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Abstract This study presents the results of the first probabilistic seismic hazard assess-

ment (PSHA) in the framework of logic tree for Oman. The earthquake catalogue was

homogenized, declustered, and used to define seismotectonic source model that charac-

terizes the seismicity of Oman. Two seismic source models were used in the current study;

the first consists of 26 seismic source zones, while the second is expressing the alternative

view that seismicity is uniform along the entire Makran and Zagros zones. The recurrence

parameters for all the seismogenic zones were determined using the doubly bounded

exponential distribution except the zones of Makran, which were modelled using the

characteristic distribution. Maximum earthquakes were determined and the horizontal

ground accelerations in terms of geometric mean were calculated using ground-motion

prediction relationships developed based upon seismic data obtained from active tectonic

environments similar to those surrounding Oman. The alternative seismotectonic source

models, maximum magnitude, and ground-motion prediction relationships were weighted

and used to account for the epistemic uncertainty. Hazard maps at rock sites were produced

for 5 % damped spectral acceleration (SA) values at 0.1, 0.2, 0.3, 1.0 and 2.0 s spectral

periods as well as peak ground acceleration (PGA) for return periods of 475 and

2,475 years. The highest hazard is found in Khasab City with maximum SA at 0.2 s

spectral period reaching 243 and 397 cm/s2 for return periods 475 and 2,475 years,
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respectively. The sensitivity analysis reveals that the choice of seismic source model and

the ground-motion prediction equation influences the results most.

Keywords Oman � Probabilistic seismic hazard � Logic tree � Deaggregation

1 Introduction

The deformation associated with Oman Mountains range (Johnson 1998; Kusky et al.

2005) and the high active tectonic zones surrounding the Arabian Plate (Fig. 1) makes

Sultanate of Oman prone to earthquake activities, although in low rate. The seismotectonic

settings around Oman strongly suggest that large earthquakes are possible, particularly

along the Arabian plate boundaries and can significantly produce damaging effect to

structures in Oman. With exception of the Oman Mountains earthquakes, major earthquake

sources are not inside of the Sultanate. The most effective way to reduce disasters caused

by earthquakes is to estimate the seismic hazard and to disseminate this information for use

to improve building design and construction. The current study is, in particular, concerned

with obtaining an estimate of the ground-motion parameters in Oman for the purpose of

earthquake-resistant design or seismic safety assessment.

Randomness in seismic hazard assessment arises out of aleatory variability and epi-

stemic uncertainty. In the current study, PSHA is performed utilizing CRISIS 2007 soft-

ware (Ordaz et al. 2007). The effect of the aleatory variability due to truly random effect is

directly incorporated into the calculations of PSHA to determine annual exceedance fre-

quencies of different amplitudes of ground motion. This is done through the integration of

the corresponding probability density functions within specified standard deviations.

Modern PSHA studies use the ‘‘logic tree’’ approach Coppersmith and Youngs (1986) to

handle the epistemic uncertainty.

Hazard maps showing spectral acceleration values at 0.1, 0.2, 0.3, 1.0 and 2.0 s spectral

periods as well as peak ground acceleration (PGA) for return periods of 475 and

2,475 years (equivalent to 10 and 2 % probability of exceedance in 50 years, respectively)

are presented. The current study includes a sensitivity analysis to reveal how the variations

in the alternative parameter assessments influence the results.

2 Seismotectonic setting of sultanate of Oman and its surrounding

Oman occupies the southeastern part of the Arabian plate, which shows all tectonic margin

types in close proximity (Fig. 1). Divergent boundaries are evident to the west and south in

the spreading centres of the Red Sea and the Gulf of Aden. Convergent margin lies along

the Zagros-Bitlis zone, where continental collision has given rise to the Turkish–Iranian

Plateau. The remainder of the convergent margin of the Arabian plate is defined by the

Makran subduction zone, where the Arabian plate subducts beneath the Eurasian plate

(Farhoudi and Karig 1977; Bayer et al. 2006). The strike-slip Dead Sea fault zone bounds

the plate in the northwest. Another transform boundary with the Indian plate exists to the

southeast, at Owen fracture zone, which is the oldest and least active tectonic margin of the

Arabian plate (Johnson 1998; Vita-Finzi 2001; Fournier et al. 2008). Kusky et al. (2005)

indicated the presence of some active tectonic structures in Oman Mountains. The scarcity

of the geologic features information of northern Oman makes it difficult to define precisely

the nature of the structures of Oman Mountains.
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Most of the seismic activity is confined to the boundaries of the Arabian plate (Fig. 2).

The interior of the plate may be regarded, therefore, as a stable cratonic region (Johnson

et al. 1994; Fenton et al. 2006; Aldama et al. 2009). Smaller earthquake cluster is repre-

sented by the local seismicity at the north of Oman Mountains. A few scattered background

events occured within the Arabian plate and the Sea of Oman. Figure 3 shows the focal

mechanisms of the earthquakes associated with the tectonic units of the region (Reilinger

et al. 2006). It is evident that the focal mechanisms of large earthquakes are consistent with

the regional kinematics. The seismotectonic characteristics of the active regions that might

affect Oman are briefly discussed below.

2.1 Oman Mountains

The Oman Mountains are located in northern Oman exhibiting many features consistent

with active tectonics (Johnson 1998; Kusky et al. 2005). In addition to the field evidences

of active faulting, evidence of seismic activity is also present (Ambraseys et al. 1994;

Kusky et al. 2005; Musson 2009). All of the devastating earthquakes that occurred in or

Fig. 1 Major tectonic elements surrounding the Arabian plate. DST dead sea transform, EAF east anatolian
fault, NAF north anatolian fault (Bosworth et al. 2005)
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near the Sultanate of Oman are historical ones. They extend back to 879 AD including

events that occurred near Sohar region in 879 (Ambraseys et al. 1994), the earthquake that

damaged Qalhat in northern Oman in 1483 (Aubin 1973; Ambraseys et al. 1994; Musson

2009). The earthquake occurred in 1883 (Ambraseys et al. 1994), which is strongly felt at

the southern part of the mountains in Muscat and Nizwa, in the vicinity of which nine

villages were destroyed and ground deformation was observed.

The instrumental seismicity (Fig. 2) in the Oman Mountains seems to be clustered at its

northern part. The historical event in 1,883 near Nizwa (Ambraseys et al. 1994) supports

the possibility of the occurrence of moderate events along the entire zone (Fig. 4). Two

earthquakes with magnitudes 4.5 and 5.1 occurred on 10 and 11 March 2002. These two

events were felt broadly in northern Oman and UAE. Focal mechanism solution for the

larger event shows normal faulting with strike-slip component, which is consistent with the

large-scale tectonics of the region (Rodgers et al. 2006).

Fig. 2 Instrumental seismicity of Oman and its surrounding in terms of moment magnitude in the period
from 1904 to 2008
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2.2 Zagros fold-thrust belt

The Zagros fold-thrust belt (Fig. 1) is a linear, asymmetrical NW–SE phanerozoic folding,

extending for about 1,500 km from eastern Turkey to Oman (Jackson and McKenzie 1984;

Berberian 1995; Hessami et al. 2003). This collision between the Arabian and the Eurasian

Plates is over an area of 200–300 km wide series of blind thrust faults covered by folded

Phanerozoic sedimentary rocks, with strike-slip faults accommodating internal deforma-

tion. The active Mountain Front Fault (MFF), High Zagros Fault (HZF) and Main Zagros

Fault (MZF) are major segmented reverse faults, whose seismogenic and morphologic

signature is recognized throughout the Zagros fold-thrust belt (Fig. 5). This Pliocene fold-

thrust belt is currently undergoing approximately 10 mm/year shortening in the southeast

and 5 mm/year in the northwest (Allen et al. 2004; Vernant et al. 2004). The 6–15-km-

thick Phanerozoic cover is folded, producing active anticlinal uplift and synclinal subsi-

dence (Berberian 1995). This surface deformation may be used to infer the locations of the

dominant blind thrust faults.

Fig. 3 Regional seismicity indicated by the focal mechanisms of earthquakes (Reilinger et al. 2006)
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The seismic activity along Zagros zone is relatively high (Fig. 2). This activity

occurs in a wide seismogenic belt, which suggests that, the plate border is a zone of

deformation instead of single line. Moderate to large earthquakes frequently occur but

rarely exceed MW = 7.0. Recently determined focal depths (8–14 km) imply that

moderate to large earthquakes occur in the uppermost part of the Arabian basement (Ni

and Barzangi 1986; Baker et al. 1993; Hessami et al. 2001; Hatzfeld et al. 2010). Focal

mechanism solutions (Fig. 3) show high-angle thrust faults (40o–50�) parallel to the

trend of the fold axes (Nowroozi 1972; Jackson and McKenzie 1984; Gillard and Wyss

1995; Reilinger et al. 2006). Focal mechanism solutions along the transverse faults

show steeply dipping strike-slip faults with minor dip-slip components (Hessami et al.

2006).

2.3 Gowk fault

Shortening that is not taken up in the Zagros due to the convergence between Arabian and

Eurasian plates is expressed as N–S right lateral shear between central Iran and Afghan-

istan. This shear is expressed in major N–S right lateral fault systems, the most active

among them is Gowk fault (Fig. 5). Many moderate to large earthquakes have been

occurred on Gowk fault (Zone No. 12). A maximum magnitude as large as 8.0 can be

occurred on this fault Berberian and Yeates (1999).

Fig. 4 Location of 1,883 earthquake in Northern Oman
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2.4 Makran subduction zone

The Makran subduction zone (Fig. 1) is composed of a large sedimentary prism accreted

during the Early Cretaceous (Byrne et al. 1992). The Makran accretionary wedge stretches

from Iran to central Pakistan (Schluter et al. 2002). It has been formed by the subduction of

the oceanic portion of the Arabian Plate beneath Eurasia and is built up by sediments

scraped off the Arabian Plate since early Tertiary (Kopp et al. 2000). Stoneley (1974) was

the first to propose a subduction zone along the Makran zone. Later, Shearman (1977) and

Farhoudi and Karig (1977) presented data to support this hypothesis. The distance between

the volcanic arc and the deformation front is approximately 400 km in western Makran and

grows to nearly 600 km in eastern Makran (Fig. 6).

The modern Makran accretionary prism has developed since Late Miocene (Platt et al.

1988) and is still propagating seaward at a rate of *10 mm/year. Two features make this

accretionary wedge unusual: (1) the sediment thickness on top of the oceanic crust is

extremely high (at least 6 km), and (2) the dip angle of subduction is extremely low, *5�,

(Byrne et al. 1992; Carbon 1996).

Fig. 5 The main fault zones of Zagros thrust belts (modified after Hessami et al. 2003)
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The most notable earthquake in Makran zone is the 28 November 1945 of M = 8.1, a

tsunamigenic event that killed 4,000 according to Dunbar et al. (2002) and about 300

according to Ambraseys and Melville (1982). The tsunami was recorded along the coasts

of Iran and in Muscat (ASC 2003; Pararas-Carayannis 2004). With the exception of 1,483

ill-located earthquake with magnitude 7.8, all large earthquakes are reported to have

occurred in the eastern section of Makran zone. Kukowski et al. (2000) provided an

explanation of why the Eastern Makran is entirely separated from the Western section. This

suggests that a single event rupturing the entire Makran zone is improbable. Therefore, in

the seismogenic model provided by the current authors, western Makran is preferred to be

separate seismogenic zone having the possibility of producing large earthquakes.

2.5 Transition between Zagros and Makran

Geology and recent GPS measurements indicate that about 15 mm/year (Peyret et al. 2009) of

relative motion in N10�E direction in this transition zone is accommodated by two major fault

systems: Minab-Zendan (MZFS) and Jiroft-Sabzevaran fault systems (JSFS) (Fig. 5). For

both fault systems, the elastic deformation spreads over shear zones that are several tens of

kilometres wide. Historical (Ambraseys and Melville 1982; Musson 2009) and instrumental

seismicity (e.g. Gholamzadeh et al. 2009), as well as microseismic activity (Yamini-Fard

et al. 2007), appear to be essentially limited to the Zagros domain. Seismicity appears to

neither be associated with the Minab-Zendan nor Jiroft–Sabzevaran faults, suggesting that the

transition between the Zagros collision and the Makran subduction is not a sharp transform

fault. The seismogenic potentials of these two faults are not as great as those comprising the

major margins of the Zagros and the Makran. However, their proximity to sites within the

northeastern Oman means that these fault systems may contribute to the seismic hazard and

must be included within the developed seismotectonic source model.

Fig. 6 The Oman thrust front and the Zone of Tectonic Subduction in the Northern Arabian Sea
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Peyret et al. (2009) stated that the strain localization on the Minab-Zendan fault system,

without transfer within the inner Makran, associated with the lack of historical and

instrumental seismicity, indicates that about 2 m of elastic strain has probably been

accumulated for the last two centuries. It suggests that this fault system is likely at the end

of its interseismic recurrence cycle. Hence, they claim that seismic hazard on this zone is

high and that an earthquake of magnitude in the vicinity of 7.0 is pending.

2.6 Owen fracture zone

Owen fracture zone (Fig. 1) is 1,100-km-long transform fault separating the Arabian plate

from the Indian plate. The Arabian and Indian plates are colliding with the southern edge

of Eurasia but the Arabian plate is moving slightly faster than the Indian one. The rate of

differential motion along this fracture zone is one of the slowest among major plate

boundaries (3 mm/year) (DeMets 2008). Plate motion models (e.g. McKenzie and Sclater

1971; Chase 1978; Minster et al. 1974; Minster and Jordan 1978; Quittmeyer and Kafka

1984) assumed right lateral slip along Owen fracture zone. Earthquake focal mechanisms

show that the sense of motion along Owen fracture is right lateral strike-slip motion

(Fig. 3). The seismicity of Owen zone changes its orientation at the northern part to

coincide with Murray ridge (Figs. 2, 6).

2.7 Gulf of Aden

The seismicity of the Gulf of Aden indicates a tensile stress regime as the main force

(Fig. 2). Transform faults along the central axis of the Gulf of Aden are characterized by

linear NE trending. The most spectacular one is Alula Fartak trench where central ridge is

offset a distance of 160 km. Earthquake distribution is exhibiting a well demonstration of

this transform fault (Fig. 2). Earthquakes associated with this trench show strike-slip

mechanisms characteristic of oceanic transform (Sykes and Landisman 1964). Most of the

seismicity of the Gulf is confined around the rift axis and its transform faults. As one

moves from the central axis of the Gulf of Aden, seismicity level decreases drastically and

thus the seismicity cannot be stationary from the space and time point of view.

2.8 Yemen

Yemen has been affected by earthquakes along the Red Sea and its coastal tract, as well as

inland. Ma’rib Dam earthquake, in the year 460 (Ambraseys et al. 1994), is the oldest

available information of destructive earthquakes in Yemen. Dhamar earthquake (31

December 1982 with Ms 5.7), which resulted in wide destruction, loss of lives and surface

rupture, occurred in an area of recent volcanic activity that characterizes much of the

southwestern margin of the Arabian Plate. This earthquake was characterized by high level

of aftershock activity, including a widely felt event with a damaging effect with mb 5.1

(Alsinawi and Al-Salim 1985; Langer et al. 1987; Plafker et al. 1987).

3 Input for PSHA in Oman

The PSHA was first introduced by Cornell (1968); although many modifications have been

made to the process (e.g. McGuire 1978; Bender and Perkins 1987), the basic elements of

the calculations remain unchanged. PSHA is widely adopted and is considered as
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seismology’s most valuable contribution to earthquake hazard assessment (Giardini et al.

1999; Abrahamson and Bommer 2005; Deif et al. 2009). Input parameters needed for

performing a PSHA following the Cornell–McGuire approach (Cornell 1968; McGuire

1976; Reiter 1990) are:

1. An earthquake catalogue, which is used to derive recurrence rates and to estimate the

maximum possible earthquake for each seismic zone with potential hazard on Oman.

2. A seismotectonic source model, which defines faults and/or areal zones of equal

seismic potential.

3. The seismicity recurrence characteristics for the seismic sources, where each source is

described by an earthquake recurrence relationship. A maximum or upper-bound

earthquake is chosen for each source, which represents the largest event to be considered.

4. A predictive ground-motion model describes the attenuation of amplitudes of ground

motion as a function of distance and magnitude. Different models are constructed for

different frequencies and local site conditions. Below, we describe how these input

parameters were derived for Sultanate of Oman.

Considering the lack of the seismotectonic studies in the Arabian Plate and the short

period for which earthquake data are available, there is therefore an element of uncertainty

in identifying the seismogenic zones.

3.1 Earthquake catalogue

Preparing a reliable, as long as possible, and homogenous earthquake catalogue represents

the starting point for any seismic hazard assessment study regardless of the approach

adopted. There is no unique catalogue for a given territory but usually a heterogeneous set

of catalogues (historical, instrumental, local, global, etc.), which are not always compa-

rable, and may require different tools of analysis. For the purpose of characterizing the

activity rates of the Oman seismic sources, a catalogue was compiled using information

from several seismic sources. These are:

• Preliminary Determination of Epicenters (PDE), on line bulletin provided by the National

Earthquake Information Center (NEIC) (http://earthquake.usgs.gov/earthquakes/);

• The International Seismological Center (ISC) online bulletin (http://www.isc.ac.uk/);

• EHB (Engdahl et al. 1998) catalogue updated to 2006 from the webpage of the ISC;

• HRVD which is operated now as Global Centroid-Moment-Tensor projectat (GCMT),

Lamont Doherry Earth Observatory (LDEO) http://www.globalcmt.org/CMTsearch.

html earthquake data bulletins;

• Ambraseys Publications, Ambraseys and Melville (1982); Ambraseys et al. (1994);

Ambraseys and Bilham (2003);

• Bulletins of Earthquake Monitoring Center (EMC) at Sultan Qaboos University (SQU),

Oman.

All available data from the above catalogues were gathered and compiled into one

comprehensive catalogue. The catalogue is built by merging historical and instrumental

data. In addition, the following studies on specific events or region were also consulted to

gather additional information regarding earthquakes of considerable size (Berberian 1973;

Quittmeyer 1979; Jackson and Fitch 1981; Alsinawi 1983; Jackson and McKenzie 1984;

Baker et al. 1993; Berberian 1995; Berberian and Yeates 1999; Berberian et al. 2001;

Maggi et al. 2002; Talebian and Jackson 2004; Walker et al. 2005; Rodgers et al. 2006;

Al Marzooqi et al. 2008).
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Due to the fact that publications of different international and local agencies were used

to compile the current catalogue, any duplication in the resultant catalogue was removed. If

more than one location entry is available for a single earthquake, priority was given to the

published and international data, since it is more accurate due to the availability of more

stations all over the world, longer than the available local catalogue, and the additional

work of relocating such events. Thus, for earthquakes occurred before 1964, Ambraseys

et al. publications are selected. For earthquakes that occurred after 1964, data from studies

on specific events or region are selected as the most reliable followed by Ambraseys et al.

publications, EHB, ISC, PDE and EMC, respectively.

With respect to earthquake magnitude, for earthquake occurred before 1964, priority

was given to Ambraseys publications followed by ISC and PDE, respectively. For earth-

quakes occurred after 1964, priority was given to Harvard moment magnitude (MW), if

available, followed by Ambraseys publications, ISC and PDE, respectively. Priority con-

sidering the magnitude type was taken according to the following succession: moment

magnitude (MW), surface wave magnitude (MS), body wave magnitude (mb) and local

magnitude (ML), respectively.

The initial catalogue was compiled for a spatial region spanning from 42o to 66oE and

10o to 32oN and included all events having an assigned magnitude of 3.0 and above on any

magnitude scale. The catalogue covers the time period from 734 up to January 2008. The

compiled catalogue comprises a total of about 4,593 earthquakes.

To ensure the catalogue magnitude homogeneity, all events for which MW were not

reported were converted into this scale. Conversion of multiple magnitude measures to a

single, representative magnitude is performed using empirical relationships developed

directly from the various magnitude measures in the compiled catalogue (Fig. 7). Many

magnitude conversion relations are available worldwide (e.g. Ambraseys and Free 1997;

Grunthal and Wahlstrom 2003). Figure 8 shows good agreement between the MS–MW

conversion equation of this study and that of Ambraseys and Free (1997) for Europe along

the entire range of interest.

The MW was chosen because it is the most reliable magnitude scale. Moreover, most of

the ground-motion prediction models used in this study are expressed in terms of MW. The

spatial distribution of the instrumental compiled catalogue, using a consistence MW

magnitude scale, is shown in Fig. 7.

Dependent events in the catalogue (i.e. foreshocks and aftershocks) were declustered.

The process consisted of the definition of a temporal and spatial windows adapted to each

range of magnitude. All earthquakes situated inside the window defined around a main

shock were considered as dependent events. Windows of Gardner and Knopoff (1974)

were applied and 2,575 dependent events were removed from the original catalogue with

5.92 % contribution to the total moment released.

To model the seismicity in each zone, knowledge of the magnitude of completeness,

Mc, is required. Although any event having an assigned magnitude greater than 3.0 was

initially included into the base catalogue, for most of the period spanned by the catalogue,

the level of completeness is significantly greater than this level. The procedure of Stepp

(1972), which based upon the change of the slop of the cumulative seismicity with time, is

used to identify the completeness levels of the catalogue. The catalogue is regarded as

being complete above MW 3.0 from 2001 onward, MW greater than 4.0 from 1987, MW

greater than 4.8 from 1965, MW greater than 5.6 from 1923, MW 6.0 from 1910, and MW

greater than 7.0 from 1,800.
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3.2 Seismotectonic source models

The seismic sources are shown as map representations of lines (fault sources) and area

source zones. The seismicity within these zones is assumed to be uniform in terms of the

type and distribution of earthquakes. Thus, the seismic activity of the source is

3 4 5 6 7
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w

Mw = 0.6627974843 * Ms + 2.126431731

Number of data points used = 294
Residual sum of squares = 12.806
Coef of determination, R-squared = 0.8361
Residual mean square = 0.0438561
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Fig. 7 Conversion of (a) surface
wave magnitude (Ms) and b body
wave magnitude (mb) into
moment magnitude (Mw)
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characterized by a single earthquake generating process, and the earthquakes have an equal

probability of occurring at any point within the seismic zone. The defined geographic

distribution of seismic sources and the specification of all source characteristics required

for the seismic hazard analysis are termed seismotectonic source model. Integration of

geology, structure, present-day tectonics, seismicity and focal mechanisms guided the

modelling of the seismogenic zones of the current study.

3.2.1 Seismic source zones

For the hazard computation of the current study, two seismogenic source models were used

to account for the epistemic uncertainty. The first model (Fig. 9) is developed by the

current authors and based upon the seismotectonic setting briefly summarized above and

previously published studies (e.g. Berberian 1995; Aldama et al. 2009), while the second is

Erdik et al. (2008) model for the northern part of the studied area, which attempts to

capture the major tectonic features of the region (Fig. 10).

The first seismotectonic model constitutes 24 distinct seismic zones (Table 1) and was

constructed taking into consideration all the seismic sources that might affect Oman. Most

of the seismic zones in this model are mainly related to the active tectonics in the Zagros

thrust belt, Makran, transition zone between Zagros and Makran zones, Owen fracture

zone, Gulf of Aden, and Oman Mountains. As the location of the concealed blind faults and

their slip rates in Zagros fold-thrust belt are difficult to be defined precisely, thus, it is

prudent to regard the major seismogenic zones of this region as area zones. The differences

in the seismic activity, the active faulting, present-day tectonics, and the surface geology

enabled us to divide this belt from northeast to southwest into five main areal seismogenic

zones in addition to four strike-slip faults that accommodate the internal deformation

(Fig. 9). These five main seismogenic zones are: High Zagros Thrust Belt; Simple Fold

Fig. 8 Comparison between the
MS–MW conversion equation of
this study and that of Ambraseys
and Free for Europe (1997)
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Belt; the Zagros Foredeep; Dezful embayment; and the Arabian Gulf. The four right lateral

strike-slip faults are related to Kazerun-Borazjan fault, the Karebas fault, and the Sabz

Pushan (Fig. 5). In the current study, the active strike-slip faults in Zagros are modelled as

fault sources. The polygons bordering these faults are regions for which the observed

seismicity is assumed to be associated with the fault sources.

Makran zone is divided into west and east Makran based upon the dramatic change in

the seismicity pattern in these two sections. Owen Fracture zone is divided into Owen and

Murray seismic zones due to the change in the fracture trend. The seismicity in the Gulf of

Aden is modelled by three main seismogenic zones, Western Gulf of Aden and Eastern

Gulf of Aden, which are separated by Alula Fartaq transform fault (Zone No 3). As one

moves from the central axis of the Gulf of Aden, seismicity level decreases drastically and

thus the seismicity cannot be stationary from the space and time point of view. Therefore,

Northeastern Gulf of Aden (Zone No. 4) was selected to represent this lower seismicity

level toward the northeastern part of the Gulf of Aden. Yemen zone is included because the

1982 event in Yemen is felt in southern Oman.

Fig. 9 The first seismotectonic source model for the area of study, the locations of major cities in Oman are
also shown
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In addition to the 24 distinct seismic sources, two background seismicity zones were

selected to model the floating earthquakes that are located around the studied area. The

Iranian background zone includes the central Iran area between the Main Zagros Thrust

Fault and the Gowk Fault. The Arabian background zone extends to include the interested

part of the Arabian Peninsula and the western part of the Arabian Sea.

Fig. 10 Erdik et al. (2008) seismotectonic source model for the northern part of the studied area

Table 1 Seismic sources of seismotectonic source model for the PSHA

No. Source name No. Source zone

1 Western Gulf of Aden 14 Minab-Zendan Fault

2 Alula Fartaq Zone 15 Aliabad

3 Eastern Gulf of Aden 16 High Zagros Zone

4 Northeastern Gulf of Aden 17 Zagros Foredeep

5 Yemen 18 Arabian Gulf

6 Owen 19 Zagros Simple Fold

7 Murray zone 20 Borazjan Fault

8 Oman Mountains 21 Kazerun Fault

9 East Makran 22 Karebas Faults

10 West Makran 23 Sabz Pushan Fault

11 Jaz Murian depression 24 Dezful Embayment

12 Gowk fault 25 Iranian Background Zone

13 Jiroft-Sabzevaran fault 26 Arabian background Zone
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3.3 Recurrence parameters

3.3.1 Determination of b and k values

The seismicity of a seismogenic zone is quantified in terms of the recurrence relationship.

Log NðMÞ ¼ a� bM ð1Þ

where N is the number of earthquakes of magnitude (M) or greater per unit time. The a value is

the activity and defines the intercept of the above recurrence relationship (Gutenberg and

Richter 1944) at M equal zero. The number of occurrences per year of a hazardous event (e.g.

the annual frequency that ground-motion parameter, X, at a site exceeds a specified value x) is

defined as the annual frequency and usually denoted as k(X C x). The parameter b is the slope,

which defines the relative proportion of small and large earthquakes.

While the Gutenberg and Richter 1944 relationship describes the regional occurrence

frequency of earthquakes, it fails to represent occurrence of large earthquake on individual

faults. This can be attributed to the breakdown of this power law between large and small

earthquakes because they are not self-similar processes. This leads to what is called

Characteristic earthquakes on active faults. The recurrence parameters of eastern and

western sections of Makran subduction zone were taken after Aldama et al. (2009) who

modelled them using the characteristic model of Youngs and Coppersmith (1985). These

recurrence parameters are listed in Table 2. WSZ1 and WSZ2 are the two likely widths of

Makran seismogenic zones considered by Aldama et al. (2009).

The seismic activity in all the remaining seismogenic zones was assumed to be pro-

duced according to a doubly bounded exponential distribution (Cornell and Vanmarcke

1969). This is because Gutenberg and Richter (1944) relationship imposes the unrealistic

assumption that the maximum potential earthquake for any region under consideration is

unbounded and unrelated to the seismotectonic setting. The following truncated expo-

nential recurrence relationship is used:

N �Mð Þ ¼ a
exp �b M �Mminð Þ½ � � exp½ Mmax �Mminð Þ�

1� exp½�b Mmax �Mminð Þ� ð2Þ

where a = N(Mmin), Mmin is an arbitrary reference magnitude; Mmax is an upper-bound

magnitude where N (m) = 0 for M [ Mmax; and b = b�ln10. In this form, earthquake

frequency approaches zero for some chosen maximum earthquake of a region. The

parameters of the doubly bounded exponential distribution were obtained in the current

study using the maximum likelihood estimation procedure of Weichert (1980).

In many hazard studies, an overall b value is used to stabilize the results by avoiding

undue fluctuations of b particularly in low seismicity zones (Frankel 1995; Frankel et al.

1997; Deif et al. 2009). Where information available for seismogenic zones are insufficient

Table 2 Characteristic seismicity of Makran zones (Aldama et al. 2009)

Zone Option Mmax Mmin Mchar r (Mchar) Occurrence
interval (year)

East Makran WSZ1 8.3 7.5 8.0 0.25 139

East Makran WSZ2 8.5 7.8 8.2 0.25 422

West Makran WSZ1 8.2 7.4 7.8 0.25 121

West Makran WSZ2 8.4 7.6 8.0 0.25 356
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for accurate statistical assessments of the seismicity parameters, the b value indicative of

the tectonic characteristics of the region containing these zones is utilized. In such case, the

k values were calculated by fixing the common b values within Weichert’s (1980) pro-

cedure. This is justified because the seismicity in these zones is very low and the major

units are experiencing the same tectonic regime.

For the Arabian stable craton, b is found to be 2.22. This value is close to that of

Johnson et al. (1994) who reported a b value of 2.26 as an average over all stable conti-

nental regions. The seismicity parameters of all seismogenic zones are listed in Table 3.

All the seismogenic zones in Erdik et al. (2008) model including Makran zone were treated

as area sources and the recurrence parameters were determined using the doubly bounded

exponential model.

3.3.2 Definition of the maximum earthquake for each seismic source

Selection of the maximum earthquake (Mmax) has a considerable impact on the hazard

results, especially at longer return periods (Wiemer et al. 2008). Mmax is possibly the most

difficult recurrence parameter to assess in the study area because the database in many

seismogenic zones is statistically very limited. Therefore, the maximum magnitudes are

determined with varying methods depending on the nature the source zone (fault or area

source) and robustness of the available seismological database of each zone.

Regression relationships between earthquake magnitude and fault parameters have been

developed during the past several decades (e.g. Slemmons 1977; Bonilla et al. 1984; Wells and

Coppersmith 1994; Hanks and Bakun 2002). Both geological and historical observations of the

rupture history of highly active and carefully investigated faults indicate that faults do not

rupture their entire length in a single event, except in unusual structural situations (Allen 1975).

A conservative practice is to assume a fraction up to one-half the total length of a fault to rupture

in a single event. Along the San Andreas Fault system, this fraction is one-third to two-fifths

(Reiter 1990). Slemmons (1982) showed that this fraction of the fault length decreases as the

fault length itself decreases. His data set showed that rupture lengths range from about 17 to

33 % of the total fault lengths, with the smaller value typical of faults less than about 200 km

long and the larger value typical of faults having lengths of more than 1,000 km.

With exception of Gowk fault with length of about 450 km long, all the fault sources in

the current study have lengths less than 200 km. The authors selected a 20 % of the total

fault length to represent a conservative fractional length to apply to the studied faults,

where 40 % of Gowk fault length is supposed to rupture in a single earthquake. The

empirical relationships of Wells and coppersmith (1994) are used to calculate the maxi-

mum magnitude for the fault sources when consistent data about the total length and fault

type are available (Table 3).

For the remaining area seismic zones with sufficient seismological information, the

maximum magnitude was estimated using the statistical procedure of Kijko (2004), using

the following equations:

Mmax ¼ Mobs
max þ

ZMmax

Mmin

FmðmÞ½ �ndm ð3Þ

where Fm(m) is the cumulative density function (CDF) of magnitude. From this equation, an

estimated value of Mmax can be obtained only by iteration. This equation states that Mmax is

equal to the largest observed magnitude (Mobs
max) plus an amount D =

RMmax

Mmin
FmðmÞ½ �ndm. This
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equation is valid for any cumulative density function (CDF), Fm(m), and does not require the

fulfilment of any additional conditions. It may also be used when the exact number of

earthquakes, n, is not known. In this case, the number of earthquakes can be replaced by kT.

Such a replacement is equivalent to the assumption that the number of earthquakes occurring

in unit time conforms to a Poisson distribution with parameter k, with T the span of the seismic

catalogue. It is also important to note that since the value of the integral D is never negative,

the equation provides a value of Mmax, which is never less than the largest magnitude already

observed. The integration D for the Gutenberg-Richter relation that bounded from above is

given by:

D ¼
ZMmax

Mmin

1� exp �bðm�Mmin½ �
1� exp �bðMobs

max �MminÞ
� �

" #n

dm ð4Þ

This integral is not simple to evaluate; therefore, Kijko (2004) replaced [FM(m)]n by its

Cramer (1961) approximation exp{-n[1 - [FM(m)]}. Then, the integral is solved to result

in Mmax.

It is also clear that the maximum magnitude of Makran zone obtained using Kijko

(2004) approach (Table 3) is less than that found by the characteristic model (Aldama et al.

2009), which is used in the current calculations (Table 2). In Oman Mountains and the

Arabian background seismic sources, the maximum magnitude was obtained by adding 0.5

units to the maximum observed magnitude (Table 3).

3.4 Ground-motion prediction equations

The scarcity and lack of ground-motion acceleration records in the Sultanate of Oman

makes it a must to apply already developed ground-motion scaling relationships.

Table 4 Characteristics of the ground-motion scaling relationships

Model Mag. Mmin Mmax Dist. Dmax Horizontal
comp.

Faulting
mechanism

Tectonic

Ambraseys et al.
(1996)

MS 4.0 7.5 RJB 200 Larger
horizontal

Unspecified Shallow
active

Boore et al. (1997) MW 5.5 7.5 RJB 80 Random
horizontal

S.S/Reverse
Others

Shallow
active

Abrahamson and Silva
(Abrahamson and
Silva 1997)

MW 4.4 7.4 Rrup 220 Geometric
mean

Reverse/
reverse-
oblique/
others

Shallow
active

Youngs et al. (1997) MW 5.0 8.2 Rrup 500 Geometric
mean

Interface/In-
slab

Subduction
zones

Atkinson and Boore
(2003)

MW 5.0 8.3 Rrup 550 Random
horizontal

Interface/In-
slab

Subduction
zones

Atkinson and Boore
(2006)

MW 3.5 8.0 Rrup 1,000 Unspecified Unspecified Stable
regions

Rrup is the minimum distance between the rupture and the site

Mmin and Mmax are the minimum and maximum magnitude in the model data set

S.S is strike-slip faulting

Dmax is the maximum distance in the data set
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Alternative ground-motion prediction relationships are selected to predict the seismic

hazard within the various considered tectonic environments in order to account for the

epistemic uncertainty. This, in turn, implicates several different estimates of the ground

motion. Six different ground-motion prediction relationships are selected. These rela-

tionships have been widely used in the seismic hazard assessment all over the world.

We used the models of Ambraseys et al. (1996), Abrahamson and Silva (1997) and

Boore et al. (1997) to model the ground motions of the earthquakes occurring within the

active shallow crustal seismogenic zones. The models of Youngs et al. (1997) and

Atkinson and Boore (2003) are used to model the ground motions of Makran subduction

zone earthquakes. For the Arabian stable craton earthquakes, the model of Atkinson and

Boore (2006) with stress drop 140 bar is used. The definition of the Arabian Peninsula as

stable craton is not unambiguously confirmed (Aldama et al. 2009). Thus, the three ground-

motion scaling relationships of the active shallow seismicity were used in conjunction with

Atkinson and Boore (2006) relationships to model the stable craton ground motion

although in a lower weight. The characteristics of the selected ground-motion prediction

relationships are shown in Table 4. For the active regions like Zagros, the equation of

Ambraseys et al. (1996) is derived from data sets of European and Middle Eastern strong-

motion data that include records from Iran. There is increasing evidence that motions in

Western North America (WNA), where the data of Boore et al. (1997) were taken, are

broadly similar to those from this region (e.g. Stafford et al. 2008).

Combining two or more ground-motion prediction relationships within hazard calcu-

lations requires several conversions to be made, because there are several definitions

available for both the predicted ground-motion parameters and the explanatory parameters

within the ground-motion prediction relationships. Therefore, alternative inputs and out-

puts must be transformed into a common metrics (Bommer et al. 2005). All of the models

used are expressed in terms of moment magnitude except Ambraseys et al. (1996) (See

Table 4). Thus, Ambraseys and Free (1997) relationship was used to transform the ground-

motion prediction relationships into the moment magnitude scale. In the current PSHA

study, distance metrics are handled using the software package of CRISIS 2007, which

accepts different definitions of the source to the site distance.

Ground-motion prediction equations have employed a variety of definitions for the

horizontal component of motion based on different treatments of the two horizontal traces

from each accelerogram. When equations using different horizontal component definitions

are combined in a logic tree framework for seismic hazard analysis, adjustments need to be

made to both the median values of the predicted ground-motion parameter and to the

associated aleatory variability to achieve compatibility among the equations. Ground-

motion scaling relations for which the horizontal component is not defined as geometric

mean of the two horizontal components are adjusted into this definition using the rela-

tionships of Beyer and Bommer (2006) and then introduced into CRISIS 2007.

4 Hazard calculations

The alternative seismic source zonations, alternative activity rates and ground-motion

model that have previously been discussed are all incorporated into the hazard calculations

through the use of the logic tree formulation. The branched of each stage of the decision-

making process with weights as the probability of each are drawn to represent the different

options considered. The weights for each stage should sum to unity. Thus, different

alternatives for the above input parameters were taken, which in turn implicate several
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different estimates of the ground motion. Mean and percentile values of the strong-motion

parameter obtained from several alternatives could then be calculated.

In the current study, the alternative parameters and their assigned weights are shown in

Figure (11). There are four components of the tree that relate to the source zonation and

recurrence parameters (upper half of Fig. 11) and one components that relates to the

ground-motion models (lower half of Fig. 11). In all cases, the weights have been assigned

to the branches through deep discussion among the current authors to reflect their relative

confidence in each option.

For the uncertainty associated with the seismotectonic source models, the Erdik et al.

(2008) model reflects the regional tectonic setting is given 0.2 weight in the logic tree

branch because it lacks the detailed definition of individual faulting structures and it

contains no clear background zones to model the floating earthquakes. The developed

seismotectonic source model is given 0.8 weight.

The selected minimum magnitude used for calculating the doubly bounded exponential

model parameters and calculation of seismic hazard in all seismic zones is 4.0. Oman and

Dubai seismic networks provide a complete earthquake catalogue down to magnitude 3.0

in Oman Mountains since 2002. This allows the opportunity to create a new branch on the

logic tree for which the minimum magnitude used for calculating the doubly bounded

exponential model parameters is selected to be 3.0. The two branches of the minimum

magnitude of Oman Mountains have been allocated similar weight, 0.5 for each. The b and

k values are changed slightly from those in Table 3 and both of them are listed below in

Table 5. The change in results due to utilizing this new minimum magnitude will be

discussed later in this study.

Table 5 Comparison of Oman
Mountains’ recurrence parame-
ters due to Mmin change

Minimum
magnitude

b value r
(b)

a value

3.0 0.78 0.1 2.10

4.0 0.79 0.11 1.95

Fig. 11 Components of the logic tree used for hazard calculations, bold numbers are the weights and WSZ1
and WSZ2 are the two likely widths considered for Makran subduction zone
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It is important to note in Table 3 that the difference between the maximum observed

and the maximum calculated magnitude using Kijko (2004) approach in some seismogenic

zones is quite small (e.g. Makran; Jaz Murian, High Zagros; Zagros simple fold … etc.).

This motivated the seismic hazard team to suggest creating a new branch on the logic tree

by adding an increment (0.2 magnitude units) to these calculated values with very small

differences (B0.2 magnitude units) from the observed ones. The weight given for this

recommended maximum magnitude (MRecom) branch is 0.4 because it depends highly on

the experts’ judgment. The branch of the calculated maximum magnitudes (Mcal) is given a

weight of 0.6.

Aldama et al. (2009) added the width of the seismogenic zones of Makran subduction

zone as a source of uncertainty to be incorporated into logic tree. In the current study, equal

weights are given to both assumptions of the width of the seismogenic zones (WSZ1 and

WSZ2).

For the ground-motion models in the stable craton, the model of Atkinson and Boore

(2006) is favored with a weight of 0.50 being allocated to this model and 0.50 spread
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Fig. 12 Seismic hazard curves for four selected sites in Oman
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equally among the remaining three active shallow models. The subduction zone model of

Atkinson and Boore (2003) is given the same weight 0.5 as that of Youngs et al. (1997)

model.

Fig. 13 Mean (a and b) and 84 percentile (c and d) peak ground acceleration (cm/s2) on rock sites with 10
and 2 % probability of being exceeded in 50 years (475 and 2,475 years return periods) in the Sultanate of
Oman
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5 Results

Selected results only are presented herein; the complete PSHA results for a range of

frequencies and return periods, including also uniform hazard spectra, are available in (El-

Hussain et al. 2010). First of all, we plotted seismic hazard curves (exceedance rate as a

function of peak ground acceleration ranging from 1 to 800 cm/s2) for four selected cities

namely Khasab, Diba, Muscat, and Nizwa in Oman, (Fig. 12). Generally, the hazard level

increases toward northeast owing to the increasing proximity of the Zagros and Makran

seismogenic zones where relatively higher seismic activity takes place. The hazard is

relatively high near Khasab. Diba is situated about 60 km to the south from Khasab; thus,

Zagros and Makran seismogenic zones in addition to the local seismicity in Oman

Mountains seismogenic zone combine to produce a relatively significant seismic hazard in

this city.

Seismic hazard values are calculated over a 0.2� 9 0.2� grid extending all over the

Sultanate of Oman and its surroundings, for a total number of 2,296 computation nodes.

Results from the logic tree are treated to obtain the mean value of the acceleration and

values of 84 % percentile at each point. The PGA and 5 % damped horizontal spectral

acceleration values at 0.1, 0.2, 0.3, 1.0, 2.0 s spectral periods were mapped so that can be

used to generate approximate UHS for each node on the hazard maps for the range of

periods important for common engineered structures.

The hazard maps in Fig. (13) display the regional distribution of the mean and 84

percentile PGA in cm/s2 for a rock condition, with 10 %, and 2 % chance of exceedance in

50 years, which correspond to return periods of 475 and 2,475 years, respectively. The

maps delineate the northeastern region of relatively higher seismic hazard from the rest of

the country which is characterized by its relatively lower hazard levels. The mean PGA

across Oman ranges between 20 and 110 cm/s2 for 475 years return period and between 40

and 180 cm/s2 for 2,475 years return period. The highest predicted ground-motion values

occur in the extreme north at Khasab City as a result of ground motion from more frequent,

larger earthquakes in Zagros seismogenic zones. The relatively moderate hazard of Muscat

is due to its proximity to Makran seismogenic zone. Oman Mountains and Arabian

background seismogenic zones have a low rate of earthquake activity and result in rela-

tively low ground motion over broad inland areas. The acceleration levels for a 2,475 years

return period are around 40 % higher in the northern part of country than those for a

475 years return period. For the western middle region, this increase is up to 100 %.

Figure 14 shows the 5 % damped horizontal spectral acceleration values at 0.1 and 0.2 s

spectral period for the two selected return periods. The maximum ground-motion values

are associated with the 5 % damped horizontal spectral acceleration with a spectral period

of 0.2 s, where the maximum ground motions reach 250, and 400 cm/s2 for 475 and

2,475 years return periods, respectively, at the most northern part of the country. Com-

putation results clearly indicate that, compared with countries of high seismic risk, seismic

hazard in Oman can be described as ‘‘low in the southern and western parts to moderate in

the northeast’’.

The plots of the hazard maps of 1 and 2 s spectral periods are normally much lower than

the ones for higher frequencies (Fig. 15). In addition, one notices that the high hazard in

these maps is slightly less concentrated than those on 0.1 and 0.2 s maps, which is a result

of the rapid attenuation of short period ground motion with distance. The consequence is

that adjacent sites may have different short period hazard. The steep gradient has negative

impact on the engineering design as small changes in the input parameters (e.g. source

boundary) can have a large consequence on the hazard at the interested site.
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Fig. 14 Mean 0.1 s (a and b) and 0.2 s (c and d) spectral acceleration (cm/s2) on rock sites with 10 and 2 %
probability of being exceeded in 50 years (475 and 2,475 years return periods) in the Sultanate of Oman
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Fig. 15 Mean 1.0 s (a and b) and 2.0 s (c and d) spectral acceleration (cm/s2) on rock sites with 10 and 2 %
probability of being exceeded in 50 years (475 and 2,475 years return periods) in the Sultanate of Oman
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The geometry of the seismic source zones pattern highly controls the results.

This is evident in all maps even the long period ones (2.0 s). The hazard maps thus

highly reflect the general tectonic setting of the studied area. The contour maps

presented here allow an engineer to construct an approximate UHS for any rock site

in Oman.

The results of the current study are extended to Dubai City of UAE in order to compare

the results of the current study with those of three recent studies for Dubai (Peiris et al.

2006; Erdik et al. 2008; Aldama et al. 2009). The three studies estimate the seismic hazard

at rock sites. As in the current study, Aldama et al. (2009) adjusted their horizontal ground

motion of the used ground-motion prediction equations to be identified in terms of geo-

metric mean. Peiris et al. (2006) and Erdik et al. (2008), however, used a number of

ground-motion prediction equations that used different distance and horizontal component

definitions, and they stated nothing about the adjustments required for the horizontal

component compatibility.

Figure 16 shows good agreement among the results of the current study and those of

Peiris et al. (2006); Erdik et al. 2008; and Aldama et al. 2009. Comparison with the results

of Aldama et al. (2009) shows consistently close agreement at short periods, although the

long-period spectral ordinates from Aldama et al. (2009) are generally slightly lower than

that of Peiris et al. (2006) and the current study. This difference could be attributed mainly

to the use of different ground-motion prediction equations for the shallow seismogenic

zones which are the greatest contributor to the seismic hazard at these longer periods (as

will be demonstrated in the deaggregation section). Peiris et al. 2006 study shows relatively

larger PGA values than the other three studies for 2,475 years return period. The difference

between the current study and that of Peiris et al. (2006) and Erdik et al. (2008) could be

the result of different definitions of seismogenic zones, ground-motion prediction rela-

tionships, and the probable different definitions of the output horizontal ground-motion

component. The overlap between the results of this study and others instills further con-

fidence in the Oman results.
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Fig. 16 Uniform hazard spectra for rock sites in Dubai for 475 and 2,475 years return periods from the
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6 Deaggregation of hazard results

The hazard curves were deaggregated to determine the sources that contribute at hazard

levels of 10 and 2 % probability of exceedance in 50 years. Following Aldama et al.

(2009), the weighted mean of the deaggregation results is adopted like the hazard values.

Equal spacing in magnitude and distance is used to express the deaggregation results. We

show, for example, results from Khasab and Muscat for 2,475 years return period for 5 %

damped spectral acceleration at PGA and spectral periods 0.2, 1.0, and 2.0 s in Figs. 17

and 18. Table 6 shows only the largest contribution to the seismic hazard for 7 cities in

Oman for return period 475 years. This table does not reflect the relative contribution of

each zone to the assessed hazard. The results of the deaggregation are different for dif-

ferent probability levels and for different spectral periods as indicated by Figs. 17 and 18

and Table 5.

Fig. 17 Deaggregation results showing the relative contribution to the peak ground acceleration and
spectral accelerations of 0.2, 1.0, and 2.0 s as a function of magnitude and distance at rock site in Khasab
City for return period of 2,475 years
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Fig. 18 Deaggregation results showing the relative contribution to the peak ground acceleration and
spectral accelerations of 0.2, 1.0, and 2.0 s as a function of magnitude and distance at rock site in Muscat
City for return period of 2,475 years

Table 6 Deaggregation of seismic hazard for return periods 475 years

City PGA 475 year 0.2 s 475 year 1.0 s 475 year 2.0 s 475 year

D (km) MW D (km) MW D (km) MW D (km) MW

Khasab 90 6.25 90 6.25 90 6.25 90 6.25

Diba 180 7.5 180 7.5 180 7.5 180 7.5

Sohar 240 7.5 240 7.5 240 7.5 240 7.5

Muscat 210 7.5 210 7.5 210 7.5 210 7.5

Nizwa 330 7.5 330 7.5 330 7.5 330 7.5

Sur 300 7.5 390 7.8 390 7.8 390 7.8

Salalah 270 5.6 270 5.9 300 5.9 300 5.9

D is the distance from the seismic source to the site of interest
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Earthquakes at a distance of 90 km from Khasab City contribute most to the hazard of

this city at both 2 and 10 % levels for all considered spectral periods (Fig. 17 and Table 5).

Earthquake with moment magnitude range 6.5–6.75 contributes most to the hazard. This is

mainly because the seismicity close to the site of interest is low compared with those at

Zagros seismogenic zones. The second most important source for short periods (PGA and

0.2 s) and 2,475 years return period is the Oman Mountains with lower magnitudes. For

these short spectral periods, potential large earthquakes of the Makran subduction zone do

not contribute as much to the seismic hazard at the Khasab site. However, subduction

events may be important at longer spectral periods for consideration in design because of

the long duration and less attenuation of the strong ground shaking associated with the

possibly generated larger earthquakes.

For Muscat City and for 475 years return period, the hazard is dominated by large

distant earthquakes at all response periods (Table 5), while for the 2,475 years return

period, the hazard is dominated by nearby small to moderate earthquakes for short spectral

periods and by distant larger events for longer ones (Fig. 18). This indicates that seismic

sources very close to this city are of low activity rates and high ground-motion levels at

short distance are not likely to occur. It is, thus, interesting to note here that for long return

periods the rare largest events (M C 7) are a significant contributor to design hazard. Thus,

Zagros and Makran zones have considerable contribution of seismic hazard at Muscat. For
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the cities of Sohar, Diba, Nizwa, and Salalah (not shown herein) the situation is similar to

that in Muscat.

Although the closer-by distance seismogenic zones of Oman Mountains and the closer

Arabian craton have the largest contribution on the short spectral period seismic hazard for

2,475 years return period at most cities (Khasab is exceptions), moderate magnitude

(4.5–5.0) is responsible for such contribution (Fig. 18). Contribution of earthquakes with

larger magnitudes from Oman Mountains and the Arabian stable craton needs longer return

period.

7 Sensitivity analysis

Sensitivity analysis is conducted in order to detect which parameters are the most critical

for the hazard computation. The purpose of the current sensitivity analysis is to see how the

variations in the alternative parameter assessments influence PSHA statistics. The findings

of the sensitivity analysis are used to focus efforts on refining the PSHA results.

Figure 19-a shows sensitivity analysis for six parameters represented as uniform hazard

spectra computed for 2,475 years return period and rock sites in the Muscat city as an

example. The sensitivity analysis assisted in determining the effect of the change of the

seismotectonic source model (our developed model or Erdik et al. 2008 model) on the

resultant ground motion. At Muscat, where the Makran subduction zone has a considerable

contribution to seismic hazard, the hazard resulting from using our model is about 20 %

higher than that of Erdik et al. (2008). This could be mostly attributed to the higher

maximum magnitude used in our model for Makran zones and partially due to the different

treatment of the seismicity parameters in the two models (characteristic and doubly

bounded exponential model).

The choice of the maximum magnitude has a minor influence on the hazard at Muscat

City (Fig. 19b). This minimal change is due to the remoteness of the seismogenic zones for

which the maximum magnitude is changed (Table 3). The choice of the minimum mag-

nitude to calculate the exponential double bound model parameters of Oman Mountains’

seismogenic zone has a moderate influence on the final hazard at Muscat. Figure 19c

shows that the change from 4.0 to 3.0 minimum magnitude increases the seismic hazard of

Muscat City by about 12 % at 0.1 and 0.2 s spectral periods.

As a demonstration of the sensitivity of the results due to the choice of the shallow

active ground-motion prediction equations, a series of hazard UHS is presented for the

Muscat City. Figure 19d compares the results obtained from Ambraseys et al. (1996),

Boore et al. (1997), and Abrahamson and Silva (1997), which are employed in the current

study. The three models selected for this study are in rather good agreement at Muscat

City. The results based on Abrahamson and Silva (1997) seem to be the outlier for the short

spectral periods. Figure 19e compares the effect of changing the ground-motion scaling

relationships of the subduction zone earthquakes, with the UHS based upon Youngs et al.

(1997) being up to one-third higher than those resulted from Atkinson and Boore (2003).

The ground-motion prediction equations of the subduction zone earthquakes influence the

hazard results quite strongly. This may be explained by the fact that the contribution to the

hazard from the subduction zones is dominated by large events of relatively large distance

where the difference between the two ground-motion scaling relationships is largest.

The sensitivity analysis of the ground-motion scaling of the Arabian stable craton is

done by comparing the results based upon Atkinson and Boore (2006) model with the

mean results of Ambraseys et al. (1996), Boore et al. (1997), and Abrahamson and Silva
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(1997). Due to the low seismicity of the stable craton back ground seismogenic zone, the

change of the ground-motion scaling relationships has no effect at all at Muscat, which is

relatively remote from this seismogenic zone (Fig. 19f).

8 Discussion

The seismic hazard assessment in Oman presented in the current study was developed with

the consideration of the limited database and scientific knowledge regarding the seismo-

genic nature of the region, particularly Oman Mountains. The hazard maps are submitted

herein to define the seismic hazard as reasonably as possible using existing data and

information. Three fruitful areas of further study can be recommended: (1) historical and

contemporary earthquake studies, (2) studies in contemporary tectonics and paleoseism-

icity in Oman, and (3) developing regional ground-motion scaling relationships for Oman.

In terms of instrumental seismicity, most of Oman appears as aseismic. The historical

accounts of strong shaking at Qalhat, Nizwa, and Sohar are indications that a potentially

serious seismic hazard may exist in Oman. Geological field investigations of the reported

disruptions in these areas could serve to confirm or deny the historical reports.

It is very important in seismic fault studies of Oman Mountains to distinguish pale-

oseismic tectonic fault rupture from faulting due to any other reason (regional uplifting,

flowage, solution, etc.). Hazard estimates can change dramatically for specific areas when

causal seismogenic faults are identified and the earthquake occurrence frequencies and

maximum magnitudes are determined specifically for such faults. The consequence is that

the hazard can be tied to specific faults rather than averaged over broad areas, thus

resulting in a more accurate portrayal of a more local seismic hazard.

The probabilistic seismic hazard maps deal with ground motion on rock; thus, the

current analysis did not consider the amplification of soils or basins responses. These

factors can change the ground motions and should be considered in the analysis of any site

with ground conditions different from rock.

However, the used ground-motion prediction equations can be tested and refined by

installing an accelerographic system for continuous recording within the Oman territory.

Refining or even developing new ground-motion prediction equations for our specific

region would ultimately lead to a better estimate of seismic hazard.

9 Conclusions

This current study provides national seismic hazard maps for the purposes of seismic

zoning and developing of Oman seismic building code. Maps are provided, with return

periods of 475 and 2,475 years, showing horizontal peak ground acceleration (PGA), and

0.1, 0.2, 0.3, 1.0, and 2.0 s spectral accelerations for rock site conditions. Uncertainties in

seismic sources, maximum magnitude, and ground-motion models have been incorporated

in the seismic hazard model using a logic tree framework. The results conclude that the

seismic hazard in most of Oman is low and for normal engineering structures, seismic

design may not be required, except in the most northeastern area of the country. The

deaggregation of seismic hazard results demonstrates that distant seismogenic sources have

the greatest contribution for most sites for all spectral periods at 475 years return period

while for the 2,475 years return period, the hazard is dominated by nearby small to

moderate earthquakes for short spectral periods and by distant larger events for longer
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ones. The sensitivity analysis for the results at Muscat City proves that the biggest

uncertainties in the current analysis probably stem from the choice of the seismogenic

model and the subduction ground-motion prediction relations. Therefore, refinement of the

ground-motion prediction relations in the study area is crucial.

It is not considered the best practice to only use values on the maps as design coeffi-

cients replacing site-specific studies for important structures. Coupling the current results

with the site-specific characteristics is crucial for these important structures to fully obtain

the seismic design coefficients.
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