
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2016-011 August 15, 2016

Flowtune: Flowlet Control for Datacenter Networks
Jonathan Perry, Hari Balakrishnan, and Devavrat Shah

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78071365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Flowtune: Flowlet Control for Datacenter Networks

Jonathan Perry, Hari Balakrishnan and Devavrat Shah
M.I.T. Computer Science and Artificial Intelligence Laboratory

{yonch,hari,devavrat}@mit.edu

CSAIL Tech Report, 2016-08-15

Abstract

Rapid convergence to a desired allocation of network
resources to endpoint traffic has been a long-standing
challenge for packet-switched networks. The reason for
this is that congestion control decisions are distributed
across the endpoints, which vary their offered load in
response to changes in application demand and network
feedback on a packet-by-packet basis. We propose a dif-
ferent approach for datacenter networks, flowlet control,
in which congestion control decisions are made at the
granularity of a flowlet, not a packet. With flowlet control,
allocations have to change only when flowlets arrive or
leave.

We have implemented this idea in a system called Flow-
tune using a centralized allocator that receives flowlet start
and end notifications from endpoints. The allocator com-
putes optimal rates using a new, fast method for network
utility maximization, and updates endpoint congestion-
control parameters. Experiments show that Flowtune
outperforms DCTCP, pFabric, sfqCoDel, and XCP on tail
packet delays in various settings, converging to optimal
rates within a few packets rather than over several RTTs.
Our implementation of Flowtune handles 10.4× more
throughput per core and scales to 8× more cores than
Fastpass, for an 83-fold throughput gain.

1 Introduction

Over the past thirty years, network congestion control
schemes—whether distributed [25, 9, 22, 20, 40] or cen-
tralized [33], whether end-to-end or with switch sup-
port [13, 17, 18, 36, 27, 39, 32], and whether in the
wide-area Internet [14, 43] or in low-latency datacen-
ters [2, 3, 4, 23, 31]—have operated at the granularity
of individual packets. Endpoints transmit data at a rate
(window) that changes from packet to packet.

Packet-level network resource allocation has become
the de facto standard approach to the problem of deter-
mining the rates of each flow in a network. By contrast, if

it were possible to somehow determine optimal rates for
a set of flows sharing a network, then those rates would
have to change only when new flows arrive or flows leave
the system. Avoiding packet-level rate fluctuations could
help achieve fast convergence to optimal rates.

For this reason, in this paper, we adopt the position
that a flowlet, and not a packet, is a better granularity for
congestion control. By “flowlet”, we mean a batch of
packets that are backlogged at a sender; a flowlet ends
when there is a threshold amount of time during which a
sender’s queue is empty. Our idea is to compute optimal
rates for a set of active flowlets and to update those rates
dynamically as flowlets enter and leave the network.1

We have developed these ideas in a system called Flow-
tune. It is targeted at datacenter environments, although it
may also be used in enterprise and carrier networks, but
is not intended for use in the wide-area Internet.

In datacenters, fast convergence of allocations is crit-
ical, as flowlets tend to be short (one study shows that
the majority of flows are under 10 packets [11]) and link
capacities are large (40 Gbits/s and increasing); if it takes
more than, say, 40 µs to converge to the right rate, then
most flowlets will have already finished. Most current
approaches use distributed, end-to-end congestion control,
and generally take multiple RTTs to converge. By con-
trast, Flowtune uses a centralized rate allocator, aiming
for fast convergence to optimal rates for all flows in the
network.

Computing the optimal rates is a difficult problem be-
cause even one flowlet arriving or leaving could, in gen-
eral, cause updates to the rates of many existing flows,
which in turn could cause updates to more flows, and so
on in a cascading manner. To solve this problem in a scal-
able way, Flowtune uses the network utility maximization
(NUM) framework, previously developed by Kelly et al.
to analyze distributed congestion control protocols [28].
In Flowtune, the centralized allocator optimizes an objec-
tive like proportional fairness, i.e., max∑i U(xi), where
U(xi) = log xi (for example), and xi is the throughput of

1long lived flows that send intermittently generate multiple flowlets.

flowlet i. We introduce a new method, termed Newton-
Exact-Diagonal (NED), to perform this computation in a
fast and scalable way in Flowtune’s centralized allocator.

A scalable implementation of the optimization al-
gorithm on CPUs would run in parallel on multiple
cores. Unfortunately, straightforward implementations
are slowed by expensive cache coherence traffic. We
identify a partitioning of flows to cores where each core
only interacts with a small set of links. Each core has
copies of link state it needs. Before manipulating link
state, the algorithm aggregates all modified copies of link
state to authoritative copies. Afterwards, the algorithm
distributes copies back to the cores. This scheme allows
our implementation to allocate 15.36 Tbits/s in 8.29 µs
(on 4 Nehalem cores, 40 Gbits/s links), up to 184 Tbits/s
in 30.71 µs (64 Nehalem cores, 40 Gbits/s links).

Simulation results2 show that Flowtune out-performs
distributed congestion control methods like DCTCP, pFab-
ric, Cubic-over-sfqCoDel, and XCP on metrics of interest
like the convergence time and the 99%ile (“p99”) of the
flow completion time (FCT):

Versus
DCTCP 8.6×-10.9× and 2.1×-2.9× lower p99 FCT

for 1-packet and 1-10 packet flows. 12×
lower p99 network queuing delay. Con-
verges to a fair allocation within 20 µs vs.
multiple milliseconds.

pFabric Drop rate reduced from 6% to near-zero.
1.7×-2.4× lower p99 FCT on 1-packet and
large flows. Shares network fairly without
starving long flows.

sfqCoDel Reduces p99 FCT by 3.5×-3.8× on 10-100
packet flows and 1.6×-1.85× for flows un-
der 10 packets in high loads, and 2.1×-2.4×
on 100-1000 packet flows on lower loads.
Drop rate reduced from 8% to near-zero.

XCP 4000× faster convergence to correct allo-
cation. 2.35× lower p99 FCT on 1-packet
flows, 1.8×-4.1× on large flows, and 1.2×-
3.2× on other flows. 3.5× lower p99 net-
work queuing delay.

Compared with the centralized arbitration in Fast-
pass [33], Flowtune offers similar fast convergence, but
is able to handle 10.4× traffic per core and utilize 8×
more cores, for an improvement in throughput by a factor
of 83. Another advantage over Fastpass is better fault
tolerance because in Fastpass flows share fate with the
arbiter: when the arbiter fails, the network has no idea
who should transmit next. Fastpass must replicate the

2we use simulation to compare network performance because pFab-
ric, sfqCoDel, and XCP don’t have usable implementations

F-NORM

NED

normalized
rates

flowlet
start/end

flow routes
(periodically)rates

Allocator

...

Endpoint

Endpoint

Endpoint

...

Figure 1: Flowtune components. Endpoints send no-
tifications of new flowlets starting and current flowlets
finishing to the allocator. The NED optimizer computes
rates, which F-NORM then normalizes and sends back to
Endpoints; endpoints adjust sending rates accordingly.

arbiter and implement a failover scheme to tolerate arbiter
failures, increasing system complexity. By contrast, in
Flowtune, if the allocator fails, traditional TCP conges-
tion control takes over, and rate allocations remain close
to optimal for a while. A network with Flowtune can
recover from failure quickly even without any replication.

These results show that Flowtune achieves fast conver-
gence of rates (within a few packets) to a desired network
objective while avoiding network congestion, scaling fa-
vorably with link speeds, and without requiring any allo-
cator replication for fault-tolerance.

2 Architecture
Endpoints report to the allocator when a flowlet starts or
ends. On each such notification, Flowtune runs its opti-
mizer, which computes a set of rates for each flow in the
network. The optimization may cause some of these rates
to temporarily exceed the capacity of some links, caus-
ing queuing delays. To reduce queuing, Flowtune uses a
rate normalizer (F-NORM) to scale-down the computed
values. The normalizer’s results are sent to the endpoints.
Endpoints transmit according to these rates (i.e., they are
trusted, similar to trust in TCP transmissions today).

Flowtune does not select flow paths, but rather works
given the paths the network selects for each flow (§7).

Figure 1 shows these components and how they interact
with each other.

Optimizer intuition. Consider a network with a set of
flows. Suppose a new flow starts or a flow ends. If we
could set each flow’s rate explicitly, what would we set it
to?

The problem is that even one flow arriving or leaving
can cause changes in the rates of an arbitrary subset of
flows, depending on the topology and bottleneck structure.
Certainly flows that share a bottleneck with the new or
ending flow would change their rates. But if some of
these flows slow down, the other flows elsewhere in the

2

network might be able to speed up, and so on. The effects
can cascade.

To solve the problem of determining flow rates un-
der flow churn, we turn to the network utility maxi-
mization (NUM) framework, first introduced by Kelly
et al. [28, 30]. NUM offers three potential benefits. First,
it allows network operators to specify an explicit ob-
jective and allocate rates that optimize that objective.
Second, because previous work has shown that tradi-
tional congestion-control protocols often map to the NUM
framework, NUM may be a reasonable approach for cen-
tralized allocation. Third, we show that it is possible to
develop a fast, centralized method for rate allocation in
this framework, which produces rates that outperform
prior distributed schemes.

Our contribution here is a method to perform the op-
timization quickly; we term this method Newton-Exact-
Diagonal (NED), because it is based on a “Newton-like”
method [6] but takes advantage of the unique properties
of the centralized context to speed up its execution.

Fault-tolerance. Flowtune has a more attractive fault-
tolerance plan than Fastpass and centralized SDN con-
trollers, both of which rely on replication and, in the case
of SDN, maintaining state consistency. In Flowtune, the
allocated rates have a temporary lifespan, and new allo-
cated rates must arrive every few tens of microseconds. If
the allocator fails, the rates expire and endpoint conges-
tion control (e.g., TCP) takes over, using the previously
allocated rates as a starting point. If the allocator only ex-
periences a short failure, network rates will still be close
to optimal when operation resumes.

Objective function. Flowtune uses a different objective
function than Fastpass. The reason is that Fastpass is lim-
ited to methods that map to a weighted maximal matching
to determine packet transmission times, such as max-min
fairness or (approximately) minimum mean flow comple-
tion times. By contrast, Flowtune can achieve a variety
of other desirable objectives such as weighted propor-
tional fairness, which may be more appropriate for multi-
bottleneck settings observed in datacenters. In this paper
we focus on weighted proportional fairness, but note that
the method supports any objective where flow utility is
a function of the flow’s allocated rate, and that different
flows can have different utility functions.3

Rest of the paper. We focus on two key mechanisms of
Flowtune: the NED flow optimizer (§3), and reducing
queuing delays (§4). We also show how a parallel multi-
core implementation of the optimizer and normalizer can
determine flow rates with low latency (§5), and present
results on the performance of these methods and compare
the results with other schemes (§6).

3Under some requirements of utility functions, discussed in §3.

3 Rate Allocation in Flowtune
This section presents Flowtune’s rate allocation algorithm
using the NUM framework. Solving an explicit optimiza-
tion problem allows Flowtune to converge rapidly to the
desired optimal solution. To our knowledge, it is the first
NUM scheme designed specifically for fast convergence
in the centralized setting.

The following table shows notation used in this sec-
tion.

L Set of all links L(s) Links traversed by flow s
S Set of all flows S(`) Flows that traverse link `
p` Price of link ` c` Capacity of link `
xs Rate of flow s Us(x) Utility of flow s
G` By how much link ` is over-allocated
H`` How much flow rates on ` react to a change in p`

The NUM framework. The goal is to allocate rates to
all flows subject to network resource constraints: for each
link ` ∈ L,

∑
s∈S(`)

xs ≤ c`. (1)

Note that in general many allocations satisfy this con-
straint. The question is, which amongst these feasible
options should be chosen. NUM proposes that it should
be the one that maximizes the overall network utility,
∑s∈S Us(xs). Thus, the rate allocation should be the solu-
tion of the following optimization problem:

max∑
s

Us(xs) (2)

over xs ≥ 0, for all s ∈ S,

subject to (1).

Solving NUM using prices. The capacity constraints in
(1) make it hard to solve the optimization problem directly.
Kelly’s approach to solving NUM [28] is to use Lagrange
multipliers, which replace the hard capacity constraints
with a “utility penalty” for exceeding capacities. This is
done by introducing prices for links.

With prices, each flow selfishly optimizes its own profit,
i.e., chooses a rate such that its utility, minus the price
it pays per unit bandwidth on the links it traverses, is
maximized. Although each flow is selfish, the system still
converges to a global optimum because prices force flows
to make globally responsible rate selections.4

The way prices are adjusted is the key differentiator
between different algorithms to solve NUM. Simplistic
methods can adjust prices too gently and be slow to con-
verge, or adjust prices too aggressively and cause wild
fluctuations in rates, or not even converge.

4We discuss the requirements for convergence further below.

3

Adjusting prices. An important quantity to consider
when adjusting prices is by how much each link is over-
allocated, i.e., G` = (∑s∈S(`) xs)− c`. If G` > 0, the link
price should increase; if G` < 0 it should decrease.

Gradient. Arguably the simplest algorithm for adjusting
prices is Gradient projection [30], which adjusts prices
directly from the amount of over-allocation:

p`← p` + γ G`.

Gradient’s shortcoming is that it doesn’t know how sensi-
tive flows are to a price change, so it must update prices
very gently (i.e., γ must be small). This is because de-
pending on flow utility functions, large price updates
might cause flows to react very strongly and change rates
dramatically, causing oscillations in rates and failure to
converge. This results in very timid price updates that
make Gradient slow to converge.

Newton’s method. Unlike the gradient method, New-
ton’s method takes into account second-order effects of
price updates. It adjusts the price on link ` based not only
on how flows on ` will react, but also based on how price
changes to all other links impact flows on `:

p← p− γ G H−1,

where H is the Hessian matrix. This holistic price update
makes Newton’s method converge quickly, but also makes
computing new prices expensive: inverting the Hessian on
CPUs is impractical under Flowtune’s time constraints.

The Newton-like method. An approximation to the New-
ton method was proposed in [6]. The Newton-like method
estimates how sensitive flows are to price changes, by ob-
serving how price changes impact network throughput.
Prices are then updated accordingly: inversely propor-
tional to the estimate of price-sensitivity. The disadvan-
tage is that network throughput must be averaged over
relatively large time intervals, so estimating the diagonal
is slow.

The NED algorithm. The key observation in NED that
enables its fast convergence is that in the datacenter, it
is possible to directly compute how flows on a link will
react to a change in that link’s price. In other words, NED
computes the diagonal of the Hessian, H`` for all links.
This eliminates the need to measure the network, and in
contrast to the full Newton’s method, can be computed
quickly enough on CPUs for sizeable topologies. This
results in the update rule:

p`← p` + γ G` H−1
`` .

We note that the ability to directly compute H`` originates
from trust that exists in the datacenter, not the centraliza-
tion of the allocator.

Algorithm 1 Single iteration of Newton-Exact-Diagonal
NED updates rates x = (xs) given prices p = (p`) (“rate
update” step). Then, in the next step of the iteration
(“price update”), it uses the updated rates to update the
prices.
Rate update. Given prices p = (p`), for each flow s ∈ S,
update the rate:

xs = xs(p) =
(
U ′s

)−1(∑
`∈L(s)

p`). (3)

For example, if Us(x) = w logx, then xs = w
∑`∈L(s) p`

.

Price update. Given updated rates x = x(p) = (xs(p)) as
described above, update the price of each link ` ∈ L:

p`←max
(

0, p`− γH−1
`` G`

)
, (4)

where γ > 0 is a fixed algorithm parameter (e.g. γ = 1),
G` = (∑s∈S(`) xs)− c`, H`` = ∑s∈S(`)

∂xs(p)
∂ p`

.

From (3), ∂xs(p)
∂ p`

=
(
(U ′s)−1

)′(∑m∈L(s) pm
)
.

Algorithm 1 shows Flowtune’s Newton-Exact-
Diagonal (NED) rate allocation algorithm. In Flowtune,
the initialization of prices happens only once, when the
system first starts. The allocator starts without any flows,
and link prices are all set to 1. When flows arrive, their
initial rates are computed using current prices.
Choice of utility function. NED admits any utility func-
tion Us that is strictly concave, differentiable, and mono-
tonically increasing. For example, the logarithmic utility
function, U(x) = w logx (for some weight w > 0), will
optimize weighted proportional fairness [28].
Why price duality works. The utility function Us for
each s ∈ S is a strictly concave function and hence the
overall objective ∑s Us in (2) is strictly concave. The
constraints in (2) are linear. The capacity of each link is
strictly positive and finite. Each flow passes through at
least one link, i.e. L(s) 6= /0 for each s ∈ S. Therefore, the
set of feasible solutions for (2) is non-empty, bounded
and convex. The Lagrangian of (2) is

L(x,p) = ∑
s∈S

Us(xs)− ∑̀
∈L

p`

(
∑

s∈S(`)
xs− c`

)
. (5)

with dual variables p`, and the dual function is defined as

D(p) = max L(x,p) over xs ≥ 0, for all s ∈ S. (6)

The dual optimization problem is given by

min D(p) over p` ≥ 0, for all ` ∈ L. (7)

From Slater’s condition in classical optimization theory,
the utility of the solution of (2) is equal to its Lagrangian

4

dual’s (7), and given the optimal solution p? of (7) it is
possible to find the optimal solution for (2) from (6), i.e.,
using the rate update step. More details on solving NUM
using Lagrange multipliers appear in [28, 6].

4 Rate normalization
The optimizer works in an online setting: when the set
of flows changes, the optimizer does not start afresh, but
rather updates the previous prices with the new flow con-
figuration. While the prices re-converge, there are mo-
mentary spikes in throughput on some links.

Spikes occur because when one link price drops, flows
on the link increase their rates and cause higher, over-
allocated demand on other links (shown in §6.6).

Normally, allocating rates above link capacity results
in queuing, and indeed REM [7], which implements a
variant of gradient projection [30], added a mechanism
for draining queues by raising prices when queue lengths
increase.

By contrast, Flowtune’s centralized optimizer can avoid
queuing and its added latency by normalizing allocated
rates to link capacities. We propose two schemes for
normalization: uniform normalization and flow normal-
ization.

For simplicity, the remainder of this section assumes
all links are allocated non-zero throughput; it is straight-
forward to avoid division by zero in the general case.

4.1 Uniform normalization (U-NORM)
U-NORM scales the rates of all flows by a factor such
that the most congested link will operate at its capacity.
U-NORM first computes for each link the ratio of the
link’s allocation to its capacity r` = ∑s∈S(`) xs/c`. The
most over-congested link has the ratio r? = max`∈L r`; all
flows are scaled using this ratio:

x̄s =
xs

r?
. (8)

The benefits of uniform scaling of all flows by the same
constant are the scheme’s simplicity, and that it preserves
the relative sizes of flows; for utility functions of the form
w logxs, this preserves the fairness of allocation.

However, as shown in §6.6, uniform scaling tends
to scale down flows too much, reducing total network
throughput.

4.2 Flow normalization (F-NORM)
Per-flow normalization scales each flow by the factor
of its most congested link. This scales down all flows
passing through a link ` by at least a factor of r`, which

guarantees the rates through the link are at most the link
capacity. Formally, F-NORM sets

x̄s =
xs

max`∈L(s) r`
. (9)

F-NORM requires per-flow work to calculate normaliza-
tion factors, and does not preserve relative flow rates, but
a few over-allocated links do not hurt the entire network’s
throughput. Instead, only the flows traversing congested
links are scaled down.

We note that the normalization of flow rates follows
a similar structure to NED but instead of prices, the al-
gorithm computes normalization factors. This allows
F-NORM to reuse the multi-core designof NED, as de-
scribed in §5.

5 Implementation

Parallelizing the allocator. The allocator scales by work-
ing on multiple cores on one of more machines. Our de-
sign and implementation focuses on optimizing 2-stage
Clos networks such as a Facebook fabric pod [5] or a
Google Jupiter aggregation block [37], the latter consist-
ing of 6,144 servers in 128 racks. We believe the tech-
niques could be generalized to 3-stage topologies, but
demonstrating that is outside the scope of this paper.
On a single multi-core machine. A strawman multi-
processor algorithm, which arbitrarily distributes flows
to different processors, will result in poor performance
because NED uses flow state to update link state when it
computes aggregate link rates from flow rates: updates to
a link from flows on different processors will cause sig-
nificant cache-coherence traffic, slowing down the com-
putation.

Now consider an algorithm that distributes flows to pro-
cessors based on source rack. This algorithm is still likely
to be sub-optimal: flows from many source racks can all
update links to the same destination, again resulting in ex-
pensive coherence traffic. However, this grouping has the
property that all updates to links connecting servers→ToR
switches and ToR→aggregation switches (i.e., going up
the topology) are only performed by the processor respon-
sible for the source rack. A similar grouping by destina-
tion rack has locality in links going down the topology.
Flowtune uses this observation for its multi-processor
implementation.

Figure 2 shows the partitioning of flows and links into
FlowBlocks and LinkBlocks. Groups of network racks
form blocks (two racks per block in the figure). All links
going upwards from a block form an upward LinkBlock,
and all links going downward towards a block form a
downward LinkBlock. Flows are partitioned by both their
source and destination blocks into FlowBlocks.

5

(a) Upward links from a set of racks
form an upward LinkBlock. Only flows
originating from these racks update this
LinkBlock.

(b) Downward links towards a set of
racks form a downward LinkBlock. Only
flows destined to these racks update this
LinkBlock.

fb

fb

fb

fb

fb

fb

fb

fb

fb

fb

fb

fb

fb

fb

fb

fb

src

dst

lb

lb

lb

lb

lb lb lb lb

(c) Flows are partitioned by source and
destination into FlowBlocks, each updat-
ing an upward (blue) and a downward
(red) LinkBlock.

Figure 2: Partitioning of network state.

(a) Step 1: 2x2 processors. (b) Step 2: 4x4 processors. (c) Step 3: 8x8 processors.

Figure 3: Aggregation of per-processor LinkBlock state in a 64-processor setup. At the end of step m, blocks of 2mx2m
processors have aggregated upward LinkBlocks on the main diagonal, and downward LinkBlocks on the secondary
diagonal.

This partitioning reduces concurrent updates, but does
not eliminate them, as each upward LinkBlock is still
updated by all FlowBlocks in the same source block. Sim-
ilarly, downward LinkBlocks are updated by all Flow-
Blocks in the same destination block.

Aggregation. To eliminate concurrent updates com-
pletely, each FlowBlock works on private, local copies of
its upward and downward LinkBlocks. The local copies
are then aggregated into global copies. The algorithm
then proceeds to update link prices on the global copies,
and distributes the results back to FlowBlocks, so they
again have local copies of the prices. Distribution follows
the reverse of the aggregation pattern.

Figure 3 shows Flowtune’s LinkBlock aggregation pat-
tern. Each aggregation step m combines LinkBlocks
within each 2m x 2m group of processes to the group
diagonals, with the main diagonal aggregating upward
LinkBlocks, and the secondary diagonal downward
LinkBlocks.

The aggregation scheme scales favorably with the num-
ber of cores. n2 processors require only log2 n steps rather
than log2 n2—the number of steps increases every quadru-
pling of processors, not doubling.

The aggregation pattern has uniform bandwidth require-
ments: when aggregating a 2m×2m group of processors,
each m×m sub-group sends and receives the same num-
ber of LinkBlocks state to/from its neighbor sub-groups.
Unlike FlowBlocks, whose size depends on the traffic pat-
tern, each LinkBlock contains exactly the same number

of links, making transfer latency more predictable.
Sending LinkBlocks is also much cheaper than send-

ing FlowBlocks: datacenter measurements show average
flow count per server at tens to hundreds of flows [19, 2],
while LinkBlocks have a small constant of links per server
(usually between one and three).
Multi-machine allocator. The LinkBlock–FlowBlock
partitioning can be directly applied to distributing the
allocator on multiple machines. Figure 3 is consistent
with a setup with four machines with 16 cores each. In
steps (a) and (b), each machine aggregates LinkBlocks
internally, then in (c), aggregation is performed across
machines; each machine receives from one machine and
send to another. This arrangement scales to any 2m x2m

collection of machines.

6 Evaluation
We evaluate Flowtune using benchmarks and simulation.
Benchmarks. The benchmarks measure the allocator’s
latency as a function of network size and the number of
available cores, showing how the system scales.
Simulation. Simulations evaluate the system’s overhead
and convergence speed, and the emergent p99 FCT, packet
drops, queueing delay, and fairness.
Why simulation? Simulation allows us to compare Flow-
tune to state-of-the art schemes whose implementations
are only readily available in the ns2 simulator: pFabric [4],
sfqCoDel [32], and XCP [27]. In addition, simulation

6

provides controlled, repeatable experiments, and large
topologies – we simulated up to 2048 servers.

ns2 provides clean abstractions that force all commu-
nication to traverse the network, subject to queueing and
packet drops. However, care must be taken to model im-
portant aspects of the network and of Flowtune to ensure
that the results are trustworthy.

We took great care to accurately model Flowtune’s
control and data traffic in ns2. All control traffic shares
the network with data traffic and experiences queuing and
packet drops. The allocator adheres to ns2’s separation
of Agent vs. Application, ensuring all communication
traverses the network. Control payloads are transmitted
using TCP, and are only processed after all payload bytes
arrive at the servers/allocator. The simulations use the
same multicore implementation of NED described in §5
and benchmarked in §6.1.

The following table summarizes the experimental re-
sults.

Summary of Results
§6.1 (A) A multi-core implementation optimizes traf-

fic from 384 servers on 4 cores in 8.29 µs. 64
cores schedule 4608 servers’ traffic in 30.71 µs –
around 2 network RTTs.

§6.3 (B) Flowtune converges quickly to a fair alloca-
tion within 100 µs, orders of magnitude faster
than other schemes.

§6.4 (C) The amount of traffic to and from the allo-
cator depends on the workload; it is < 0.17%,
0.57%, and 1.13% of network capacity for the
Hadoop, cache, and web workloads.
(D) Rate update traffic can be reduced by 69%,
64%, and 33% when allocating 0.95 of link capac-
ities on the Hadoop, cache, and web workloads.
(E) As the network size increases, allocator traffic
takes the same fraction of network capacity.

§6.5 (F) Flowtune achieves low p99 flow completion
time: 8.6×-10.9× and 1.7×-2.4× lower than
DCTCP and pFabric on 1-packet flowlets, and
3.5×-3.8× than sfqCoDel on 10-100 packets.
(G) Flowtune keeps p99 network queuing delay
under 8.9 µs, 12× less than DCTCP.
(H) Flowtune maintains a negligible rate of drops.
sfqCoDel drops up to 8% of bytes, pFabric 6%.

§6.6 (I) Normalization is important; without it, NED
over-allocates links by up to 140 Gbits/s.
(J) F-NORM achieves over 99.7% of optimal
throughput. U-NORM is not competitive.

6.1 Multicore implementation
We benchmarked NED’s multi-core implementation on a
machine with 8 Intel E7-8870 CPUs, each with 10 physi-

cal cores running at 2.4 GHz. We divided the network into
2, 4 and 8 blocks, giving runs with 4, 16, and 64 Flow-
Blocks. In the 4-core run, we mapped all FlowBlocks
to the same CPU. With higher number of cores, we di-
vided all FlowBlocks into groups of 2-by-2, and put two
adjacent groups on each CPU.

The following table shows the number of cycles taken
for different choices of network sizes and loads:

Cores Nodes Flows Cycles Time
4 384 3072 19896.6 8.29 µs

16 768 6144 21267.8 8.86 µs
64 1536 12288 30317.6 12.63 µs
64 1536 24576 33576.2 13.99 µs
64 1536 49152 40628.5 16.93 µs
64 3072 49152 57035.9 23.76 µs
64 4608 49152 73703.2 30.71 µs

Rows 1-3 show run-times with increasing number of
cores, rows 3-5 with increasing number of flows, and rows
5-7 with increasing number of endpoints. These results
show general-purpose CPUs are able to optimize network
allocations on hundred of nodes within microseconds.

Rate allocation for 49K flows from 4608 endpoints
takes 30.71 µs, around 2 network RTTs, or 3 RTTs consid-
ering an RTT for control messages to obtain the rate. TCP
takes tens of RTTs to converge – significantly slower.

Communication between CPUs in the aggregate and
distribute steps took more than half of the runtime in all
experiments, e.g., 20 µs with 4068 nodes. This result
implies it should be straightforward to perform the aggre-
gate and distribute steps on multiple servers in a cluster
using commodity hardware and kernel-bypass libraries.

Throughput scaling and comparison to Fastpass.
Flowtune scales to larger networks than Fastpass, which
reported 2.2 Tbits/s on 8 cores. Fastpass performs per-
packet work, so its scalability declines with increases in
link speed. Flowtune schedules flowlets, so allocated rates
scale proportionally with the network links. The bench-
marks results above show that on 40 Gbits/s links, 4 cores
allocate 15.36 Tbits/s, and 64 cores allocate 184 Tbits/s
on 64 cores in under 31 µs, 10.4× more throughput per
core on 8×more cores – an 83× throughput increase over
Fastpass.

6.2 Simulation setup
Topology. The topology is a two-tier full-bisection topol-
ogy with 4 spine switches connected to 9 racks of 16
servers each, where server are connected with a 10 Gbits/s
link. It is the same topology used in [4]. Links and servers
have 1.5 and 2 microsecond delays respectively, for a total
of 14 µs 2-hop RTT and 22 µs 4-hop RTT, commensurate
with measurements we conducted in a large datacenter.

7

Workload. To model micro-bursts, flowlets follow a Pois-
son arrival process. Flowlet size distributions are accord-
ing to the Web, Cache, and Hadoop workloads published
by Facebook [34]. The Poisson rate at which flows enter
the system is chosen to reach a specific average server
load, where 100% load is when the rate equals server link
capacity divided by the mean flow size. Unless other-
wise specified, experiments use the Web workload, which
has the highest rate of changes and hence stresses Flow-
tune the most among the three workloads. Sources and
destinations are chosen uniformly at random.

Flowtune servers. When opening a new connection,
servers start a regular TCP connection, and in parallel
send a notification to the allocator. Whenever a server
receives a rate update for a flow from the allocator, it
opens the flow’s TCP window and paces packets on that
flow according to the allocated rate.

Flowtune allocator. The allocator performs an iteration
every 10 µs. We found that for NED parameter γ in the
range [0.2,1.5], the network exhibits similar performance;
experiments have γ = 0.4.

Flowtune control connections. The allocator is con-
nected using a 40 Gbits/s link to the each of the spine
switches. Allocator–server communication uses TCP with
a 20 µs minRTO and 30 µs maxRTO. Notifications of
flowlet start, end, and rate updates are encoded in 16, 4,
and 6 bytes plus the standard TCP/IP overheads. Updates
to the allocator and servers are only applied when the
corresponding bytes arrive, as in ns2’s TcpApp.

6.3 Fast convergence

To show how fast the different schemes converge to a fair
allocation, we ran five senders and one receiver. Starting
with an empty network, every 10 ms one of the senders
would start a flow to the receiver. Thereafter, every 10 ms
one of the senders stops.

Figure 4 shows the rates of each of the flows as a func-
tion of time. Throughput is computed at 100 µs inter-
vals; smaller intervals make very noisy results for most
schemes. Flowtune achieves the ideal sharing between
flows: N flows each get 1/N of bandwidth quickly (within
20 µs, not shown in the figure). DCTCP takes several
milliseconds to approach the fair allocation, and even
then traffic allocations fluctuate. pFabric doesn’t share
fairly; it prioritizes the flow with least remaining bytes and
starves the other flows. sfqCoDel reaches a fair allocation
quickly, but packet drops cause the application-observed
throughput to be extremely bursty: the application some-
time receives nothing for a while, then a large amount of
data when holes in the window are successfully received.
XCP is slow to allocate bandwidth, which results in low
throughputs during most of the experiment.

6.4 Rate-update traffic
Flowtune only changes allocations on flowlet start and
stop events, so when these events are relatively infrequent,
the allocator could send relatively few updates every sec-
ond. On the other hand, since the allocator optimizes
utility across the entire network, a change to a single flow
could potentially change the rates of all flows in the net-
work. This section explores how much traffic is generated
by traffic to and from the allocator.

The allocator notifies servers when the rates assigned
to flows change by a factor larger than a threshold. For
example, with a threshold of 0.01, a flow allocated 1
Gbit/s will only be notified when its rate changes above
1.01 or below 0.99 Gbits/s. To make sure links are not
over-utilized, the allocator adjusts the available link capac-
ities by the threshold; with a 0.01 threshold, the allocator
would allocate 99% of link capacities.

Amount of update traffic. Figure 5 shows the amount
of traffic sent to and from the allocator as a fraction of
total network capacity, with a notification threshold of
0.01. The Web workload, which has the smallest mean
flow size, also incurs the most update traffic: 1.13% of
network capacity. At 0.8 load, the network will be 80%
utilized, with 20% unused, so update traffic is well below
the available headroom. Hadoop and Cache workloads
need even less update traffic: 0.17% and 0.57%.

Traffic from servers to the allocator is substantially
lower than from the allocator to servers: servers only
communicate flowlet arrival and departures, while the
allocator can potentially send many updates per flowlet.

Reducing update traffic. Increasing the update thresh-
old reduces the volume of update traffic and the process-
ing required at servers. Figure 6 shows the measured
reduction in update traffic for different thresholds com-
pared to the 0.01 threshold in Figure 5. Notifying servers
of changes of 0.05 or more of previous allocations saves
up to 69%, 64% and 33% of update traffic for the Hadoop,
Cache, and Web workloads.

Effect of network size on update traffic. An addition
or removal of a flow in one part of the network potentially
changes allocations on the entire network. As the network
grows, does update traffic also grow, or are updates con-
tained? Figure 7 shows that as the network grows from
128 servers up to 2048 servers, update traffic takes the
same fraction of network capacity — there is no debili-
tating cascading of updates that increases update traffic.
This result shows that the threshold is effective at limiting
the cascading of updates to the entire network.

6.5 Comparison to prior schemes
We compare Flowtune to DCTCP [2], pFabric [4],
XCP [27], and Cubic+sfqCoDel [32].

8

DCTCP Flowtune pFabric sfqCoDel XCP

0.0

2.5

5.0

7.5

10.0

0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75
Time (ms)

T
hr

ou
gh

pu
t (

G
bp

s)

Figure 4: Flowtune achieves a fair allocation within 100 µs of a new flow arriving or leaving. In the benchmark, every
10 ms a new flow is added up to 5 flows, then flows finish one by one. DCTCP approaches a fair allocation after several
milliseconds. pFabric, as designed, doesn’t share the network among flows. sfqCoDel gets a fair allocation quickly, but
retransmissions cause the application to observe bursty rates. XCP is conservative in handing out bandwidth and so
converges slowly.

From allocator To allocator

●
●

●

●

●

●

●

●

●
●

● ● ● ● ● ●

0.000

0.003

0.006

0.009

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Load

F
ra

ct
io

n
of

 n
et

w
or

k
ca

pa
ci

ty

workload

●

cache

hadoop

web

Figure 5: Overhead with Hadoop, cache, and Web work-
loads is < 0.17%, 0.57%, and 1.13% of network capacity.

cache hadoop web

0

20

40

60

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Load

%
 R

ed
uc

tio
n

in
Tr

af
fic

 fr
om

 A
llo

ca
to

r

threshold

0.01

0.02

0.03

0.04

0.05

Figure 6: Notifying servers when rates change by more
than a threshold substantially cuts control traffic volume.

99th percentile FCT. For datacenters to provide faster,
more predictable service, tail latencies must be controlled.
Further, when a user request must gather results from
tens or hundreds of servers, p99 server latency quickly
dominates user experience [12].

Figure 8 shows the improvement in 99th percentile flow
completion time achieved by switching from different
schemes to Flowtune. To summarize flows of different
lengths to the different size ranges (“1-10 packets”, etc.),
we normalize each flow’s completion time by the time
it would take to send out and receive all its bytes on an
empty network.

Flowtune preforms better than DCTCP on short flows:
8.6×-10.9× lower p99 FCT on 1-packet flows and 2.1×-
2.9× on 1-10 packet flows. This happens because DCTCP

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.000

0.005

0.010

128 256 512 1024 2048
Servers

Tr
af

fic
 F

ro
m

 A
llo

ca
to

r
as

 F
ra

ct
io

n
of

N
et

w
or

k
C

ap
ac

ity

Load

●

●

●

0.4

0.6

0.8

Figure 7: The fraction of rate-update traffic remains con-
stant as the network grows from 128 to 2048 servers.

has high p99 queuing delay, as shown in the next experi-
ment.

Overall, pFabric and Flowtune have comparable per-
formance, with Flowtune winning on some flow sizes,
pFabric on others. Note, however, that Flowtune achieves
this performance without requiring any changes to net-
working hardware. Flowtune achieves 1.7×-2.4× lower
p99 FCT on 1-packet flows, and up to 2.4× on large flows.
pFabric performs well on flows 1-100 packets long, with
similar ratios. pFabric is designed to prioritize short flows,
which explains its performance.

sfqCoDel has comparable performance on large flows,
but is 3.5×-3.8× slower on 10-100 packets at high load
and 2.1×-2.4× slower on 100-1000 packet flows at low
load. This is due to sfqCoDel’s high packet loss rate.
Cubic handles most drops using SACKs, except at the end
of the flow, where drops cause timeouts. These timeouts
are most apparent in the medium-sized flows. We present
packet-drop measurements below.

XCP is conservative in handing out bandwidth (§6.3),
which causes flows to finish slowly.
Queuing delay. The following experiments collected
queue lengths, drops, and throughput from each queue
every 1 ms. Figure 9 shows the 99th percentile queuing
delay on network paths, obtained by examining queue
lengths. This queuing delay has a major contribution

9

DCTCP pFabric sfqCoDel XCP

0
1
2
3
4
5
6
7
8
9

10

0

1

2

0

1

2

3

0

1

2

3

4

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Load

S
pe

ed
up

 o
f U

si
ng

 F
lo

w
tu

ne

1 packet 1−10 packets 10−100 packets 100−1000 packets large

Figure 8: Improvement in 99th percentile flow completion time with Flowtune. Note the different scales of the y axis.

2 hops 4 hops

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0

25

50

75

100

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Load

P
99

 Q
ue

ui
ng

 D
el

ay
 (

us
)

● DCTCP

Flowtune

XCP

Figure 9: Flowtune keeps 2-hop and 4-hop 99th-percentile
queuing delays below 8.9 µs. At 0.8 load, XCP has 3.5×
longer queues, DCTCP 12×. pFabric and sfqCodel do
not maintain FIFO ordering so their p99 queuing delay
could not be inferred from sampled queue lengths.

to 1-packet and 1-10 packet flows. Flowtune has near-
empty queues, whereas DCTCP’s queues are 12× longer,
contributing to the significant speedup shown in figure 8.
XCP is conservative in handing out throughput, so its
queues remain relatively shorter. pFabric and sfqCoDel
maintain relatively long queues, but the comparison is
not apples-to-apples since packets do not traverse their
queues in FIFO order.

Packet drops. Figure 10 shows the rate at which the
network drops data, in Gigabits per second. At 0.8 load,
sfqCoDel servers transmit at 1279 Gbits/s (not shown),
and the network drops over 100 Gbits/s, close to 8%.
These drops in themselves are not harmful, however time-
outs due to these drops could result in high p99 FCT,
which appears to affect medium-sized flows (figure 8).
Further, in a datacenter deployment of sfqCoDel, servers
would spend many CPU cycles in slow-path retransmis-
sion code. pFabric’s high drop rate would also make it
prone to higher server CPU usage, but its probing and
retransmission schemes mitigate high p99 FCT. Flowtune,
DCTCP, and XCP drop negligible amounts.

Fairness. Figure 11 shows the proportional-fairness per-
flow score of the different schemes normalized to Flow-
tune’s score. A network where flows are assigned rates ri

● ● ● ● ● ● ● ●0

25

50

75

100

0.2 0.4 0.6 0.8
Load

D
ro

pp
ed

 D
at

a
P

er
 S

ec
on

d
(G

bp
s)

● DCTCP

Flowtune

pFabric

sfqCoDel

XCP

Figure 10: pFabric and sfqCoDel have a significant drop
rate (1-in-13 for sfqCoDel). Flowtune, DCTCP, and XCP
drop negligible amounts.

●

●

●

●
●

●
●

●

−1.5

−1.0

−0.5

0.0

0.2 0.4 0.6 0.8
Load

P
er

 F
lo

w
 F

ai
rn

es
s

R
el

at
iv

e
to

 F
lo

w
tu

ne

● DCTCP

pFabric

sfqCoDel

XCP

Figure 11: Comparison of proportional fairness of differ-
ent schemes, i.e., ∑ log2(rate). Flowtune allocates flows
closer to their proportional-fair share.

gets score ∑i log2(ri). This translates to gaining a point
when a flow gets 2× higher rate, losing a point when a
flow gets 2× lower rate. Flowtune has better fairness than
the compared schemes: a flow’s fairness score has on av-
erage 1.0-1.9 points more in Flowtune than DCTCP, 0.45-
0.83 than pFabric, 1.3 than XCP, and 0.25 than CoDel.

6.6 Normalization

We now examine the performance of three algorithms:
NED (§3), the Gradient method [30], and FGM (Fast
Weighted Gradient Method [8]). For NED and Gradient,
we compare the double-precision floating point reference
implementations with real-time implementations NED-

10

0

50

100

150

200

0.25 0.50 0.75
load

ov
er

−
al

lo
ca

tio
n

(G
bp

s) algorithm
FGM

Gradient

Gradient−RT

NED

NED−RT

Figure 12: Normalization is necessary; without it, opti-
mization algorithms allocate more than link capacities.

RT and Gradient-RT, which use single-point floating point
operations and some numeric approximations for speed.
Need for normalization. As discussed in §4, without
normalization, the churn of arriving and finishing flowlets
causes momentary spikes in allocation, exceeding the ca-
pacity of some links. Left unhandled, this over-allocation
causes queuing and drops in the network. Figure 12 shows
the total amount of over-capacity allocations when there
is no normalization. NED over-allocates more than Gradi-
ent because it is more aggressive at adjusting prices when
flowlets arrive and leave. FGM does not handle the stream
of updates well, and its allocations become unrealistic at
even moderate loads.
U-NORM vs F-NORM. We ran Gradient and NED on
the same workload and recorded their throughput in the
steady state. After each iteration, we ran a separate in-
stance of NED until it converged to the optimal allocation.
Figure 13 shows U-NORM and F-NORM throughputs
as a fraction of the optimal. F-NORM scales each flow
based on the over-capacity allocations of links it traverses,
achieving over 99.7% of optimal throughput with NED
(98.4% with Gradient). In contrast, U-NORM scales flow
throughput too aggressively, hurting overall performance.
Gradient suffers less from U-NORM’s scaling, because it
adjusts rates slowly and does not over-allocate as much
as NED.

Note that NED with F-NORM allocations occasionally
slightly exceed the optimal allocation. This allocation
does not exceed link capacities. Rather, the allocation
gets more throughput than the optimal at the cost of being
a little unfair to some flows.

7 Discussion

Path discovery: An important requirement that Flowtune
makes of the underlying network is that the allocator know
each flow’s path through the network. Many common
architectures support this requirement:

Routing information can be computed from the net-
work state: in ECMP-based networks, given the ECMP

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75
load

T
hr

ou
gh

pu
t

(f
ra

ct
io

n
of

 o
pt

im
al

) algorithm

Gradient

NED

metric

F−NORM

U−NORM

Figure 13: Normalizing with F-NORM achieves close to
optimal throughput, while avoiding over-capacity alloca-
tions. U-NORM’s throughput is low in comparison.

hash function and switch failure notifications; in SDN-
based networks, given controller decisions; and in MPLS-
based [15] networks, given the MPLS configuration
stream.

When endpoints choose routes, the allocator can gather
routes from endpoints: in VL2 [19]-like networks where
endpoints tunnel packets to a core switch for forwarding
to the destination; and in static-routed network where
endpoints have multiple subnets for different paths and
the choice of subnet dictates a packet’s path.

In other cases, endpoints could use a traceroute-like
scheme to discover flow paths.
External traffic: Most datacenters do not run in isolation;
they communicate with other datacenters and users on
the Internet. A Flowtune cluster must be able to accept
flows that are not scheduled by the allocator. Fastpass
has a similar problem, and proposes to run external traffic
at a lower priority so it doesn’t interfere with scheduled
traffic, or add gateways at the border of the network to
schedule traffic up to the boundary. Flowtune could use
either of these suggestions, but another possibility exists.

Both previous suggestions allow the allocator to work
in an “open loop”: the allocator can assume it knows
everything about the state of the network. However, with
NED, it is straightforward to dynamically adjust link ca-
pacities or add dummy flows for external traffic; a “closed
loop” version of the allocator would gather network feed-
back observed by endpoints, and adjust its operation based
on this feedback. The challenge here is what feedback to
gather, and how to react to it in a way that provides some
guarantees on the external traffic performance.
Scaling to larger networks: Although the allocator
scales to multiple servers, the current implementation
is limited to two-tier topologies. Beyond a few thou-
sand endpoints, some networks add a third tier of spine
switches to their topology that connects two-tier pods. As-
signing a full pod to one block would create huge blocks,
limiting allocator parallelism. On the other hand, the
links going into and out of a pod are used by all servers
in a pod, so splitting a pod to multiple blocks creates
expensive updates. An open question is whether the Flow-

11

Block/LinkBlock abstraction can generalize to 3-tier clos
networks, or if a new method is needed.
More scalable rate update schemes: Experiments in
§6.4 show rate updates have a throughput overhead of
1.12%, so each allocator NIC can update 89 servers. In
small deployments of a few hundred endpoints, it might
be feasible to install a few NICs in the allocator to scale.
Figure 5 shows how increasing the update threshold re-
duces update traffic, which can help scale a little farther,
but as deployments grow to thousands of endpoints, even
the reduced updates can overwhelm allocator NICs.

One relevant observation is that sending tiny rate up-
dates of a few bytes has huge overhead: Ethernet has
64-byte minimum frames and preamble and interframe
gaps, which cost 84-bytes, even if only one byte is sent.
When sending an 8-byte rate update there is a 10× over-
head. A straightforward solution to scale the allocator
10× would be to employ a group of intermediary servers
that handle communication to a subset of individual end-
points. The allocator sends an MTU to each intermediary
with all updates to the intermediary’s endpoints. The in-
termediary would in turn forward rate updates to each
endpoint, scaling up to a few thousand endpoints.

8 Related work
Rate allocation. Several systems control datacenter
routes and rates, but are geared for inter-datacenter traf-
fic. BwE [29] groups flows hierarchically and assigns
a max-min fair allocation at each level of the hierarchy
every 5-10 seconds on WAN links (similar time-scale
to B4 [26]), and SWAN [24] receives demands from
non-interactive services, computes rates, and reconfigures
OpenFlow switches every 5 minutes. Flowtune supports
a richer set of utility functions, with orders of magnitude
smaller update times.

Hedera [1] gathers switch statistics to find elephant
flows and reroutes those to avoid network hotspots. It is
complementary to Flowtune: integrating the two systems
can give Hedera its required information with very low
latency. Mordia [16] and Datacenter TDMA [41] com-
pute matchings between sources and destinations using
gathered statistics, and at any given time, only flows of a
single matching can send. While matchings are changed
relatively frequently, the set of matchings is updated in-
frequently (seconds). In contrast, Flowtune updates allo-
cations within tens of microseconds.
NED. The first-order methods [28, 30, 38] do not estimate
H`` or use crude proxies. Gradient projection [30] adjusts
prices with no weighting. Fast Weighted Gradient [8]
uses a crude upper bound on the convexity of the utility
function as a proxy for H``.

The Newton-like method [6], like NED, strives to use
H`` to normalize price updates, but it uses network mea-

surements to estimate its value. These measurements
increase convergence time and have associated error; we
have found the algorithm is unstable in several settings.
Flowtune, in contrast, computes H`` explicitly from flow
utilities, saving the time required to obtain estimates, and
getting an error-free result.

Recent work [42] has a different formulation of the
problem, with equality constraints rather than inequalities.
While the scheme holds promise for faster convergence,
iterations are much more involved and hence slower to
compute, making the improvement questionable. Accel-
erated Dual Descent [44] does not use the flow model: it
doesn’t care what destination data arrives at, only that all
data arrives at some destination. However, the method
is notable for updating a link’s price p` based not only
on the link’s current and desired throughput, but also on
how price changes to other links pk affect it. Adapting
the method to the flow setting could reduce the number
of required iterations to convergence (again at the cost of
perhaps increasing iteration runtimes).

Parallel architectures. Conflict-free Replicated Data
Types [35] (CRDTs) allow distributed data structure up-
dates without synchronization, and then achieve eventual
consistency through an arbitrary sequence of state merges.
Flowtune’s LinkBlock aggregation scheme allows dis-
tributed updates, but guarantees consistency after a fixed
number of merges, and bounds communication through-
put.

In the delegation parallel design pattern [10], all up-
dates to a data structure are sent to a designated processor
which then has exclusive access. Flowtune processors,
however, perform the large bulk of updates to link state
locally.

In flat-combining [21], concurrent users of a data struc-
ture write their requests in local buffers, and then the
first user to obtain a global lock services requests of all
waiting users. Flowtune’s LinkBlock aggregation assigns
responsibility for aggregation in a regular pattern, and
does not incur the cost of competition between processors
for global locks.

9 Conclusion
This paper made the case for flowlet control for datacenter
networks. We developed Flowtune using this idea and
demonstrated that it converges to an optimal allocation
of rates within a few packet-times, rather than several
RTTs. Our experiments show that Flowtune outperforms
DCTCP, pFabric, Cubic-over-sfqCoDel, and XCP in var-
ious datacenter settings; for example, it achieves 8.6×-
10.9× and 2.1×-2.9× lower p99 FCT for 1-packet and
1-10 packet flows compared to DCTCP.

Compared to Fastpass, Flowtune scales to 8× more
cores and achieves 10.4× higher throughput per core,

12

does not require allocator replication for fault-tolerance,
and achieves weighted proportional-fair rate allocations
quickly in between 8.29 µs and 30.71 µs (≤2 RTTs) for
networks that have between 384 and 4608 nodes.

Acknowledgements
We thank Omar Baldonado, Chuck Thacker, Prabhakaran
Ganesan, Songqiao Su, Petr Lapukhov, Neda Beheshti,
James Zeng, Sandeep Hebbani and Chris Davies for help-
ful discussions. We are grateful for Facebook’s support of
Perry through a Facebook Fellowship. We thank the indus-
trial members of the MIT Center for Wireless Networks
and Mobile Computing for their support and encourage-
ment.

References
[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan,

N. Huang, and A. Vahdat. Hedera: Dynamic Flow
Scheduling for Data Center Networks. In NSDI,
2010.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridha-
ran. Data Center TCP (DCTCP). In SIGCOMM,
2010.

[3] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less is More: Trading a
Little Bandwidth for Ultra-Low Latency in the Data
Center. In NSDI, 2012.

[4] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKe-
own, B. Prabhakar, and S. Shenker. pFabric: Mini-
mal near-optimal datacenter transport. In Proceed-
ings of the ACM SIGCOMM 2013 conference on
SIGCOMM, pages 435–446. ACM, 2013.

[5] A. Andreyev. Introducing data center fabric, the
next-generation Facebook data center network.

[6] S. Athuraliya and S. H. Low. Optimization Flow
Control with Newton-like Algorithm. Telecommuni-
cation Systems, 15(3-4):345–358, 2000.

[7] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin.
REM: Active Queue Management. IEEE Network,
15(3):48–53, 2001.

[8] A. Beck, A. Nedic, A. Ozdaglar, and M. Teboulle.
A Gradient Method for Network Resource Alloca-
tion Problems. IEEE Trans. on Control of Network
Systems, 1(1):64–73, 2014.

[9] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson.
TCP Vegas: New Techniques for Congestion Detec-
tion and Avoidance. In Proceedings of the Confer-
ence on Communications Architectures, Protocols
and Applications, SIGCOMM ’94, pages 24–35,
New York, NY, USA, 1994. ACM.

[10] I. Calciu, J. E. Gottschlich, and M. Herlihy. Using
elimination and delegation to implement a scalable
numa-friendly stack. In Proc. Usenix Workshop on
Hot Topics in Parallelism (HotPar), 2013.

[11] Y. Chen, S. Alspaugh, and R. H. Katz. Design in-
sights for mapreduce from diverse production work-
loads. In Tech. Rep. EECS-2012-17. UC Berkeley,
2012.

[12] J. Dean and L. A. Barroso. The tail at scale. Comm.
of the ACM, 2013.

[13] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulations of a Fair-Queueing Algorithm. Inter-
networking: Research and Experience, V(17):3–26,
1990.

[14] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and
M. Schapira. PCC: Re-architecting Congestion Con-
trol for Consistent High Performance. In NSDI,
2015.

[15] A. Elwalid, C. Jin, S. Low, and I. Widjaja. MATE:
MPLS Adaptive Traffic Engineering. In INFOCOM,
2001.

[16] N. Farrington, G. Porter, Y. Fainman, G. Papen, and
A. Vahdat. Hunting Mice with Microsecond Circuit
Switches. In HotNets, 2012.

[17] S. Floyd. TCP and Explicit Congestion Notification.
CCR, 24(5), Oct. 1994.

[18] S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. IEEE ACM
Trans. on Net., 1(4), Aug. 1993.

[19] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-
gupta. VL2: A Scalable and Flexible Data Center
Network. In SIGCOMM, 2009.

[20] S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-
friendly high-speed TCP variant. ACM SIGOPS
Operating Systems Review, 42(5):64–74, 2008.

[21] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir.
Flat combining and the synchronization-parallelism
tradeoff. In Proceedings of the twenty-second an-
nual ACM symposium on Parallelism in algorithms
and architectures, pages 355–364. ACM, 2010.

13

[22] J. C. Hoe. Improving the start-up behavior of a
congestion control scheme for tcp. In Conference
Proceedings on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communica-
tions, SIGCOMM ’96, pages 270–280, New York,
NY, USA, 1996. ACM.

[23] C. Y. Hong, M. Caesar, and P. Godfrey. Finish-
ing Flows Quickly with Preemptive Scheduling. In
SIGCOMM, 2012.

[24] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achieving
High Utilization with Software-Driven WAN. In
SIGCOMM, 2013.

[25] V. Jacobson. Congestion Avoidance and Control. In
SIGCOMM, 1988.

[26] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4:
Experience with a Globally-deployed Software De-
fined Wan. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13,
pages 3–14, New York, NY, USA, 2013. ACM.

[27] D. Katabi, M. Handley, and C. Rohrs. Congestion
Control for High Bandwidth-Delay Product Net-
works. In SIGCOMM, 2002.

[28] F. P. Kelly, A. K. Maulloo, and D. K. Tan. Rate
Control for Communication Networks: Shadow
prices, Proportional Fairness and Stability. Journal
of the Operational Research Society, pages 237–252,
1998.

[29] A. Kumar, S. Jain, U. Naik, A. Raghuraman,
N. Kasinadhuni, E. C. Zermeno, C. S. Gunn,
J. Ai, B. Carlin, M. Amarandei-Stavila, M. Robin,
A. Siganporia, S. Stuart, and A. Vahdat. Bwe: Flex-
ible, hierarchical bandwidth allocation for wan dis-
tributed computing. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, pages 1–14, New
York, NY, USA, 2015. ACM.

[30] S. H. Low and D. E. Lapsley. Optimization Flow
ControlĂŤ-I: Basic Algorithm and Convergence.
IEEE/ACM Trans. on Networking, 7(6):861–874,
1999.

[31] R. Mittal, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall,
D. Zats, et al. TIMELY: RTT-based congestion con-
trol for the datacenter. In SIGCOMM, 2015.

[32] K. Nichols and V. Jacobson. Controlling queue
delay. Communications of the ACM, 55(7):42–50,
2012.

[33] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah,
and H. Fugal. Fastpass: A centralized "zero-queue"
datacenter network. In SIGCOMM, 2014.

[34] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Sno-
eren. Inside the social network’s (datacenter) net-
work. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication,
SIGCOMM ’15, pages 123–137, New York, NY,
USA, 2015. ACM.

[35] M. Shapiro, N. Preguiça, C. Baquero, and M. Za-
wirski. Conflict-free replicated data types. In Pro-
ceedings of the 13th International Conference on
Stabilization, Safety, and Security of Distributed Sys-
tems, SSS’11, pages 386–400, Berlin, Heidelberg,
2011. Springer-Verlag.

[36] M. Shreedhar and G. Varghese. Efficient Fair Queue-
ing Using Deficit Round Robin. In SIGCOMM,
1995.

[37] A. Singh, J. Ong, A. Agarwal, G. Anderson,
A. Armistead, R. Bannon, S. Boving, G. Desai,
B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, E. Tanda, J. Wanderer, U. Hölzle,
S. Stuart, and A. Vahdat. Jupiter rising: A decade of
clos topologies and centralized control in google’s
datacenter network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, pages 183–197,
New York, NY, USA, 2015. ACM.

[38] R. Srikant. The mathematics of Internet congestion
control. Springer Science & Business Media, 2012.

[39] C. Tai, J. Zhu, and N. Dukkipati. Making Large
Scale Deployment of RCP Practical for Real Net-
works. In INFOCOM, 2008.

[40] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A
compound TCP approach for high-speed and long
distance networks. In INFOCOM, 2006.

[41] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C.
Snoeren. Practical TDMA for Datacenter Ethernet.
In EuroSys, 2012.

[42] E. Wei, A. Ozdaglar, and A. Jadbabaie. A
Distributed Newton Method for Network Utility
Maximization–I: Algorithm. IEEE Trans. on Au-
tomatic Control, 58(9):2162–2175, 2013.

14

[43] K. Winstein, A. Sivaraman, and H. Balakrishnan.
Stochastic Forecasts Achieve High Throughput and
Low Delay over Cellular Networks. In NSDI, 2013.

[44] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jad-
babaie. Accelerated dual descent for network flow
optimization. IEEE Trans. on Automatic Control,
59(4):905–920, 2014.

15

