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Abstract Stochastic linearization technique is a

versatile method of solving nonlinear stochastic

boundary value problems. It allows obtaining esti-

mates of the response of the system when exact

solution is unavailable; in contrast to the perturbation

technique, its realization does not demand smallness

of the parameter; on the other hand, unlike the Monte

Carlo simulation it does not involve extensive com-

putational cost. Although its accuracy may be not very

high, this is remedied by the fact that the stochastic

excitation itself need not be known quite precisely.

Although it was advanced about six decades ago,

during which several hundreds of papers were written,

its foundations, as exposed in many monographs,

appear to be still attracting investigators in stochastic

dynamics. This study considers the methodological

and pedagogical aspects of its exposition.

Keywords Stochasticity � Nonlinear problems �
Linearization � Galerkin method

1 Introduction

This paper follows two recent articles, namely by

Villaggio [1] and Maugin [2]. The former reviewed

60 years of solid mechanics whereas the latter dealt

with the configurational forces. Villaggio [1] writes:

‘‘The end of the second world war marked a turning

point of the history of solid mechanics. The reasons for

this abrupt change are due to two causes: the opening

of national frontiers, and a wave of enthusiasm for

applied science, motivated by the technical achieve-

ments obtained in the production of new weapons’’.

The method of stochastic linearization technique was

proposed more or less simultaneously on both sides of

the Atlantic: by Booton [3] and Caughey [4] in the

U.S. and by Kazakov [5] in the former S.U.

Around the method’s thirtieth anniversary, in his

review, Spanos [6] wrote: ‘‘It can be stated, with only

minor reservations, that the method of stochastic or

statistical or equivalent linearization, has proved, over

the period of the last three decades, the most useful

approximate method for probabilistic analysis of

nonlinear structural dynamical systems’’. Around

method’s half-century, Crandall [7] noted: ‘‘The

procedure has been very popular with investigators

in the field of random vibration. In 1998 it was

estimated [8] that there had been over 400 papers

published on the subject of statistical linearization’’.

The method’s essence can be demonstrated on the

simple problem of a single-degree-of-freedom struc-

ture, governed by the following differential equation:

I. Elishakoff (&)

Department of Mechanical Engineering, Florida Atlantic

University, Boca Raton, FL 33431-0991, USA

e-mail: elishako@fau.edu

S. H. Crandall

Department of Mechanical Engineering, Massachusetts

Institute of Technology, Cambridge, MA 02139, USA

123

Meccanica

DOI 10.1007/s11012-016-0399-x

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/78071413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-016-0399-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-016-0399-x&amp;domain=pdf


m €X þ f X; _X
� �

¼ PðtÞ ð1Þ

where m = mass, X = displacement, _X = velocity,
€X = acceleration, f = nonlinear function, P(t) = sta-

tionary random process in time.

The autocorrelation function and hence the spectral

density of P(t) are given. The problem consists in

finding the probabilistic characteristics of X and _X.
The simplest characteristics would be mathematical

expectations of response quantities, E(�) indicating

operation of mathematical expectation, namely E(X),

Eð _XÞ, E(X2) and Eð _X2Þ. Were f ðX; _XÞ a linear function

f X; _X
� �

¼ k0X þ c0 _X ð2Þ

with k0 the stiffness coefficient and c0 the damping

coefficient, the solution would be straightforward. For

the case of the correlation function of P(t)

Kp t; t0ð Þ ¼ E PðtÞP t0ð Þ½ � ¼ 2pS0d t2 � t1ð Þ ð3Þ

(So being the intensity of the noise), one obtains

E Xð Þ ¼ E _X
� �

¼ 0 ð4Þ

E X2
� �

¼ pS0=c0k0 ð5Þ

E _X2
� �

¼ pS0=c0m ð6Þ

We are not concerned with the linear case,

however. The closed-form solution for arbitrary

nonlinearity as well as arbitrary excitation of the

nonlinear oscillator is an unsolved problem. The

pioneers of the stochastic linearization technique

posed a question on possible linearization of the

nonlinear function in Eq. (1), i.e. replacing the non-

linear function f ðX; _XÞ by

f X; _X
� �

¼ keqX þ ceq _X ð7Þ

and finding equivalent values of the stiffness coeffi-

cient keq and the damping coefficient ceq, so that the

solution of thus obtained linear system

m €X þ keqX þ ceq _X ¼ PðtÞ ð8Þ

would produce sufficiently good approximations for

the desired quantities. The question is: How to

determine keq and ceq? There is a gallery of answers.

We dispense with a historical overview of these

answers and direct the interested reader to various

reviews, old and new, most recent perhaps being that

by Crandall [6]; the reader may also consult with the

earlier reviews by Spanos [7], Roberts [8], Socha and

Soong [9], Socha [10, 11], Falsone and Ricciardi [12],

Elishakoff [13] and Proppe et al. [14]. There are two

special monographs written on this subject, that by

Roberts and Spanos [15], and by Socha [16]. It must be

noted that Crandall [6] writes that some explanations

provided in the literature since 1967 were ‘‘confus-

ing’’. To deal with controversial topics is beyond this

study, however. We concern ourselves with a sug-

gested explanation of the technique which hopefully

will be free of ‘‘confusion’’, on one hand, and will lead

to rigorous pedagogical explanation of it for the

novice. It is hoped that two alternative expositions

proposed in this study will be adopted in future

stochastic dynamics and random vibration textbooks.

2 A system possessing a nonlinear stiffness

Consider fist the simplest form of nonlinearity which

is exhibited by the system through its stiffness. In other

words, the special form of Eq. (1) is studied

m €X þ c _X þ f ðXÞ ¼ PðtÞ ð9Þ

We replace Eq. (9) by its ‘‘equivalent’’ given in

Eq. (8). Since the dumping is linear in both Eqs. (8)

and (9), ceq = c. We are looking for the equivalent

linear stiffness keq. We evaluate the difference

between the original nonlinear stiffness f(X) and its

linear equivalent keq X. Since f(X) is in general a

nonlinear function (no one would linearize a linear

function!) the difference f(X) - keq X does not vanish.

At this stage one forms the mean-square difference

E D2
� �

¼ E f ðXÞ � keqX
� �2n o

ð10Þ

and demands it to attain minimum with respect to keq;

in Eq. (10) the operator E(�) is that of mathematical

expectation. Thus,

E D2
� �

¼
Z1

�1

f ðxÞ � keqx
� �2

uðxÞdx ð11Þ

where u(x) is the probability density function of X(t).

It makes sense to recall that we do not know the

probability density function of the solution; indeed,

had we known it, we would not use the approximate
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technique of stochastic linearization; rather the desired

probabilistic characteristics E(X) and E(X2) would be

evaluated by straightforward integration

EðXÞ ¼
Z1

�1

xuðxÞdx

E X2
� �

¼
Z1

�1

x2uðxÞdx

ð12Þ

i.e. without resorting to linearization technique.

There are two possibilities to proceed at this

juncture. One possibility is to recognize our lack of

knowledge of the exact u(x) and to employ some

approximate probability density function of the lin-

earized system w(x, keq).To obtain a linearized system
we do not simply drop the nonlinear term: we replace

the entire expression of restoring force that may

contain linear and nonlinear expressions by an equiv-

alent linear force keq x.

Here it must be remarked that since the linearized

system in Eq. (8) inevitably depends on keq, so does

the probability density w(x, keq). Then Eq. (11) is

replaced by the approximate mean-square deviation

Ea(D
2) defined as

Ea D2
� �

¼
Z1

�1

f ðxÞ � keqx
� �2

wðx; keqÞdx ð13Þ

The demand this mean square deviation to attain

minimum with respect to keq leads to

dEa D2ð Þ
dkeq

¼ �2

Z1

�1

f xð Þ � keqx
� �

xw x; keq
� �

dx

þ
Z1

�1

f xð Þ � keqx
� �2 dw

dkeq
dx

¼ 0 ð14Þ

Another possibility is to assume that we know the

exact probability density function in Eq. (11); pro-

ceeding then with minimization leads to

dEaðD2Þ
dkeq

¼ 2

Z1

�1

f ðxÞ � keqx
� �

xuðxÞdx ¼ 0 ð15Þ

This demand reduces to the following expression

for the equivalent stiffness coefficient keq:

keq ¼

R1

�1
f ðxÞxuðxÞdx

R1

�1
x2uðxÞdx

ð16Þ

Had we known the exact probability density

u(x) Eq. (16) would be replaced by

keq ¼
E Xf ðXÞ½ �
EðX2Þ ð17Þ

At this juncture it’s recommended to ask ourselves

to comment on this equation. Some are realizing the

seemingly paradoxical situation we find ourselves in:

We are looking for E[X2], yet we know it the stochastic

linearization leads us to determine the equivalent

linear stiffness keq whose determination demands the

knowledge of the above sought quantity for Eq. (17)

contains E[X2] in the denominator. Thus, the Eq. (17)

must appear to the initial reader as totally useless, and

the method of stochastic linearization as a nonsensical,

for it leads, as it were, to catch 22, not less!

Such a situation is not pertinent solely to the

stochastic linearization technique. It occurs even in

deterministic problems. For example, analogous situ-

ation takes place while using the Rayleigh quotient

method for the natural frequency evaluation. Whereas

the quotient is derived in view of knowledge of exact

mode shape, the better is approximate to obtain the

estimate for the natural frequency.

Recalling that the exact density is not known, we

instead of u(x) in Eq. (16) thus utilize its approxima-

tion w(x, keq):

keq ¼

R1

�1
f ðxÞxwðxÞdx

R1

�1
x2wðxÞdx

ð18Þ

As can be observed by comparing Eqs. (14) and

(15), the former contains an additional term. Natural

question arises: ‘‘Which version of the stochastic

linearization technique should be preferred?’’ As a

popular proverb maintains, proof of the pudding is in

eating. Thus, the above question must be changed into

the following: ‘‘Which technique performs better?’’ In

a series of studies, Socha and Pawleta [17], Elishakoff

and Colajanni [18, 19], Colajanni and Elishakoff [20,

21] utilized Eq. (14) to derive keq. In Refs. [18, 20, 21]

it was shown that the mean-square values of the
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responses of several oscillators, the approach based on

Eq. (14) led to results that were farther from exact

solution than those obtained by employing Eq. 15.

Only in one oscillator, originally studied by Booton

[3], Elishakoff and Colajanni [19] demonstrated that

both techniques lead to coincident results. Thus, in

balance one has to prefer, due to pragmatic reasons,

Eq. (15) to Eq. (14).

3 Discussion of Eqs. (14) and (15)

It must be noted that the above derivation of the two

possible approaches when one minimizes the mean

square error is presented herein for the first time. The

approach given by Eq. (14) was given in Refs. [15–

19]. Crandall [22] calls it a SPEC alternative, acronym

being associated with the first letters in last names of

the authors of papers [17–21]. How can one explain,

post factum, the success of the second approach? It

appears that in the second approach we carry as much

as possible the attributes of exact analysis.

Crandall [6] characterizes Eq. (17) as ‘‘the recipe

for selecting keq’’. Indeed, according to Paul Valéry, a

French poet, essayist and philosopher, ‘‘Science is a

collection of successful recipes’’. The approach based

on Eq. (14) was proposed due to the absence in the

literature of specific statement that the recipe in

Eq. (17) is associated with the assumption that until its

derivation it was assumed that the exact probability

density as known. This led, according to Crandall [22]

to the fact that ‘‘there has been some confusion

concerning the standard (i.e. second, IE & SC)

procedure’’. He also noted:

It must be admitted that the literature on this

point has been confusing. Many descriptions of

the standard procedure fail to explain why the

expectation… are considered to be independent

of k before the differentiation …, but immedi-

ately afterward are taken to be k-dependent.

Likewise in the personal communication by late

Professor Caughey [23] to one of us, he writes:

Thank you for the papers that you sent me, I

found them very interesting and a little disturb-

ing. After reading both appe4rs carefully, I have

the following comments:

(a) It’s surprising that both techniques lead to

exactly the same first order corrections, it

should be noted that perturbation theory also

leads to the same first order correction term. As

far as I know nobody has carried out the

perturbation technique to obtain the higher

corrections.

(b) It’s also surprising that the improved minimiza-

tion technique (i. e, Eq. (14)—IE&SC) leads to

poorer results than the naı̈ve technique. One

thinks of asymptotic series where the best

approximation given by the first couple of

terms.

(c) If the naı̈ve technique is applied to Duffing’s

equation with Sinusoidal Excitation it predicts

the same first order correction that is given by

the Harmonic Balance. I have not repeated the

problem using your minimization technique.

Duffing’s Equation with white noise excitation

appears to be the simplest example to illustrate

your technique; all other examples appear to be

much more complex.

Likewise, Li and Chen [24] in their book note:

Although the above analysis [derivation of

Eq. (14)—IE&SHC] is reasonable, the effect is

not as good as expected. First, deduction is much

more difficult and might be impossible for

complex or multidimensional problems. Second,

even for simple problems, it was shown that the

accuracy of the ‘error-free’ linearization is

sometimes lower than that of standard lineariza-

tion (Elishakoff and Colajanni [18]).

Crandall [6] stressed that ‘‘The SPEC alternative has

some interesting features [22], but unfortunately it is

more labor intensive and, almost always, less accurate

than the standard procedure’’.

Another question arises on the role that the papers

by Socha and Pawleta [17] and Elishakoff and

Colajanni [18–21] had played in elucidation of

stochastic linearization technique. Crandall [6] gives

the following credit to the above studies:

…the inconsistency of applying recipes based on

nonlinear response statistics independent of k to

linear system statistics which were functions of

k was recognized and corrected by Socha and
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Pawleta [17, 25] and by Elishakoff and Cola-

janni [18–21].

These papers also inspired investigations by Crandall

[6, 22, 26–28], Socha [10, 11, 16], Socha and Pawleta

[25], Proppe et al. [14], Elishakoff [13, 29] and

possibly others.

Here the method of Gaussian closure [30, 31]

should be mentioned. It is widely known classical

stochastic linearization technique coalesces with

Gaussian closure technique. On the other hand, as

we assume w(x, keq) to be Gaussin (and this is

mandatory since the system is linearized and the input

is Gaussian) then Eq. 14 will return to Gaussian

closure technique.

4 Stochastic linearization via Bubnov–Galerkin

technique

Wewould like to start discussion on the title topic by a

comment that appears to be instructive on derivation

of Eq. (14), or classical recipe for keq. One resorts to

stochastic linearization as an approximate technique,

knowing a priori that the exact probability density of

the response is unknown. Yet, in order to derive

Eq. (17) one has to assume the knowledge of the exact

probability density. Therefore, the derivation of

Eq. (17) may appear inconsistent. Consistency, natu-

rally, is a desirable attribute to any derivation.

According to William James’s philosophy, truth is

associated with the term ‘leading’ in the sense that true

beliefs ‘‘lead to consistency, stability’’. However, the

importance of consistency should not be overesti-

mated. In words of Aldous Huxley, an English writer,

Too much consistency is as bad for the mind as it

is for the body. Consistency is contrary to nature,

contrary to life. The only completely consistent

people are dead.

It appears instructive to reproduce here the quote form

Levinson [32], commenting on his and Bickford’s [33]

theories and the associated issues of consistency:

It would seems that the Bickford’s work has

relegated the earlier work of the present writer to

the status of an intellectual artifact in the history

of applied mechanics whose importance is

limited to providing the motivation for the work

of Bickford; from a certain theoretical point of

view this is clearly so. What is vexations,

however, is that Bickford’s theory, in the two

elastostatic and one elastodynamic problems he

consider, provides inferior results in two cases

and essentially the same results in the remaining

case when compared to the results of the present

writer’s theory; exact elasticity solutions being

available for purposes of comparison in all three

of the examples considered.

As is seen here too, the less consistent theory

turned out to produce better results!

Let us turn now to recasting stochastic linearization

technique via the Bubnov–Galerkin method. It is

naturally not possible to replace the nonlinear force

f(X) by a linear counterpart keq X in Eq. (9). There is a

difference between f(X) and keq X. We refer to this

difference as error e(X). Whereas we do not posses a

magic wand to make it zero, we can try to make it as

small as possible in some sense. We demand the first

moment of E(eX) of this error to vanish

EðeXÞ ¼ 0 ð19Þ

where E(�) denotes mathematical expectation.

The fact that we do not know the probability density

of the response to evaluate Eq. (19), does not prevent

us from realizing that our condition (19) in fact is

orthogonality condition between the error e and the

system’s displacement X. Yes, the error e is not zero as
we wish it to be, but at least we cannot see it, as it were,

in the ‘‘direction’’ of X. We could metaphorically refer

to condition (19) as the overlooking of one’s ‘‘misbe-

havior’’, exhibiting itself in absence of being error-

free, by parents, grandparents and friends (as a proverb

maintains, ‘‘Friend is one who tolerates our success

and accepts us with our mistakes’’); one usually has a

better grasp of having condition (19) presented as a

‘‘friendship’s’’ attribute. Thus, the condition (19)

becomes:

E f Xð Þ � keqX
� �

X
� �

¼ 0

For the coefficient keq we get

keq ¼
E f ðXÞX½ �
E X2½ � ð20Þ

Thus, by the Bubnov–Galerkin method we arrive at

the same expression as Eq. (17).
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5 Conclusion

In this paper we present a methodology for simple

exposition of the celebrated stochastic linearization

technique. It is rather hoped that this study eliminates

the confusion that has surrounded this method for

27 years, in terminology of one of us (S.H.C.).

Moreover, this study presents two alternative deriva-

tions of the classical scheme of stochastic linearization

technique that may prove useful in reinforcing its

foundations. It should be stressed that Spanos,

Ghanem, Zeldin, Di Paola and Failla [34–39] exten-

sively applied Bubnov–Galerkin method to various

problems of nonlinear stochastic dynamics.
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