
Tweet2Vec: Learning Tweet Embeddings Using
Character-level CNN-LSTM Encoder-Decoder

Soroush Vosoughi∗
MIT Media Lab

soroush@mit.edu

Prashanth Vijayaraghavan∗
MIT Media Lab

pralav@mit.edu

Deb Roy
MIT Media Lab

dkroy@media.mit.edu

ABSTRACT
We present Tweet2Vec, a novel method for generating general-
purpose vector representation of tweets. The model learns
tweet embeddings using character-level CNN-LSTM encoder-
decoder. We trained our model on 3 million, randomly se-
lected English-language tweets. The model was evaluated
using two methods: tweet semantic similarity and tweet sen-
timent categorization, outperforming the previous state-of-
the-art in both tasks. The evaluations demonstrate the power
of the tweet embeddings generated by our model for various
tweet categorization tasks. The vector representations gen-
erated by our model are generic, and hence can be applied
to a variety of tasks. Though the model presented in this pa-
per is trained on English-language tweets, the method pre-
sented can be used to learn tweet embeddings for different
languages.

CCS Concepts
•Information systems → Document representation;
•Computing methodologies → Neural networks; In-
formation extraction; Lexical semantics;

Keywords
Twitter; Embedding; Tweet; Convolutional Neural Networks;
CNN; LSTM; Tweet2Vec; Encoder-decoder

1. INTRODUCTION
In recent years, the micro-blogging site Twitter has be-

come a major social media platform with hundreds of mil-
lions of users. The short (140 character limit), noisy and
idiosyncratic nature of tweets make standard information re-
trieval and data mining methods ill-suited to Twitter. Con-
sequently, there has been an ever growing body of IR and
data mining literature focusing on Twitter. However, most
of these works employ extensive feature engineering to create

∗The first two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’16, July 17 - 21, 2016, Pisa, Italy
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4069-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2911451.2914762

task-specific, hand-crafted features. This is time consuming
and inefficient as new features need to be engineered for ev-
ery task.

In this paper, we present Tweet2Vec, a method for gen-
erating general-purpose vector representation of tweets that
can be used for any classification task. Tweet2Vec removes
the need for expansive feature engineering and can be used
to train any standard off-the-shelf classifier (e.g., logistic re-
gression, svm, etc). Tweet2Vec uses a CNN-LSTM encoder-
decoder model that operates at the character level to learn
and generate vector representation of tweets. Our method
is especially useful for natural language processing tasks on
Twitter where it is particularly difficult to engineer features,
such as speech-act classification and stance detection (as
shown in our previous works on these topics [13, 12]).

There has been several works on generating embeddings
for words, most famously Word2Vec by Mikolov et al. [9]).
There has also been a number of different works that use
encoder-decoder models based on long short-term memory
(LSTM) [11], and gated recurrent neural networks (GRU)
[1]. These methods have been used mostly in the context of
machine translation. The encoder maps the sentence from
the source language to a vector representation, while the de-
coder conditions on this encoded vector for translating it to
the target language. Perhaps the work most related to ours
is the work of Le and Mikolov [7], where they extended the
Word2Vec model to generate representations for sentences
(called ParagraphVec). However, these models all function
at the word level, making them ill-suited to the extremely
noisy and idiosyncratic nature of tweets. Our character-level
model, on the other hand, can better deal with the noise and
idiosyncrasies in tweets. We plan to make our model and the
data used to train it publicly available to be used by other
researchers that work with tweets.

2. CNN-LSTM ENCODER-DECODER
In this section, we describe the CNN-LSTM encoder-decoder

model that operates at the character level and generates vec-
tor representation of tweets. The encoder consists of convo-
lutional layers to extract features from the characters and
an LSTM layer to encode the sequence of features to a vec-
tor representation, while the decoder consists of two LSTM
layers which predict the character at each time step from
the output of encoder.

2.1 Character-Level CNN Tweet Model
Character-level CNN (CharCNN) is a slight variant of

the deep character-level convolutional neural network intro-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78071238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

duced by Zhang et al [15]. In this model, we perform tem-
poral convolutional and temporal max-pooling operations,
which computes one-dimensional convolution and pooling
functions, respectively, between input and output. Given a
discrete input function f(x) ∈ [1, l] 7→ R, a discrete kernel
function k(x) ∈ [1,m] 7→ R and stride s, the convolution
g(y) ∈ [1, (l − m + 1)/s] 7→ R between k(x) and f(x) and
pooling operation h(y) ∈ [1, (l −m + 1)/s] 7→ R of f(x) is
calculated as:

g(y) =

m∑
x=1

k(x) · f(y · s− x+ c) (1)

h(y) = maxmx=1f(y · s− x+ c) (2)

where c = m− s+ 1 is an offset constant.
We adapted this model, which employs temporal convo-

lution and pooling operations, for tweets. The character set
includes the English alphabets, numbers, special characters
and unknown character. There are 70 characters in total,
given below:

abcdefghijklmnopqrstuvwxyz0123456789

-,;.!?:’"/\|_#$%&^*~‘+-=<>()[]{}

Each character in the tweets can be encoded using one-hot
vector xi ∈ {0, 1}70. Hence, the tweets are represented as a
binary matrix x1..150 ∈ {0, 1}150x70 with padding wherever
necessary, where 150 is the maximum number of characters
in a tweet (140 tweet characters and padding) and 70 is the
size of the character set.

Each tweet, in the form of a matrix, is now fed into a
deep model consisting of four 1-d convolutional layers. A
convolution operation employs a filter w ∈ Rl, to extract n-
gram character feature from a sliding window of l characters
at the first layer and learns abstract textual features in the
subsequent layers. The convolution in the first layer operates
on sliding windows of character (size l), and the convolutions
in deeper layers are defined in a similar way. Generally, for
tweet s, a feature ci at layer h is generated by:

c
(h)
i (s) = g(w(h).ĉ

(h−1)
i + b(h)) (3)

where ĉ
(0)
i = xi...i+l−1, b(h) ∈ R is the bias at layer h and g

is a rectified linear unit.
This filter w is applied across all possible windows of char-

acters in the tweet to produce a feature map. The output
of the convolutional layer is followed by a 1-d max-overtime
pooling operation [2] over the feature map and selects the
maximum value as the prominent feature from the current
filter. In this way, we apply n filters at each layer. Pool-
ing size may vary at each layer (given by p(h) at layer h).
The pooling operation shrinks the size of the feature rep-
resentation and filters out trivial features like unnecessary
combination of characters. The window length l, number of
filters f , pooling size p at each layer are given in Table 1.

We define CharCNN(T) to denote the character-level
CNN operation on input tweet matrix T . The output from
the last convolutional layer of CharCNN(T) (size: 10×512) is
subsequently given as input to the LSTM layer. Since LSTM
works on sequences (explained in Section 2.2 and 2.3), pool-
ing operation is restricted to the first two layers of the model
(as shown in Table 1).

Table 1: Layer Parameters of CharCNN

Layer Window Filters Pool
(h) Size (l) (f) Size (p)
1 7 512 3
2 7 512 3
3 3 512 N/A
4 3 512 N/A

Original Tweet

Temporal
 Convolution

Temporal
Max Pooling

Convolution Layers
with/without

pooling

Extracted Features

LSTM encoder

LSTM decoders

Decoded tweet
(output from softmax)70

150

150

70

150-l+1

f
(150-l+1)/p

f
f

Figure 1: Illustration of the CNN-LSTM Encoder-Decoder
Model

2.2 Long-Short Term Memory (LSTM)
In this section we briefly describe the LSTM model [4].

Given an input sequence X =(x1, x2, ..., xN), LSTM com-
putes the hidden vector sequence h =(h1, h2, ..., hN) and
and output vector sequence Y =(y1, y2, ..., yN). At each time
step, the output of the module is controlled by a set of gates
as a function of the previous hidden state ht1 and the input
at the current time step xt, the forget gate ft, the input
gate it, and the output gate ot. These gates collectively de-
cide the transitions of the current memory cell ct and the
current hidden state ht. The LSTM transition functions are
defined as follows:

it = σ(Wi · [ht−1, xt] + bi)

ft = σ(Wf · [ht−1, xt] + bf)

lt = tanh(Wl · [ht−1, xt] + bl)

ot = σ(Wo[ht−1, xt] + bo)

ct = ft � ct−1 + it � lt
ht = ot � tanh(ct)

(4)

Here, σ is the sigmoid function that has an output in [0,
1], tanh denotes the hyperbolic tangent function that has an
output in [−1, 1], and � denotes the component-wise mul-
tiplication. The extent to which the information in the old
memory cell is discarded is controlled by ft, while it controls
the extent to which new information is stored in the current
memory cell, and ot is the output based on the memory cell
ct. LSTM is explicitly designed for learning long-term depen-
dencies, and therefore we choose LSTM after the convolution
layer to learn dependencies in the sequence of extracted fea-
tures. In sequence-to-sequence generation tasks, an LSTM
defines a distribution over outputs and sequentially predicts
tokens using a softmax function.

P (Y |X) =
∏

t∈[1,N]

exp(g(ht−1, yt))∑
y′ exp(g(ht1, y′t)

(5)

where g is the activation function. For simplicity, we define
LSTM(xt, ht−1) to denote the LSTM operation on input x
at time-step t and the previous hidden state ht−1.

2.3 The Combined Model
The CNN-LSTM encoder-decoder model draws on the in-

tuition that the sequence of features (e.g. character and word
n-grams) extracted from CNN can be encoded into a vector
representation using LSTM that can embed the meaning of
the whole tweet. Figure 1 illustrates the complete encoder-
decoder model. The input and output to the model are the
tweet represented as a matrix where each row is the one-hot
vector representation of the characters. The procedure for
encoding and decoding is explained in the following section.

2.3.1 Encoder
Given a tweet in the matrix form T (size: 150 × 70), the

CNN (Section 2.1) extracts the features from the character
representation. The one-dimensional convolution involves a
filter vector sliding over a sequence and detecting features at
different positions. The new successive higher-order window
representations then are fed into LSTM (Section 2.2). Since
LSTM extracts representation from sequence input, we will
not apply pooling after convolution at the higher layers of
Character-level CNN model. The encoding procedure can be
summarized as:

Hconv = CharCNN(T) (6)

ht = LSTM(gt, ht−1) (7)

where g = Hconv is an extracted feature matrix where each
row can be considered as a time-step for the LSTM and ht is
the hidden representation at time-step t. LSTM operates on
each row of the Hconv along with the hidden vectors from
previous time-step to produce embedding for the subsequent
time-steps. The vector output at the final time-step, encN ,
is used to represent the entire tweet. In our case, the size of
the encN is 256.

2.3.2 Decoder
The decoder operates on the encoded representation with

two layers of LSTMs. In the initial time-step, the end-to-end
output from the encoding procedure is used as the original
input into first LSTM layer. The last LSTM decoder gen-
erates each character, C, sequentially and combines it with
previously generated hidden vectors of size 128, ht−1, for

the next time-step prediction. The prediction of character
at each time step is given by:

P (Ct|·) = softmax(Tt, ht−1) (8)

where Ct refers to the character at time-step t, Tt represents
the one-hot vector of the character at time-step t. The result
from the softmax is a decoded tweet matrix T dec, which is
eventually compared with the actual tweet or a synonym-
replaced version of the tweet (explained in Section 3) for
learning the parameters of the model.

3. DATA AUGMENTATION & TRAINING
We trained the CNN-LSTM encoder-decoder model on

3 million randomly selected English-language tweets popu-
lated using data augmentation techniques, which are useful
for controlling generalization error for deep learning mod-
els. Data augmentation, in our context, refers to replicat-
ing tweet and replacing some of the words in the replicated
tweets with their synonyms. These synonyms are obtained
from WordNet [3] which contains words grouped together
on the basis of their meanings. This involves selection of re-
placeable words (example of non-replaceable words are stop-
words, user names, hash tags, etc) from the tweet and the
number of words n to be replaced. The probability of the
number, n, is given by a geometric distribution with pa-
rameter l in which P [n] ∼ ln. Words generally have several
synonyms, thus the synonym index m, of a given word is
also determined by another geometric distribution in which
P [s] ∼ rm. In our encoder-decoder model, we decode the
encoded representation to the actual tweet or a synonym-
replaced version of the tweet from the augmented data. We
used p = 0.5, r = 0.5 for our training. We also make sure
that the POS tags of the replaced words are not completely
different from the actual words. For regularization, we ap-
ply a dropout mechanism after the penultimate layer. This
prevents co-adaptation of hidden units by randomly setting
a proportion ρ of the hidden units to zero (for our case, we
set ρ = 0.5).

To learn the model parameters, we minimize the cross-
entropy loss as the training objective using the Adam Opti-
mization algorithm [5]. It is given by

CrossEnt(p, q) = −
∑

p(x) log(q(x)) (9)

where p is the true distribution (one-hot vector representing
characters in the tweet) and q is the output of the softmax.
This, in turn, corresponds to computing the negative log-
probability of the true class.

4. EXPERIMENTS
We evaluated our model using two classification tasks:

Tweet semantic relatedness and Tweet sentiment classifica-
tion.

4.1 Semantic Relatedness
The first evaluation is based on the SemEval 2015-Task 1:

Paraphrase and Semantic Similarity in Twitter [14]. Given
a pair of tweets, the goal is to predict their semantic equiva-
lence (i.e., if they express the same or very similar meaning),
through a binary yes/no judgement. The dataset provided
for this task contains 18K tweet pairs for training and 1K

pairs for testing, with 35% of these pairs being paraphrases,
and 65% non-paraphrases.

We first extract the vector representation of all the tweets
in the dataset using our Tweet2Vec model. We use two fea-
tures to represent a tweet pair. Given two tweet vectors r and
s, we compute their element-wise product r·s and their abso-
lute difference |r−s| and concatenate them together (Similar
to [6]). We then train a logistic regression model on these
features using the dataset. Cross-validation is used for tun-
ing the threshold for classification. In contrast to our model,
most of the methods used for this task were largely based
on extensive use of feature engineering, or a combination of
feature engineering with semantic spaces. Table 2 shows the
performance of our model compared to the top four mod-
els in the SemEval 2015 competition, and also a model that
was trained using ParagraphVec. Our model (Tweet2Vec)
outperforms all these models, without resorting to extensive
task-specific feature engineering.

Table 2: Results of the paraphrase and semantic similarity
in Twitter task.

Model Precision Recall F1 − Score
ParagraphVec 0.570 0.680 0.620

nnfeats 0.767 0.583 0.662
ikr 0.569 0.806 0.667

linearsvm 0.683 0.663 0.672
svckernel 0.680 0.669 0.674

Tweet2Vec 0.679 0.686 0.677

4.2 Sentiment Classification
The second evaluation is based on the SemEval 2015-Task

10B: Twitter Message Polarity Classification [10]. Given a
tweet, the task is to classify it as either positive, negative
or neutral in sentiment. The size of the training and test
sets were 9,520 tweets and 2,380 tweets respectively (38%
positive, 15% negative, and 47% neutral).

As with the last task, we first extract the vector represen-
tation of all the tweets in the dataset using Tweet2Vec and
use that to train a logistic regression classifier using the vec-
tor representations. Even though there are three classes, the
SemEval task is a binary task. The performance is measured
as the average F1-score of the positive and the negative class.
Table 3 shows the performance of our model compared to
the top four models in the SemEval 2015 competition (note
that only the F1-score is reported by SemEval for this task)
and ParagraphVec. Our model outperforms all these models,
again without resorting to any feature engineering.

Table 3: Results of Twitter sentiment classification task.

Model Precision Recall F1 − Score
ParagraphVec 0.600 0.680 0.637

INESC-ID N/A N/A 0.642
lsislif N/A N/A 0.643
unitn N/A N/A 0.646
Webis N/A N/A 0.648

Tweet2Vec 0.675 0.719 0.656

5. CONCLUSION AND FUTURE WORK
In this paper, we presented Tweet2Vec, a novel method for

generating general-purpose vector representation of tweets,
using a character-level CNN-LSTM encoder-decoder archi-
tecture. To the best of our knowledge, ours is the first at-
tempt at learning and applying character-level tweet embed-

dings. Our character-level model can deal with the noisy and
peculiar nature of tweets better than methods that generate
embeddings at the word level. Our model is also robust to
synonyms with the help of our data augmentation technique
using WordNet.

The vector representations generated by our model are
generic, and thus can be applied to tasks of different nature.
We evaluated our model using two different SemEval 2015
tasks: Twitter semantic relatedness, and sentiment classi-
fication. Simple, off-the-shelf logistic regression classifiers
trained using the vector representations generated by our
model outperformed the top-performing methods for both
tasks, without the need for any extensive feature engineer-
ing. This was despite the fact that due to resource limi-
tations, our Tweet2Vec model was trained on a relatively
small set (3 million tweets). Also, our method outperformed
ParagraphVec, which is an extension of Word2Vec to handle
sentences. This is a small but noteworthy illustration of why
our tweet embeddings are best-suited to deal with the noise
and idiosyncrasies of tweets.

For future work, we plan to extend the method to include:
1) Augmentation of data through reordering the words in
the tweets to make the model robust to word-order, 2) Ex-
ploiting attention mechanism [8] in our model to improve
alignment of words in tweets during decoding, which could
improve the overall performance.

6. REFERENCES
[1] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical

evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555, 2014.

[2] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. Natural language
processing (almost) from scratch. The Journal of Machine
Learning Research, 12:2493–2537, 2011.

[3] C. Fellbaum. WordNet. Wiley Online Library, 1998.
[4] S. Hochreiter and J. Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997.
[5] D. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.
[6] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel,

R. Urtasun, A. Torralba, and S. Fidler. Skip-thought
vectors. In Advances in Neural Information Processing
Systems, pages 3276–3284, 2015.

[7] Q. V. Le and T. Mikolov. Distributed representations of
sentences and documents. arXiv preprint arXiv:1405.4053,
2014.

[8] J. Li, M.-T. Luong, and D. Jurafsky. A hierarchical neural
autoencoder for paragraphs and documents. arXiv preprint
arXiv:1506.01057, 2015.

[9] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

[10] S. Rosenthal, P. Nakov, S. Kiritchenko, S. Mohammad,
A. Ritter, and V. Stoyanov. Semeval-2015 task 10:
Sentiment analysis in twitter. In SemEval, 2015.

[11] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to
sequence learning with neural networks. In Advances in
neural information processing systems, pages 3104–3112,
2014.

[12] P. Vijayaraghavan, I. Sysoev, S. Vosoughi, and D. Roy.
Deepstance at semeval-2016 task 6: Detecting stance in
tweets using character and word-level cnns. 2016.

[13] S. Vosoughi and D. Roy. Tweet acts: A speech act classifier
for twitter. In proceedings of the 10th ICWSM, 2016.

[14] W. Xu, C. Callison-Burch, and W. B. Dolan. Semeval-2015
task 1: Paraphrase and semantic similarity in twitter (pit).
In SemEval, 2015.

[15] X. Zhang and Y. LeCun. Text understanding from scratch.
arXiv preprint arXiv:1502.01710, 2015.

