
J Grid Computing (2014) 12:399–441
DOI 10.1007/s10723-014-9292-9

Survey on Grid Resource Allocation Mechanisms

Muhammad Bilal Qureshi · Maryam Mehri Dehnavi · Nasro Min-Allah ·
Muhammad Shuaib Qureshi · Hameed Hussain · Ilias Rentifis · Nikos Tziritas ·
Thanasis Loukopoulos · Samee U. Khan · Cheng-Zhong Xu · Albert Y. Zomaya

Received: 25 March 2013 / Accepted: 10 February 2014 / Published online: 2 April 2014
© Springer Science+Business Media Dordrecht 2014

Abstract Grid is a distributed high performance
computing paradigm that offers various types of
resources (like computing, storage, communication)
to resource-intensive user tasks. These tasks are sched-
uled to allocate available Grid resources efficiently
to achieve high system throughput and to satisfy

M. B. Qureshi · H. Hussain
COMSATS Institute of Information Technology,
Islamabad, Pakistan

M. M. Dehnavi · N. Min-Allah
Massachusetts Institute of Technology,
Cambridge, MA USA

M. S. Qureshi
Department of Computer Science, King Abdulaziz
University, Jeddah, Saudi Arabia

I. Rentifis
University of Thessaly, Volos, Greece

N. Tziritas · C.-Z. Xu
Chinese Academy of Sciences, Beijing, China

T. Loukopoulos
Technological Educational Institute of Lamia, Lamia,
Greece

S. U. Khan (�)
North Dakota State University, Fargo, ND, USA
e-mail: samee.khan@ndsu.edu

A. Y. Zomaya
University of Sydney, Sydney, Australia

user requirements. The task scheduling problem
has become more complex with the ever increas-
ing size of Grid systems. Even though selecting
an efficient resource allocation strategy for a par-
ticular task helps in obtaining a desired level of
service, researchers still face difficulties in choos-
ing a suitable technique from a plethora of exist-
ing methods in literature. In this paper, we explore
and discuss existing resource allocation mecha-
nisms for resource allocation problems employed
in Grid systems. The work comprehensively sur-
veys Gird resource allocation mechanisms for dif-
ferent architectures (centralized, distributed, static or
dynamic). The paper also compares these resource
allocation mechanisms based on their common fea-
tures such as time complexity, searching mechanism,
allocation strategy, optimality, operational environ-
ment and objective function they adopt for solving
computing- and data-intensive applications. The com-
prehensive analysis of cutting-edge research in the
Grid domain presented in this work provides read-
ers with an understanding of essential concepts of
resource allocation mechanisms in Grid systems and
helps them identify important and outstanding issues
for further investigation. It also helps readers to
choose the most appropriate mechanism for a given
system/application.

Keywords High performance computing · Grid
computing · Resource allocation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78071411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:samee.khan@ndsu.edu

400 M.B. Qureshi et al.

1 Introduction

The need for reliable, pervasive, and high computing
power [32, 63, 64, 93, 94] forces researchers to focus
on low-cost intelligent methodologies for sharing data
and resources such as computers, software applica-
tions, sensors, storage space, and network bandwidth.
As a result, Grid computing was introduced in 1990s
which produced a comprehensive platform for virtual
organizations and computing environments to share
their owned services [136]. The development of Grid
technologies was initially driven by the need of the
scientific community to collaborate over the network.
Gradually, the demand of high computing power and
simultaneous access to multiple distributed resources
(software and hardware) inspired the development of
various types Grid systems.

A Grid resource can be defined as an entity that
needs to carry out an operation by an application. With
the ever growing size of Grid technology, scheduling
and allocation of Grid resources has become a chal-
lenging and complex research area that has gained
more popularity amongst researchers in recent years.

The Grid resource allocation (RA) process is com-
prised of four main functions [6]:

(a) scheduling,
(b) code transfer,
(c) data transmission, and
(d) monitoring.

Resource scheduling is an application-to-resource
mapping process consisting of three main phases [33,
49]:

(a) resource discovery, where available resources are
searched and a list is generated

(b) resource selection, which selects the best match-
ing resource based on QoS criteria from a list
of available resources generated in the resource
discovery phase, and

(c) job execution, that involves submitting jobs to
the selected resource(s) and monitoring their exe-
cution. Code transfer involves transferring the
code of individual tasks to the allocated resource
for execution. Data transmission concerns with
data transfer needed by a task for its execution.
The execution process takes place after the com-
pletion of all transfers. Finally, the monitoring
step is responsible for continuous checking of

resource availability, capability, usage and their
future reservations [48]. Zanikolas et al. [145]
defines monitoring as the process of collecting
information about the status and characteristics
of resources of interest. Future reservation is the
advanced reservation of capable resources based
on QoS requirements, reserved prior to task exe-
cution, for use at a specific time in the future
[141]. The benefit of such reservations is in
time availability of resources to applications in
the future [34]. We use application, task or job
interchangeably in this work.

For executing applications, users interact with the
Grid resource broker. The broker performs resource
discovery, scheduling, and processing application jobs
on the distributed Grid resources [17]. When a job is
submitted to the broker, it accesses the Grid informa-
tion system (GIS) which keeps the status information
of all the resources, and obtains information about
appropriate resources based on the job requirements
[45, 122].

The broker splits the jobs into parts and dis-
tributes them to the selected resources. However, if
resource performance degradation is detected or a
better resource is discovered by the broker that can
efficiently execute the job, then the user can restart the
job on a different resource. When a job is processed,
the result is then returned to the broker and the user is
notified [122]. The basic job execution procedure in a
Grid is shown in Fig. 1.

On the basis of offered services such as computa-
tion, data, interaction, utility, knowledge, and appli-
cation service, Grids can be classified into four main
types [17, 55–57, 67, 69, 106, 141]:

(a) computational Grid (e.g., TeraGrid, ChinaGrid,
and APACGrid [107]) that combines the compu-
tational power of distributed resources including
clusters, desktops, and supercomputers that pro-
vide services for high performance computing
[55–57],

(b) access Grid [106, 125] that offers limited specific
resources for a short period of time,

(c) data Grid (e.g., LHCGrid, GriPhyN [107]) is
used by data-intensive tasks that consists of dis-
tributed data repositories providing the facilities
to store enormous amount of data that can be
accessed, moved, and processed as if they were
small files [65, 138], and

Survey on Grid Resource Allocation Mechanisms 401

Fig. 1 Basic Grid model
[122]

.

.

.

R3

Rn

R2

R1

Grid Application

Grid Information System

Unprocessed Jobs

Resource Pool

User
Processed Jobs

Results

Resource Broker

Grid Resources Details

(1)

(2)

(3)

(4)

(5)

(d) data-centric Grid that facilitates the access and
computation of large distributed data reposito-
ries [6, 125]. The difference between data and
data-centric Grid is that in the latter, heavy com-
putations are moved to data rather than data to
computation. Distributed data mining is a typical
example application using data-centric Grid.

Ranjan et al. [106, 107] and Yeo et al. [141] further
classify Grids into four more types:

(e) application service Grid that provides access
to remote applications, libraries hosted on vari-
ous data centers and computational Grids (e.g.,
NetSolve, GridSolve [17, 69, 107]),

(f) interaction Grid that interacts and collaborates to
provide visualization between participants,

(g) knowledge Grid [106, 113] that focuses on
knowledge discovery, acquisition, management,
and processing with the aim of providing analyt-
ical business services, and

(h) utility Grid that provides all the typical Grid ser-
vices such as data, computing power, discovery
and allocation of resources, QoS and contract
management. Figure 2 shows the classification of
basic Grid types.

Grids can be generally classified into homogeneous or
heterogeneous Grids based on factors like operating

system, amount of memory, CPU speed, number of
resources, architecture types and so on [5]. Each
application in Grid environment competes for vari-
ous resources according to application needs. Figure 3
shows the basic classification of Grid resources.

Because of the growing need for computing
resources and the popularity of Grid technologies,
efficient, robust and scalable resource allocation (RA)
mechanisms are of paramount importance [40]. Such
mechanisms should aim at judiciously distributing the
limited Grid resources in order to satisfy application
needs and achieve common performance objectives.

Grids Types

Computational Grid

Access Grid

Data Grid

Data-centric Grid

Application Service Grid

Interaction Grid

Knowledge Grid

Utility Grid

Fig. 2 Taxonomy of Grid types

402 M.B. Qureshi et al.

Fig. 3 Basic types of Grid
resources

Koopman [68] was the first who investigated RA
problems in distributed systems.

Since then, RA problems has been investigated in
areas varying from parallel and distributed systems
[116, 140], to operations research [140].

A resource allocation mechanism provides the facil-
ity of mapping different user tasks to available and
suitable resources in order to meet the required spec-
ifications, under the allowed boundaries of virtual
organization (VO) policy environment.

RA mechanisms are usually categorized into static
and dynamic [48]. In the static approach, RA is
controlled and administered on the basis of past
statistics, obtained for instance periodically; while
in the dynamic approach, RA meets task’s require-
ments for the resources with the states being changed
dynamically. Dynamic allocation is needed whenever
resources are discovered and allocated at run time to
the tasks. Performance wise, any RA mechanism must
not lead to under-utilization of resources. Another
issue is the high energy consumption that needs to be
alleviated by designing efficient RA mechanisms. In
this paper, along with Grid RA mechanisms we also
discuss the energy consumption issues so that proper
energy-aware features may be included in RA mech-
anisms to save power in all types of Grid systems.
Because RA mechanism plays a vital role in Grid sys-
tems, this survey can help in choosing the best-suited
RA mechanism for a particular domain.

The rest of the paper is structured as follows:
Section 2 discusses brief comparison with existing
surveys on resource allocation mechanisms. Section 3
explores resource management. Section 4 describes
RA mechanisms. Section 5 gives details of resource

management process in Cloud computing environ-
ment that is the immediate extension of Grid comput-
ing, and finally Section 6 presents some challenges
in designing resource allocation mechanisms and con-
cludes the paper.

2 Brief Comparison with the Existing Surveys
on Grid Resource Allocation Mechanisms

Quite a few surveys on Grid resource allocation mech-
anisms exist. Ibaraki et al. [47] and Katoh et al. [51]
provided detailed surveys on centralized methods and
algorithms for RA problems. However, they restrict
their discussion to centralized solutions only. Dis-
tributed methods for RA such as market mechanism,
compensation and coalition formation, were summa-
rized in the survey by Wu et al. [140]. Distributed
solutions were also the focus of Laure et al. [75, 76]
with a particular interest on data or data-centric Grids.
Krauter et al. [69] surveyed and categorized existing
resource management systems (RMS) and identified
open challenges. Their work placed more emphasis
on engineering rather than algorithmic issues. Aside
from the fact that some existing reviews on the topic
of RA mechanisms are getting old, most of them
restricted their scope on particular types of mecha-
nisms e.g., dynamic, centralized or distributed. The
motivation for our work is to consolidate all types
of mechanisms in a single place. Our goal is to both
aid the uninitiated reader by pictorially describing RA
mechanisms whenever possible and the experienced
researcher by identifying open issues and research
avenues to follow.

Survey on Grid Resource Allocation Mechanisms 403

The following points illustrate the novelty of our
work compared to existing surveys.

• Krauter et al. surveyed resource management sys-
tems in [69] by classifying them on the basis of
certain parameters. On the contrary, the focus of
this paper is on resource allocation mechanisms,
thus both the context and the parameters used for
taxonomy reasons differ from the aforementioned
work.

• The survey conducted by the authors in [107]
focuses on resource discovery process in global
Grids. They have proposed a taxonomy and stud-
ied existing algorithms in scheduling systems.
Our scope is broader since the discovery mecha-
nism is only one of the RA components.

• Yeo et al. [116] classified and compared the tax-
onomy of market-based RMS in Cluster comput-
ing, while the authors in this paper focus on RA
mechanisms over the Grid.

• The authors in [99] studied the problem of
resource co-allocation in Grid computing envi-
ronments. They have pointed out the issues and
challenges arising during the process of resource
co-allocation and presented possible solutions
for such issues. They have also presented brief
descriptions of various systems (like GARA, Gri-
dARS, OAR, KOALA etc) that support resource
co-allocation and compare them on the basis of
their features and limitations. However, strategies
for allocating Grid resources to tasks were not
studied.

• The authors in [142] have discussed the resource
selection process with a limited view. They have
given an introductory level overview of the three
phases of RA process:

(a) resource discovery,
(b) resource selection and
(c) resource usage.

The paper lacks complete and detailed discussion
on various methods and mechanisms used for Grid
resource allocation. In this paper, we discuss in more
detail the resource management system taxonomy,
the scheduling process of various Grid resources, the
parameters on the basis of which these resources are
selected, and the mechanisms developed till now for
the allocation of Grid resources. We also compare the
Grid RA process with other paradigms based on Grid

technology like Cloud computing that share many
features in resource management process.

• The survey given by Kertesz et al. in [54] briefly
discussed resource broker taxonomies in the Grid.
These brokers were grouped by only three param-
eters that are middleware support, job handling,
and scheduling. The survey conducted by Kertesz
et al. lacks complete working details of these bro-
kers. Instead, in our work, we discuss the resource
management system and its working mechanism
in a more detailed way because broker is one part
of resource management system. In this paper, we
are mainly focusing on resource allocation mech-
anisms in detail used by the Grid for allocating
homogeneous or heterogeneous resources to the
users.

• The Grid workflow applications are consisting of
divisible dependent tasks that are executed in a
specific order on distributed Grid resources. Yu
et al. [143] have presented a taxonomy for build-
ing and executing workflow applications on the
Grid. For proving the preciseness of their devel-
oped taxonomy, they have surveyed and compared
different Grid workflow management systems.
Their presented taxonomy gives the general inter-
nal architecture of these systems and based on
this taxonomy the similarities and differences in
these systems architectures are pointed out. In
the above mentioned reference, the authors have
only explained and surveyed systems for work-
flow applications. They do not deal with other
type of Grid tasks such as divisible independent
and atomic tasks. On the other hand, we sur-
vey and categorize Grid RA mechanisms for all
of the three types of tasks; workflow, divisible
independent, and atomic tasks.

• Leal et al. [77] have discussed scheduling in feder-
ated Grids. They have discussed three scheduling
techniques; static objective, dynamic objective,
and static objective advanced scheduling that
schedule independent tasks first to the internal
Grid resources (resources in the same Grid) and
then to the external Grid resources (resources in
another Grid). The authors have analyzed the per-
formance of various Grids forming a federated
Grid. In our paper, we discuss the resource alloca-
tion problem in general that is not restricted by the
number of Grids. We describe resource allocation

404 M.B. Qureshi et al.

mechanisms where the task may be independent,
dependent, or a workflow application.

3 Resource Management

Every Grid may have three basic features identified by
Lamnitchi et al. in [74]:

• The coordinated resources are not subject to cen-
tralized control.

• The standards, protocols, and interfaces used
should be standardized.

• The QoS delivered is non-trivial.

A resource management (RM) is a concrete process of
managing Grid resource discovery, scheduling, alloca-
tion and system workloads [117] as shown in Fig. 4.
The whole process of resource allocation, assignment,
authorization, assurance, accounting, authentication
and fault tolerance is also the responsibility of RM
[53, 117]. Resource Management System (RMS) is a
Grid service that controls RM processes. The abstract
level model of an RMS is shown in Fig. 5. In Grid
environment, RM is more complex and challenging
than traditional distributed computing environments
(DCEs) due to the geographic distribution, site auton-
omy, different usage policies, varying loads, extensi-
bility, co-allocation, adaptability, resource heterogene-
ity and distributed ownership of the resources [69].
To solve the aforementioned problems, many different
approaches and models are developed to manage Grid
resources efficiently. Depending on the component

organization, RM can be classified into three different
types [17, 106]:

(a) centralized- organization (e.g., Condor [17, 69]),
(b) hierarchical organization (e.g., 2K, Apples,

Darwin, Legion [17, 69]), and
(c) decentralized organization (e.g., MOL, Bond,

Ninf, Javelin, Globus, GOPI [17, 69]).

In a centralized organization, the whole process of
resources scheduling and allocation is controlled by a
single centralized node [69, 109]. This type of organi-
zation can be easily managed and deployed but lacks
scalability and fault tolerance.

The hierarchical organization [109] is different
in a way that the resource controllers are managed
in a hierarchy that is usually a tree like structure.
There is one central manager and multiple low level
schedulers. The central manager is responsible for the
complete execution of the entire application. The cen-
tral manager assigns various tasks of the application
to the low level schedulers which in turn map the
tasks on Grid resources. The resources on the same
level can directly communicate with other resources
above them or below them without involving any inter-
mediate node. This organization is scalable and fault
tolerable but lacks site autonomy. Also, if the central
manager fails, then the entire system fails.

In a decentralized organization, the control is dis-
tributed among multiple nodes with each one mak-
ing its independent decisions [116] and there is no
central authority that has full knowledge of the sys-
tem. The decentralized organization is more robust,

Fig. 4 Grid resource
management taxonomy

Survey on Grid Resource Allocation Mechanisms 405

Fig. 5 Grid resource
management system model

scalable, and fault tolerant than centralized and hier-
archical organizations. Table 1 gives a comparison
of the above mentioned organizations based on their
common features.

To overcome the resource manageability, avail-
ability, and scalability issues of the aforementioned
RM organizations, the peer-to-peer (P2P)-based Grid
paradigm of resource management is used by the
research community [90, 132]. The P2P-based Grid
RMS follows a decentralized organization where peers
(nodes) are arranged using an overlay network. Each
peer in a P2P system works at the same time both as
a server and a client. In a P2P-based Grid manage-
ment system, if a peer knows the routing information
to locate the other peer, then it communicates with
it directly [72, 90]. Consequently, the information

propagation strategy that the peers adopt is of pri-
mary importance. The P2P-based Grid RMS discov-
ers resources by using the name lookup approach.
The resources are located using different strategies
like flooding, and indexing. Based on peers orga-
nization, the P2P-based Grid systems are classified
as structured and unstructured [90, 132]. In unstruc-
tured P2P-based systems (e.g., Gnutella, KaZaA [89]),
the flooding approach is used for locating resources
where each peer propagates information about its local
resources. When a user requests some resource, the
peer matches the user query with the local resources.
If a match is found then it returns this information
to the peer who initiated the request following the
same trajectory; otherwise the query is forwarded to
the neighbor peers who adopt the same strategy. This

Table 1 Comparison of RM organizations

RM Organization Control Site autonomy Fault tolerance Scalability Availability

Centralized Centralized Low Low Low Low

Decentralized Distributed High High High High

Hierarchical Centralized and Hierarchical Low Medium High Medium

406 M.B. Qureshi et al.

process continues the network flooding until the time-
to-live (TTL) of the request expires. In structured
P2P-based Grid systems (e.g., CAN, Chord, Pastry
[72, 90], Tapestry, Cyclone, HiPeer [132]), the dis-
tributed hash table (DHT) approach is used for
determining the exact location of a resource. DHT
uses indexing service that is based on hash func-
tion. Structured P2P-based systems are more scalable
than unstructured systems in terms of network traf-
fic flooding. In unstructured systems the search query
is received by peers that do not have the required
resource, which results in flooding the entire network.

In a broad sense, resource manager is also respon-
sible for resource monitoring, resource inventories,
resource provisioning, autonomic capabilities, fault
tolerance, and other service level activities [117]. The
complex and dynamic nature of Grid technologies
make sharing and discovery a challenging issue for
RMS [117].

Some of the Grid features include different
global administrative control over resources, exis-
tence of multiple Grid schedulers together with local
schedulers, different performance characteristics of
resources with respect to CPU especially, and stor-
age system access [75, 76]. Current research on novel
dynamic RM and job scheduling [81] add more scal-
ability, robustness and fault tolerance to the system
by balancing high workload due to the dynamic real-
time availability of high computational power of var-
ious Grid resources. Apart from the aforementioned
responsibilities, resource naming is also a complex
process in distributed environments managed by Grid
RMS because it affects the above discussed RM func-
tions [53, 69, 96].

Three main approaches to name space organization
identified by the author in [53, 69] are:

(a) flat,
(b) hierarchical, and
(c) graph-based.

The flat approach lacks scalability in the Grid system.
The hierarchical approach follows down a traversing
technique where a name is constructed in a top-down
fashion. The graph-based approach follows the nodes
connecting technique where resources are linked and
a name is constructed from the links connecting the
nodes. The three name space approaches are shown in
Fig. 6.

3.1 Resource Discovery

Resource discovery is a basic service the Grid pro-
vides [7, 73]. Based on required characteristics, the
resource discovery mechanism searches and returns
the addresses of the resources that match with the pro-
vided descriptions. In a sense its functionality resem-
bles a web search engine with search queries being
the set of criteria for resource selection and links to
web-pages being the analogous of matched resource
addresses [73].

The resource discovery process selects a resource
from a pool of resources by evaluating its capability
based on the following trade-offs [117]:

1. Minimum execution cost
2. Shortest possible completion time of a Job
3. Minimum wastage of resource power

Discovering a resource by taking in to account the
aforementioned parameters is a challenging task for
maintaining Grid efficiency due to the resources
dynamicity and heterogeneity [117]. Collecting and
assessing resources information in heterogeneous
environments is a complex task because resources are
geographically dispersed, owned by different orga-
nizations, and restricted by different management
policies and access rights [14]. Each resource discov-
ery service makes use of a resource status database
to carry out clients requests. This database is main-
tained and administered by network-wide information
services.

Fig. 6 Grid resource
naming taxonomy

Survey on Grid Resource Allocation Mechanisms 407

The two main resources discovery techniques
are query-based resource discovery and agent-based
resource discovery [53]. In query-based resource
discovery approach, for getting resource availabil-
ity information, a query is made towards a database
[53]. Alternatively, instead of querying a database,
active code fragments can be sent to the various
nodes for local process. This option is adopted by the
agent-based resource discovery approach. Agents are
autonomous, intelligent software entities that are exe-
cuted on user’s behalf and interact with their surround-
ings to carry on user requests [117]. This approach is
distributed in nature and uses an underlying mobile
code environment like Java.

The main difference between the aforementioned
two approaches is that agent-based systems allow the
agent to control the query process. The agent-based
systems take discovery decisions based on internal
logic rather than residing upon a fixed function query
engine [69, 117].

Traditional resource discovery systems (e.g.,
Globus MDS [106, 126, 128], Condor Matchmaker
[128], Portable Batch System [128]) use the exact
lookup approach called matchmaking for locating
resources. In such systems the resource matching is
performed using a simple query language which com-
pares strings or integers known as symmetric flat
attributes based on exact matching [126, 128]. In
this matching approach, the resource attribute-value
pairs are matched with the request attributes speci-
fied as primitive constraint statements. The resource
and request should use same attribute names and
agree upon the attributes values. This resource dis-
covery approach becomes less precise and inflexible
as the number of attributes increases. This inflexi-
bility denies incorporation of new characteristics. By
precision we mean that how and how much the dis-
covered resources are relevant to the request query.
It may not necessary that the resources and requests
should always use the same attributes specification
which limits the system search space. Sometimes
this approach of resource discovery misses capable
resources. The resource miss penalty is explained by
Amarnath et al. in [3] with the help of example. If
a user requires a Linux operating system for its task
completion then in case of non-availability of this
resource, the Grid scheduler either puts the task in a
wait queue or it may run on the systems that have
Fedora or Unix-based operating systems because the

scheduler has not the capability to establish a relation-
ship between the two different operating systems. The
flexibility and precision can be improved by adding
semantic information to the resources description
which locate only semantically related results [78].
Such an approach of resource discovery and selection
is called asymmetric ontology-based semantic match-
ing approach. This approach is capable of making
semantic relationships between the user request and
the resources’ advertized information using an infer-
ence engine. It supports a context-based matching
technique instead of a keywords-based approach that
returns resources that are closely related to the request
in case the exact match fails. The set of inference rules
and vocabularies that help in matching user request
to resource are defined by ontology [128] and the
relationships in ontology are defined by semantics. In
general the ontologies are easy to understand than flat
attributes and they facilitate the integration and inter-
change of different type information. The Grid system
that employs semantic techniques is called semantic
Grid that is the addition of intelligent behavior to the
conventional Grid paradigm.

The ontology-based resource discovery module
consists of mainly three basic components defined in
[128]:

(a) ontology,
(b) domain knowledge, and
(c) matchmaking rules.

The vocabulary captured from the ontology is used
by the domain knowledge to obtain background infor-
mation. This background knowledge and ontology is
in turn used by the matchmaking rules for matching
user requests to Grid resources. These components
are capable of communicating and incorporating with
different Grid middleware.

3.2 Information Propagation Strategies

In order to keep the resource description database
updated resource availability information must be
propagated [69]. A simple categorization of informa-
tion propagation strategies is as follows:

(a) total awareness,
(b) neighborhood awareness, and
(c) distinctive awareness [88].

In total awareness the overall status information con-
tained by each resource is broadcasted to all other

408 M.B. Qureshi et al.

resources. Neighborhood awareness distributes status
information of the nearest resources, whereas in dis-
tinctive awareness status information about distinct
resources is propagated. The comparison of the afore-
mentioned three information propagation strategies is
given in Table 2.

3.3 Resource Allocation Problem

Resource allocation is one of the core services of Grid
environment that achieves the basic Grid objective
[48]. It is the process of distributing limited avail-
able resources among tasks based on some predefined
rules. Wu et al. [140] represent the RA problem as a
quadruple (R, A, X, O), where:

• R is the set of m available resources: R= {R1,
R2,. . ., Ri ,. . .,Rm}, 1 ≤ i ≤ m. The resource can be
any Grid resource summarized in Fig. 3.

• A is a set of n tasks (dependent, independent, sin-
gle, or parallel) competing for the resources in R:
A={A1,. . .,Aj ,. . .An}, 1 ≤ j ≤ n.

• Xm×n =
⎡
⎢⎣

x1,1 x1,2 . . . x1,n
...

xm,1 xm,2 . . . xm,n

⎤
⎥⎦
m×n

Each resource may accommodate more than one task.
So Xi,j represents the portion of resource i allocated to
task j.

• O is the objective function: O = u(Xm×n) –
c(Xm×n) where u(Xm×n) represents profit and
c(Xm×n) is the cost associated with a given allo-
cation.

The generic RA problem can be posed as: find the
values in matrix X, i.e., allocate portions of resources
to tasks, so that the objective function u(Xm×n) –
c(Xm×n) is maximized, subject to various validity
and availability constraints on the assigned values in
matrix X..

Depending on the problem setting, the allocated
portion of resource to task, Xi,j can be termed as con-
tinuous or discrete variable. For example, Xi,j might
be a continuous variable that take continuous and
non-negative value if the resource under question is
divisible like network bandwidth, processor time; and
a discrete that take non-negative integer value if the
resource is non-divisible like a person, an airplane or
a car.

3.4 Energy - Aware Resource Allocation

The global Grid provides massive power for executing
data- and compute-intensive scientific applications,
but the issue of high energy consumption makes Grid
platforms impractical for implementation [84, 85].
Significant research exists on efficiency enhancement
of clusters at processor level [29, 112], virtualization
based resource managers level [134, 135], and clus-
ter resource managers level [61, 137]; however only a
small portion of it deals with improving energy effi-
ciency of HPC platforms. In the area of global Grids,
many meta-schedulers are in use. GridWay [45] is
a service oriented Grid system capable of adjusting
itself to the changing environment to meet the needs
of Grid applications for heterogeneous resources. It
uses the first come-first serve (FCFS) scheduling pol-
icy. Moab uses FCFS batch scheduler with backfilling
policy [11, 31]. In Moab, the priority of each task is
calculated as a weighted sum of several factors (e.g.,
queues time, task arrival time etc) specified by the
system administrator. Condor-G [37] is a user-level
middleware scheduler working as a component of
Condor RMS [143] providing an interface for hetero-
geneous batch systems. Condor system is a collection
of heterogeneous resources providing a high through-
put computing environment for computation-intensive
tasks. Condor-G is built on Globus [45] toolkit that is a
Grid middleware providing services to the Grid appli-
cations for accessing distributed resources securely

Table 2 Comparison of resource information propagation strategies

Strategy Communication Scalability Efficiency in Efficiency in

overhead homogenous Grid heterogeneous Grid

Total Awareness Very High Low Medium High

Neighborhood Awareness Low Very High High Medium

Distinctive Awareness Low High High High

Survey on Grid Resource Allocation Mechanisms 409

across multiple administrative domains. Condor-G
uses either FCFS or matchmaking with priority sort
[40] as scheduling policies. These meta-schedulers
use parameters like job completion time and load bal-
ancing as performance measures, ignoring the issue of
huge energy consumption. Significant research efforts
on power-aware RA have been made in the context of
clusters and datacenters.

Two primary methods are commonly used; switch-
ing off un-utilized cluster parts [13, 75, 76, 86, 101,
137]; or using voltage and frequency scaling (VFS)
technique to compensate CPU processing speed [21,
41–43, 61, 86, 95, 129, 134, 135, 137]. According
to Meisner et al. [95] it is hard to adopt a power
on/off strategy in case of overloading but it is ideal
and simple to switch off un-utilized systems. There-
fore, VFS-enabled systems perform better in energy
saving in such environments. Using VFS at CPU level
can save a lot of energy by scaling down the CPU
frequency either manually [36, 86] or dynamically
(DVFS) [20, 30, 41–43, 55–57, 62, 80] by means
of processor technologies like Intel’s SpeedStep [58].
Thus the Grid meta-scheduler, along with other fac-
tors, should decide to assign jobs to resource sites at
the time in which the jobs can be executed at minimum
CPU frequency level to save power consumption. If
the job deadline cannot be met by adopting such a sce-
nario, then the meta-scheduler should scale up CPU
frequency to the next level and then again search for a
free time slot to execute the job. The basic Grid energy
efficiency techniques are categorized in Fig. 7.

A prediction algorithm was proposed by Orgerie
et al. in [101] which aggregates the workload and
switches off the un-utilized CPUs thereby reducing
the processing power consumption in large Grids such
as Grid5000 [101]. In [38] the authors pointed out
that just focusing on processor power consumption

is not always sufficient. In order to minimize the
power consumption of the entire Grid due to het-
erogeneity and a more holistic approach involving
energy-aware changes to RA mechanisms is neces-
sary [86]. In fact, although significant research exists
on energy optimization within a cluster’s or a data-
center’s boundaries, the issue of power-aware RA in a
distributed environment with multiple geographically
dispersed resource sites remains largely open.

3.5 Resource Monitoring

Resource monitoring is the process of collecting infor-
mation about Grid resources’ status. This information
is updated periodically by resource providers through
resource update queries. The Grid schedulers retrieve
resources’ information by querying Grid information
service (GIS) for matching the available resources
with the user’s requirements. The GIS is responsible
for indexing the resources. Below we summarize some
of the known Grid information systems.

3.5.1 WebMDS

WebMDS is a type of decentralized Grid information
service infrastructure called monitoring and discovery
service (MDS) that assists the users in monitoring and
discovering resources and services on the Grid [2].
Every MDS provides two basic services to the Grid
users; Grid resource information service (GRIS) and
Grid index information service (GIIS) [78, 147]. The
GRIS resides on each resource that keeps all the sta-
tus, configuration and capability information of that
resource and forwards it to the user who queries such
information about that resource. The GIIS is a direc-
tory service that assists GRIS in caching the resources’
information by using indexing and searching mecha-

Fig. 7 Grid energy efficient
techniques taxonomy Energy Efficient Approaches

CPU Level Cluster Level

Hardware Solution Software Solution Switch-Off Un-Utilized Parts

Increase Number of Cores VFS DVFS

410 M.B. Qureshi et al.

nisms. For resolving interoperability issues between
GRIS and GIIS systems, the GRIS uses an inquiry
protocol called Grid resource inquiry protocol (GRIP)
that provides discovery and enquiry functions along
with a registration protocol called Grid resource reg-
istration protocol (GRRP). The MDS supports both
static and dynamic data about Grid resources. Web-
MDS provides a web browser interface to the users
to view monitoring information status of a resource,
service registration, query, discovery, and locating the
resources [2, 139].

3.5.2 LDAP

The lightweight directory access protocol (LDAP) is
used as a data model and representation, query lan-
guage, and protocol by MDS [145]. As a data model,
it gives hierarchical structure for representing enti-
ties as LDAP objects. The entities are represented as
attribute-value pairs organized in a hierarchical form
[25] called directory information tree (DIT). It is also
used as a open and platform independent directory
protocol that helps in accessing resource directory
information. The LDAP is used for accessing a list
of resources of a particular class or having partic-
ular property. It is also used to populate resource
information like the IP number of a resource, and
its total amount of memory. In Grid context, the
MDS uses LDAP mainly in its three phases [Sri];
initialization, population, and query phase. In initial-
ization phase, LDAP is used to provide tools that
help in defining, referencing, organizing, and modi-
fying resources’ information. In population phase, it
offers a framework for populating the service direc-
tory with information. This feature provides porta-
bility between different platforms because LDAP is
a platform-independent protocol. In query phase, it
supports query-reply exchange. It also helps in com-
munication with the server.

3.5.3 MonALISA

The monitoring agents in a large integrated ser-
vices architecture (MonALISA) is an agent-based
distributed monitoring service using JINI and Web
Services technologies for hosts and networks in large
scale distributed services [100, 145]. It uses mod-
ules that collaborate and cooperate with each other
in performing monitoring tasks. It also provides the

facility to integrate other monitoring and queuing sys-
tems. The MonALISA is based on one server station
per site and number of JINI registries called lookup
discovery services. Each discovery service may be
registered with other discovery services. The agent-
based services are controlled by the server station that
schedules, restarts if necessary, and monitors func-
tions of these agents. Each agent-based service can
register to a number of discovery services. The server
station collects resource status information from other
monitoring services available locally using various
modules. This information is stored in local reposi-
tories or embedded in external storages and properly
indexed for the users. This information is provided
to the users on demand. The users can directly con-
nect with a service for receiving monitoring informa-
tion. The users can configure any service or module
remotely and dynamically by using an administration
graphical user interface GUI [100].

3.5.4 Remos

The resource monitoring system (Remos) is used
for providing a consistent interface to network-aware
applications for dynamically monitoring performance
of local area networks (LANs) and wide area networks
(WANs) that are independent of the network techni-
calities [DeG97]. It also provides resource information
to network-aware Grid applications. Its architecture
is composed of three basic components; collector,
modeler, and predictor. The collector collects and con-
solidates information required by the user applications
by using different methods, e.g., implementation of
sensors. Several collectors may be employed in a hier-
archical fashion connected in a predefined way for
providing scalability and accommodating heterogene-
ity of various networks. The upper level collectors in
the hierarchy are called master or global collectors and
the lower level collectors as local collectors. The mas-
ter collectors measure the performance of the overall
network that connects various LANS, while each local
collector obtains performance information about its
LAN. Remos interface supports query-based requests.
The queries are used to obtain information about spe-
cific set of resources on the network. The master
collector accepts queries from modelers and forwards
it to the local collectors for execution. The processed
result is then forwarded to the modeler. Remos pro-
vides abstraction in the sense that when a modeler

Survey on Grid Resource Allocation Mechanisms 411

requests some information, then the master collector
collects this information from different local collec-
tors and forwards it to the modeler that is completely
unaware of the collection process [145]. The modeler
interacts with the user application through interface
and responds to its queries. The predictor predicts the
future performance behavior on the basis of previous
measurement history.

3.5.5 GridICE

GridICE was developed to assist Grid administrators
through a web front end to provide status and uti-
lization information of the resources [106]. It has a
centralized architecture that makes it less scalable.
The main server consists of Nagios service [145]
that monitors Grid resources regularly by forwarding
queries to get their status and utilization informa-
tion. The MDS plugin is used for issuing periodic
queries to the index information servers and service
providers. The information collected by Nagios from
MDS daemon in response of these queries is stored
in a database which is used for calculating aggregate
statistics like total amount of memory per site, total
utilization of resources per site, etc. The users use
a web-based front end for accessing the monitoring
system. GridICE operates in a five layered architec-
ture which are measurement, publisher, data collector,
detection & data analyzer, and presentation [4]. The
first layer consists of the measurement service which
search resources according to some metrics such as
total memory usage, total processor usage or total time
usage. The second layer furnishes the publisher ser-
vice where the gathered data is provided to all the
users in Grid system. The third layer provides the
data collector service which collects historical mon-
itoring data. The fourth layer offers two types of
services:

(a) detection and notification service about re-
sources and

(b) data analysis service.

The fifth layer presents monitoring information to the
user through a web based graphical interface.

3.5.6 Autopilot

Autopilot is an adaptive infrastructure that gives the
ability to the applications to adapt theirselves to the

dynamically changing environments such as Grid.
The autopilot functionality can be used in sensors,
actuators, distributed name servers, and clients [110].
The sensors and actuators are used for remote read-
ing and writing purposes. Sensors are the producers
which sense the application specific events and gen-
erate description of resource demands. On the other
hand, actuators are used to configure resource man-
agement policies like file cache policy, buffer size etc.
The sensors, actuators, and clients coordinate with one
another through a component called autopilot man-
ager. The components (sensors and actuators) have
properties like name, location, identifier, IP address,
and other attribute-value pairs which may be user
defined [145]. These properties are defined at creation
time of these components. The components register
their properties with the registry service or component
manager after creation. The users search a component
of their interest in registry by using these proper-
ties and subscribe theirselves to that component. The
manager in response to the user queries provides the
starting points of the sensors or actuators that can ful-
fill the user demands. The starting points are then
used by remote clients for connection with the sen-
sors or actuators. The remote user applications access
the autopilot system through an API provided at the
resource level.

3.5.7 MapCenter

The MapCenter is a Grid information and monitor-
ing system that is used to track resource availability
problems [12, 145]. The availability information about
Grid resources and their services is gathered and pro-
vided through a web interface to the remote users in
response of their queries for monitoring and discovery
services. The MapCenter supports automatic discov-
ery for the services like TCP, UDP, and HTTP [106].
This system uses a hierarchical view of resources’
status information. It deals only with the status infor-
mation (e.g., availability) and does not keep the con-
figuration or utilization information of the resources.
The MapCenter [12] consists of the monitoring, data
store, and presentation layers. The monitoring layer
uses sensors for monitoring Grid resources. The data
store layer accumulates the internal structures infor-
mation, while the presentation layer provides the facil-
ity to generate and visualize different views of the
Grid.

412 M.B. Qureshi et al.

3.5.8 RGMA

The relational Grid monitoring architecture (RGMA)
[147] is a relational system that uses a relational model
to combine both information and monitoring services
of the Grid system. The Grid monitoring architecture
(GMA) is mainly composed of five basic components
[106]:

(a) producers are the data sources (e.g., sensors) that
register theirselves to the registry, with the regis-
tration being refreshed at specific time intervals
by sending heartbeats,

(b) consumers (e.g., resource broker) that request
information about producers from the registry
service,

(c) registry or directory service that contains produc-
ers and consumers information and indexes to the
producers,

(d) republisher that exhibits the characteristics of
both consumers and producers, and

(e) schema repository that accumulates the schema
details of various producers and events.

The producers and republishers can be collectively
called as publishers. Cooke et al. [24] describe the
operation of GMA components in the following way.
The producers register theirselves with the registry
and show what information they can offer to the con-
sumers. This information is then accessed by the con-
sumers. Using this information the consumers know
which producers can provide the data relevant to the
request query. After specifying the target producers,
the consumers directly communicate with them for
data provision. MDS is the most prominent system
that implements RGMA. RGMA shows the relational
view of the GMA components. It provides the facil-
ity to extract information of VO resources just like
they are stored in a centralized relational database
management system (RDBMS).

3.5.9 Hawkeye

Hawkeye [145, 147] is a monitoring and management
tool used for the automation of problem detection
such as resource failure, insufficient cache, high link
usage etc. The Hawkeye issues warnings in the afore-
mentioned situations to the Grid and other distributed
systems’ resources. The architecture of hawkeye is

composed of four basic components organized in a
hierarchical form [147]:

(a) pool,
(b) manager,
(c) monitoring agent, and
(d) module.

Pool is a collection of computers, with the one of them
being used as a manager that connects the rest comput-
ers called monitoring agents. The monitoring agents
register theirselves with the manager and provide
monitoring information to it. The manager is a master
computer system that collects all this information and
stores it in a database which can be accessed through
web interfaces. All the user queries about resources
status information are forwarded to the manager. The
monitoring agents are connected with modules that are
sensors for advertising the resource information. The
modules send updated data to the agents after each
minute interval.

4 Resource Allocation Mechanisms

RA mechanisms play an important role in allocating
the most appropriate resources to applications. The
mechanisms perform the allocation of tasks to the
resources in order to ensure QoS to the application
according to the user requirements [48]. Sometimes
RA mechanisms adopt dynamicity whereby resources
are allocated as soon as they are discovered. Such
mechanisms are called dynamic RA mechanisms and
are considered more efficient than the static ones.
Another assumption is that RA mechanisms should be
designed in such a way to avoid underutilization of
resources.

As indicated in Fig. 4, RA mechanisms provide two
basic Grid services:

(a) resource monitoring, and
(b) resource scheduling.

Resource monitoring regularly monitors resource per-
formance, capability, usage and future reservations.
These resources include processors, disks, memories,
and channel bandwidths [48]. The information is then
retrieved by the scheduler that decides on the allo-
cation of the application to the underlying resources.
Some of the widely used Grid resource discovery and
allocation mechanisms based on RMS organizations

Survey on Grid Resource Allocation Mechanisms 413

are broadly categorized as centralized, distributed, or
hybrid as shown in Fig. 8. Table 3 gives a comparison
of these mechanisms based on their common features.

4.1 Parameter-Based Approach

A new parameter-based approach called Grid poten-
tial was proposed in [88] that summarizes the com-
puting power of different Grid resources in a large
network. This approach is based on the operating
rate of a node (CPU speed, FLOP rating, sustained
memory access rate, sustained disk access rate).
A data dissemination algorithm was also proposed

that is based on the idea of “swamping algorithm”
[7]. When a resource status information dissemina-
tion message comes into a specific node, the mes-
sage is first validated before processing [88]. The
validation process depends on the aforementioned
information propagation strategies (total awareness,
neighbourhood awareness and distinctive awareness).
The total awareness strategy does not discard any of
the incoming dissemination messages. The neighbour-
hood awareness permits the incoming message only
if the distance from the source to destination node
falls within the range of permissible limit. Otherwise,
the message is discarded. In distinctive awareness,

Fig. 8 Resource allocation
mechanisms taxonomy

Hybrid RA

SSS-based

Game Theoretic Energy Efficient Based
2PH

Adaptive

QoS-basedCentralized
Mechanisms

Distributed
Mechanisms

Parameter-based

Peer-to-Peer based
Ontology-based

RTM-based
Re-routing Tables

Request-forwarding

Volunteer
Agreement-based

Economic-based
GABL

Market-based

Compensation

Coalition Formation

PDRAP and SDRAP

DLS

Option Contracts

Heuristic-based
Greedy Double Auction

Modified Least Cost

Dynamic Level

Reinforcement Learning

Combinatorial Auction-based
Swift Scheduler

Association-based
Heterogeneous E-Waste

Hierarchical Trusted
Price Directed-based
Load Forecast-based
Hyper Heuristics

Data-Intensive and Network-Aware

Negotiation-based Advanced Reservation

Performance-based

RA Mechanisms
Priority-based

Hybrid
Mechanisms

414 M.B. Qureshi et al.

Ta
bl

e
3

C
om

pa
ri

so
n

of
R

A
m

ec
ha

ni
sm

s

R
A

M
ec

ha
ni

sm
/

Se
ar

ch
in

g
A

pp
li

ca
ti

on
T

im
e

O
pt

im
al

R
A

S
O

pe
ra

ti
on

al
O

bj
ec

tiv
e

C
it

at
io

ns
to

A
pp

ro
ac

h
M

ec
ha

ni
sm

Ty
pe

C
om

pl
ex

it
y

Ta
xo

no
m

y
E

nv
ir

on
m

en
t

Fu
nc

ti
on

th
e

M
ec

ha
ni

sm
s

.P
ar

am
et

er
-b

as
ed

D
is

se
m

in
at

io
n

In
de

pe
nd

en
t

�
(n

)
Y

es
D

is
tr

ib
ut

ed
D

is
tr

ib
ut

ed
T

ra
ns

m
is

si
on

ov
er

he
ad

,
51

A
lg

or
it

hm
D

iv
is

ib
le

C
om

pu
te

r
re

so
ur

ce
st

at
us

N
et

w
or

ks
di

ss
em

in
at

io
n

Pe
er

-t
o-

Pe
er

Sw
am

pi
ng

A
to

m
ic

O
(l

og
n)

Y
es

D
ec

en
tr

al
iz

ed
D

is
tr

ib
ut

ed
N

et
w

or
k

34
5

A
lg

or
it

hm
Ta

sk
s

N
et

w
or

ks
re

so
ur

ce
s

O
nt

ol
og

y-
ba

se
d

M
at

ch
m

ak
in

g,
A

to
m

ic
an

d
O

(l
og

lo
g

n)
N

ea
r

D
is

tr
ib

ut
ed

H
et

er
og

en
eo

us
R

es
ou

rc
e

38

G
an

g
In

de
pe

nd
en

t
O

pt
im

al
ad

ve
rt

is
em

en
t

M
at

ch
m

ak
in

g
D

iv
is

ib
le

Q
oS

-b
as

ed
D

IA
R

D
ep

en
de

nt
�

N
A

C
en

tr
al

iz
ed

M
ul

ti
m

ed
ia

Pr
oc

es
so

r
ru

nt
im

e,
17

E
nv

ir
on

m
en

t
W

or
kf

lo
w

(l
og

2
n)

E
nv

ir
on

m
en

t
st

or
ag

e
ca

pa
ci

ty
,

ne
tw

or
k

ba
nd

w
id

th

R
T

M
-b

as
ed

SD
R

T,
D

ep
en

de
nt

�(
n)

Y
es

D
is

tr
ib

ut
ed

D
is

tr
ib

ut
ed

R
es

po
ns

e
71

R
ou

ti
ng

W
or

kf
lo

w
an

d
N

et
w

or
ks

ti
m

e

A
lg

or
it

hm
In

de
pe

nd
en

t

D
iv

is
ib

le

R
e-

ro
ut

in
g

M
in

-D
is

ta
nc

e
D

ep
en

de
nt

N
A

Y
es

D
yn

am
ic

D
is

tr
ib

ut
ed

R
es

ou
rc

es
,

14

ta
bl

es
A

lg
or

it
hm

W
or

kf
lo

w
an

d
D

is
tr

ib
ut

ed
N

et
w

or
ks

Se
rv

ic
es

In
de

pe
nd

en
t

D
iv

is
ib

le

R
eq

ue
st

-F
or

w
ar

di
ng

R
eq

ue
st

In
de

pe
nd

en
t

�(
n)

N
o

D
is

tr
ib

ut
ed

D
is

tr
ib

ut
ed

C
om

pu
ti

ng
34

5

Fo
rw

ar
di

ng
D

iv
is

ib
le

N
et

w
or

ks
re

so
ur

ce
s

A
lg

or
it

hm

V
ol

un
te

er
R

A
V

ol
un

te
er

In
de

pe
nd

en
t

N
A

N
ea

r
O

pt
im

al
D

is
tr

ib
ut

ed
D

is
tr

ib
ut

ed
Pr

oc
es

si
ng

10

Po
ol

in
g

D
iv

is
ib

le
C

om
pu

te
r

po
w

er

A
lg

or
it

hm
N

et
w

or
ks

A
gr

ee
m

en
t-

ba
se

d
Fa

ir
Sh

ar
e

In
de

pe
nd

en
t

N
A

Y
es

D
is

tr
ib

ut
ed

D
is

tr
ib

ut
ed

Pr
oc

es
si

ng
10

A
lg

or
it

hm
D

iv
is

ib
le

N
et

w
or

ks
po

w
er

E
co

no
m

ic
R

A
R

FP
SA

A
lg

or
it

hm
In

de
pe

nd
en

t
D

iv
is

ib
le

N
A

Y
es

D
is

tr
ib

ut
ed

D
is

tr
ib

ut
ed

N
et

w
or

ks
Pr

oc
es

si
ng

po
w

er
69

4

G
A

B
L

G
A

B
L

A
lg

or
it

hm
In

de
pe

nd
en

t
D

iv
is

ib
le

O
(b

m
2
)

Y
es

D
is

tr
ib

ut
ed

2D
-M

es
h

N
et

w
or

ks
Pr

oc
es

so
r

16

Survey on Grid Resource Allocation Mechanisms 415

Ta
bl

e
3

(c
on

ti
nu

ed
)

R
A

M
ec

ha
ni

sm
/

Se
ar

ch
in

g
A

pp
li

ca
ti

on
T

im
e

O
pt

im
al

R
A

S
O

pe
ra

ti
on

al
O

bj
ec

tiv
e

C
it

at
io

ns
to

A
pp

ro
ac

h
M

ec
ha

ni
sm

Ty
pe

C
om

pl
ex

it
y

Ta
xo

no
m

y
E

nv
ir

on
m

en
t

Fu
nc

ti
on

th
e

M
ec

ha
ni

sm
s

M
ar

ke
tm

ec
ha

ni
sm

D
A

I
m

et
ho

d
In

de
pe

nd
en

t
D

iv
is

ib
le

N
A

N
A

D
is

tr
ib

ut
ed

D
is

tr
ib

ut
ed

N
et

w
or

ks
R

es
ou

rc
e

pr
ic

e
21

C
om

pe
ns

at
io

n
D

A
I

m
et

ho
d

In
de

pe
nd

en
t

N
A

N
A

D
is

tr
ib

ut
ed

D
is

tr
ib

ut
ed

C
om

pu
ta

ti
on

21

m
ec

ha
ni

sm
D

iv
is

ib
le

N
et

w
or

ks
co

st

C
oa

li
ti

on
D

A
I

m
et

ho
d

In
de

pe
nd

en
t

N
A

N
A

D
is

tr
ib

ut
ed

D
is

tr
ib

ut
ed

C
om

pu
ta

ti
on

an
d

21

Fo
rm

at
io

n
D

iv
is

ib
le

N
et

w
or

ks
co

m
m

un
ic

at
io

n
co

st

Pr
io

ri
ty

-b
as

ed
V

ar
ia

nt
D

ep
en

de
nt

N
P-

ha
rd

N
ea

r
O

pt
im

al
D

is
tr

ib
ut

ed
D

is
tr

ib
ut

ed
C

om
pu

ta
ti

on
18

W
or

kf
lo

w
an

d
C

om
pu

te
r

po
w

er
,b

an
dw

id
th

,

In
de

pe
nd

en
t

D
iv

is
ib

le
N

et
w

or
ks

Q
oS

re
qu

ir
em

en
ts

SS
S-

ba
se

d
St

at
e

Sp
ac

e
In

de
pe

nd
en

t
O

(m
3
)

O
pt

im
al

an
d

D
is

tr
ib

ut
ed

D
is

tr
ib

ut
ed

Su
m

of
6

Se
ar

ch
,H

eu
ri

st
ic

D
iv

is
ib

le
Su

b-
op

ti
m

al
C

om
pu

te
rs

ex
ec

ut
io

n
an

d

A
lg

or
it

hm
s

co
m

m
un

ic
at

io
n

co
st

of
ov

er
al

l

pr
oc

es
so

r

PD
R

A
P

an
d

PD
R

A
P,

A
to

m
ic

an
d

O
((

n/
p+

lo
g 2

p)
Y

es
D

is
tr

ib
ut

ed
Pa

ra
ll

el
In

di
vi

si
bl

e
2

SD
R

A
P

SD
R

A
P

In
de

pe
nd

en
t

N
2
)

H
yp

er
cu

be
re

so
ur

ce
s

D
iv

is
ib

le
M

ac
hi

ne

D
yn

am
ic

R
A

B
es

t-
fi

t&
In

de
pe

nd
en

t
N

A
Y

es
D

yn
am

ic
D

is
tr

ib
ut

ed
C

PU
,M

em
or

y,
D

is
k

24
3

Pr
oc

es
s

D
iv

is
ib

le
N

et
w

or
ks

M
ig

ra
ti

on

R
A

by
m

ea
ns

M
at

he
m

at
ic

al
In

de
pe

nd
en

t
N

A
Y

es
D

is
tr

ib
ut

ed
D

is
tr

ib
ut

ed
R

es
ou

rc
e

pr
ic

es
,

8

of
op

ti
on

M
od

el
D

iv
is

ib
le

C
om

pu
ti

ng
Se

rv
ic

es

co
nt

ra
ct

s
R

es
ou

rc
es

ti
m

es

H
eu

ri
st

ic
s-

H
eu

ri
st

ic
s-

D
ep

en
de

nt
Po

ly
no

m
ia

l
N

A
D

is
tr

ib
ut

ed
D

is
tr

ib
ut

ed
Pr

oc
es

so
r

3

ba
se

d
ba

se
d

W
or

kf
lo

w
T

im
e

D
at

a
St

re
am

ut
il

iz
at

io
n

Pr
oc

es
si

ng

G
re

ed
y

D
ou

bl
e

G
D

A
M

A
to

m
ic

an
d

N
A

N
A

N
A

H
et

er
og

en
eo

us
R

es
ou

rc
e

2

A
uc

ti
on

In
de

pe
nd

en
t

C
om

pu
ti

ng
pr

ic
e

M
ec

ha
ni

sm
D

iv
is

ib
le

R
es

ou
rc

es

M
od

if
ie

d
L

ea
st

M
L

C
M

In
de

pe
nd

en
t

N
A

N
ea

r
N

A
H

et
er

og
en

eo
us

C
om

pu
ta

ti
on

al
5

C
os

t
D

iv
is

ib
le

O
pt

im
al

N
et

w
or

ks
co

st

M
et

ho
d

416 M.B. Qureshi et al.

Ta
bl

e
3

(c
on

ti
nu

ed
)

R
A

M
ec

ha
ni

sm
/

Se
ar

ch
in

g
A

pp
li

ca
ti

on
T

im
e

O
pt

im
al

R
A

S
O

pe
ra

ti
on

al
O

bj
ec

tiv
e

C
it

at
io

ns
to

A
pp

ro
ac

h
M

ec
ha

ni
sm

Ty
pe

C
om

pl
ex

it
y

Ta
xo

no
m

y
E

nv
ir

on
m

en
t

Fu
nc

ti
on

th
e

M
ec

ha
ni

sm
s

D
yn

am
ic

D
L

S
D

ep
en

de
nt

Po
ly

no
m

ia
l

N
A

D
is

tr
ib

ut
ed

D
is

tr
ib

ut
ed

C
om

m
un

ic
at

io
n

75
0

L
ev

el
T

im
e

T
im

e
H

et
er

og
en

eo
us

ov
er

he
ad

an
d

Sc
he

du
li

ng
N

od
es

C
om

pu
ta

ti
on

al
ti

m
e

R
ei

nf
or

ce
m

en
t

M
in

im
al

is
t

A
to

m
ic

N
A

N
A

D
is

tr
ib

ut
ed

H
et

er
og

en
eo

us
E

ff
ic

ie
nt

99

le
ar

ni
ng

D
ec

en
tr

al
iz

ed
an

d
In

de
pe

nd
en

t
N

et
w

or
ks

ta
sk

s

A
lg

or
it

hm
D

iv
is

ib
le

di
st

ri
bu

ti
on

C
om

bi
na

to
ri

al
C

om
bi

na
to

ri
al

In
de

pe
nd

en
t

N
A

N
A

D
is

tr
ib

ut
ed

D
is

tr
ib

ut
ed

E
co

no
m

ic
ef

fi
ci

en
cy

,
83

A
uc

ti
on

-B
as

ed
A

uc
ti

on
-B

as
ed

D
iv

is
ib

le
C

om
pu

ti
ng

R
ev

en
ue

m
ax

im
iz

at
io

n

R
A

R
A

R
es

ou
rc

es
an

d
Sy

st
em

pe
rf

or
m

an
ce

Sw
if

t
H

eu
ri

st
ic

al
go

ri
th

m
In

de
pe

nd
en

t
N

A
N

A
D

is
tr

ib
ut

ed
D

is
tr

ib
ut

ed
Ta

sk
w

ai
t

9

Sc
he

du
le

r
an

d
Sh

or
te

st
D

iv
is

ib
le

Sy
st

em
s

ti
m

e
an

d

jo
b

Fi
rs

t
co

m
pu

ta
ti

on
al

ti
m

e

H
yb

ri
d

R
A

L
ea

st
C

os
t

In
de

pe
nd

en
t

N
A

Y
es

D
yn

am
ic

D
is

tr
ib

ut
ed

C
om

pu
ta

ti
on

al
3

m
et

ho
d

m
et

ho
d

an
d

D
iv

is
ib

le
D

is
tr

ib
ut

ed
H

et
er

og
en

eo
us

co
st

D
iv

is
ib

le
N

et
w

or
ks

L
oa

d
T

he
or

y

A
ss

oc
ia

ti
on

-b
as

ed
A

ss
oc

ia
ti

on
-

A
to

m
ic

an
d

N
A

N
A

D
is

tr
ib

ut
ed

D
ec

en
tr

al
iz

ed
ba

se
d

C
om

pu
ta

ti
on

al
91

R
A

ba
se

d
In

de
pe

nd
en

t
di

st
ri

bu
te

d
co

st

A
lg

or
it

hm
D

iv
is

ib
le

cl
us

te
rs

H
et

er
og

en
eo

us
H

E
R

A
to

m
ic

an
d

N
A

N
A

D
is

tr
ib

ut
ed

D
is

tr
ib

ut
ed

C
om

pu
ta

ti
on

al
po

w
er

5

E
-W

as
te

In
de

pe
nd

en
t

E
-w

as
te

R
A

D
iv

is
ib

le
co

m
pu

ti
ng

re
so

ur
ce

s

H
ie

ra
rc

hi
ca

l
H

T
R

A
In

de
pe

nd
en

t
N

A
N

A
D

is
tr

ib
ut

ed
D

yn
am

ic
E

xe
cu

ti
on

de
la

y,
25

T
ru

st
ed

m
ec

ha
ni

sm
D

iv
is

ib
le

D
is

tr
ib

ut
ed

Su
cc

es
s

ra
ti

o,

R
A

N
et

w
or

ks
E

ne
rg

y
co

ns
um

pt
io

n,

W
or

kl
oa

d
an

d

th
ro

ug
hp

ut

Survey on Grid Resource Allocation Mechanisms 417

Ta
bl

e
3

(c
on

ti
nu

ed
)

R
A

M
ec

ha
ni

sm
/

Se
ar

ch
in

g
A

pp
li

ca
ti

on
T

im
e

O
pt

im
al

R
A

S
O

pe
ra

ti
on

al
O

bj
ec

tiv
e

C
it

at
io

ns
to

A
pp

ro
ac

h
M

ec
ha

ni
sm

Ty
pe

C
om

pl
ex

it
y

Ta
xo

no
m

y
E

nv
ir

on
m

en
t

Fu
nc

ti
on

th
e

M
ec

ha
ni

sm
s

Pr
ic

e
di

re
ct

ed
-

R
es

ou
rc

e
In

de
pe

nd
en

t
N

A
N

A
D

is
tr

ib
ut

ed
T

C
P/

IP
M

in
im

iz
at

io
n

of
73

ba
se

d
R

A
A

ge
nt

s
D

iv
is

ib
le

N
et

w
or

k
M

od
el

ta
sk

co
m

pl
et

io
n

Su
pp

or
te

d
by

ti
m

e
an

d
co

st

JA
V

A
SI

M
of

th
e

us
ed

re
so

ur
ce

s
fo

r

ta
sk

ex
ec

ut
io

n

L
oa

d
fo

re
ca

st
-

G
ri

d
In

de
pe

nd
en

t
N

A
Y

es
D

is
tr

ib
ut

ed
C

om
pu

ta
ti

on
al

O
pt

im
iz

at
io

n
of

2

ba
se

d
R

A
In

fo
rm

at
io

n
D

iv
is

ib
le

G
ri

d
us

er
’s

ta
sk

Se
rv

ic
e

(G
IS

)
ex

ec
ut

io
n

ti
m

e

w
it

hi
n

th
e

bu
dg

et
co

ns
tr

ai
nt

s

H
yp

er
-H

eu
ri

st
ic

N
A

In
de

pe
nd

en
t

N
A

Y
es

N
A

Te
st

E
ff

ic
ie

nt
m

ap
pi

ng
9

A
pp

ro
ac

h
D

iv
is

ib
le

ca
se

s
of

jo
bs

to

av
ai

la
bl

e
co

m
pu

ti
ng

no
de

s,
m

ak
es

pa
n

m
in

im
iz

at
io

n

A
da

pt
iv

e
G

ri
d

M
ob

il
e

D
ep

en
de

nt
N

A
N

A
D

ec
en

tr
al

iz
ed

/
D

is
tr

ib
ut

ed
M

ak
es

pa
n

an
d

4

Sc
he

du
li

ng
A

ge
nt

s
W

or
kf

lo
w

H
yb

ri
d

Sy
st

em
s

tr
an

sm
is

si
on

co
m

m
un

ic
at

io
n

ti
m

e
m

in
im

iz
at

io
n

D
at

a-
In

te
ns

iv
e

D
IA

N
A

In
de

pe
nd

en
t

N
A

Y
es

N
A

Pe
er

to
W

ai
ti

ng
ti

m
e,

46

an
d

N
et

w
or

k
al

go
ri

th
m

D
iv

is
ib

le
Pe

er
D

at
a

tr
an

sf
er

A
w

ar
e

N
et

w
or

k
ti

m
e,

ta
sk

s

Sc
he

du
li

ng
ex

ec
ut

io
n

ti
m

e

m
in

im
iz

at
io

n

N
eg

ot
ia

ti
on

-B
as

ed
N

eg
ot

ia
ti

on
-

D
ep

en
de

nt
N

A
Y

es
D

is
tr

ib
ut

ed
C

om
pu

ta
ti

on
al

M
ak

es
pa

n
6

A
dv

an
ce

d
ba

se
d

H
E

FT
W

or
kf

lo
w

G
ri

d
m

in
im

iz
at

io
n

R
es

er
va

ti
on

Pe
rf

or
m

an
ce

-b
as

ed
SO

,D
O

,
In

de
pe

nd
en

t
N

A
N

A
D

is
tr

ib
ut

ed
Fe

de
ra

te
d

M
ak

es
pa

n
6

Sc
he

du
li

ng
SO

-A
S,

D
O

-A
S

G
ri

ds
m

in
im

iz
at

io
n,

St
ra

te
gi

es
G

ri
d

pe
rf

or
m

an
ce

418 M.B. Qureshi et al.

Ta
bl

e
3

(c
on

ti
nu

ed
)

R
A

M
ec

ha
ni

sm
/

Se
ar

ch
in

g
A

pp
li

ca
ti

on
T

im
e

O
pt

im
al

R
A

S
O

pe
ra

ti
on

al
O

bj
ec

tiv
e

C
it

at
io

ns
to

A
pp

ro
ac

h
M

ec
ha

ni
sm

Ty
pe

C
om

pl
ex

it
y

Ta
xo

no
m

y
E

nv
ir

on
m

en
t

Fu
nc

ti
on

th
e

M
ec

ha
ni

sm
s

G
am

e
N

B
S-

PA
TA

In
de

pe
nd

en
t

O
(n

m
lo

g(
m

))
Pa

re
to

-
D

is
tr

ib
ut

ed
C

om
pu

ta
ti

on
al

M
ak

es
pa

n,
5

T
he

or
et

ic
al

O
pt

im
al

G
ri

d
Po

w
er

E
ne

rg
y

m
in

im
iz

at
io

n

E
ff

ic
ie

nt

2P
H

H
2L

L
an

d
In

de
pe

nd
en

t
N

A
N

A
D

is
tr

ib
ut

ed
C

om
pu

ta
ti

on
al

E
ne

rg
y

9

M
in

-M
in

G
ri

d
E

ff
ic

ie
nc

y

the incoming message validation takes place on the
basis of computational power of the local and remote
Grids. This approach could lessen the high commu-
nication overhead during resource discovery process
and helps in reducing the network congestion. It is
observed that the disseminated message complexity in
neighbourhood and distinctive awareness approaches
is the same, but the total awareness approach exhibits
higher complexity than the other two counterparts,
with the reason being that the dissemination message
is forwarded to all the nodes in the network.

4.2 Peer-to-Peer Approach

Peer-to-Peer (P2P) RA approach was proposed by
Adriana Lamnitchi et al. for large distributed resources
in [73]. The proposed approach is decentralized and
provides efficient resource discovery results with min-
imum administrative overhead. All the responsibilities
are uniformly divided among all nodes known as
peers. The peer is a resource that works as a server and
a client at the same time. Information about computing
resources and services are directly exchanged between
systems. A “unified peer-to-peer database framework
(UPDF)” for large highly distributed systems was pro-
posed in [74], which can be viewed as a Peer-to-Peer
database framework for general purpose query sup-
port. This database can be viewed as up-to-date global
information. The aforementioned approach uses a
graph-theoretic approach for scalability and manage-
ability purposes. The presented P2P approach reduces
local processing because if a resource description at
a site does not match the request query, then the
time-to-live (TTL) attribute’s value of the request
message is decremented and forwarded to the next
resource. This process of forwarding continues until
the TTL becomes zero. This approach is useful in
highly scalable environments because the information
about the resources and their capabilities are repli-
cated that increase the availability of information in
a dynamic system. But maintaining integrity of infor-
mation is tiresome if a resource leaves a network more
frequently.

4.3 Ontology-Based Approach

Ontology specifies the basic layout of a resource
and provides interoperability among the resources in
heterogeneous environments. A Grid based semantic

Survey on Grid Resource Allocation Mechanisms 419

service discovery framework was proposed in [83]. A
matchmaking mechanism based on ontology can dis-
cover distributed resources in an efficient way, such
that very close matches of resources to requests are
returned due to ontology mapping process. In match-
making, the service provider registers the service
details in a registry database. The user requests service
directory for resource provisioning. The matchmaker
retrieves all the matched services and the requester
then selects the best resource based on the required
attributes; subsequently the task is submitted to that
resource.

The ontology-based approach performs well when
Grid environment is highly heterogeneous. A limita-
tion of this approach is that during resource discovery
process the resources that do not match to the user
request are discarded that reduce the pool of capable
resources.

4.4 QoS-Based Approach

QoS-based approach [46] was first proposed for mul-
timedia environments. The approach discovers the
occasionally available resources, which are not avail-
able all the time using “discovering intermittently
available resources (DIAR) algorithm”. DIAR algo-
rithm uses a graph-theoretic approach. The approach
provides the resource discovery and scheduling mech-
anism in such a way that the required data stream
flows continuously to the user even if the servers
are not available by provisioning QoS to each user
request. Different QoS parameters are processor uti-
lization, storage capacity, and bandwidth. The incom-
ing user request is composed of five parameters; the
requested video object identifier, the starting time of
the request, the finishing time of the request, the
request type, and the QoS. The request type describes
the nature of the needed response that can be imme-
diate or delayed. The QoS parameter of the request
specifies the required resources and the total time
for which these resources are required. The imple-
mented results show that the multiple server strategy
for request execution outperforms the single server
strategy because at anytime more servers are avail-
able for processing a user request. But if the multiple
servers cannot give a sufficient continuous time for
executing the request or the network bandwidth is lim-
ited, then the multiple server strategy is not advisable.
The proposed QoS-based approach uses a centralized

broker that becomes a bottleneck when the system
scalability increases.

4.5 Routing Transferring Model-Based (RTM)
Approach

This model was proposed by Li et al. [82]. The model
has three basic components:

(a) resource-requester,
(b) resource-router, and
(c) resource-provider.

A routing table stores all the related information (e.g.,
distance, direction) about resources that are provided
by the resource provider. The routing table is updated
periodically by accumulating new resource informa-
tion. When a requester sends a message to the router
for requesting some resource, then the router first
scans the routing table for the addresses of related
resources and chooses the shortest path by which a
resource is near to the router. In the sequel the router
forwards the request to the concerned service provider
or to another router. If the distance of a resource from
the router is 1, it means that the service provider is the
neighbour of the router. A request potentially passes
through multiple routers until it reaches a proper ser-
vice provider that fulfils its requirements. If multiple
providers provide resources that can fulfil the user
request, then the proposed RTM strategy selects a
provider that is nearest to the requester. The com-
plexity of the aforementioned approach depends on
the topology and distribution of resources. The perfor-
mance of the proposed technique is determined only
from the distribution of the resources in the network
when the network topology is definite. The limita-
tion of this approach is that if numerous resources
exist, then scanning large routing tables is a slow pro-
cess. Figure 9 shows the RA process of the RTM
approach described by the authors in [82]. In the
figure, the ith router is represented by Ri , the jth

provider by Pj , and the nth resource by rn. Accord-
ing to the figure, the user needs a resource located
at provider P3. The user sends a request to R1 which
forwards it to R3 according to its routing table, R1

knows that forwarding the request through R3, the
required resource is discovered. Therefore, R1 and R3

forward the request until it reaches P3. In Fig. 9, the
bold arrows show the flow of the request. The authors
examined their proposed system using the Vega Grid

420 M.B. Qureshi et al.

Fig. 9 Resource locating
process by
routing-transferring model

User

Request (r_type, r_type_value)

R2
R1

R3

P3 r1

r2

rn

P1

r1r2rn

R4

P2 r1

r2

rn

project and claim that the replication of resources
on multiple locations can decrease resource discovery
time.

4.6 Re-Routing Tables Mechanism in Dynamic Grids

The resources in dynamic Grids get an offline sta-
tus when disconnected from the Grid. The request
for the aforementioned resources must then be re-
routed to be satisfied. The approach investigates the
Grid resources in an efficient way similar to routing
table’s mechanism by considering the dynamic nature
of a Grid system. In case of offline resource event,
alternative resources are discovered somewhere in the
system that can meet the request. After discovering the
alternative resources, the routing tables are updated
by re-computing the distances from the resource
to all relevant routers to achieve the correct re-
routing of the request in the network. This re-routing
mechanism guarantees the discovery of resource
in minimum number of hops [52]. The proposed
re-routing tables mechanism is useful in dynamic
environments where resources leave and join Grid
dynamically.

4.7 Request-Forwarding Approach

Request-forwarding is a technique that decides the
node to which the user request should be forwarded
[73]. The user sends a request to a known node that
returns the description of a resource if the request
is matched with the local resource. If no match is
found locally, the request is forwarded to another node
which forwards it further until time-to-live (TTL) of
the request expires or a match is found. The aforemen-
tioned approach is based on the request-forwarding
technique.

Lamnitchi et al. in [74] identified four request-
forwarding approaches:

(a) random-walk,
(b) learning-based,
(c) best-neighbour, and
(d) hybrid learning-based approach.

In random-walk approach, the node to forward
the request is selected randomly. In learning-based
approach, a request is forwarded on the basis of
previous knowledge. If no node has answered the
similar request before, then the request is forwarded

Survey on Grid Resource Allocation Mechanisms 421

to the randomly chosen node. According to best-
neighbour approach, every peer providing at least
one resource is analyzed. For request forwarding
a node is chosen that has answered the highest
number of requests and it is called best-neighbour
[73, 74]. The hybrid learning-based approach accu-
mulates the features of both learning-based and best-
neighbour approach. This approach is identical to
learning-based approach with the difference that if no
similar node is found, then the user request is for-
warded to the best-neighbour while in learning-based
approach, it is forwarded to a randomly chosen node.

The request forwarding efficiency depends greatly
on the resource distribution strategy. If the resources
are uniformly distributed then it is more probable
that the request will find the corresponding resource
in a minimum time. But unbalanced distribution of
resources does not affect the efficiency of the best-
neighbour approach. In all the aforementioned four
request forwarding approaches, the random-walk has
advantage that it does not need additional storage
for recording the request answering history of the
nodes.

4.8 Volunteer Resource Allocation

The volunteer RA mechanism works by having all
the volunteers donating their idle resources espe-
cially processing power (CPU) towards the comple-
tion of some task without the demand of any reward.

The aforementioned mechanism provides remarkable
amount of computing power. The volunteer RA algo-
rithm that is also known as volunteer pooling was
proposed in [70]. This algorithm allocates resources
to the tasks with a polling procedure. The resource
polling steps are shown pictorially in Fig. 10 [70].
The users send jobs to broker at a constant rate until
all the jobs are finished. The broker’s responsibil-
ity is to poll all the resources that can complete the
jobs. Upon receiving the response from the resource,
the broker distributes jobs to that resource for execu-
tion. A resource is a combination of machines. After
receiving jobs from the broker, the local scheduler
running on each resource assigns the jobs to any idle
machine based on some scheduling criteria and the
remaining unprocessed jobs are stored in a queue. The
jobs from the queue are then accessed on a FIFO
basis.

If a volunteer machine fails down, the job is either
re-assigned or is placed on the first position in a
queue. The volunteer-polling mechanism performs
well in terms of Grid utilization when there is a single
user, but the completion times for the users requests
increase when number of users increase.

4.9 Agreement-Based Resource Allocation

Agreement-based RA mechanism is adopted by orga-
nization’s privately owned Grids or between collabo-
rating institutions such as educational institutes where

Fig. 10 Volunteer pooling
RA steps [70]

Broker m

Poll Reply

1 2 3 n…

Queue

Job m

User m

Resource k

Machines n

Job m

1

2

3

4

5
Job m

422 M.B. Qureshi et al.

there exists high and long-term collaborations. It takes
two general forms:

(a) policy-based RA, and
(b) service level-based RA.

Policy-based RA sub-divides the resources. This fol-
lows the concept of VO where the pool of resources
is allocated to each VO and then a VO can sub-divide
the resources among its members. Service level-based
RA was proposed by Andreozzi et al. in 2005. In
this approach each user provides requirement details
showing their expectation of service quality. The bro-
ker then takes decision on this SLA and allocates the
matched resources [70].

In agreement-based strategy, each user sends his
jobs towards a specified broker. The broker then ran-
domly selects and assigns the set of jobs to a resource.
After allocating a resource, the respective job is then
assigned a priority based on the statistics provided by
Grid statistics component. Based on this priority, the
jobs are placed in a priority queue from where they
are executed on machines using a FIFO manner. These
steps are shown in Fig. 11 [70].

4.10 Economic Resource Allocation

Economic mechanism relays on bartering or prices
[17]. In a bartering-based system, all members have
resources and deal resources by exchanges; while
in a price-based system, price is concerned with

resources [17]. The economic RA is adopted where
resource negotiation follows an economic mechanism.
In large distributed systems, auction is used to find the
best options of resources for executing the jobs. The
four basic types of auction protocols are the English,
Dutch, Sealed-Bid, and Vickrey [70]. In economic
mechanisms the resource selection is not only based
on the user optimization requirements (like deadlines)
but also on the budget constraints the user willing to
pay as well as the resource cost that is set by the owner.
In this mechanism, the scheduler discusses the ser-
vice price with the service provider, with the resource
that can execute user application within his budget
constraints being selected for execution. The process
of discussing the service access cost with the owner
of the resource using some economic model is called
resource trading. The resource trading is cost efficient
if the scheduler selects local resources against remote
ones that can fulfil user requirements. The economic
mechanism performs well when the user relaxes the
deadlines of his application.

4.11 Greedy Available-Busy-List Strategy

A non-contiguous, parallel processor allocation strat-
egy for 2D Mesh called greedy available-busy-list
(GABL) was proposed by Bani-Mohammad et al. in
[98]. In GABL strategy, processor is considered as a
main resource. The suggested strategy has both the
desired features of contiguous and non-contiguous

Fig. 11 Agreement-based
mechanism steps [70]

Broker m

1 2 3 k…

Priority

Job m

User m

Resource z

Machines

Job m

1

5

Broker n Job n

User n

Grid Statistics

Priority 1 Priority 2

Job n Job m

Job n

Assign Priority

Job n

2 2

3

3

4

1

Survey on Grid Resource Allocation Mechanisms 423

processor allocation. GABL divides the request for
parallel processing on the basis of available free sub-
meshes and maintains a list of allocated meshes.
The aforementioned mechanism reduces the average
turn-around time of jobs and increases the system uti-
lization. The GABL strategy depends on the number
of allocated sub-meshes in the busy list and not on
the size of the mesh. It decreases the communication
overhead by decreasing the number of sub-meshes
allocated to the user application. It is considered as a
flexible allocation technique even if the bandwidth is
limited and contention is high.

4.12 Market Mechanism

Market mechanism is a distributed RA mechanism
based on a common resource marketplace. The nego-
tiation process for the mechanism takes place between
a central facilitator and n agents. The facilitator
disseminates the related price-per-use information of
various resources to the participating agents. After
receiving the information, each agent decides the
optimal or near optimal request and informs the con-
cerned facilitator about its decision. The facilitator
then adjusts the price information and disseminates
this information. This process relies on equilibrium
where the total number of requested resources is equal
to the available resources [140]. The central facilitator
that collects and distributes information becomes bot-
tleneck in achieving communication efficiency when
the number of resources increases. The market mech-

anism can be applied in RA problems like travel
arrangements, electric power networks, traffic flow
networks etc.

4.13 Compensation Mechanism

Compensation mechanism is a type of distributed
RA method [140]. The demand for resources and
the corresponding compensation plans continuously
change. Therefore, the aforementioned mechanism
relies on a structured two-stage negotiation method
among agents. Each agent disseminates the resource
request and compensation plan to other n - 1 agents.
After receiving the disseminated information, each
agent reports the expected compensation paid by other
n - 1 agents and decides the optimal request based
on the goal of the local sub-problem. The negotia-
tion process ends and general equilibrium is achieved
when all the n agents reach an agreement [140]. This
negotiation process is shown in Fig. 12. The com-
pensation mechanism exhibits high communication
overhead than the market mechanism and it is con-
sidered efficient when the environment is convex.
However, if the environment is not convex then this
strategy cannot give an efficient resource allocation.

4.14 Coalition Formation Mechanism

For saving cost, the self-interested agents form coali-
tions by coordinating the activities with other agents
[140]. An agent decides to join the coalition only to

Fig. 12 Negotiation
process of the compensation
mechanism for RA

Agent 1 Agent 2 Agent n…

…

Agent 1 Agent 2 Agent n…

…

Agent 1 Agent 2 Agent n…

…

Step 1: Agents broadcast the request of
resource, and proposed compensation
plan

Step 2: Agents broadcast the request of
resource, and proposed compensation
plan

Step 3: Agents broadcast the request of
resource, and proposed compensation
plan

Go to Step 1

424 M.B. Qureshi et al.

save more cost. The coalition models can be classified
into two groups:

(a) complementary-based, and
(b) utility-based coalition models.

The former model works on the strategy that each
party complements the skills and by this way facil-
itates agents in achieving their goals. The latter
model aims at maximizing the profits of the team by
distributing the benefits among the coalition mem-
bers. In a coalition formation process, all agents are
divided into a distinctive combination of a coali-
tion group. Then in each coalition group, a sub-
coalition group with maximum utility is formed
known as optimal team. Then each agent of the group
divides the profit and resources. The communication
overhead is high in coalition formation mechanism
because each agent searches for other agents to form
coalition.

The choice of allocation strategy among market-
based, compensation and coalition formation mech-
anisms is based on four major factors; the in time
information availability, the agents’ relationship, the
agents’ distribution strategy, and the total number of
agents. The market mechanism requires incomplete
information about the agents while the compensation
and coalition formation mechanisms require complete
information. The agents are non-cooperative with
one another in market and compensation mechanisms
while they may cooperate in coalition formation. In
a market mechanism the central facilitator becomes
the performance bottleneck when the agents are dis-
tributed improperly. In such a situation, the compen-
sation and coalition formation methods are considered
efficient. The communication and computation costs
are high in compensation and coalition mechanisms,
so they are suitable when there is a small number of
agents’ participating in resource allocation.

4.15 Priority-Based Resource Allocation Technique

It is a distributed RA strategy that takes into account
factors like computation power of nodes, the upper
limit of shared programs, the transmission bandwidth
of peripherals, the communication channel band-
width, and the QoS requirements of applications [44].
Four types of resources are targeted: disks, printers,
memory, and resident programs. The resources are
allocated with or without the limitation of network

bandwidth, with dynamic environment, and the spec-
ified QoS of applications. In a dynamic environment,
the priority-based strategy finds the resources that
give minimum completion time of all the applications.
The concurrency among applications is increased to
minimize execution times. The strategy works in two
stages. At a first stage, a user requests a resource,
and the dispatcher, dispatches the application into
the pools of priorities. At a second stage, the RA
algorithms schedule the applications in each pool by
using an objective function and allocate resources.
The objective function favours the scheduling of the
least resource demanding applications. A variant of
Dijkstra’s algorithm is used for routing and finding
the maximum bandwidth path between the RA node
and a target node. Figure 13 shows the referenced
priority-based allocation strategy. Priority-based allo-
cation strategy suits well the parallel applications
execution where minimum execution time of all appli-
cations is required. The analysis shows that when there
is no bandwidth limitation then this strategy results in
a near optimal allocation. In case the network band-
width is limited, then the priority-based allocation still
processes the same number of concurrent applications
as in the case of no bandwidth limitation. How-
ever, in the former case the resources’ utilization is
affected.

4.16 State Space Search (SSS) Technique

In state space search (SSS) technique, processor is
considered as the main resource for allocation. A
modified A*- algorithm [133] is used to find the
optimal and sub-optimal allocation of the program
modules in a distributed computing system. The node
of a state space search tree represents the module
allocated to a processor. The search tree consists of
nodes to be searched and the communication path
between the nodes. The searching is started from the
root node, traversing other nodes and finally termi-
nated when the node with the minimum allocation
cost is reached that can fulfil the application execution
demands. Two types of cost are considered, namely,
execution and communication cost (between modules
allocated to different processors). The cost function is
the sum of execution and inter-module communication
costs over all processors. The main objective of the
SSS technique is to allocate the program modules to
the processors so that the cost function is minimized,

Survey on Grid Resource Allocation Mechanisms 425

Fig. 13 Flow diagram of
the priority-based RA
mechanism

. . .

Priority-based applications

User-1 User-2 User-n

. . .

Application Application Application

Applications
with 1st

priorities

Applications
with 2nd

priorities

Applications
with mth

priorities

DISPATCHER

. . .

Pool-1 Pool-2 Pool-N

RA algorithm
Scheduling by objective functions of applications

Applications

R1 R2 Rk

Stage-1

Stage-2

without violating the storage or load constraints of the
processors. The SSS strategy also reduces the number
of search nodes in the search space. If there is large
number of nodes in a search space, then this strategy is
not preferred because it increases the communication
cost.

4.17 PDRAP and SDRAP Technique

Discrete RA problem (DRAP) is a combinatorial opti-
mization problem where limited numbers of resources
are allocated to agents such that the objective function
of some performance measure is optimized. The gen-
eral DRAP is an NP-hard problem [47, 121]. In the
aforementioned technique, divide-and-conquer policy
is implemented by considering sequential discrete RA
problem (SDRAP) and parallel discrete RA problems
(PDRAP), the later aimed to run on a hypercube [121].
In SDRAP, the number of agents appears in the ratio
of power of two. The implementation idea of this
SDRAP technique is to apply the divide and con-
quer rule on the original DRAP by involving only
two agents initially for resource allocation. Each agent
has its own utility function. The intermediate results

generated in the problem solving process are calcu-
lated which generate an optimal objective value for the
whole problem.

In PDRAP the agents are located adjacent to each
other which mean that they are neighbouring nodes.
Thus the communication speed is higher than broad-
casting or passing message to nonadjacent nodes.
Also, no special routing scheme is needed because
there is a direct link for communication between
adjacent nodes which reduces message propagation
delays. Performance-wise, PDRAP was proven supe-
rior when the total number of agents was larger than
the number of processing nodes on the hypercube
computer.

4.18 Dynamic Resource Allocation Mechanism

Many RA mechanisms are based on a static approach.
The main flaws in static approaches are that they
are restricted by the administrator’s intervention and
dynamic change of applicant requirements [45]. To
overcome the flaws, an alternate dynamic approach
of RA has been proposed in [45, 48]. In dynamic
RA mechanism, the Grid engine dynamically deploys

426 M.B. Qureshi et al.

the Grid applications to the resources as soon as they
are discovered. If the RA violates the required level
of service at runtime due to change in applications
requirements, then the applications are redeployed
to other resources. The aforementioned approach of
dynamic RA combines the best-fit and process migra-
tion approaches. In the best-fit mechanism, the pro-
cess is mapped to the smallest number of available
resources that can fulfil its requirements. When the
allocated resources get congested then each process
receives a small amount of processing time. Therefore,
the process is migrated to other available resources.
Dynamic RA mechanism is preferred when context
switching does not matter a lot because process migra-
tion is allowed during run time when application
requirements get change or congestion occurs.

4.19 Resource Allocation by Means of Option
Contracts

Option contracts allow the holder to buy or sell an
asset (Grid resource) at any pre-determined price for
future use. This pre-determined price is known as
strike-price. Options can be bought or borrowed and
then sold. After submitting the jobs, users have the
option to decide how much they can pay to utilize
a special required resource [71]. The resources are
considered to be limited, so additional utilization cost
means additional price. The aforementioned is called
spot-price. This price of a resource may fluctuate
depending on the users and resource providers’ perfor-
mance. These price fluctuations put adverse effects on
applications and schedulers [22], and make the Grid
unreliable in terms of execution costs. To reduce the
effect of the large price fluctuations, option contracts
allow the users to benefit from expected price changes.

4.20 Heuristics-Based Resource Allocation

In a distributed data stream processing environment
[8], polynomial time heuristics have sub-optimal solu-
tion for operator mapping. According to the afore-
mentioned scheme, stream processing application is
structured in the form of binary trees. However, each
application has to perform several operations that are
represented in the form of operator.

Four types of relevant operators mapping prob-
lems were described in the proposed approach which
emphasized on how to minimize the CPU utilization
allocated to different jobs or applications. Minimum
CPU utilization has been achieved by sharing or
reusing the intermediate results across different appli-
cations. The aforementioned strategy results in better
throughput with QoS requirement. The problem is
NP-hard [8, 50] therefore, polynomial time heuristics
were proposed as a sub-optimal solution. The analysis
shows that a heuristic-based allocation increases the
probability of finding a valid mapping. The top-down
approach outperforms the bottom-up one particularly
when it is combined with a breadth-first heuristic for
traversing the application tree.

4.21 A Greedy Double Auction Mechanism (GDAM)

An auction-based RA mechanism is proposed in [28].
Specifically, the mechanism is based on double auc-
tions where both users and resource owners submit
their bids. Double auctions are classified into two
categories. The first category is named SDA (Single-
unit Double Auction), where at most one unit of
resource can be traded in one auction. The second
category is known as MDA (Multiple-unit Double
Auction), where more than one unit of resource can
be traded in one auction. Because MDA is more suit-
able for a huge number of buyers and sellers, authors
propose an algorithm that falls into the second cat-
egory. The proposed RA mechanism, called GDAM,
tries to make the resource consumers and providers
trade as more as possible under the guarantee of
their demands. Through an experimental evaluation,
authors show that GDAM outperforms the traditional
MDA mechanisms on both the total trade amount
and the user satisfaction percentage. They also exper-
imentally show that as the number of the auctioneers
becomes larger the economic efficiency of their algo-
rithm also increases, rendering in that way GDAM
fully suitable for Grid environments. The high trade
amount value shows the maximum usage of resources
by this mechanism. Also the user satisfaction is nearly
100 %. It can be concluded that the use of GDAM
strategy is suitable when the number of participants is
very high.

Survey on Grid Resource Allocation Mechanisms 427

4.22 Modified Least Cost Method for Grid Resource
Allocation

A RA algorithm for Grid environments to allocate
jobs to computing nodes has been proposed in [119,
120]. The proposed algorithm (called MLCM) is
based on a modified version of Least Cost Method
(LCM). Specifically, the aim of MLCM is to find
the portion of each job that is allocated to each
processor, so as to minimize the overall computa-
tion cost. The paper formulates the problem in a
rigorous mathematical way and proposes a Linear
Programming (LP) model. Authors provide a compar-
ative performance analysis of their proposed method,
with four other Grid RA methods existing in the lit-
erature named divisible load theory (DLT) method,
northwest corner method (NWCM), least cost
method (LCM), and vogel’s approximation method
(VAM).

According to their experimental evaluation that
takes into account different Grid scenarios, MLCM
results in allocation schemes that produce less com-
putational cost as compared to other well-known RA
strategies.

4.23 Dynamic Level Scheduling (DLS) Mechanism

A dynamic level scheduling (DLS) algorithm is pro-
posed in [123] that selects the best task-resource
pair for the next scheduling by using dynamically
changing priorities of the tasks. The DLS algorithm
takes into account the interprocessor communica-
tion overhead during the phase of mapping prece-
dence constrained communicating tasks onto het-
erogeneous processing architectures. The heteroge-
neous architectures may have limited or irregular
connecting structures. The DLS schedules communi-
cation between communicating resources by reserv-
ing the resources that are used in transferring data
for the duration of data transmission. The DLS cal-
culates the dynamic level of task-resource pair to
minimize the computational time of the application
on a particular resource. The aforementioned tech-
nique eliminates the shared resource contention by
performing scheduling and routing simultaneously.
The DLS mechanism performs very well by making

trade-off between load balancing and inter-processor
communication. It is considered best in the situations
where time is a critical factor in scheduling decisions.
It can also be used effectively in iterative scheduling
strategies.

4.24 Resource Allocation Using Reinforcement
Learning

Reinforcement learning is a mixed Machine Learn-
ing and Artificial Intelligence technique that enables
machines and software agents to automatically adapt
their learning behaviour to maximize system perfor-
mance. Based on this technique, the authors in [39]
studied the minimalist decentralized algorithm for
the allocation of heterogeneous Grid resources. The
heterogeneous reinforcement learning agents share
Grid computational resources for their computational
needs. The agents do not communicate with each
other. Instead, they receive the start-time and the
end time of tasks assigned on particular resources,
which serve as reinforcement signals. When a job
is completed, the corresponding agent receives a
reinforcement signal, and calculates a metric which is
translated as a reward for the chosen resource. Specif-
ically, the aforementioned metric is calculated as the
sum of the waiting time of the respective task in queue
and the execution time of that task on the chosen
resource.

To select resources, the agents use a Q-learning
approach where they keep for each action a Q-
value that is calculated by using the corresponding
reward of each resource. The Q-value shows the
efficiency of a particular resource in the past. The
authors have compared the reinforcement learning
technique with two well known resource selection
techniques:

(a) the random selection rule where resources
are selected randomly with uniform probability
between resources and

(b) the least loaded rule where a resource with min-
imum load is selected for task execution. The
authors experimentally showed that the proposed
reinforcement learning technique outperforms
the aforementioned techniques.

428 M.B. Qureshi et al.

4.25 Combinatorial Auction-Based Resource
Allocation

The authors in [27] proposed a combinatorial auction-
based protocol for RA. The protocol works in four
phases:

(a) requests information from local market for auc-
tion (LMA),

(b) generates all possible combinations between
submitted tasks and resources,

(c) determines the allocation of tasks onto resources,
and

(d) sends the tasks to the chosen Grid service
providers along with their rewards.

The LMA helps Grid service providers to share their
characteristics, and users to find the best matched
resources according to tasks’ requirements. The LMA
consists of external auctioneers that collect infor-
mation on combination of resources and the corre-
sponding price value of these combinations from the
user brokers. Based on this price value, the LMA
executes an approximation algorithm for determining
the winner for the combinatorial auction, sends the
winner information to the brokers, and informs the
Grid service providers about the tasks to be executed
on them. In this method a user bids one value for
combination of Grid resources which meet the task
requirements. In this way a user bids on group of
resources instead of bidding on individual resources
for task execution. The authors have simulated the
combinatorial auction-based protocol on SimGrid
simulator.

4.26 Swift Scheduling Mechanism

A dynamic scheduling technique called Swift Schedul-
ing (SS) has been proposed in [127] that combines
the characteristics of Heuristic approach and Shortest
Job First (SJF) method. Heuristic approaches are used
usually when an optimal solution cannot be reached.
In SJF, the job with the smallest possible execution
time has higher priority in scheduling. In SS tech-
nique, the incoming tasks are stored in a job queue
and the available resources description is stored in a
resource queue. The SS scheduler selects the resources
from the resource queue using a heuristic function.
The heuristic function selects optimized resource for

a specific task that can complete it within minimum
time. The SS mechanism takes into account the stor-
age and processing requirements of a task along with
tasks and resources priority. The main objective of
this technique is to reduce the waiting time of tasks
in queue and their overall computational time. The
authors have analysed the results by comparing the
SS technique with the first-come first-serve (FCFS),
SJF, and simple fare task order (SFTO) methods. After
simulation, it was deduced that SS completed all tasks
with minimum time and minimum cost by utilizing
the maximum amount of resources. The SS technique
best fits for executing real-time applications where
the execution time affects the processing results. The
implementation results show that the SS technique has
significant impacts on allocating Grid computational
resources to astrophysics, high energy physics, and
biotechnology applications.

4.27 Hybrid Resource Allocation Method

Hybrid RA (HRA) method [119, 120] is the modi-
fied version of Divisible Load Theory (DLT) method
by integrating it with Least Cost Method (LCM). The
DLT method is an optimal RA [144] and scheduling
technique that divides the computing load into small
parts which are then allocated to static processors on
the basis of their computing capacities using LCM. In
LCM method, the equal sized task portions are allo-
cated to the processors incurring the least allocation
cost retrieved from a cost table. The HRA technique
allocates the Grid resources by combining DLT and
LCM in such a way to minimize the total computa-
tional cost. Specifically, HRA divides the tasks into
equal sized portions and allocates them to the process-
ing resources using the LCM technique. In case a tie
occurs during the allocation phase, then the tie is bro-
ken by selecting the resource that can host the task of
maximum size. HRA technique works well in situa-
tions when user has limited budget and requires Grid
resources of high capacities.

4.28 Association-Based Resource Allocation

Association-based Grid RA mechanism was proposed
by Manavalasundaram et al. in [87]. The authors have
proposed new computational economy that regulates
resources demand and supply, provides incentives to
the resource owners for leasing, and helps in RA.

Survey on Grid Resource Allocation Mechanisms 429

Based on computational economy, the sharing of coor-
dinated distributed clusters is called Grid-Association
that enables logical coupling of cluster resources. In
Grid-Association resource providers are named clus-
ter owners, while resource consumers are termed as
end-users. Grid Association Agent (GAA) is an entity
representing a resource management system, which
enables the coordinated resource sharing between
clusters. A cluster can get membership of the associa-
tion by instantiating a GAA entity. GAA plays the role
of resource coordinator, spanning over all the clusters.
In case local resources are insufficient for meeting
users’ requirements, then the association-based mech-
anism uses resources from Grid-Association. This
method provides complete autonomy to each user
(resource producer and consumer). In the first stage,
the user submits a task to the local scheduler for RA.
In case local resources are not available or incapable
of fulfilling user requirements, then the task in ques-
tion is migrated to the fastest or cheapest resource
(meeting QoS requirements) in other cluster within the
association.

4.29 Heterogeneous E-Waste Resource Allocation
Mechanism

The Electronic waste (E-waste) is a name used for
electronic products approaching to the end of their
useful life. E-waste Grid consists of components that
are likely to be non-uniform and possibly less reli-
able than new state of the art components. E-waste
resources are heterogeneous in nature, so it is impos-
sible to predict with what power/speed tasks will
execute over these resources. Allocation of E-waste
Grid resources is a challenging task that gained the
attention of research community in the last few years.
Heterogeneous E-Waste Resource (HER) allocation
mechanism [84, 85] is specifically designed for the
allocation of E-waste computing resources that are
geographically dispersed. HER is an auction-based
mechanism working in a continuous fashion that allo-
cates resources without requiring the users to know
how long the task will take to execute. Periodically,
the nodes within the system execute a small test appli-
cation, with the execution time being recorded in a
database for benchmarking purposes.

Each node is credited points based on its per-
formance (execution time) when executing the test
application. Along with the score points expiry times

are also recorded in the database, with the score points
being removed from the corresponding nodes after
exceeding the aforementioned expiry times. Each time
the test application is executed, the old score points are
replaced with the new ones. Nodes that cannot finish
the test application are marked as unreliable or faulty
nodes and are excluded from executing tasks. Given
that each node within the system has been credited its
quantum, then a task submitted to the Grid is immedi-
ately allocated according to a pre-processed auction,
provided that there are sufficient resources. Each node
bids for tasks based on a pre-specified percentage of
its credited points. Each task asks a specified amount
of points and is assigned on the node bidding the
highest amount of points. When a task is assigned on
some node, the asked points are deleted from the node
in question, reducing in that way node’s ability for
future auctions while processing the respective task.
After a task is completed, the points asked from the
task in question are returned to the node executed the
respective task.

4.30 Hierarchical Trusted Resource Allocation
Mechanism

The Hierarchical Trusted RA (HTRA) mechanism
[131] was designed for trusted scheduling, execution
and monitoring of jobs in mobile Grid environment
(e.g., laptops devices and personal digital assistants).
In HTRA architecture shown in Fig. 14, each local
cluster in mobile Grid consists of a set of resources
and a cluster head (CH). The workload in each clus-
ter is measured by the monitoring agent (MA) which
sends the resource status information to the CHs. The
CHs send this information to master server (MS) that
groups and controls the respective local clusters. The
MS stores information about the status and price of
each resource on each local cluster. The user sub-
mits the task (T) and required resource details to the
MS which divides each submitted task into sub-tasks
(t1,...,tn), selects the best CHs based on minimum load
and latency and assigns the sub-tasks to these CHs.
Each CH finds the available processing power and
average load on resources within its local cluster and
allocates to the trusted members.

The trust of a node is calculated by the formula
given in [131]. If a CH cannot allocate resources in
its cluster, then the MS forwards this request infor-
mation to another CH and this process continues

430 M.B. Qureshi et al.

Fig. 14 HTRA
Architecture

CH
selection

MS

t1

t2

t3

.

.
tn

t1

t2

t3

.

.
tn

User 1

User k

T

T

.

.

.

.

.

.

.

.

Cluster 1

Resources CHMA

Cluster N

Resources CHMA

until the task is assigned successfully. After com-
pleting tasks execution, the CHs collect the resultant
data of processed sub-tasks from the corresponding
resources and send them back to the MS. The MS
aggregates the completed sub-tasks results collected
from each CH, stores them in its database and sends
them back to the user. The HTRA mechanism was
tested by measuring average execution delay, average
success ratio, average energy consumption, average
workload and throughput using network simulator
NS-2. The results were obtained by simulating HTRA
against hierarchical resource allocation architecture
(HRAA) and hierarchical campus-wide mobile Grid
(HCMG) using above mentioned metrics (i.e., execu-
tion delay, success ratio, energy consumption, work-
load and throughput) with various execution rates (i.e.,
250 Kb, 500 Kb, 750 Kb, 1000 Kb) and various num-
ber of tasks (i.e., 2, 4, ..., 10). The results show the
supremacy of the HTRA mechanism over HRAA and
HCMG.

4.31 Price Directed Proportional Resource Allocation
Mechanism

In this paper, a market-based mechanism is proposed,
which uses a three layer system model [79]. The lower
layer is composed of Grid resources that are owned
and allocated by Grid resource agents residing at the
nodes within the system. The middle layer plays the
role of Grid market consisting of three types of agent:

(a) Grid task agents,
(b) Grid resource agents, and
(c) Grid request agents.

The top layer is the application layer where Grid
request agents play the role of interfaces through
which users interact with Grid market. Grid resource
agents sell the resources of the underlying Grid to Grid
task agents, with the latter ones making buying deci-
sions within budget constraints to obtain the required
computational resources. The objective of task agents
is an optimization problem where the aim is to com-
plete tasks at minimum cost. The price-directed RA
algorithm consists of two parts:

(a) the Grid resource agent part, and
(b) the Grid task agent part.

Grid resource agent broadcasts the starting prices. At
each iteration, they calculate and announce the new
prices to Grid resource task agents and this process is
repeated until the demand is not equal to the supply of
the resources. On the other extreme, Grid task agents
determine their optimal allocation and make negotia-
tions with Grid resource agents in an iterative fashion
until the total demand equals to the total amount of
available resources. All the interactions between Grid
task/resource agents take place through the Grid mar-
ket. JAVASIM network simulator is used to implement
the algorithm. The simulation is run on a TCP/IP
network model supported by JAVASIM.

Survey on Grid Resource Allocation Mechanisms 431

4.32 Load Forecast-based Allocation algorithm

Every Grid user wants to complete its tasks within
the budget constraint as quickly as possible. This sit-
uation becomes a multi-player game in which every
user competes for processing resources. To obtain
maximum satisfaction within limited budget con-
straint a load forecast-based allocation algorithm is
proposed in [23, 146]. In this algorithm, first Grid
resources register themselves with Grid Information
Service (GIS). User discovers resources by query-
ing the aforementioned service. In response of the
request, GIS returns a list of resources. According
to the information of Grid resources, Grid users sub-
mit their bidding functions. The resource prices are
formed by Grid resources that transfer their feed-
back to Grid users. The submission of bidding by
users continues until a convergent condition is satis-
fied. Analysis processing elements of different speeds
were created and then integrated to produce a sin-
gle processing element. The resulting processing ele-
ment or Grid resource may be considered as a sin-
gle processor with high processing speed, or shared
memory multi-processors, or cluster of computers
having distributed memories. The resources have ini-
tially no load, but later on they were loaded with
workload estimated based on load conditions of the
resources. The results of load forecast method was
the best because each user has information about
the other users which helps in forecasting resource
load.

4.33 Hyper-Heuristic Approach

Because optimal mapping of jobs to the available pro-
cessing nodes on the Grid is an NP-complete problem
[10, BeC01, 50], heuristics and meta-heuristics have
been proposed to solve the aforementioned problem.
Usually, heuristics result in local optimum solutions.
For that reason, meta-heuristic are used to help heuris-
tics escape from the local optimum traps. A meta-
heuristic is an iterative master process that guides
and modifies the operations of subordinate heuristics
to produce a high quality solution. The most well-
known meta-heuristic algorithms are: Genetic Algo-
rithm (GA), Local Search (LS), Simulated Annealing
(SA) and Tabu Search (TS). Because heuristic and
meta-heuristic approaches require substantial exper-
tise in both the problem domain and appropriate

heuristic techniques, [10] introduces a more gen-
eral optimization methodology called hyper-heuristic
(HH) to solve the aforementioned problem. Hyper-
heuristic operates at a higher level of abstraction than
the current state of the art meta-heuristics. The above
HH comes from the hybridization of GA with other
meta-heuristic or heuristic algorithms. In that way the
proposed HH illustrates a set of strategies used to
select a heuristic from a set of low level heuristics
(LLH). A single iteration of HH approach is decom-
posed into two steps, heuristic selection and move-
ment acceptance. The selection process uses greedy
strategy that selects any LLH randomly based on its
previous performance.

The task model is composed of independent, indi-
visible tasks arrive in a random manner. Each task has
parameters like task-id and number of required pro-
cessing cycles. On arrival the tasks are placed in a
queue of unscheduled tasks and then are allocated to
the ready resources in the form of batches. If at any
stage the number of available resources is less than the
number of tasks, then most-into-list (MIL) schedul-
ing heuristic is used for generating randomized initial
population. The MIL assigns random number of tasks
to resources in a round robin fashion. The remain-
ing sorted tasks are assigned to the resources using
two step process. In first step, a task that has longest
processing time is assigned to the fastest resource.
In second step, the next task with shortest processing
time is assigned to the fastest resource. So in this way
all the tasks are assigned to the resources.

The performance of the HH technique was com-
pared with GA, GA-LS, GA-SA, and GA-TS for 50
runs of the sample test case for scheduling 200 tasks
on 20 resources, 100 tasks on 30 resources, and 400
tasks on 250 resources. In all the experiments, the
HH outperforms the other counterparts with minimum
makespan.

4.34 Adaptive Grid Scheduling Mechanism

The Adaptive Grid Scheduling (AGS) [114] is a
decentralized and hybrid scheduling mechanism that
combines both the static and dynamic techniques for
scheduling tasks on computational Grid. The AGS
method detects efficiently the Grid resources failure
and recovers the system to its normal state. Work-
ing strategy of AGS relies on a two phase process.
In the first phase called discovery and monitoring

432 M.B. Qureshi et al.

phase, the AGS discovers and monitors Grid compu-
tational resources. When the directed acyclic graph
(DAG) tasks arrive then in the second phase called
scheduling-rescheduling phase, the AGS schedules
the tasks by using a static scheduling technique. After
the transmission of tasks to the allocated resources,
each resource re-schedules the tasks if necessary. This
task transmission process optimizes the makespan
of the DAG by using its unique property called in
advance task transmission (ITT). In ITT the tasks
are transmitted in advance to the allocated resources
before waiting for the busy resources to be free
from execution. The ITT process avoids communica-
tion link failure which shows the reliability of this
technique.

4.35 Data-Intensive and Network Aware Scheduling
Technique

Most of the applications that need computing
resources are data intensive. Scheduling such applica-
tions on Grid resources take into account not only the
execution time of the tasks on these resources but also
the time required for fetching and transferring data
for the tasks from distributed locations. In [91], the
authors proposed a data intensive and network aware
(DIANA) technique that considers network character-
istics (data transfer time, delays, bandwidth, jitter etc)
along with the processing power of the computational
resources for making scheduling decisions. Main tar-
get of the paper [91] is to reduce the queue and
execution times of data-intensive tasks. The DIANA
scheduler considers the sites for allocating the tasks
that have low load, short waiting queue, required data,
and network stability. The network stability is deter-
mined by the network monitoring system that stores
all the information in its database which is used for
scheduling decisions. The scheduler creates a global
cost matrix on the basis of data, computation, and
network costs for each site. Then the site with the
least cost is selected for tasks execution. This system
works well in case when there are queues of long jobs
waiting for execution.

4.36 Negotiation-Based Advanced Reservation

Grid applications demanding various resources are
scheduled as a result of negotiation between the
user and service provider. In [104], a negotiation–

based Heterogeneous Earliest Finishing Time (HEFT)
algorithm is proposed which is the extension of the
existing list scheduling technique for minimizing the
workflow makespan by using an advanced reservation
mechanism. The traditional HEFT algorithm operates
in three phases:

(a) weighting phase,
(b) ranking phase, and
(c) mapping phase.

To support the negotiation-based scheduling, the
HEFT algorithm was extended by including a fourth
phase i.e, the negotiation phase. In the weighting
phase, the workflow activities are assigned weights
that are equal to the predicted execution times of the
activities. In the ranking phase, a value is assigned
as a rank to each workflow activity by traversing
the workflow graph from the bottom to top. This
rank value for the activity is calculated by adding the
weights assigned to the activity in weighting phase
and the maximum rank value of all the successors.
The workflow activities are sorted on the basis of
these rank values. In the mapping phase, the activity is
scheduled on the resource that gives minimum finish-
ing time. In negotiation phase, a negotiation is made
between the scheduler and resource manager of all the
resources by traversing the activity list. After success-
ful negotiation, a resource that is near in fulfilling all
the requirements of the user request is selected and
reserved.

4.37 Performance-Based Scheduling Strategies

In [77] the authors develop performance-based
scheduling strategies for high throughput computing
applications. The performance of these strategies is
analyzed by scheduling independent tasks on feder-
ated Grids. The resources in these Grids are termed as
internal or external resources. Internal resources are
the Grid local resources existing in the same Grid,
while external resources are the resources existing in
other Grids. Four strategies that are; static objective
(SO), dynamic objective (DO), static objective and
advanced scheduling (SO-AS), and dynamic objec-
tive and advanced scheduling (DO-AS) are considered
each of which executes a set of independent tasks.
The performance of each Grid in the federation is
determined by the total number of jobs it has com-
pleted. The makespan of the tasks is minimized and

Survey on Grid Resource Allocation Mechanisms 433

the throughput is increased by scheduling tasks first
to the Grid internal resources. The strategies were
simulated by using the GridWaySim testbed. It was
concluded that DO-AS outperforms all the other three
counterparts in minimizing the makespan by doing the
best distribution of the jobs on the Grid resources.

4.38 Game Theoretical Energy Efficient Resource
Allocation Mechanism

The game theoretical energy efficient technique
[Suk09] aims at allocating the deadline constrained
tasks to the heterogeneous Grid resources in such
a way to minimize the makespan of the tasks and
the total power consumed by executing these tasks.
Each Grid resource is assumed to be equipped with
dynamic voltage scaling (DVS) module. DVS tech-
nique draws out task execution time by scaling CPU
speed and voltage dynamically. The DVS technique
is used to run the CPU at lower frequency to reduce
power consumption [66]. In the above mentioned
game theoretical technique task is also characterized
by the resource architecture (CPU type, speed in GHz,
bus types, memory etc) along with the deadline con-
straint where it will be executed. Each resource is
considered as a player. The game theoretical alloca-
tion technique tries to allocate the task to at least one
computational Grid resource in a way to fulfill all the
characteristics and deadline constraints of the task and
in turns a metatask. This is called as feasible task map-
ping. The total power consumed is the sum of all the
powers utilized by individual task. The metatask is
considered to be scheduled with minimum total power
consumed by adjusting the DVS level of each resource
so that they can guarantee task execution within dead-
line constraints. The technique was compared with
min-min heuristic using linear programming tool
called LINDO. The results show that the proposed
technique outperforms min-min 5–10 % when consid-
ering power as optimization criteria. The time com-
plexity of this technique is O(nmlog(m)) where n is
the total number of tasks and m the total number of
computational Grid resources.

4.39 Two-Phase Heuristic Mechanism

The two-phase heuristic (2PH) approach [103] is
the extension of min-min heuristic used to sched-
ule independent tasks in a distributed environment

with minimum energy consumption. The 2PH tech-
nique additionally implements the local search oper-
ator called H2LL which performs the load balancing
on Grid computational resources. The H2LL operator
moves the task from the heavy loaded resource to the
least loaded resource that has minimum completion
time among all the candidate resources including the
moved task. The sensitivity analysis shows that H2LL
influences the quality of schedule, so the implemen-
tation results show that 2PH heuristic produces good
results than min-min heuristic in much less time (in
3 milliseconds) on Xeon E5400 server class machine.
The 2PH technique can be used to schedule inde-
pendent tasks with less energy consumption where
min-min can be used.

4.40 Traits of Resource Allocation

RA mechanisms in Grid systems can be compared
based on some common characteristics they adopt for
solving computing- and data-intensive applications.
Searching mechanism, job type, time complexity, opti-
mality, allocation strategy, operational environment
and objective function are some of the common and
basic characteristics that should be examined in each
RA mechanism. These features are briefly described
as follows.

4.40.1 Searching Mechanism

The process of finding the resources and activities is
known as the searching mechanism. Searching is a
vital step during the RA process; the faster the search-
ing the quicker the overall RA process will be. In this
survey, different RA strategies explicitly define the
searching process. Some of the strategies have implicit
searching mechanisms.

4.40.2 Application Type

Grid supports different types of applications and the
RA mechanisms are developed on the basis of these
application requirements. The applications may be
dependent workflow applications, independent divis-
ible applications, or atomic tasks. Workflow appli-
cations consist of many divisible tasks with data
and execution dependency. Divisible applications also
consist of multiple tasks with no data and execution
dependencies and hence no communication among

434 M.B. Qureshi et al.

each other. The atomic tasks are indivisible single
tasks.

4.40.3 Time Complexity

Time complexity of RA mechanism can be defined
as the amount of time the mechanism or the algo-
rithm takes to complete the process. For instance in
[115], the time complexity for single-RA algorithm
is O(n3) and O(n3log(1/)) for two-resource alloca-
tion algorithm where two resources are allocated. The
complexity for every mechanism may vary based on
the design of the RA mechanism. Moreover, complex-
ity of resource scheduling strategies plays an impor-
tant role particularly in real time computing systems
where an immediate response for the RA request is
required.

4.40.4 Optimality

Optimality can be defined as the RA strategy that
performs best against the objectives. In this sur-
vey, Grid RA mechanisms have been evaluated for
the delivery of optimal solutions. Since every RA
mechanism has to achieve an objective function, opti-
mality is measured on the basis of achieving that
function.

4.40.5 Resource Allocation Strategy (RAS) Taxonomy

The process of dispatching resources to activities is
called RA strategy (RAS) taxonomy. There are two
types of RAS taxonomy:

(a) centralized, and
(b) distributed.

Resources that are allocated through single point are
known as centralized RAS taxonomy. Alternatively,
resources that are allocated from multiple points are
known as distributed RAS taxonomy.

4.40.6 Operational Environment

The environment and platform on which the RA mech-
anism can be executed is known as the operational
environment. For example “radio RA for data ser-
vices” is executed on universal mobile telecommuni-
cations system (UMTS) Networks.

4.40.7 Objective Function

Every RA mechanism has an objective function
specifically designed for a specific purpose of the
mechanism, for example, minimizing the cost of tasks
execution on a resource. Mostly, the main objective
function of the mechanisms is the efficient allocation
of resources.

4.40.8 Citations to the Mechanisms

Citation means reference to a published or unpub-
lished work. In broader sense, it demonstrates the
importance or validity of that mechanism. The above
mentioned citations in Table 3 were taken up to the
date of submission of this paper.

5 Immediate Extension of Grid Resource
Management

Many emerging IT technologies like Cloud comput-
ing, Autonomic computing, Mobile computing etc are
the enhanced paradigms that are developed quickly
based on the Grid technology in recent years. Cloud
computing provides opportunity to the users to use
Cloud resources as services known as infrastructure
as a service, platform as a service, and software as
a service. Autonomic computing manage applications
execution in dynamically changing and unpredictable
environments without any user’s manual intervention
[15, 102, 109] by regularly checking and monitoring
the changing conditions automatically. Mobile com-
puting extends the computing facilities to the smart
mobile devices in order to enhance their capabilities
on demand for accommodating computational- and
storage-intensive applications [1, 15, 59, 111, 118].

In the following subsection, we discuss about the
resource management in Cloud computing environ-
ment in detail.

5.1 Cloud Computing

Of all these paradigms, Cloud computing appears
to be the most promising one that delivers reliable
services through virtualized computing and storage
technologies. Buyya et al. [19] define Cloud as:

“Cloud is a type of parallel and distributed sys-
tem consisting of a collection of inter-connected and

Survey on Grid Resource Allocation Mechanisms 435

virtualized computers that are dynamically provi-
sioned and presented as one or more unified com-
puting resource(s) based on service-level agreements
established through negotiation between the service
provider and consumers”.

Cloud computing is a computing platform that
provides opportunity to the users to use the Cloud
resources as services that satisfy the predefined SLA.
The Cloud computing infrastructure is fully supported
and evolved from Grid computing but the difference
come in technical and non-technical characteristics
like resource pooling mechanisms on-demand, scal-
ability, virtualization support, resource usage under
pay-per-use rule, guaranteed SLA, and self service
[105]. The aim of shifting the Grid technology to
Cloud was to deliver economy-based reliable storage
and computing resources to the users as consistent
services similar to the physical resources through the
data centers that aggregate processing and comput-
ing power of the Cloud. Cloud is a service oriented
platform that provides three types of basic services at
different levels:

(a) Software as a Service (SaaS),
(b) Platform as a Service (PaaS), and
(c) Infrastructure as a Service (IaaS).

The user requests a service through QoS parameters
which are recorded in a predefined SLA. The objec-
tive of delivering the three types of services is to give
a facility to the users to use existing softwares, plat-
forms, and infrastructures on the fly without investing
in new ones and wasting capacities in personnel train-
ings [59].

Cloud and Grid computing paradigms share a
lot in developing resource allocation mechanisms.
Grid computing supports bath scheduling of tasks to
computing resources which are managed by a local
resource manager that assigns the resources for a spe-
cific duration of time specified by the user. If the
required resources are not available for the user’s
requested time duration, then the tasks wait in the wait
queue till the availability of resources. The resource
allocation strategy in Cloud computing minimize the
tasks wait time because multiple resources (may be
infinite [26]) are shared by multiple users at the same
time without waiting in long queues [35] by using vir-
tualization. Virtualization provides encapsulation and
abstraction to the Cloud which in turn gives efficient
and cost effective utilization of resources. In Grid

environment, the organizations want full control of the
resources and do not fully virtualizes the resources,
but somehow virtualization is also provided like Nim-
bus [19, 35]. Users’ preferences (reliability, trust, cost,
security of their operations) and Cloud services per-
formance (e.g., response time that is subject to the
network traffic) fluctuates dynamically in Cloud envi-
ronment, therefore the resource selection approach
will also match them dynamically. The user strives to
minimize the resource usage cost while the provider
tends to maximize it. The resources in Cloud are more
reliable than Grid [16]. But in Cloud, the most chal-
lenging task in the resource matching process is the
inter-Cloud communication when the requester and
provider use different notations for describing their
services and requirements because service descrip-
tion in terms of syntax and semantics is difficult to
enforce [26]. So symmetric attributes-values based
matching of user requirements and request is not
possible. This drawback is covered by the semantic
web service that applies an QoS ontology for under-
standing different representations. The QoS ontol-
ogy describes QoS type, dynamicity and importance.
Based on the QoS preferences, the ontology based
matchmaking approach helps users in deploying their
applications on the most suitable and proper IaaS
provider.

6 Summary and Conclusions

In this paper, we have reviewed, compared, and high-
lighted number of resource discovery and allocation
mechanisms. The existing surveys on RA mechanisms
cover very few methods on Grid RA, and each one
focuses on a single type of underlying architecture;
centralized, distributed, static or dynamic. We have
consolidated all of the paradigms in a single platform
comprehensively and discussed:

(a) the motivations for considering efficient Grid
resource management,

(b) resource discovery by considering execution
cost, processing time, power consumption and
suitable information propagation strategies of the
resources, and

(c) the high energy consumption issues in RA mech-
anisms.

We have compared these mechanisms for Grid

436 M.B. Qureshi et al.

resources based on their common features. Time
complexity, searching mechanism, allocation strat-
egy, optimality, operational environment and objec-
tive function are the common and basic features
that all surveyed RA mechanisms adopt for solv-
ing computing- and data-intensive applications. We
have also suggested the incorporation of energy-aware
features in RA mechanisms because in different sit-
uations these mechanisms perform much better but
analyzing based on energy consumption, will waste
much of the resource power.

We believe that this comprehensive analysis of
leading research in Grid domain provides readers
with an understanding of the essential concepts of
the RA mechanisms in Grid systems and helps them
to identify the important and outstanding issues for
further investigation. The paper also helps in choos-
ing the best-suited RA mechanism for a particular
application or system, and can be proved as an effi-
cient remedy for the researchers working in this
area.

The literature shows a lot of work on Grid RA
mechanisms but still these mechanisms need improve-
ments to face many challenges. One of the challenges
is the lack of generality to make them transparent for
every type of service provisioning. These mechanisms
need to efficiently accommodate tasks of diverse
requirements in order to facilitate the users without
caring about the capabilities and limitations of the
mechanism. Dealing with dynamicity on application
demands is another challenge because most applica-
tions demands change dynamically during execution
that needs to be accommodated at run time. So, these
challenges can degrade system performance if not
addressed properly.

References

1. Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., Buyya,
R.: Cloud-based augmentation for mobile devices: Moti-
vation, taxonomies, and open challenges. In: IEEE Com-
munication Surveys & Tutorials. IEEE Communications
Society Press, USA (2013, in press)

2. Ali, M., Dong, Z.Y.: RSA-Grid: A grid computing based
framework for power system reliability and security anal-
ysis. In: Proceedings of IEEE PES General Meeting,
Montreal, 6–10 June (2006)

3. Amarnath, B.R., Somasundaram, T.S., Ellappan, M.,
Buyya, R.: Ontology-based grid resource management.
Softw. Pract. Exper. 39, 1419–1438 (2009)

4. Andreozzi, S., De Bortoli, N., Fantinel, S., Ghiselli, A.,
Rubini, G.L., Tortone, G., Vistoli, M.C.: GridICE: A mon-
itoring service for grid systems. Futur. Gener. Comput.
Syst. 21, 559–571 (2005)

5. Arora, M., Das, S.K., Biswas, R.: A de-centralized
scheduling and load balancing algorithm for heteroge-
neous grid environments. In: Proceedings of the IEEE
International Conference on Parallel Processing Work-
shops (ICPPW’02), pp. 499–505 (2002)

6. Batista, D.M., Fonseca, N.L.S.: A brief survey on resource
allocation in service oriented grids. In: 1st IEEE Work-
shop on Enabling the Future Service-Oriented Internet –
Globecom. Nov 26–30, pp. 1–5 (2007)

7. Balter, M.H., Leighton, T., Lewin, D.: Resource discovery
in distributed networks. In: 18th ACM-SIGACT/SIGOPS
Symposium on Principles of Distributed Computing
(PODC ’99), pp. 229–238. Atlanta (1999)

8. Benoit, A., Casanova, H., Sonigo, V.R., Robert, Y.:
Resource allocation for multiple concurrent in-network
stream-processing applications. J. Parallel Comput. 37(8),
331–348 (2011)

9. Bethel, W., Siegerist, C., Shalf, J., Shetty, P., Jankun-
Kelly, T.J., Kreylos, O., Ma, K.L.: VisPortal: deploy-
ing grid-enabled visualization tools through a web-portal
interface, Technical Report LBNL-52940, Lawrence
Berkeley National Laboratory (2003)

10. Bhanu, S.M.S., Gopalan, N.P.: A hyper-heuristic approach
for efficient resource scheduling in grid. Int. J. Comput.
Commun. Control III(3), 249–258 (2008)

11. Bode, B., Halstead, D.M., Kendall, R., Lei, Z.: The
portable batch scheduler and the maui scheduler on linux
clusters. In: Proceedings of 4th Annual Linux Showcase
and Conference, vol. 4, pp. 1–9. Atlanta (2000)

12. Bonnassieux, F., Harakaly, R., Primet, P.: MapCenter: An
open grid status visualization tool. In: Proceedings of
the ISCA 15th International Conference on Parallel and
Distributed Computing System. Louisville (2002)

13. Bradley, D., Harper, R., Hunter, S.: Workload-based
power management for parallel computer systems. IBM.
J. Res. Dev. 47(5), 703–718 (2003)

14. Buyya, R., Chapin, S., DiNucci, D.: Architectural mod-
els for resource management in the grid. In: Proceedings
of the 1st IEEE/ACM International Workshop on Grid
Computing, pp. 18–35. Springer Verlag Series, Germany,
Banglore, India (2000)

15. Buyya, R., Calheiros, R.N., Li, X.: Autonomic cloud
computing: Open challenges and architectural elements.
In: Proceedings of the 3rd International Conference of
Emerging Applications of Information Technology (EAIT
2012, IEEE Press, USA), Kalkota, 29 Nov–01Dec 2012

16. Buyya, R., Ranjan, R.: Federated resource management in
grid and cloud computing systems. Futur. Gener. Comput.
Syst. 26, 1189–1191 (2010)

17. Buyya, R.: Economic-based distributed resource
management and scheduling for grid computing. PhD
thesis, School of Computer Science and Software Engi-
neering, Monash University, Melbourne, Australia, p. 180
(2002)

18. Buyya, R., Abramson, D., Venugopal, S.: The grid econ-
omy. Proc. IEEE 93(3), 698–714 (2005)

Survey on Grid Resource Allocation Mechanisms 437

19. Buyya, R. et al.: Cloud computing and emerging IT plat-
forms: vision, hype, and reality for delivering computing
as the 5th utility. Futur. Gener. Comput. Syst. (2009).
doi:10.1016/j.future.2008.12.001

20. Cai, C., Wang, L., Khan, S.U., Tao, J.: Energy-aware
high performance computing: A taxonomy study. In: 17th
IEEE International Conference on Parallel and Distributed
Systems (ICPADS), pp. 953–958. Taiwan (2011)

21. Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang,
Q., Gautam, N.: Managing server energy and operational
costs in hosting centers. ACM Sigmet Perform. Eval. Rev.
33(1), 303–314 (2005)

22. Cheliotis, G., Kenyon, C., Buyya, R., Melbourne, A.: Grid
Economics: 10 lessons from finance. Technical Report,
Zurich Research Lab, Melbourne (2003)

23. Cheng, C., Zhi-Jie, L.: Parallel algorithm for grid resource
allocation based on nash equilibrium. In: Proceeding of
5th International Conference on Machine Learning and
Cybernetics. pp. 4383-4388. Dalian (2006)

24. Cooke, A., Gray, A.J., Ma, L., Nutt, W., Magowan, J.,
Oevers, M., Taylor, P., Byrom, R., Field, L., Hicks, S.,
Leake, J., Soni, M., Wilson, A.: R-GMA: An informa-
tion integration system for grid monitoring. In: Springer
Lecture Notes Computer Science, vol. 2888, pp. 462–481
(2003)

25. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.:
Grid information services for distributed resource sharing.
In: Proceedings of the 10th International Symposium on
High Performance Distributed Computing, pp. 181–194
(2001)

26. Dastjerdi, A.V., Buyya, R.: A taxonomy of QoS man-
agement and service selection methodologies for cloud
computing: Methodology, systems, and applications. In:
Wang, L., Ranjan, R., Chen, J., Benatallah, B (eds.) ISBN:
9781439856413, pp. 109–131. CRC Press, Boca Raton
(2011)

27. Das, A., Grosu, D.: Combinatorial auction-based proto-
cols for resource allocation. In: Proceedings of 19th IEEE
International Parallel and Distributed Processing Sympo-
sium (IPDPS’05), vol. 14, pp. 251.1 (2005)

28. Ding, D., Luo, S., Gao, Z.: A greedy double auction
mechanism for grid resource allocation. In: Proceedings
of the 15th International Conference on Job Scheduling
Strategies for Parallel Processing (JSSPP’10), pp. 35–50.
Atlanta (2010)

29. Elyada, A., Ginosar, R., Weiser, U.: Low-complexity
policies for energy-performance tradeoff in chip-multi-
processors. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 16(9), 1243–1248 (2008)

30. Elnozahy, E.N., Kistler, M., Rajamony, R.: Energy-
efficient server clusters. In: Proceedings of the 2nd Inter-
national Conference on Power-Aware Computer Systems
(PACS ’02), pp.179–197. Berlin (2002)

31. Etsion, Y., Tsafrir, D.: A short survey of commercial clus-
ter batch schedulers. Technical Report 2005-13, School of
Computer Science and Engineering, Hebrew University of
Jerusalem (2005)

32. Fernandez, D., Mehri Dehnavi, M., Gross, W.J.,
Giannacopoulos, D.: Alternate parallel processing
approach for FEM. IEEE Trans. Magn. 48(2), 399–402
(2012)

33. Fidanova, S., Durchova, M.: Ant algorithm for grid
scheduling problem. In: Proceedings of the 5th Interna-
tional Conference on Large-Scale Scientific Computing
(LSSC’05), pp. 405–412. Berlin (2006)

34. Foster, I., Roy, A., Sander, V.: A quality of service
architecture that combines resource reservation and appli-
cation adaptation. In: Proceedings of the 8th Interna-
tional Workshop on Quality of Service, pp. 181–188
(2000)

35. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing
and grid computing 360-degree compared. In: Grid Com-
puting Environments Workshop 2008(GCE’08), pp. 1–10
(2008)

36. Freeh, V.W., Pan, F., Kappiah, N., Lowenthal, D.K.,
Springer, R.: Exploring the energy-time tradeoff in MPI
programs on a power-scalable cluster. In: Proceedings of
19th IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS ’05), IEEE Computer Society, p.
4. 1. Washington, DC (2005)

37. Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke,
S.: Condor-G: A computation management agent for
multi-institutional grids. Clust. Comput. 5(3), 237–246
(2002)

38. Garg, S.K., Buyya, R.: Exploiting heterogeneity in
grid computing for energy-efficient resource allocation.
In: Proceedings of 17th International Conference on
Advanced Computing and Communications (ADCOM
’09), pp. 14–18. Bengaluru (2009)

39. Galstyan, A., Czajkowski, K., Lerman, K.: Resource
allocation in the grid using reinforcement learning.
In: Proceedings of the 3rd International Joint Confer-
ence on Autonomous Agents and Multiagent Systems
(AAMAS’04), pp. 1314–1315. New York (2004)

40. Galstyan, A., Czajkowski, K., Lerman, K.: Resource allo-
cation in the grid with learning agents. J. Grid Comput.
3(1), 91–100 (2005)

41. Hsu, C., Feng, W.: A feasibility analysis of power aware-
ness in commodity-based high-performance clusters. In:
Proceedings of 7th IEEE International Conference on
Cluster Computing (CLUSTER ’05). Boston (2005)

42. Hsu, C., Feng, W., Archuleta, J.S.: Towards efficient
supercomputing: A quest for the right metric. In: Pro-
ceedings of 1st IEEE Workshop on High-Performance,
Power-Aware Computing (in Conjunction with the 19th
International Parallel & Distributed Processing Sympo-
sium). Denver (2005)

43. Hsu, C., Feng, W.: A power-aware run-time system
for high performance computing. In: Proceedings of
2005 ACM/IEEE Conference on Supercomputing. Seattle
(2005)

44. Huang, Y., Chao, B.: A prioity-based resource allocation
strategy in distributed computing networks. J. Syst. Softw.
58(3), 221–233 (2001)

45. Huedo, H., Montero, R.S., Llorente, L.M.: A framework
for adaptive execution in grids. Softw. Pract. Exper. 34(7),
631–651 (2004)

46. Huang, Y., Vekatasubramanian, N.: QoS-based resource
discovery in intermittently available environments. In:
Proceedings of 11th IEEE International Symposium on
High Performance Distributed Computing (HPDC-11 ’02)
(2002)

http://dx.doi.org/10.1016/j.future.2008.12.001

438 M.B. Qureshi et al.

47. Ibaraki, T., Katoh, N.: Resource Allocation Problems:
Algorithmic Approaches. MIT Press, Cambridge (1988)

48. Ismail, L.: Dynamic resource allocation mechanisms for
grid computing environment. In: Proceedings of 3rd IEEE
International Conference on Testbeds and Research Infras-
tructure for the Development of Networks and Communi-
ties, pp. 1–5. Lake Buena (2007)

49. Jayasudha, A.R., Purusothaman, T.: Grid scheduling using
differential evolution for solving multi-objective opti-
mization parameters. Int. J. Comput. Sci. Eng. 02(07),
2322–2327 (2010)

50. Kamalam, G.K., Bhaskaran, V.M.: New enhanced heuris-
tic min-mean scheduling algorithm for scheduling meta-
tasks on heterogeneous grid environment. Eur. J. Sci. Res.
70(03), 423–430 (2012)

51. Katoh, N., Ibaraki, T.: Resource allocation problems. In:
Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinato-
rial Optimization, vol. 2, pp. 159–260. Springer (1998)

52. Karaoglanoglou, K., Karatza, H.: Resource discovery in a
dynamical grid based on re-routing tables. Simul. Model.
Pract. Theory 16(6), 704–720 (2008)

53. Kandagatla, C.: Survey and Taxonomy of Grid Resource
Management Systems. University of Texas, Austin (2003)

54. Kertesz, A., Kacsuk, P.: A taxonomy of grid resource bro-
kers. In Distributed and Parallel Systems, Springer US, 6th
Austrian-HungarianWorkshop on Distributed and Parallel
Systems (DAPSYS’06), pp. 201–210. USA (2007)

55. Khan, S., Ahmad, I.: A cooperative game theoretical tech-
nique for joint optimization of energy consumption and
response time in computational grids. IEEE Trans. Parallel
Distrib. Syst. 20(3), 346–360 (2009)

56. Khan, S.U.: A game theoretical energy efficient resource
allocation technique for large distributed computing
systems. In: International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA), pp. 48-54. Las Vegas (2009)

57. Khan, S.U.: A goal programming approach for the joint
optimization of energy consumption and response time
in computational grids. In: 28th IEEE International Per-
formance Computing and Communications Conference
(IPCCC), pp. 410–417. Phoenix (2009)

58. Khargharia, B., Hariri, S., Yousif, M.S.: Autonomic power
and performance management for computing systems.
Clust. Comput. 11(2), 167–181 (2008)

59. Khan, A.N., Kiah, M.L.M., Khan, S.U., Madani, S.A.:
Towrds secure mobile cloud computing: A survey. Futur.
Gener. Comput. Syst. (2012). doi:10.1016/j.future.2012./
08.003

60. Khan, S.U., Min-Allah, N.: A goal programming based
energy efficient resource allocation in data centers. J.
Supercomput (2011). doi:10.1007/s11227-011-0611-7

61. Kim, K.H., Buyya, R., Kim, J.: Power aware scheduling
of bag-of-tasks applications with deadline constraints on
DVS-enabled clusters. In: Proceedings of 7th IEEE Inter-
national Symposium on Cluster Computing and Grid, pp.
541-548. Rio de Janeiro (2007)

62. Kolodziej, J., Khan, S.U., Xhafa, F.: Genetic algorithms
for energy-aware scheduling in computational grids. In:
6th IEEE International Conference on P2P, Parallel, Grid,
Cloud, and Internet Computing (3PGCIC), pp. 17–24.
Barcelona (2011)

63. Kolodziej, J., Khan, S.U., Wang, L., Byrski, A., Min-
Allah, N., Madani, S.A.: Hierarchical genetic-based grid
scheduling with energy optimization. Clust. Comput.
doi:10.1007/s10586-012-0226-7

64. Kolodziej, J., Khan, S.U.: Multi-level hierarchical genetic-
based scheduling of independent jobs in dynamic hetero-
geneous grid environment. Inf. Sci. 214, 1–19 (2012)

65. Kolodziej, J., Khan, S.U.: Data scheduling in data grids
and data centers: A short taxonomy of problems and
intelligent resolution techniques. Trans. Comput. Collect.
Intell. X, 103–119 (2013)

66. Kolodziej, J., Khan, S.U., Wang, L., Kisiel-Dorohinicki,
M., Madani, S.A., Niewiadomska-Szynkiewicz, E.,
Zomaya, A.Y., Xu, C.-Z.: Security, energy, and
performance-aware resource allocation mechanisms for
computational grids. Futur. Gener. Comput. Syst. 31, 77–
92 (2014)

67. Kolodziej, J., Khan, S.U., Wang, L., Zomaya, A.Y.:
Energy efficient genetic-based schedulers in computa-
tional grids (Forthcoming)

68. Koopman, B.: The optimum distribution of effort. Oper.
Res. JSTOR 9(1), 52–63 (1953)

69. Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy
and survey of grid resource management systems for dis-
tributed computing. Softw. Pract. Exper. 32(2), 135–164
(2002)

70. Krawczyk, S., Bubendorfer, K.: Grid resource allocation:
allocation mechanisms and utilization patterns. In: Pro-
ceedings of 6th Australasian Symposium on Grid Comput-
ing and e-Research (AusGrid ’08), vol. 82. Wollongong
(2008)

71. Krawczyk, S., Bubendorfer, K.: Grid resource allocation
by means of option contracts. IEEE Syst. J. 3(1), 49–64
(2009)

72. Kutten, S., Peleg, D.: Asynchronous resource discovery
in peer-to-peer networks. Comput. Netw. 51, 190–206
(2007)

73. Lamnitchi, A., Foster, I.: On fully decentralized resource
discovery in grid environments. In: Proceedings of 2nd

IEEE International Workshop on Grid Computing. Denver
(2001)

74. Lamnitchi, A., Foster, I., Nurmi, D.: A peer-to-peer
approach to resource discovery in grid environments. In:
Proceedings of 11th Symposium on High Performance
Distributed Computing. Edinburgh (2002)

75. Laure, E., Stockinger, H., Stockinger, K.: Performance
engineering in data grids. Concurr. Comput. Pract. Exper.
17(2–4), 171–191 (2005)

76. Lawson, B., Smirni, E.: Power-aware resource allocation
in high-end systems via online simulation. In: Proceedings
of 19th Annual International Conference on Supercomput-
ing (ICS ’05). pp. 229–238. Cambridge (2005)

77. Leal, K., Huedo, E., Liorente, I.M.: Performance-based
scheduling strategies for HTC applications in complex
federated grids. Concurr. Comput. Pract. Exper. 22, 1416–
1432 (2010)

78. Li, J., Khan, S.U., Ghani, N.: Semantics-based resource
discovery in large-scale grids. In: Zomaya, A.Y., Sarbazi-
Azad, H. (eds.) Large Scale Network-centric Computing
Systems, chap. 17. Wiley, Hoboken (2013). ISBN: 978-0-
470-93688-7

http://dx.doi.org/10.1016/j.future.2012.08.003
http://dx.doi.org/dx.doi.org/10.1016/j.future.2012.08.003
http://dx.doi.org/10.1007/s11227-011-0611-7
http://dx.doi.org/10.1007/s10586-012-0226-7

Survey on Grid Resource Allocation Mechanisms 439

79. Li, C., Li, L.: Competitive proportional resource allocation
policy for computational grid. Futur. Gener. Comput. Syst.
Elsevier 20(6), 1041–1054 (2004)

80. Lindberg, P., Leingang, J., Lysaker, D., Khan, S.U., Li,
J.: Comparison and analysis of eight scheduling heuristics
for the optimization of energy consumption and makespan
in large-scale distributed systems. J. Supercomput. 59(1),
323–360 (2012)

81. Li, F., Qi, D., Zhang, L., Zhang, X., Zhang, Z.: Research
on novel dynamic resource management and job schedul-
ing in grid compuing. In: Proceedings of 1st IEEE
International Multi-Symposiums on Computer and Com-
putational Sciences, (IMSCCS’06), vol. 1, pp. 709–713
(2006)

82. Li, W., Xu, Z., Dong, F., Zhang, J.: Grid resource discov-
ery based on a routing-transferring model. In: Proceedings
of 3rd International Workshop on Grid Computing (GRID
’02), pp. 145–156. Springer, Baltimore (2002)

83. Ludwig, S.A., Santen, P.V.: A grid service discovery
matchmaker based on ontology description. Euroweb
2002, The Web and the Grid, From E-science to E-
business (2002)

84. Lynar, T.M., Herbert, R.D.: Allocating grid resources for
speed and energy conservation. In: Proceedings of 6th
International Conference on Information Technology and
Applications, pp. 55–60. Vietnam (2009)

85. Lynar, T.M., Herbert, R.D., Chivers, W.J.: Simon: A grid
resource allocation mechanism for heterogeneous e-waste
computers. In: Proceedings of 7th Australian Symposium
on Grid Computing and e-Research (AusGrid’09), pp. 69–
76. Wellington (2009)

86. Lynar, T.M., Herbert, R.D., Simon Chivers, W.J.:
Resource allocation to conserve energy in distributed com-
puting. Int. J. Grid Util. Comput 2(1), 1–10 (2011)

87. Manavalasundaram, V.K., Duraiswamy, K.: Association
based grid resource allocation algorithm. Eur. J. Sci. Res.
78(2), 248–258 (2012)

88. Maheswaran, M., Krauter, K.: A parameter-based
approach to resource discovery in grid computing sys-
tems. In: 1st IEEE/ACM International Workshop on Grid
Computing, pp. 181–190 (2000)

89. Marzolla, M., Mordacchini, M., Orlando, S.: Peer-to-peer
systems for discovering resources in a dynamic grid.
Parallel Comput. 33, 339–358 (2007)

90. Mastroianni, C., Talia, D., Verta, O.: Designing an infor-
mation system for grid: Computing hierarchical, decen-
tralized P2P and super-peer models. Parallel Comput. 34,
593–611 (2008)

91. McClatchey, R., Anjum, A., Stockinger, H., Ali, A.,
Willers, I., Thomas, M.: Data intensive and network aware
grid scheduling. J. Grid Comput. 5(1), 43–64 (2007)

92. Menasc’e, D., Casalicchio, E.: A framework for resource
allocation in grid computing. In: Proceedings of IEEE
Computer Society’s 12th Annual International Sympo-
sium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems (MASCOTS ’04), pp.
259–267. Volendam (2004)

93. Mehri Dehnavi, M., Fernandez, D.M., Giannacopoulos,
D.D.: Enhancing the performance of conjugate gradient
solvers on graphic processing units. IEEE Trans. Magn.
47(5), 1162–1165 (2011)

94. Mehri Dehnavi, M., Fernandez, D.M., Giannacopoulos,
D.D.: Enhancing the performance of conjugate gradient
solvers on graphic processing units. IEEE Trans. Magn.
47(5), 1162–1165 (2011)

95. Meisner, D., Gold, B., Wenisch, T.: PowerNap: Eliminat-
ing server idle power. In: Proceeding of 14th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 205–216. Wash-
ington (2009)

96. Meshkova, E., Riihijarvi, J., Petrova, M., Mahonen, P.:
A survey on resource discovery mechanisms, peer-to-peer
and service discovery frameworks. Comput. Netw. 52,
2097–2128 (2008)

97. Min-Allah, N., Hussain, H., Khan, S.U., Zomaya, A.Y.:
Power efficient rate monotonic scheduling for multi-
core systems. J. Parallel Distrib. Comput. 72(1), 48–57
(2011)

98. Mohammad, S.B., Khaoua, M.O., Ababneh, I.: An effi-
cient non-contiguous processor allocation strategy for 2D
mesh connected multicomputer. Int. J. Inf. Sci. 177(14),
2867–2883 (2007)

99. Netto, M.A.S., Buyya, R.: Resource co-allocation
in grid computing environment. In: A Handbook
of Research on P2P and Grid Systems for Ser-
vice Oriented Computing: Models, Methodologies, and
Applications, pp. 476–494. IGI Global, New York
(2010)

100. Newman, H.B., Legrand, I.C., Galvez, P.: MonALISA: A
Distributed Monitoring Service Architecture, CHEP03, La
Jolla, California, March 24–28 (2003)

101. Orgerie, A.C., Lefevre, L., Gelas, J.P.: Save watts in
your grid: Green strategies for energy-aware frame-
work in large scale distributed systems. In: Proceed-
ings of 14th IEEE International Conference on Paral-
lel and Distributed Systems, pp. 171–178. Melbourne
(2008)

102. Parashar, M., Hariri, S.: Autonomic computing: An
overview. In: Lecture Notes Computer Science, vol. 3566,
pp. 247–259. Springer, Berlin (2005)

103. Pinel, F., Pecero, J.E., Bouvry, P., Khan, S.U.: A
two-phase heuristic for the scheduling of indepen-
dent tasks on computational grids. In: ACM/IEEE/IFIP
International Conference on High Performance Com-
puting and Simulation (HPCS), pp. 471–477. Istanbul
(2011)

104. Prodan, R., Wieczorek, M.: Negotiation-based scheduling
of scientific grid workflows through advanced reserva-
tions. J. Grid Comput. 8, 493–510 (2010)

105. Ranjan, R., Buyya, R., Parashar, M.: Special section on
autonomic cloud computing: technologies, services, and
applications (2011). doi:10.1002/cpe

106. Ranjan, R., Harwood, A., Buyya, R.: A taxonomy of
peer-to-peer based complex queries: a grid perspective.
arXiv:0610163 (2006)

107. Ranjan, R., Harwood, A., Buyya, R.: Peer-to-peer based
resource discovery in global grids: A tutorial. IEEE Com-
mun. Surv. Tutor. 10(2), 6–33 (2008)

108. Rajan, A., Rawat, A., Verma, R.K.: Virtual computing
grid using resource pooling. In: IEEE Proceedings of
2008 International Conference on Information Technol-
ogy, (ICIT ’08), pp. 59–64 (2008)

http://dx.doi.org/10.1002/cpe
http://arxiv.org/abs/cs/0610163

440 M.B. Qureshi et al.

109. Rahman, M., Ranjan, R., Buyya, R., Benatallah, B.: A tax-
onomy and survey on autonomic management of applica-
tions in grid computing environments. Concurr. Comput.
Pract. Exper 23, 1990–2019 (2011)

110. Ribler, R.L., Vetter, J.S., Simitci, H., Reed, D.A.: Autopi-
lot: Adaptive control of distributed applications. In: Pro-
ceedings of the 7th IEEE International Symposium on
High Performance Distributed Computing (HPDC’98),
pp. 172–179 (1998)

111. Sanaei, Z., Abolfazli, S., Gani, A., Buyya, R.: Hetero-
geneity in mobile cloud computing: Taxonomy and open
challenges. In: IEEE Communications Surveys and Tuto-
rials, ISSN: 1553-877X. IEEE Communications Society
Press, USA (2013, In press)

112. Salapura, V., Bickford, R., Blumrich, M., Bright, A.A.,
Chen, D., Coteus, P., Gara, A., Giampapa, M., Gschwind,
M., Gupta, M., Hall, S., Haring, R.A., Heidelberger, P.,
Hoenicke, D., Kopcsay, G.V., Ohmacht, M., Rand, R.A.,
Takken, T., Vranas, P.: Power and performance optimiza-
tion at the system level,” Proceedings of the 2nd Con-
ference on Computing Frontiers (CF ’05), pp. 125–132.
Ischia (2005)

113. Said, M.P., Kojima, I.: S-MDS: Semantic monitoring and
discovery system for the grid. J. Grid Comput. 7(2), 205–
224 (2009)

114. Saleh, A.I., Sarhan, A.M., Hamed, A.M.: A new grid
scheduler with failure recovery and rescheduling mech-
anisms: discussion and analysis. J. Grid Comput. 10(2),
211–235 (2012)

115. Shabtay, D.: Single and two-resource allocation algo-
rithms for minimizing the maximal lateness in a sin-
gle machine. J. Comput. Oper. Res. 31(8), 1303–1315
(2004)

116. Yeo, C.S., Buyya, R.: A taxonomy of market-based
resource management systems for utility-driven clus-
ter computing. Softw. Pract. Exper. 36(13), 1381–1419
(2006)

117. Sharma, A., Bawa, S.: Comparative analysis of resource
discovery approaches in grid computing. J. Comput. 3(5),
60–64 (2008)

118. Shiraz, M., Gani, A., Khokhar, R.H., Buyya, R.: A review
on distributed application processing frameworks in smart
mobile devices for mobile cloud computing. In: IEEE
Communications Surveys & Tutorials, ISSN: 1553-877X.
IEEE Communications Society Press, USA (2013, in
press)

119. Shah, S.N.M., Mahmood, A.K.B., Oxley, A.: Hybrid
resource allocation method for grid computing. In: Pro-
ceedings of the 2nd International Conference on Computer
Research and Development (ICCRD’10), pp. 426–431.
Kuala Lumpur (2010)

120. Shah, S.N.M., Mahmood, A.K.B., Oxley, A.: modified
least cost method for grid resource allocation. In: Pro-
ceedings of 2010 International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discov-
ery (CyberC ’10), pp. 218–225. Huangshan (2010)

121. Shao, B., Rao, R.: A parallel hypercube algorithm for dis-
crete resource allocation problems. IEEE Trans. Syst. Man
Cybern. Part A Syst. Hum. 36(1), 233–242 (2006)

122. Sharma, R., Soni, V.K., Mishra, M.K., Bhuyan, P.: A sur-
vey of job scheduling and resource management in grid

computing. World Acad. Sci. Eng. Technol. 64, 461–466
(2010)

123. Sih, G.C., Lee, E.A.: A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor
architectures. IEEE Trans. Parallel Distrib. Syst. 4(2),
175–187 (1993)

124. Sim, K.M.: A survey of bargaining models for grid
resource allocation. ACM SIGecom Exch. 5(5), 22–32
(2006)

125. Skillicorn, D.B.: Motivating computational grids. In: Pro-
ceedings of 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGRID ’02), pp. 401–
406 (2002)

126. Somasundaram, T.S., Balachandarl, R.A., Kandasamy,
V., Buyya, R., Raman, R., Mohanram, N., Varun, S.:
Semantic-based grid resource discovery and its integra-
tion with the grid Service broker. In: International Con-
ference on Advanced Computing and Communications
(ADCOM), Surathkal, pp. 84–89. (2006)

127. Somasundaram, K., Radhakrishnan, S.: Task resource
allocation in grid using swift scheduler. Int. J. Comput.
Commun. Control IV(2), 158–166 (2009)

128. Tangmunarunkit, H., Decker, S., Kesselman, C.:
Ontology-based resource matching in the grid –The grid
meets the semantic web. In: Fensel, D., et al. (eds.) SWC
2003, LNCS, pp. 706–721 (2870)

129. Tesauro, G., Das, R., Chan, H., kephart, J.O., Lefurgy, C.,
Levine, D., Rawason, F.: Managing power consumption
and performance of computing systems using reinforce-
ment learning. In: Proceedings of 21st Annual Conference
on Neural Information Processing Systems. Vancouver
(2007)

130. Thayananthan, V., Alzahrani, A., Qureshi, M.S.: Anal-
ysis of key management and quantum cryptography in
RFID networks. Int. J. Acad. Res. Part A 4(6), 145–150
(2012)

131. Thenmozhi, S., Tamilarasi, A.: A hierarchical trusted
resource allocation architecture for mobile grid environ-
ment. Eur. J. Sci. Res 59(4), 510–521 (2011)

132. Trunfio, P., Talia, D., Papadakis, H., Fragopoulou, P.,
Mordacchini, M., Pennanen, M., Popov, K., Vlassov, V.,
Haridi, S.: Peer-to-peer resource discovery in grids: mod-
els and systems. Futur. Gener. Comput. Syst 23, 864–878
(2007)

133. Tom, A., Murthy, S.R.: An improved algorithm for mod-
ule allocation in distributed computing systems. J. Parallel
Distrib. Comput. 42(1), 82–90 (1997)

134. Verma, A., Ahuja, P., Neogi, A.: PMAPPER: Power and
migration cost aware application placement in virtualized
systems. In: Proceedings of the 9th ACM/IFIP/USENIX
International Middleware Conference, vol. 5346, pp. 243–
264. Leuven (2008)

135. Verma, A., Ahuja, P., Neogi, A.: Power-aware dynamic
placement of HPC applications. In: Proceedings of 22nd
Annual International Conference on Supercomputing, pp.
175–184. Athens (2008)

136. Vivekananth: Trusted resource allocation in grid comput-
ing by using reputation. Int. J. Comput. Sci. Commun.
1(2), 23–25 (2010)

137. Wang, L., Lu, Y.: Efficient power management of het-
erogeneous soft real-time clusters. In: Proceedings of

Survey on Grid Resource Allocation Mechanisms 441

IEEE 2008 Real-Time Systems Symposium, pp. 323–332.
Barcelona (2008)

138. Wang, L., Tao, J., Marten, H., Streit, A., Khan,
S.U., Kolodziej, J., Chen, D.: MapReduce across dis-
tributed clusters for data-intensive applications. In: 26th

IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), pp. 2004–2011. Shanghai
(2012)

139. Wan, L., Xie, Z., Wu, L., Lin, J.: Research on the key
technologies of geospatial information grid service work-
flow system. In: IEEE 18th International Conference on
Geoinformatics, pp. 1–5. Beijing (2010)

140. Wu, T., Ye, N., Zhang, D.: Comparison of distributed
methods for resource allocation. Int. J. Prod. Res. 43(3),
515–536 (2005)

141. Yeo, C.S., Buyya, R., Assunção, M.D., Yu, J.,
Sulistio, A., Venugopal, S., Placek, M.: Utility
computing on global grids, chap 143. In: Bidgoli,
Hossein (ed.) The Handbook of Computer Net-
works, ISBN: 978-0-471-78461-6. Wiley, New York
(2007)

142. Yousif, A., Abdullah, A.H., Latiff, M.S.A., Bashir, M.B.:
A taxonomy of grid resource selection mechanism. Int. J.
Grid Distrib. Comput. 4(3), 107–118 (2011)

143. Yu, J., Buyya, R.: A taxonomy of workflow management
systems for grid computing. J. Grid Comput. 3, 171–200
(2005)

144. Yu, D., Robertazzi, T.G.: Divisible load scheduling for
grid computing. In: Proceedings of 15th International
Conference on Parallel and Distributed Computing and
Systems (PDCS’03) (2003)

145. Zanikolas, S., Sakellariou, R.: A taxonomy of grid moni-
toring systems. Futur. Gener. Comput. Syst. 21, 163–188
(2005)

146. Zhi-jie, L., Cun-rui, W.: Resource allocation optimization
based on load forecast in computational grid. Int. J. Eng.
Res. Appl. (IJERA) 2(3), 1353–1358 (2012)

147. Zhang, X., Freschl, J.L., Schopf, J.M.: A performance
study of monitoring and information services for dis-
tributed systems. In: Proceedings of the 12th IEEE Inter-
national Symposium on High Performance Distributed
Computing, (HPDC ’03), pp. 270–281 (2003)

	Survey on Grid Resource Allocation Mechanisms
	Abstract
	Introduction
	Brief Comparison with the Existing Surveyson Grid Resource Allocation Mechanisms
	Resource Management
	Resource Discovery
	Information Propagation Strategies
	Resource Allocation Problem
	Energy - Aware Resource Allocation
	Resource Monitoring
	WebMDS
	LDAP
	MonALISA
	Remos
	GridICE
	Autopilot
	MapCenter
	RGMA
	Hawkeye

	Resource Allocation Mechanisms
	Parameter-Based Approach
	Peer-to-Peer Approach
	Ontology-Based Approach
	QoS-Based Approach
	Routing Transferring Model-Based (RTM) Approach
	Re-Routing Tables Mechanism in Dynamic Grids
	Request-Forwarding Approach
	Volunteer Resource Allocation
	Agreement-Based Resource Allocation
	Economic Resource Allocation
	Greedy Available-Busy-List Strategy
	Market Mechanism
	Compensation Mechanism
	Coalition Formation Mechanism
	Priority-Based Resource Allocation Technique
	State Space Search (SSS) Technique
	PDRAP and SDRAP Technique
	Dynamic Resource Allocation Mechanism
	Resource Allocation by Means of Option Contracts
	Heuristics-Based Resource Allocation
	A Greedy Double Auction Mechanism (GDAM)
	Modified Least Cost Method for Grid Resource Allocation
	Dynamic Level Scheduling (DLS) Mechanism
	Resource Allocation Using Reinforcement Learning
	Combinatorial Auction-Based Resource Allocation
	Swift Scheduling Mechanism
	Hybrid Resource Allocation Method
	Association-Based Resource Allocation
	Heterogeneous E-Waste Resource Allocation Mechanism
	Hierarchical Trusted Resource Allocation Mechanism
	Price Directed Proportional Resource Allocation Mechanism
	Load Forecast-based Allocation algorithm
	Hyper-Heuristic Approach
	Adaptive Grid Scheduling Mechanism
	Data-Intensive and Network Aware Scheduling Technique
	Negotiation-Based Advanced Reservation
	Performance-Based Scheduling Strategies
	Game Theoretical Energy Efficient Resource Allocation Mechanism
	Two-Phase Heuristic Mechanism
	Traits of Resource Allocation
	Searching Mechanism
	Application Type
	Time Complexity
	Optimality
	Resource Allocation Strategy (RAS) Taxonomy
	Operational Environment
	Objective Function
	Citations to the Mechanisms

	Immediate Extension of Grid Resource Management
	Cloud Computing

	Summary and Conclusions
	References

