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The Future of Natural Gas in China: Effects of Pricing Reform and Climate Policy 

Danwei Zhang* and Sergey Paltsev*†  

Abstract 

China is currently attempting to reduce greenhouse gas emissions and increase natural gas 
consumption as a part of broader national strategies to reduce the air pollution impacts of the 
nation’s energy system. To assess the scenarios of natural gas development up to 2050, we employ a 
global energy-economic model—the MIT Economic Projection and Policy Analysis (EPPA) model. 
The results show that a cap-and-trade policy will enable China to achieve its climate mitigation goals, 
but will also reduce natural gas consumption. An integrated policy that uses a part of the carbon 
revenue obtained from the cap-and-trade system to subsidize natural gas use promotes natural gas 
consumption, resulting in a further reduction in coal use relative to the cap-and-trade policy case. 
The integrated policy has a very moderate welfare cost; however, it reduces air pollution and allows 
China to achieve both the climate objective and the natural gas promotion objective.  
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1. INTRODUCTION 
China’s energy supply has long been dominated by coal. China has already become the world’s 

largest CO2 emitter and suffers enormously from air pollution. Over the past three decades, about 
two-thirds of China’s primary energy consumption has come from coal, causing significant local, 
regional and global environmental pollution. Natural gas use generates much less pollution than 
coal, and natural gas is often regarded as a cleaner energy. Thus, substitution of natural gas for coal 
has been listed by the Chinese government as an important part of China’s sustainable energy 
system transformation strategy. At present, natural gas accounts for approximately 6% of China’s 
primary energy supply, which is substantially below the global average of 24% (BP, 2015). 
According to China’s national energy strategy action plan, the share of natural gas in primary 
energy supply should reach 10% by 2020 (State Council, 2014). Natural gas has a great potential 
for expansion in China’s future energy market, and natural gas use is widely encouraged in Chinese 
cities as an important option to address deteriorated air quality and improve living standards. 
However, there are still significant economic and institutional barriers to expansion of natural gas 
consumption. The natural gas future in China is quite uncertain without innovative approaches to 
address these barriers.  

Pricing is one of the most important mechanisms in the future of natural gas development. The 
natural gas price is substantially higher than the coal price in China, and the large-scale substitution 
of natural gas for coal requires a policy support. Natural gas prices in China have long been 
determined by government agencies, predominately by the National Development and Reform 
Commission (NDRC), with limited flexibility, predictability, and transparency (Paltsev and Zhang, 
2015a). There is also a significant research literature that finds that public interventions will be 
needed to enable China’s transition to a low carbon energy economy (Chai and Zhang, 2010; Zhou 
et al., 2014; Wang and Cheng, 2015; Zhang et al., 2015). Of the proposed public policies, a carbon 
tax or carbon dioxide emissions cap-and-trade scheme are commonly considered as a cost effective 
approach in mitigation (Paltsev et al., 2012; Zhang et al., 2015). China recently announced its 
plans to build a national carbon emission cap-and-trade system (The White House, 2015), and in its 
intended nationally determined contribution (INDC) submitted to the United Nations in December 
2015 (NDRC, 2015), China also pledged to peak its CO2 emissions around 2030 by introducing a 
number of policy measures highlighting the cap-and-trade system. Some studies have analyzed the 
level of the carbon price needed for China to achieve its climate pledge (Zhang et al., 2015). 
However, as natural gas contains carbon, the natural gas use could be penalized by the carbon 
price. The existing studies do not address the issue to what extent such a carbon price will affect 
China’s natural gas consumption. Such investigation, however, is important as climate policy might 
lead to a substantial deviation from the natural gas promotion objective.  

Our goal is to examine the consistency of China’s climate policy with the natural gas promotion 
objective, and to assess an integrated policy approach which combines a natural gas subsidy 
scheme with a cap-and-trade policy. We investigate a policy instrument and quantify a magnitude 
of the required policy support that allows achieving both the climate mitigation objective and 
natural gas promotion objective, establishing conditions where both objectives can be 
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simultaneously achieved. We simulate natural gas price trajectories under both oil-linked and 
market-determined pricing schemes to examine the difference between the two pricing 
mechanisms. We also evaluate the changes in sectoral use of natural gas and costs to the economy 
from alternative policy instruments.  

These projections are based on the energy-economic model developed at the MIT Joint Program 
on the Science and Policy of Global Change: the MIT Economic Projection and Policy Analysis 
(EPPA) model (Paltsev et al., 2005; Chen et al., 2015). An advantage of this modeling framework 
is that both the commodities’ quantities and prices are endogenously determined. For this study, we 
enhanced the EPPA model with a representation of China’s latest policy objectives and updated the 
technology costs in China’s power generation sector. 

2. POLICIES AFFECTING NATURAL GAS SUPPLY AND DEMAND  

2.1 Natural Gas Pricing Policy 

Natural gas pricing reform has played a vital role in promoting natural gas supply from both 
domestic and overseas sources (Paltsev and Zhang, 2015a). China’s natural gas pricing used to 
favor consumers. The highly regulated pricing regime resulted in a low gas price and failed to 
provide enough incentives for natural gas suppliers. A new gas pricing reform was first put into 
trial in Guangdong and Guangxi provinces in December 2011, and was introduced nationwide in 
July 2013. The pricing reform aims to create a more market-based pricing mechanism to encourage 
natural gas supply. To minimize potential political opposition during the new regime 
implementation, the government adopted a two-tier pricing approach for the period of transition. 
The transitional process lasted until April 2015. During the transitional process, the pricing for the 
incremental volume of natural gas supply was linked to international oil product prices, while the 
prices for the existing volume was gradually increased to the levels of the incremental volume. 
Now, China’s wholesale natural gas price is connected to a weighted price of international fuel oil 
and liquid petroleum gas (LPG) prices. The oil-linked pricing regime is more predictable and 
transparent compared to the old highly-regulated pricing system where prices were established 
arbitrarily and changed unpredictably.  

2.2 Other Natural Gas Promotion Policy 

In addition to the pricing reform, the Chinese government implements a set of natural gas 
promotion policies. The primary objective of China’s natural gas promotion policy is to facilitate 
the substitution of natural gas for coal to address the air pollution problems and improve the 
household quality of life in Chinese cities. Burning coal emits air pollutants such as SO2, NOx, 
black carbon and fine particles such as PM2.5 and others. China’s air pollution is largely attributed 
to the massive use of coal and a lack of clean coal technologies. Natural gas is regarded as cleaner 
than coal fossil fuel because it emits less air pollutants than coal during the combustion process. In 
this regard the Chinese central government and local governments often attach a great value to an 
increase in a share of natural gas in the energy supply mix. 
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China’s natural gas promotion policies include national and urban targets for natural gas use; 
regulations on natural utilizations; natural gas pricing; and subsidies, tax relief and feed-in tariffs 
for natural gas fired electricity generations. China’s National Energy Development Strategy Action 
Plan (2014–2020) emphasizes the role of natural gas in China’s energy system transformation and 
sets a goal for the share of natural gas in China’s primary energy supply to exceed 10% by 2020 
(State Council, 2014). Chinese government has also set restrictions for natural gas use. According 
to the Revised Natural Gas Utilization Policy (NDRC, 2012), natural gas is encouraged for 
consumption as fuel in residential, manufacturing, electricity and transportation sectors, but is 
discouraged as a feedstock in producing chemicals.  

The market-based energy policy instruments create dynamic incentives for energy producers 
and consumers as they provide the best value for the resource. In China, one policy instrument for 
promoting natural gas use is the import value-added tax refund to encourage natural gas imports 
(MOF, 2011). Others include the feed-in tariffs for gas-fired power plants to encourage substitution 
of natural gas for coal in the electricity sector (NDRC, 2014). Since 2007, coal-bed methane 
producers receive a subsidy of 0.2 yuan (¥) per cubic meter if the gas is delivered to residential and 
industrial users (MOF, 2007). While these instruments promote natural gas use, they can create 
economic distortions. In the modeling exercise described later, a general subsidy is used as a proxy 
for these policy instruments.  

2.3 Climate-Related Policy 

In 2015 the Chinese government submitted to the United Nations its climate action plan 
(NDRC, 2015). According to the plan, China is pledged to peak its CO2 emissions around 2030 and 
decrease carbon intensity (CO2 emissions per unit of GDP) by 60–65% below 2005 levels by the 
same year. The new carbon intensity target builds on China’s existing target, from the Copenhagen 
climate talks in 2009�to reduce its CO2 intensity by 40–45% in 2020, relative to 2005 levels 
(NRDC, 2015). As a major policy instrument to honor the pledges listed in its INDC, China has 
recently decided to establish a nationwide carbon dioxide emissions cap-and-trade system, or 
emission trading scheme (ETS). Chinese President Xi Jinping officially announced that a 
nationwide ETS will be launched in 2017 (The White House, 2015).  

3. THE EPPA MODEL AND ITS MODIFICATION  

3.1 Brief Introduction to the EPPA Model  

To assess China’s natural gas development scenarios, we use the MIT EPPA model (Paltsev et 
al., 2005; Chen et al., 2015), which is a multi-region, multi-sector dynamic model of the global 
economy. It has been widely applied to the impact evaluation of climate and energy policies on 
economic and energy systems for global and regional studies. As a computable general equilibrium 
model, the EPPA model projects the interactions among production sectors and between the 
producers and consumers influenced by commodity and resource prices. The EPPA model can 
provide an examination of the economy-wide effects of different policies, and incorporates 
numerous technologies to provide details about the resulting technology mix for different policy 
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approaches. As a global framework, the EPPA model can also be used to assess policy effects on 
international trade and on global emissions mitigation.  

EPPA represents the global economy with China as a separate region of the model. The GTAP 
data set (Narayanan et al., 2012) provides the base year (2007) information on the input-output 
structure for regional economies, including bilateral trade flows. The GTAP data are aggregated 
into 18 regions and 24 sectors. Figure 1 shows the geographical regions represented explicitly in 
the model.  

EPPA explicitly represents interactions among sectors (through inter-industry inputs) and 
regions (via bilateral trade flows). It simulates production in each region at the sectoral level. 
Sectoral output is produced from primary factors including multiple categories of depletable and 
renewable natural capital, produced capital, and labor (Table 1). Intermediate inputs to sectoral 
production are represented through a complete input-output structure.  

The EPPA model projects CO2 emissions and other greenhouse gases (GHGs) such as methane, 
nitrous oxide, hydrofluorocarbons, perfluorocarbons and sulfur hexafluoride. The model also 
projects pollution emissions from sulfates, nitrogen oxides, black carbon, organic carbon, carbon 
monoxide, ammonia, and non-methane volatile organic compounds. Mitigation options are also 
reprensented in the model.  

The dynamics in the EPPA model are driven by endogenously-determined capital accumulation 
resulting from savings and investments as well as exogenously-determined factors including labor 
force growth, resource availability, and the rate of technological change (e.g. explicit advanced 
technologies and productivity improvement in labor, land and energy) (Chen et al., 2015). GDP 
and income growth drives up demand for goods produced from each sector (Octaviano et al., 
2015). Fossil fuel production costs increase as fossil fuel resources deplete. Increasing the use of 
advanced technologies (including energy from renewable sources) leads to learning-by-doing and a 
reduction in scarcity rents (associated with shortages in skilled labor and monopoly rents). With 
increasing prices of fossil fuel and reduced costs of advanced technologies, the new technologies 
can become competitive with the existing technologies relying on fossil fuels (Morris et al., 2014). 
These features enable the EPPA model to simulate a dynamic evolution of technology mixes for 
different energy and climate-related policies. 

Based on engineering data, EPPA includes advanced technologies that are not widely deployed 
but have a large application potential in the future, namely “backstop technologies” as shown in 
Table 2 (Chen et al., 2015). These technologies are usually more expensive than the conventional 
technologies in the base year, but they may become cost efficient with technology improvement 
and favorable policies. The model has calibrated the output of these backstop technologies for 
historical years (2007 and 2010) based on the information from the World Energy Outlook from the 
International Energy Agency (IEA, 2012)  
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Figure 1. Regions in the EPPA model. Source: Adopted from MIT Joint Program (2014) and Chen et al. 
(2015) 

Table 1. Sectors and Factor Inputs in the EPPA model. 

Sector   Primary Factor Inputs 
Production Sectors     Depletable Natural Capital  
Agriculture - Crops CROP   Conventional Oil Resources 
Agriculture - Livestock LIVE   Shale Oil 
Agriculture - Forestry FORS   Conventional Gas Resources 
Food Products FOOD   Unconventional Gas Resources 
Coal COAL   Uranium Resources 
Crude Oil OIL   Coal Resources 
Refined Oil ROIL   Renewable Natural Capital  
Natural Gas1 GAS   Solar Resources 
Electricity2  ELEC   Wind Resources 
Energy-Intensive Industries EINT   Hydro Resources 
Other Industries OTHR   Land 
Services SERV   Produced Capital 
Transport TRAN   Conventional Capital (Bldgs & Mach.) 
Household Sectors     Labor 
Household Transport HHTRAN     
Ownership of Dwellings DWE     
Other Household Consumption3 HHOTHR     
1 Natural Gas production includes production from conventional resources, shale gas, tight gas, coal-bed methane, 

and coal gasification.  
2 Electricity production technologies include coal, natural gas, oil, advanced natural gas, advanced coal, hydro, 

nuclear, biomass, wind, solar, wind with natural gas backup, wind with biomass backup, advanced coal with 
carbon capture and storage, advanced natural gas with carbon capture and storage, and advanced nuclear.  

3 Other Household Consumption is resolved at the production sectors level.  
Source: Adopted from Chen et al. (2015). 
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Table 2. Backstop technologies. 

Backstop Technology EPPA6 
First generation biofuels bio-fg 
Second generation biofuels bio-oil 
Oil shale synf-oil 
Synthetic gas from coal synf-gas 
Hydrogen h2 
Advanced nuclear adv-nucl 
Integrated Gasification Combined Cycle with CCS Igcap 
Natural Gas Combined Cycle Ngcc 
Natural Gas Combined Cycle with CCS Ngcap 
Wind generation Wind 
Bio-electricity Bioelec 
Wind power combined with bio-electricity  Windbio 
Wind power combined with gas-fired power Windgas 
Solar generation Solar 
Source: Chen et al. (2015) 

3.2 Representing Characteristics of China's Energy Sector in the EPPA model 

Like production for other commodities, advanced technologies in the EPPA model are 
represented by nested constant elasticity of substitution (CES) production functions. Key features 
of advanced technology representation include resource inputs and the depiction of transition costs 
for scaling up production, which is expressed as a markup relative to the price of pulverized coal 
technology in 2010. Based on a detailed survey of local information from the latest publications, 
including government statistics on capital cost, government announcements on fuel cost, and 
project-based peer-reviewed studies, we updated the assumptions for capital cost, fixed operation 
and maintenance (O&M) cost, variable O&M cost, and fuel cost of each advanced technology in 
China. Information on production cost and input structure of existing and advanced technologies in 
China is presented in Table 3. 

Currently, the coal price in China ranges from 310 to ¥445/tonne depending on heating values 
(CQCOAL, 2015). For the analysis here, we use the coal price of ¥400/tonne for coal with a 
thermal value of 5,500 Kcal/kg. The capital cost for a pulverized coal–fired power plant is 
estimated to be about ¥3,680/kW1 (NEA, 2014). The variable O&M cost and fixed O&M cost are 
assumed at ¥0.037/kWh and ¥62/kW respectively, according to Huang (2012). The levelized cost 
of pulverized coal technology is calculated to be around ¥0.28/kWh or US$41.93/MWh with a 
discount rate of 8.5%.  

The levelized cost of natural gas combined cycle (NGCC) in China is calculated to be at 
US$73.61/MWh, which is about 75% higher than the cost for pulverized coal-fired technology.

                                                
 

1 Costs are converted into 2010 yuan using GDP deflator from International Monetary Fund (IMF, 2015).  
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Table 3. Levelized Costs of Electricity in China. 

    Units 
(2010¥ / 2010US$) 

Pulverized 
Coal 

NGCC NGCC 
w/CCS 

IGCC  IGCC 
w/CCS 

Advanced 
Nuclear  

Wind Biomass Solar PV 

[0] Construction Time years 4 2 3  5 5 2 4 2 
[1] "Overnight" Capital Cost  ¥/kW 3680 3330 4065 7777 9161 11911 7192 8886 8325 
[2] Total Capital Requirement ¥/kW 4269 3596 4552 9332 10993 16675 7767 10307 8991 
[3] Capital Recovery Charge Rate % 10.6% 10.6% 10.6% 10.6% 10.6% 10.6% 10.6% 10.6% 10.6% 
[4] Fixed O&M ¥/kW 62.0 98.0 280.4 396.0 478.0 - 160.4 108.3 52.6 
[5] Variable O&M ¥/kWh 0.037 0.014 0.146 0.009 0.020 0.130 - - - 
[6] Project Life years 20 20 20 20 20 20 20 20 20 
[7] Capacity Factor % 54% 54% 54% 54% 54% 85% 26% 54% 16% 
[8] Operating Hours hours 4706 4706 4706 4706 4706 7489 2274 4706 1428 
[9] Capital Recovery Required ¥/kWh 0.096 0.081 0.102 0.210 0.247 0.235 0.361 0.231 0.665 
[10] Fixed O&M Recovery Required ¥/kWh 0.013 0.021 0.060 0.084 0.102 0.000 0.071 0.023 0.037 
[11] Heat Rate BTU/kWh 8740 6333 7493 7450 8307 10479 - 13500 - 
[12] Fuel Cost ¥/MMBTU 15.77 60.46 60.46 15.77 15.77 7.40 - 24.89 - 
[13] Fuel Cost per kWh ¥/kWh 0.14 0.38 0.45 0.12 0.13 0.08 - 0.34 - 
[14] Levelized Cost of Electricity ¥/kWh 0.28 0.50 0.76 0.42 0.50 0.44 0.43 0.59 0.70 
[15] Levelized Cost of Electricity US$/MWh 41.93 73.61 112.41 62.07 73.77 65.41 63.73 87.21 103.71 
[16] Markup Over Coal    1.00 1.76 2.68 1.48 1.76 1.56 1.52 2.08 2.47 
Source:  
GDP deflator: International Monetary Fund, World Economic Outlook Database, October 2015.  
[1] Pulverized coal: NEA (2014). NGCC: Sun and Ning (2014). NGCC with CCS: Liao (2015). IGCC and IGCC with CCS: Li (2012). Advanced Nuclear: Huo et al. 

(2015). Wind, Biomass and Solar PV: CNREC (2015).  
[2] = [1]+([1]*0.4*y) where y = [0] (construction time in years). For nuclear there is additional cost of ([1]*0.2) for the decommission cost. EPPA assumption.  
[3] = r/(1-(1+r)-[6]) where r is discount rate. The discount rate is 8.5% for all technologies. EPPA assumption.  
[4], [5] Pulverized Coal: Huang (2012). NGCC: Chen and Chen (2012). NGCC with CCS: Liao (2015). IGCC and IGCC with CCS: Li (2012). Wind and Solar: Lan 

(2014). Advanced Nuclear: Li (2010). Biomass: Huang et al. (2008).  
[6] Input, from EIA (2010). EPPA assumption.  
[7] Wind and Solar: CNREC (2015). Others: CEC (2015).  
[8] = 8760*[7] (8760 is the number of hours in a year).  
[9] = ([2]*[3])/[8]. [10] = [4]/[8].  
[11] Input, from EIA (2010). EPPA assumption.  
[12] Coal: Bohai-rim steam-coal 5500 Kcal/Kg, ¥400/ton in September 2015. CQCOAL News (2015). Natural gas: Natural gas price for power generation in 

Shanghai, ¥2.5/m3. Shanghai Municipal Development and Reform Commission (2015). Advanced Nuclear: Li (2010). Biomass: ¥300/t, 14653 kJ/kg. Huang et 
al. (2008). Wind & Solar: zero fuel cost.  

[13] = [11]*[12]/1000000.  
[14] = [5]+[9]+[10]+[13].  
[15] = [14]/6.77. Exchange rate: US$1 = ¥6.77 (average exchange rate for 2010 from USForex, 2015).  
[16] = [15]/([15] for coal).  
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We base our calculation on the reported capital cost for NGCC power plant in Jiangsu, which is 
around ¥3,330/kWh (Sun and Ning, 2014). The variable O&M and fixed O&M costs are 
estimated to be ¥0.014/kWh and ¥98/kW respectively. We also use the actual reported capacity 
factor for thermal plants from China Electricity Council (2015). We use the power sector natural 
gas price in Shanghai to calculate the fuel cost for NGCC. Currently, the natural gas price for 
power sector in Shanghai is ¥2.5/m3 (SHDRC, 2015), which is about ¥60.46/MMBtu assuming 
that 1000 cubic meter natural gas contents 35.7 MMBtu (BP, 2014). Natural gas prices for power 
sector vary across regions. There are several considerations for the reason that we use natural gas 
price in Shanghai in our calculations. Firstly, this largely reflects the natural gas prices used by 
NGCC plants in China as most of the NGCC power plants are located in the east of China in 
places such as Beijing, Shanghai, Jiangsu, and Zhejiang, where the natural gas prices are among 
the highest. Secondly, most likely, majority of the future NGCC plants will be also located in the 
eastern part of China because NGCC plants emit less SO2 and NOx than coal-fired power plants, 
and the eastern regions in China are heavily impacted by the air pollution issues. Promoting 
NGCC plants to replace coal-fired plants in those regions will be a primary contribution to 
mitigating local air pollution.  

Based on calculations provided in Table 3, the costs for advanced nuclear, wind, solar PV and 
biomass are estimated to be US$65.4/MWh, US$63.7/MWh, US$103.7/MWh, and 
US$87.2/MWh respectively. In the EPPA model, there is an improvement in power production 
efficiency. EPPA use an autonomous energy efficiency improvement (AEEI) rate of 0.3% per year 
for electricity sector in China. The AEEI rate represents the long-run rate of efficiency 
improvement attribute to technological change and capital stock turn over. Some additional 
efficiency improvement will be price-driven, as higher fuel prices will lead to more capital use to 
increase efficiency of production. 

In the current version of EPPA (Chen et al., 2015), natural gas is treated as a fuel which will 
be fully combusted in all intermediate and final consumption sectors. However, in China around 
30% of the natural gas input in industry is used as feedstock to produce chemicals such as 
acetylene and chloromethane (NBS, 2014). The difference between feedstock input and fuel 
input is important for the resulting emissions. Feedstock inputs are not combusted and they emit 
little greenhouse gas. Assuming that all natural gas is being used as a fuel will overestimate the 
amount of greenhouse emissions in the manufacturing sector.  

In order to disaggregate the gas consumption into fuel input and feedstock input based on 
their actual usage, we introduce a new commodity titled “feedstock gas” into the production 
function in the energy-intensive (EINT) sector (see Figure 2) of the EPPA model. The feedstock 
gas comes from a combination of both domestic gas and imported gas. Since feedstock gas is a 
non-energy commodity, it is aggregated in the same layer with other non-energy inputs. We 
adjust accordingly the amount of natural gas that is used as fuel. 

Energy consumption (both fossil and non-fossil) in 2010 in the standard EPPA model (Chen 
et al., 2015) is calibrated to match the IEA data (IEA, 2012). In September 2015, the National 
Bureau of Statistics of China (NBS) released the official revision of energy consumption data 
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from 2000 to 2013 (IEA, 2015). The revised statistics suggest that coal consumption has been 
underreported up to 17% each year compared to the data previously released by the NBS (The 
Guardian, 2015). Figure 3 presents China’s primary energy consumption from 2005 to 2014 
based on the revised statistics. China’s energy mix is dominated by coal: in 2014, approximately 
66% energy consumption came from coal. Natural gas contributed 242.8 Mtce, or 5.7% of 
China’s primary energy consumption, which is much lower than the global average of 23.7% 

  

Figure 2. Production structure for energy-intensive sector (EINT) in EPPA. 

 

Figure 3. Natural gas in China’s total energy supply (Mtce). Data source: NBS (2015). 
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in 2014 (BP, 2015). During the 2005–2014 time frame, China’s natural gas consumption grows 
at a 16.2% annual rate, while its total energy consumption grows by 5.6% per year.  

We calibrated the energy consumption of China in 2010 according to the latest official data. 
Starting from 2010, EPPA runs in five-year intervals. Although the official statistics for annual 
energy consumption in 2015 are not available yet, we use the 2014 energy consumption as a base 
to calibrate the 2015 energy consumption. The National Energy Agency (NEA) of China 
estimates that the energy consumption in the first half of 2015 is 0.7% higher than the first half 
of 2014. The NEA also estimates that energy consumption in the second half of 2015 will grow 
more than 0.7% from that in the second half year of 2014 (NEA, 2015). The total energy 
consumption in 2014 is 4260 Mtce (124.85 EJ), with an energy mix of 66% coal, 17.1% oil, 
5.7% natural gas and 11.2% non-fossil energies (NBS, 2015).  

Nuclear energy is calibrated to match the projected installed capacity in 2015 (SGCC, 2015) 
and 2020 (State Council, 2014). Nuclear energy from 2025 to 2050 are calibrated to match the 
“High nuclear” scenario from Paltsev and Zhang (2015b). Hydro power is calibrated to match 
the installed capacity projected by Zhang et al. (2015) from 2015 to 2050 and it reaches 400 GW 
by 2050. There are substantial uncertainties about wind and solar development. According to 
Chinese government, the installed capacities of wind and solar will reach 200 GW and 100 GW 
respectively by 2020 (State Council, 2014). Therefore, wind and solar are calibrated to the 
planned capacity provided by the government. Wind and solar energy consumption after 2020 
are endogenously determined by the model. Due to the lack of information, we did not 
recalibrate biomass energy consumption. Therefore, bioelectricity and bio oil consumption in 
2010 are still matched to the historic data presented in the IEA 2012 Energy Outlook. The targets 
that are used for calibration are summarized in Table 4. 

The GTAP dataset is based on 2007 and it does not reflect the rapid natural gas development 
in China that occurred after 2007. To better reflect the current natural gas prices in China, we 
introduced a correction factor that adjusts the domestic price level by 28%. This correction 
leaves the values from the GTAP unchanged, but increases the corresponding amount of natural 
gas in physical units. The correction amount is chosen to match China’s statistics in 2010 
(Paltsev and Zhang, 2015a). 

In the standard EPPA model, the share of imported gas in 2015 does not reflect the real 
natural gas supply situation in China. Imported natural gas has increased rapidly since the 
Central Asia – China pipeline started operations in 2010. However, even with additional  

Table 4. Projected installed capacity of non-fossil energy in China (GW). 

 2015 Source 2020 Source 
Wind 100 (State Council, 2013) 200  (NDRC, 2015) 
Solar 35  (BJX News, 2015) 100  (NDRC, 2015) 
Hydro 300  (State Council, 2013) 350  (NDRC, 2015) 
Nuclear 30  (SGCC, 2015) 58  (NDRC, 2015) 
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adjustments as described previously, the model fails to capture this infrastructure development. 
Based on the GTAP data, the standard EPPA model keeps the share of imported gas at 12% in 
2015, which is much lower than the 31% import share in 2013 reported by the Chinese statistics 
(Paltsev and Zhang, 2015a). Since most of the increased gas imports are from Central Asia, we 
increased the bilateral trade flow between Central Asia and China in 2015 by 840% relative to 
the 2010 level. This number is justified by the fact that, during the first ten months in 2010, 
China imported a total value of US$0.75 billion (Urumqi Custom, 2011) from Central Asia. In 
2015, the number has grown by 840%, reaching US$7 billion (Urumqi Custom, 2015). Even 
after increasing the value for the imported gas from Central Asia based on the custom statistics, 
the share of total gas imports in 2015 was still less than 31%. Hence, another adjustment was 
made to reflect the growth in LNG imports. 

4. CHINA’S NATURAL GAS FUTURE: ALTERNATIVE POLICY SCENARIOS  

4.1 Description of Scenarios  

We focus on the following three main scenarios which indicate three representative paths of 
China’s future natural gas development: Reference, CapOnly (also referred as climate policy), 
and Cap+Subsidy (also referred as integrated policy). Table 5 summarizes the description of 
three scenarios.  

Table 5. Assumptions and highlights of the three typical policy scenarios 

  Reference CapOnly Cap+Subsidy 

[1] Oil-linked gas price 
from 2015 to 2020, 
market-determined gas 
price after 2020 

The same as in Reference The same as in Reference 

[2] No carbon cap Carbon cap-and-trade 
scheme introduced to 
achieve a 4% CO2 intensity 
reduction per year after 
2020 

The same as in CapOnly 

[3] No gas subsidy No gas subsidy Allocate a part of carbon revenue 
to subsidize natural gas use to 
achieve a 10% of natural gas 
contribution in primary energy 
consumption since 2020 

Scenario 
Remarks  

Represents the current 
natural gas pricing 
approach and future 
directions for pricing. 

Introduces a cap-and-trade 
scheme to achieve China's 
pledge —peaking its CO2 
emission around 2030. 

Integrated climate mitigation and 
natural gas promotion policy is 
introduced to achieve the 
objective of climate mitigation and 
natural gas promotion 
simultaneously.  
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4.1.1 Reference Scenario  
Under the Reference scenario, the natural gas pricing will be based on the oil-linked approach 

during 2015–2020, and completely market-determined afterwards. No policies are introduced— 
the Reference scenario is used as a base case to assess the effects of the CO2 cap and natural gas 
consumption subsidies. Most of the results in this paper will be presented as deviations from the 
Reference.  

There are several reasons why we link the natural gas price with the imported refined oil price 
during the 2015–2020 time frame. As shown in Figure 4, the oil-linked natural gas price grows 
faster than the market-determined gas price after 2020, and there is an increasing deviation 
between the two price trajectories. This is due to differences in the supply and demand patterns 
for refined oil and natural gas. As the refined oil price increases faster than the natural gas price, 
keeping the natural gas price linked to the imported refined oil price would constrain natural gas 
consumption. This is not in line with the objective of China’s natural pricing reform, which is to 
promote natural gas utilization.  

China now encourages market-oriented energy system reform. NDRC and NEA are drafting 
the development plan for oil and natural gas reform for the thirteenth five-year plan period 
(2016–2020). The plan aims to establish a market-based pricing system covering the business of 
resource exploration, import, transmission and distribution (Xinhua News, 2015). In this regard, 

 

Figure 4. Price index of natural gas in the Market-Determined and Oil-Linked settings 
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the current oil-linked natural gas pricing scheme should serve as a transition to a complete 
market-determined pricing system. Based on the modeling results and the government policies 
discussed above, a likely scenario is that China’s natural gas price will be oil-linked during 
2015–2020 timeframe and then will be market-determined after 2020. 

4.1.2 Climate Policy Scenario (CapOnly) 
China’s INDC lists its major actions to address climate change. According to the INDC, 

China will decrease its carbon intensity by 60–65% from 2005 levels by 2030, and peak its CO2 
emissions around 2030. The INDC also cites establishing a nationwide emissions trading system 
(ETS) as a critical tool to enable China to achieve its INDC pledges (NDRC, 2015). The ETS 
will launch in 2017, according to the US–China Joint Presidential Statement on Climate Change 
(The White House, 2015). 

By 2014, China achieved a CO2 intensity reduction of 33.8% compared to the 2005 levels 
(NDRC, 2015). If China achieves a carbon intensity reduction of about 4% per year during the 
period from 2015 to 2030, then it will accomplish a carbon intensity reduction of approximately 
65.5% from 2005 to 2030—very close to the range of its INDC CO2 intensity reduction pledge. 
Therefore, in the CapOnly scenario we use a 4% CO2 intensity reduction rate as a constraint to 
generate CO2 cap in EPPA to simulate China’s INDC starting in 2020.  

4.1.3 Integrated Carbon Cap-and-Trade and Natural Gas Subsidy Policy Scenario 
(Cap+Subisdy) 
The Cap+Subsidy scenario is designed to investigate the magnitude of support needed to meet 

China’s natural target while implementing a nationwide ETS to achieve the INDC targets. The 
ETS caps CO2 emissions by generating a CO2 penalty. Fossil fuel consumption is expected to be 
substantially reduced with the implementation of ETS. Although natural gas has less carbon 
content than coal, it is still a carbon-emitting fossil fuel and is also expected to be reduced by a 
sizeable amount due to the CO2 penalty. As a result, China’s climate policy might counteract its 
natural gas promotion policy, which aims to reach a 10% share of natural gas in the primary 
energy supply.  

If the government intends to reduce CO2 emissions and increase natural gas consumption at 
the same time, it may need to subsidize natural gas consumption. Natural gas subsidy plays an 
important role in promoting natural gas utilization under climate policy. In China, coal burning is 
the major cause of air pollution. Burning coal generates more SO2 and particulates than natural 
gas. Therefore, natural gas subsidy is justified by the fact that it internalizes the air pollution 
externalities of coal.  

In this scenario, in addition to the CO2 cap, we implement subsidies to natural gas 
consumption in all sectors except for the chemical manufacturing sector. This setting is intended 
to be in line with the government’s natural use guidelines which have restrictions on gas use for 
chemical production (NDRC, 2012). In this scenario, the residential, energy intensive, electricity, 
transport, services and other sectors are subsidized for their natural gas consumption as fuel 
starting in 2020. We set the subsidy levels on different gas users until the total natural gas supply 
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accounts for 10% of the total energy supply in each period after 2020. We also calculate the 
amount of subsidies as a share of CO2 tax revenue in each period. The results might be 
informative for policy makers to illustrate the amount of CO2 tax revenue (or CO2 permit 
revenue) which should be allocated to subsidize natural gas consumers and reach natural gas 
consumption targets. The results will be discussed in the next section. 

In all scenarios, energy consumption in 2010 is calibrated to match the Chinese statistics 
released by National Bureau of Statistics (NBS, 2015). China’s natural gas consumption in 2015 
is calibrated to match projections based on the 2014 data. In both scenarios with CO2 policy, we 
also implement the CO2 cap on the rest of the world to reflect the UN agreement in Paris in 
December of 2015. The emission caps on the other EPPA model regions are based on the MIT 
Energy and Climate Outlook 2015 (Reilly et al., 2015) 

4.2 Results and Discussion 

4.2.1 CO2 Emissions and Carbon Price 
As shown in Figure 5, the CO2 cap-and-trade policy can substantially reduce CO2 emissions 

from the Reference case after 2020. This is because the policy creates a CO2 price which reflects 
the marginal cost of CO2 emission abatement. Under this policy scenario, the (explicit or 
implicit) CO2 price is added to all fossil energy used as a fuel. As a result, the energy price 
increases and consumers need to pay more when purchasing fossil energy. Subsidies encourage 
consumers to use more natural gas by creating an incentive for consumers to use less fossil fuel 
and more cleaner types of energy such as wind, solar, nuclear and hydro. As the demand for 
fossil energy decreases, so do CO2 emissions.  

The stringency of the CO2 mitigation policy in terms of a carbon intensity reduction rate is the 
same in the CapOnly scenario and the Cap+Subsidy scenario. Therefore, the trajectories for the 
CO2 emissions in both scenarios are also the same. However, the CO2 prices to achieve the CO2 

emissions policy targets are somewhat different. In 2030, the CO2 price to peak CO2 emissions is 
about $11.5/tCO2 in the CapOnly scenario, but it is $16.7/tCO2 in the Cap+subsidy scenario (see 
Figure 5). Though natural gas is cleaner than coal, burning of natural gas still emits CO2. Under 
the same CO2 emissions constraint, the increased CO2 emission from the increased use of natural 
gas should be offset by the decreased emissions from the reduced use of other fuels, such as coal, 
which needs a higher CO2 price. 

4.2.2 Energy Consumption  
Figure 6 compares energy consumption and total natural gas consumption in the three 

scenarios. As can be seen, the total energy consumption under the two policy scenarios is lower 
than under the Reference scenario. The difference in total energy consumption between the 
CapOnly scenario and the Cap+Subsidy scenario is not large. The energy consumption structure 
in the CapOnly scenario, however, is different from in the Cap+Subsidy scenario.  

In the CapOnly scenario, in 2030 coal consumption decreases by 12% (from 110.8 EJ to 
97.9 EJ) and natural gas consumption by 40% (from 12.4 EJ to 7.4 EJ), compared with the 
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Reference. The share of natural gas in the primary energy supply declines from 6.5% to 4.2%, 
which is much below the 10% natural gas target. Non-fossil energy use in 2030 climbs from 
34.9 EJ to 36.4 EJ, accounting for 20.8% of the primary energy supply, which is slightly above the 
20% share target2.  

 

Figure 5. CO2 emissions and implicit CO2 price 
 

 

 

Figure 6. Energy consumption by fuel under different scenarios 

                                                
 

2 INDC sets the goal to increase the share of non-fossil fuels in primary energy consumption to around 20% by 2030 
(NDRC, 2015).  
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The Cap+Subsidy scenario suggests that natural gas can reach the 10% natural gas target in 
2020 under substantial subsidies. The total subsidy amount accounts for about 10% of CO2 
revenue in 2020 (we discuss the amount of subsidies later in more details). With subsidy, natural 
gas consumption can climb to 18.9 EJ in 2030 in the Cap+Subsidy scenario, which is 52.5% 
higher than in the Reference scenario and 155.6% higher than in the CapOnly scenario. The coal 
consumption in the Cap+Subsidy scenario is reduced by 19.3 EJ relative to the Reference 
scenario and by 6.4 EJ relative to the CapOnly scenario in 2030, indicating that gas subsidy plays 
a vital role in promoting natural gas substitution for coal. The non-fossil energy supply in the 
Cap+Subsidy scenario increases by 2.1 EJ and by 0.7 EJ compared with in the Reference 
scenario and the CapOnly scenario in 2030, respectively. This demonstrates that natural gas 
subsidy plus a higher carbon tax results in a coal consumption reduction as well as an increase of 
non-fossil energy supply.  

4.2.3 Changes in Coal and Natural Gas Use  
In the CapOnly scenario, an introduction of a CO2 price improves a competiveness of natural 

gas with coal due to a lower natural gas’s carbon content. But the resulting carbon price level is 
still not high enough to offset the large initial price difference between natural gas and coal. As 
shown in Figure 7a, a CO2 price reduces both coal and natural gas consumption. One sector 
where carbon pricing may introduce a switch from coal to natural gas is electricity. In China the 
natural gas combined cycle (NGCC) generation cost almost twice as pulverized coal-fired 
electricity generation technology. Since the natural gas-fired electricity is much more expensive 
than coal-fired electricity, a relatively low CO2 price is not able to induce the coal-to-gas 
switching in the power sector. Compared with the CapOnly scenario, natural gas consumption 
rises while coal consumption declines in the integrated policy scenario, as shown in Figure 7b.  

4.2.4 Natural Gas Consumption by Sector  
Natural gas consumption patterns are significantly different among the three scenarios. As 

represented in Figure 8, natural gas use declines substantially in the CapOnly scenario with the 

  

Figure 7. Change in coal and natural gas consumption in different scenarios  
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(a) Natural gas consumption by sector, Reference (b) Natural gas consumption by sector (%), Reference 

 
(c) Natural gas consumption by sector, CapOnly (d) Natural gas consumption by sector (%), CapOnly 

  
(e) Natural gas consumption by sector, Cap+Subsidy (f) Natural gas consumption by sector (%), Cap+Subsidy 

 

Figure 8. Natural gas consumption by sector in different scenarios3 

introduction of climate policy without gas subsidies, from 12.4 EJ to 7.36 EJ in 2030. Natural 
gas use in the household sector is reduced the most, from 2.5 EJ in the Reference scenario to 
0.5 EJ in the CapOnly scenario in 2030. The residential sector appears to be the most sensitive to 
natural gas price changes, while natural gas use in chemical manufacturing sector is hardly 
affected by the CO2 price. That is because the natural gas used as feedstock does not emit CO2 
and is not a subject to carbon penalty. Change in natural gas use in the electricity generation 
sector is relatively small because while CO2 price imposes penalty on both natural gas and coal, 
natural gas is less affected as it has lower carbon content than coal.  
                                                

 
3 The OTHER category includes the following sectors: TRAN, CROP, LIVE, FORS, FOOD, ROIL, OTHR and SERV. 

EINT-FEED reports natural gas used as feedstock. EINT-FUEL represents energy intensive sectors that use natural 
gas as fuel. HH represents household sector (HHTRAN, DWE, HHOTHR). See Table 1 for sectoral definition. 
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Table 6. Increase in gas consumption in Cap+Subsidy compared to CapOnly (EJ). 

(EJ) 2020 2025 2030 2035 2040 2045 2050 
EINT-FUEL 2.2 2.7 3.3 4.3 4.9 5.6 6.3 
OTHER 1.2 1.3 1.5 1.7 1.9 2.3 2.5 
ELEC 1.6 2.5 2.7 3.4 4.2 4.9 5.1 
HH 2.6 3.3 4.0 4.5 5.1 5.3 5.7 

 
In the integrated policy case, the CO2 penalty for natural gas users is offset by the gas subsidy, 

which makes natural gas more competitive than coal for consumers. As a result, a substitution of 
natural gas for coal happens, especially as a fuel in the energy-intensive sector and in the 
household sector. Compared with the CapOnly scenario, natural gas consumption under the 
Cap+Subsidy scenario increases by 11.5 EJ in 2030 and by 19.5 EJ in 2050. Table 6 shows the 
amount of increased natural gas consumption by sector in the integrated policy case relative to 
the climate policy scenario. A large amount of the increased natural gas use takes place in the 
residential sector, power generation and industrial sector.  

4.2.5 Natural Gas Supply by Source  
Domestic production and imports of natural gas are substantially affected by a choice of the 

policy instrument, as shown in Figure 9. In the CapOnly scenario, both imported and domestic 
natural gas use are substantially decreased due to the reduced demand (Figure 9b), because both 
the imported natural gas and domestic natural gas are subject to a carbon price penalty. Imports 
of natural gas decrease more than a decline in domestic production. While in this scenario some 
imports remain, international natural gas trading flows re-allocate from China to the destinations 
without (or with less stringent) carbon policies (ASI and IDZ regions of the EPPA model).  

Under the integrated scenario, the gas subsidy scheme boosts both domestic and imported 
supply (Figure 9c). The subsidy scheme lowers the price that consumers pay for gas, increasing 
the competitiveness of natural gas relative to coal and oil. As a result, demand for natural gas 
grows, where a large part of the increased demand is met by imported gas because of domestic 
supply capacity constraints. With a limited increase in domestic production, gas suppliers need to 
increase the imported volumes to meet the surging demand. In 2050, domestic production is 
9.0 EJ and imports are 8.9 EJ in the Reference scenario. They are 5.0 EJ and 1.7 EJ in the 
CapOnly scenario, and 7.1 EJ and 19.2 EJ in the Cap+Subsidy scenario.  

4.2.6 NOx and SO2 Emissions  
NOx and SO2 emissions are largely attributed to burning of fossil fuels. The climate policy 

will cap the CO2 emissions and fossil fuel use; thus, NOx and SO2 emissions to a large extent are 
also going to be reduced (Figure 10). Under the climate policy scenario, NOx emissions and SO2 
emissions decline by 3.3% and 4.6% in 2030 and by 11.6% and 14.1% by 2050, respectively, 
compared with the Reference scenario. The integrated policy can result in larger reductions in air 
pollutant emissions: 5.5% in 2030 and 14.0% in 2050 for NOx emissions and 7.0% in 2030 and 
16.7% in 2050 for SO2 emissions, relative to the Reference scenario. The reduction is mostly 
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attributed to a substantial substitution of natural gas for coal which takes place in the integrated 
policy case. These results also show that carbon policies that induce fuel use reduction and fuel 
switching are able to lower air pollution emissions substantially, but additional policies that 
directly target air pollution (especially in the process-related emissions in energy-intensive 
sectors) are required for further lowering air pollution. 

Figure 9. Domestic and imported natural gas supply in different scenarios. 

Figure 10. NOx and SO2 emissions. 
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4.2.7 Policy Cost 
Welfare change is a measure of climate policy cost (Paltsev and Capros, 2013). Following 

standard economic theory, we calculate and report the overall economic cost of the policy 
scenarios using a dollar-based measure of the change in welfare for the representative agent in 
China. In technical terms, welfare is measured as equivalent variation and it reflects a change in 
aggregate market consumption activity. Introducing carbon constraints brings the increases in the  

 

Figure 11. Welfare (consumption) change. 
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fossil energy prices because their consumer prices include carbon charges. Energy users pay 
more for energy, and additional investment in low-carbon technologies lead to reallocation of 
resources in China’s economy, which ultimately leads to welfare losses in the CapOnly and 
Cap+Subsidy scenarios relative to the Reference scenario (Figure 11). The model simulations 
result in a 0.27% welfare loss in 2030 and a 0.38% welfare loss in 2050 in the CapOnly 
scenario. The welfare loss is higher in the Cap+Subsidy case: 0.31% in 2030 and 0.57% in 
2050 relative to the Reference scenario. The integrated policy creates a mechanism that 
subsidizes relatively expensive natural gas and reduces further the use of relatively cheaper 
coal, which results in an additional welfare cost. Our welfare results do not account for 
health benefits associated with air pollution, which can be substantial. The welfare loss 
numbers presented here can be reduced or compensated if the environmental benefits 
associated with lower air pollution are taken into account. Valuing these benefits is a 
challenging task (Matus et al., 2012) which is beyond the scope of this study. 

4.2.8 Level of Subsidy  
Based on the modeling results, the subsidy amount required to achieve the 10% natural gas 

goal is $5.0 billion in 2020, $12.2 billion in 2030, and $51.3 billion in 2050, respectively 
(Figure 12). To finance such amount of subsidy, the Chinese government may need to secure 
new income sources. The CO2 tax revenue (or proceeds from the sales of CO2 emission permits) 
can be used for such a new source of government revenue. In the policy scenarios, China’s 
government earns about $66 billion from the emission permit sales in 2020, $200 billion in 2030, 
and $618 billion in 2050. Therefore, the Chinese government would need to allocate 6% to 9% 
of its CO2 permits revenue to subsidize natural gas consumers to achieve its natural gas 
promotion goal.  

 

Figure 12. Level of subsidy. 
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Based on the EPPA model simulation, the total natural gas subsidy would account for 
approximately 0.4%, 0.6%, and 1.1% of the government’s total government expenditure in 2020, 
2030, and 2050 respectively. It should be noted that the government expenditures in the EPPA 
model are based on the data from the underlying GTAP dataset (Narayanan et al., 2012), and 
these total expenditures should be roughly equal to the total government revenue. There is some 
discrepancy for the data on the government income. According to China’s data, in 2014, the 
Chinese government’s income was about $2,000 billion (NBS, 2015), which is somewhat higher 
than the government expenditure of about $1,000 in 2015 simulated from the model. A 
difference might be explained by different accounting definitions of central, provincial and local 
government activities. If the model underestimates government income, then the actual required 
natural gas subsidies constitute an even smaller share of the total government revenue.  

4.2.9 Sensitivity Analysis 
We tested our findings for their sensitivity to policy design modifications, nuclear power 

development and cost of Natural Gas Combined Cycle (NGCC) technology. Removing the 
household sector from the emission cap leads to an increase in consumption of a relatively cheap 
coal, rather than natural gas. Additional policy instruments are also required to achieve the 
objective of a larger natural gas share in consumption. 

 With technological advancement, the NGCC cost is expected to decrease. Currently, the 
levelized generation cost of NGCC is about 75% higher than generation cost of a coal-fired 
power plant (see Table 3). After testing different reductions in the NGCC costs, we find that to 
expand in a substantial way, natural gas technology should be no more than 15% more expensive 
than coal. Such reduction in cost differences might be achieved by natural gas technology 
improvement or by imposing penalties (like a CO2 price) on coal-based generation. By varying 
the CO2 price, we find that natural gas becomes competitive with coal at about $50/tCO2. The 
modeling results with various assumptions about the cost of NGCC confirm that with 75% cost 
difference between natural gas and coal, in 2030 the electricity sector consumes 1.9 EJ of natural 
gas in the Reference scenario and 1.6 EJ in 2030 in the CapOnly scenario. With a cost difference 
of 5%, in 2030 the electricity sector consumes 8.4 EJ in the Reference case and 15.3 EJ in the 
CapOnly case.  

We also assessed the effects of different nuclear penetration rates on natural gas use in China. 
The results show that with a lower nuclear penetration rate, China needs a higher CO2 price to 
meet its CO2 intensity mitigation targets and the higher CO2 price discourages natural gas use. 
This sensitivity analysis illustrates a need for substantial flexibility and periodic assessments of 
the government targets depending on the realization of fuel prices and technological costs in the 
future. While a cap-and-trade system would put an absolute ceiling on the emission levels, some 
additional policy instruments may be introduced to lower the cost of reaching China’s targets.  

5. CONCLUSIONS  
China has pledged to mitigate its CO2 emissions by introducing a number of policy 

instruments including a national cap-and-trade system. Our analysis demonstrates that the 
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introduction of the CO2 cap-and-trade scheme can be used to achieve China’s INDC. However, it 
may also substantially reduce natural gas consumption as it imposes a penalty on all fossil fuels 
including natural gas. There are two main channels that affect the relative prices and the use of 
natural gas and coal. Carbon penalty makes coal and natural gas more expensive. As the prices 
for coal and natural gas increase, their use decreases. At the same time, the carbon penalty on 
natural gas is relatively smaller than on coal because of the lower carbon content of natural gas. 
Under certain relative prices, in the sectors where coal and natural gas can be used as a fuel 
interchangeably (e.g. in electricity generation) this can lead to a substitution from coal to natural 
gas use. However, in the case of China the relative fuel prices and carbon prices resulting from 
the cap-and-trade scheme do not lead to an increase in natural gas use. Without additional 
adjustments, the cap-and-trade policy would create a substantive deviation from China’s natural 
gas promotion objective. 

The substitution of natural gas for coal has been treated as an important way to reduce local 
and regional air pollutions and to improve living standards in China. As the price of natural gas 
is higher than that of coal, a widespread switch from coal to gas may require a subsidy. Given the 
large size of China’s energy consumption, a substantial ($5 billion) subsidy would be needed to 
achieve a 10% of natural gas contribution in 2020. This may not be viable unless the government 
has a new revenue source.  

In the integrated policy scheme proposed and simulated in this study, part of the carbon 
revenue from the CO2 cap is used to subsidize natural gas consumption. In this way, both the 
climate objective and the natural gas promotion objective can be achieved. The integrated policy 
reduces the relative price of natural gas use for consumers and increases the cost of coal use, 
promoting the substitution of natural gas for coal while still meeting the climate policy objective. 
Compared to the cap-and-trade only case, there is a modest (0.5%) welfare loss in 2030 
associated with the integrated policy approach; however, it leads to a further nationwide 
reduction in NOx emissions by 2.3% and SO2 emissions by 2.6% in 2030.  

As the integrated policy scheme results in a substantial increase in a use of natural gas in 
power and heat generation, and these generation units are mostly located in the most-populated 
Eastern areas of China, then, most likely, the effects of air pollution reduction would be more 
substantial in these areas. An assessment of the geographic distribution of air pollution and the 
resulting health impacts requires more spatially resolved tools. Further research calls for a 
broader integrated assessment framework consisting of an atmospheric chemistry model and an 
energy and economic model with health effects. The economy-wide model used in our study is a 
useful tool, as policymakers should be aware of the challenges in meeting the stated (and 
sometimes contradictory) objectives and inter-linkages of the actions towards the energy sector.  
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