≤ r}.
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Lemma C.3 (Lemma B.3 of [16]) Consider a finite length complex contour 	 and
a sequence of integral operators Kε on 	, as well as an additional integral operator
K also on 	. Assume that for all κ > 0 there exists ε0 such that for all ε < ε0 and
all z, z′ ∈ 	, |Kε(z, z′) − K(z, z′)| ≤ κ and that there is some constant C such that
|K(z, z′)| ≤ C for all z, z′ ∈ 	. Then

lim
ε→0

det(1+ Kε)L2(	) = det(1+ K)L2(	).

Appendix D. Invertibility of the kernel 1 − K̄b,b

Let us define the function

Aipert(x, b, σ ) = 1

2π i

∫
δ+iR

dz ez3/3−zx 	(−σz + b)

	(σz − b)

where σ > 0 and b ∈
(
− 1

4 , 1
4

)
are parameters such that 0 < δ < (b + 1)/σ . Note

that the integrand above has poles only at (b + 1)/σ, (b + 2)/σ, . . . . Recall that the
Airy function Ai has the integral representation

Ai(x) = 1

2π i

∫
δ+iR

dz ez3/3−zx

for any δ > 0.

Lemma D.1 Fix σ > 0 and b ∈
(
− 1

4 , 1
4

)
. The family of functions, indexed by λ,

Aipert(x + λ, b, σ ) satisfy the completeness relation

∫
R

dλ Aipert(x + λ, b, σ ) Aipert(y + λ, b, σ ) = δx−y. (D.1)

Remark that since the function Aipert(x + λ, b, σ ) is a function of the sum of x

and λ, the completeness relation is equivalent to the orthogonality relation.

Proof For this proof, we adapt an approach from [58] (Appendix A). Let H =
−∂2

x + x be the Airy operator. It is known that for t > 0,

(e−tH )(x, y) =
∫
R

dλ etλ Ai(x + λ) Ai(y + λ)

and in particular, for t → 0,

∫
R

dλ Ai(x + λ) Ai(y + λ) = δx−y.
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Consider now a 0 < t < (b + 1)/σ . Then,
∫
R

dλ etλ Aipert(x + λ, b + σ t, σ ) Aipert(y + λ, b, σ ) = 1

2π i

∫
t/2+iR

dz ez3/3−zx 	(−σz + b + σ t)

	(σz − b − σ t)

×
[

1

2π i

∫
t+iR

dw ew3/3−wy 	(−σw + b)

	(σw − b)

∫
R+

dλ e−λ(w+z−t)

+ 1

2π i

∫
t/4+iR

dw ew3/3−wy 	(−σw + b)

	(σw − b)

∫
R−

dλ e−λ(w+z−t)

]
.(D.2)

Integrating over λ gives (w + z − t)−1 in the first case and −(w + z − t)−1 in the
second one. Joining the two integration contours over w, we get

(D.2) = 1

2π i

∫
t/2+iR

dz ez3/3−zx 	(−σz + b + σ t)

	(σz − b − σ t)

1

2π i

∮
	t−z

dw ew3/3−wy 	(−σw + b)

	(σw − b)

1

w + z − t

= 1

2π i

∫
t/2+iR

dz ez3/3−zxe−(z−t)3/3+(z−t)y =
∫
R

dλ etλ Ai(x + λ) Ai(y + λ)

where the last equality comes from the fact that we can redo the computations without
the 	 function and left-hand side of (D.2) is the right-hand side of this last equation
and where 	t−z is a small counterclockwise oriented circle around t − z.

Thus we have shown that∫
R

dλ etλ Aipert(x + λ, b + σ t, σ ) Aipert(x + λ, b, σ ) = (e−tH )(x, y).

By taking t → 0, we obtain the statement of the lemma.

With the above notations and by using the identity

σπSσu

sin(σπu)
=
∫
R

dλ
Se−uλ

S + e−λ/σ

which holds for 0 < Re(u) < 1/σ , we have

K̄b,b(x, y) =
∫
R

dλ
S

S + e−λ/σ
Aipert(x + λ,−b, σ ) Aipert(y + λ, b, σ ) (D.3)

Lemma D.2 K̄b,b as operator on L2(R) has operator norm 1.

Proof For given σ > 0 and b ∈
(
− 1

4 , 1
4

)
, the sets {Aipert(· + λ, b, σ ), λ ∈ R} and

{Aipert(· + λ,−b, σ ), λ ∈ R} are two orthonormal bases by the completeness relation
(D.1). Hence the kernel

U−b,b(x, y) =
∫
R

dλ Aipert(x + λ,−b, σ ) Aipert(y + λ, b, σ )

defines a unitary operator which corresponds to a change of basis. Then K̄b,b can be
written as

K̄b,b = L−b,−bU−b,b (D.4)
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where the operator L−b,−b is defined by the kernel

L−b,−b(x, y) =
∫
R

dλ
S

S + e−λ/σ
Aipert(x + λ,−b, σ ) Aipert(y + λ,−b, σ ). (D.5)

Since {Aipert(· + λ,−b, σ ), λ ∈ R} is an orthonormal set of functions, (D.5) is the
spectral decomposition of L−b,−b, and the function x �→ Aipert(x + μ,−b, σ ) is an
eigenvector of L−b,−b with eigenvalue S

S+e−μ/σ . Thus, by using (D.4), we get that

‖K̄b,b‖ = sup
‖f ‖=1

‖K̄b,bf ‖ = sup
‖f ‖=1

‖L−b,−bU−b,bf ‖ = sup
‖g‖=1

‖L−b,−bg‖ = sup
μ∈R

S

S + e−μ/σ
= 1.

Finally, we show that 1− K̄b,b restricted to R+ is invertible.

Lemma D.3 Let P0 be the projection onto R+. Then,
‖P0K̄b,bP0‖ < 1,

which implies that 1− P0K̄b,bP0 is invertible and det(1− K̄b,b)L2(R+) = 0.

Proof The proof is inspired by the one of Appendix B.3 of [47]. It consists in a
reductio ad absurdum. Assume that there exists an eigenvector ψ of P0K̄b,bP0 with
eigenvalue 1. Then

P0K̄b,bP0ψ = ψ (D.6)
implies that ψ(x) = 0 for all x ∈ R−. P0 is a projector, thus ‖P0‖ = 1. This together
with ‖K̄b,b‖ = 1 from Lemma D.2 yields

‖ψ‖ ≤ ‖K̄b,bP0ψ‖ ≤ ‖ψ‖.
Thus ‖K̄b,bP0ψ‖ = ‖ψ‖. Now let φ be the vector such that

K̄b,bP0ψ = ψ + φ.

From (D.6), we have that P0φ = 0, meaning that φ and ψ are orthogonal. Thus, we
have

‖K̄b,bP0ψ‖2 = ‖ψ‖2 + ‖φ‖2

and from the relations above, we have ‖φ‖ = 0. Therefore, we have shown that

K̄b,bP0ψ = ψ.

From the integral representation of K̄b,b, it follows that ψ(x) is analytic in x (as
complex variable). But since ψ(x) = 0 on R−, then we conclude that ψ(x) = 0 for
all x ∈ R, i.e. ψ is not an eigenvector. This ends the proof of the lemma.

Appendix E. Inverse Mellin Transform

Proposition E.1 Let R be a random variable and σ > 0 a constant such that
E(exp(−δR/σ)) < ∞ for some δ > 0. Assume that we have a formula for

Q(x, σ ) := E
[
2σK0(2e(R−x)/(2σ))

]
.
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Then, the distribution function of R is given by

F(r) := P(R ≤ r) = 1

σ 2

1

2π i

∫
−δ+iR

dξ

	(−ξ)	(−ξ + 1)

∫
R

dx exξ/σ Q(x + r, σ ).

(E.1)

Proof This formula was contained in [64], although not so explicitly written. Let us
show that this holds. We have

Q(x, σ ) =
∫
R

dy 2σK0(2e(y−x)/(2σ))
d

dy
F(y).

We use the identity 9.6.27 of [1], namely d
dy

K0(y) = −K1(y), and integrate by parts
with the result

Q(x, σ ) =
∫
R

dy F(y)2e(y−x)/(2σ)K1(2e(y−x)/(2σ)) =
∫
R

dy F(y + x)2ey/(2σ)K1(2ey/(2σ)).

The boundary terms vanishes since K0(e
z) → 0 as z → ∞ and K0(e

z) ∼ −z as z →
−∞ (see 9.6.8 of [1]) and by assumption on the distribution of R, the distribution
fuction F goes to zero more rapidly than 1/(−z) as z → −∞. Therefore, we have

∫
R

dx exξ/σ Q(x + r, σ ) =
∫
R

dx

∫
R

dy exξ/σ F (y + x + r)2ey/(2σ)K1(2ey/(2σ))

=
∫
R

dz F (z + r)ezξ/σ

∫
R

dy 2ey(1−2ξ)/(2σ)K1(2ey/(2σ)) (E.2)

where we changed the variable x = z − y. From Formula 11.4.22 of [1], one has the
identity (after a change of variable)∫

R

dy 2eyμ/(2σ)Kν(2ey/(2σ)) = σ	

(
μ + ν

2

)
	

(
μ − ν

2

)

whenever Re(μ ± ν) > 0. Applying this formula for μ = 1 − 2ξ and ν = 1, we get

(E.2) =
∫
R

dz F (z + r)ezξ/σ σ	(−ξ + 1)	(−ξ)

whenever Re(ξ) < 0. If R has negative exponential moments as assumed, then (we
also changed the variables ξ → ξσ )

RHS of (E.1) = 1

2π i

∫
−δ+iR

dξ

∫
R

dz F (z + r)ezξ = F(r)

where the last equality holds since the middle expression is the inverse Laplace
transform of a Laplace/Fourier transform.

Appendix F. Probability Lemmas

Lemma F.1 (Lemma 4.1.39 of [15]) Consider a sequence of functions {fn}n≥1 map-
ping R → [0, 1] such that for each n, fn(x) is strictly decreasing in x with a limit
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of 1 at x = −∞ and 0 at x = ∞, and for each δ > 0, on R \ [−δ, δ], fn converges
uniformly to 1x≤0. Consider a sequence of random variables Xn such that for each
r ∈ R,

E[fn(Xn − r)] → p(r)

and assume that p(r) is a continuous probability distribution function. Then Xn con-
verges weakly in distribution to a random variable X which is distributed according
to P(X ≤ r) = p(r).

Lemma F.2 (Lemma 4.1.40 of [15]) Consider a sequence of functions {fn}n≥1 map-
ping R → [0, 1] such that for each n, fn(x) is strictly decreasing in x with a limit of
1 at x = −∞ and 0 at x = ∞, and fn converges uniformly on R to f . Consider a
sequence of random variables Xn converging weakly in distribution to X. Then

E[fn(Xn)] → E[f (X)].

Appendix G. Useful q-deformations

We record some q-deformations of classical functions. Section 10 of [4] is a good
references for many of these definitions and statements. We assume throughout that
|q| < 1. The classical functions are recovered in all cases in the q → 1 limit, though
the exact nature of this convergence is explained below.

The q-Pochhammer symbol is written as (a; q)n and defined via the product
(infinite convergent product for n = ∞)

(a; q)n = (1−a)(1−aq)(1−aq2) · · · (1−aqn−1), (a; q)∞ = (1−a)(1−aq)(1−aq2) · · · .

The q-factorial is written as either [n]q ! or just nq ! and is defined as

nq ! = (q; q)n

(1 − q)n
= (1 − q)(1 − q2) · · · (1 − qn)

(1 − q)(1 − q) · · · (1 − q)
.

The q-binomial theorem [4, Theorem 10.2.1] says that for all |x| < 1 and |q| < 1,
∞∑

k=0

(a; q)k

(q; q)k
xk = (ax; q)∞

(x; q)∞
.

One corollary of this theorem [4, Corollary 10.2.2] is that under the same hypothesis
on x and q,

∞∑
k=0

xk

kq ! = 1(
(1 − q)x; q)∞ .

There are two different q-exponential functions introduced by Hahn [55]. We will
only need the first which is denoted by eq(x) and defined as

eq(x) = 1(
(1 − q)x; q)∞ .
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For compact sets of x, eq(x) converges uniformly to ex as q → 1. In fact, the
convergence is uniform over x ∈ (−∞, 0) as well.

The q-Gamma function is defined as

	q(x) = (q; q)∞
(qx; q)∞

(1 − q)1−x.

For x in compact subsets of C \ {0,−1, · · · }, 	q(x) converges uniformly to 	(x)

as q → 1. Owing to its definition, the q-Gamma functions satisfies 	q(x + 1) =
1−qx

1−q
	q(x).
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