View metadata, citation and similar papers at core.ac.uk

<
brought to you by .{ CORE

provided by DSpace@MIT

Synthesizing Framework Models for Symbolic Execution

Jinseong Jeon® Xiaokang Qiu' Jonathan Fetter-Degges”
Jeffrey S. Foster” Armando Solar-Lezama'

*Univers.ity of Maryland, College Park, USA TMassac.husetts Institute of Technology, USA
{jsjeon,jonfd,jfoster}@cs.umd.edu {xkqiu,asolar}@csail.mit.edu

ABSTRACT

Symbolic execution is a powerful program analysis tech-
nique, but it is difficult to apply to programs built using
frameworks such as Swing and Android, because the frame-
work code itself is hard to symbolically execute. The stan-
dard solution is to manually create a framework model that
can be symbolically executed, but developing and maintain-
ing a model is difficult and error-prone. In this paper, we
present PASKET, a new system that takes a first step toward
automatically generating Java framework models to support
symbolic execution. PASKET’s focus is on creating models by
instantiating design patterns. PASKET takes as input class,
method, and type information from the framework API, to-
gether with tutorial programs that exercise the framework.
From these artifacts and PASKET’s internal knowledge of de-
sign patterns, PASKET synthesizes a framework model whose
behavior on the tutorial programs matches that of the origi-
nal framework. We evaluated PASKET by synthesizing mod-
els for subsets of Swing and Android. Our results show that
the models derived by PASKET are sufficient to allow us to
use off-the-shelf symbolic execution tools to analyze Java
programs that rely on frameworks.

Categories and Subject Descriptors

1.2.2 [Automatic Programming]: Program Synthesis

Keywords

Program Synthesis, Framework Model, Symbolic Execution,
SKETCH.

1. INTRODUCTION

Many modern applications are built on frameworks such
as Java Swing (a GUI framework) or the Android platform,
among many others. Applying symbolic execution [5] to
such applications is challenging because important control
and data flows occur via the framework [11]. For example,
consider a Swing application that creates a button, registers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA

© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. .. $15.00

DOL: http://dx.doi.org/10.1145/2884781.2884856

a callback for it, and later receives the callback when the
button is clicked. A symbolic executor that simulates only
application code would miss the last step, since the control
transfer to the callback happens in the framework.

One possible solution is to symbolically execute the frame-
work code along with the application, but in our experience
this is unlikely to succeed. Frameworks are large, compli-
cated, and designed for extensibility and maintainability. As
a result, behavior that appears simple externally is often im-
plemented in complex ways. Frameworks also contain details
that may be unimportant for a given analysis. For instance,
for Swing, the details of how a button is displayed may not
be relevant to an analysis that is only concerned with con-
trol flow. Finally, frameworks may contain native code that
is not understood by the symbolic executor.

The standard solution to this issue is to manually create
a framework model that mimics the framework but is much
simpler, more abstract, and can be symbolically executed.
For example, Java PathFinder (JPF) includes a model of
Java Swing [24] that is written in Java and can be symbol-
ically executed along with an application. However, while
such models work, they suffer from several potential prob-
lems. Since the models are created by hand, they likely con-
tain bugs, which can be hard to diagnose. Moreover, models
need to be updated as frameworks change over time. Finally,
applying symbolic execution to programs written with new
frameworks carries a significant upfront cost, putting appli-
cations that use new or unpopular frameworks out of reach.

In this paper, we take a first step toward automatically
synthesizing framework models by introducing PASKET (“Pat-
tern sketcher”), a tool that synthesizes Java framework mod-
els by instantiating design patterns. The key idea behind
PASKET is that many frameworks use design patterns heav-
ily, and that use accounts for significant control and data
flow through the framework. For example, the Swing but-
ton click callback mentioned above is an instance of the
Observer pattern [12]. Thus, by creating a model that in-
cludes an equivalent instantiation of the observer pattern,
PASKET helps symbolic execution tools discover control flow
that would otherwise be missed.

Overview. Figure 1 gives an overview of PASKET. Its two
main inputs are a set of tutorial programs that exercise rel-
evant parts of the framework, and a summary of the frame-
work API to be modeled. For scalability of the synthesis
problem, PASKET is designed to be used with tutorial pro-
grams that each exercises a small part of the framework,
and PASKET then combines the information from each tu-

https://core.ac.uk/display/78070551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PASKET
API \ | Encoder | Design
j | Patterns
L7 T
(.) Synthesis
Tutorial
Logs Problem
| . Framework
| Synthesizer |~—>| Model

Framework |
Figure 1: PASKET architecture.

Logger |

torial into a full model. In the case of Swing, for example,
Oracle provides tutorials for buttons, checkboxes, and simi-
lar components, which are ideal for this purpose [27].

The framework API information can be extracted from
the JAR or AAR files of the framework, although some user
input is needed to select the parts of the framework API that
should be modeled. This API provides the skeleton of the
expected model. PASKET’s goal is to generate code for that
skeleton—insert the bodies of constructors and methods—
to yield a model that can be used to analyze the tutorial
programs and that, ideally, will also generalize to larger pro-
grams that use the same parts of the framework.

As a first step in the model creation process, the logger
component inside PASKET executes the tutorial programs
(perhaps requiring user interaction with the tutorial) and
logs the method names, arguments, and return values that
cross the boundary between the tutorial code and the frame-
work. (Calls internal to the framework are omitted from
the log.) For instance, in the Swing button callback exam-
ple, the user would run the application and press the button
while the logger records the execution. The log would there-
fore capture the button creation, registration, and callback,
including the precise identities of the objects, so it captures
the fact that the registered object is the one being called
back when the button is clicked.

These captured logs serve as a partial specification for the
synthesis process. Specifically, the synthesizer aims to pro-
duce a model that achieves log conformity with the original
program, meaning if the application were to run using the
model code in place of the framework code under the same
user inputs, we would observe the exact same sequence of
calls as in the original log. Section 3 explains this in detail.

To produce a model, the log conformity requirement must
be combined with a structural hypothesis to limit the space
of possible models. In PASKET, this structural hypothesis
comes from PASKET’s internal knowledge of design patterns.
The idea is that by limiting the search to models that im-
plement design patterns we know to be used by the actual
framework, we increase the likelihood the synthesized model
will generalize and behave correctly with other applications.
PASKET currently supports four main design patterns: Ob-
server, Accessor, Adapter, and Singleton. Section 4 explains
how these patterns are instantiated to match the given API
and produce models satisfying log conformity.

PASKET uses the open-source SKETCH synthesis system to
search for log-conforming instantiations of the design pat-
terns (hence the “sketcher” part of the name PASKET) [34].
SKETCH’s input is a sketch that describes a space of pro-
grams and a set of semantic constraints, usually given as
assertions the synthesized program must satisfy. SKETCH
uses a symbolic search procedure to find a program in that
space that satisfies the constraints. Section 5 discusses PAs-

KET’s Encoder component, which translates the client app,
logs, framework API, and design pattern information into a
sketch whose solution solves the PASKET synthesis problem.

The encoded synthesis problems are quite challenging due
the large number of possible design pattern instantiations as
well as the difficulty of reasoning about dynamic dispatch.
Despite this, the problems are made tractable using recent
research on combining constraint-based synthesis with ex-
plicit search [19], together with a careful encoding that al-
lows the synthesizer to efficiently rule out large numbers of
incorrect solutions.

Results. We used PASKET to produce a model of the Java
Swing GUI framework and the Android framework. For
Swing, we used 10 tutorial programs distributed by Oracle.
Synthesis took just a few minutes, and in the end produced
a model consisting of 95 different classes and 2,676 lines of
code, making it one of the largest pieces of code ever syn-
thesized using constraint-based synthesis. For Android, we
used 3 tutorial programs gathered from the web. Synthesis
took a few seconds and produced a model consisting of 50
different classes and 1,419 lines of code.

We validated the models in three ways. First, we ran the
Swing tutorials against the synthesized Swing model and
checked that they match the original logs. Second, we ran
the Swing tutorials under Java PathFinder [30] (JPF). We
found we could successfully execute eight of the ten tutorials
(two tutorials are not supported by JPF’s event generating
system), while JPF’s own model failed due to some miss-
ing methods. Finally, we selected eight code examples from
O’Reilly’s Java Swing, 2nd Edition [23] that use the same
part of the framework and verified that they run under JPF
using our merged model. We also selected two Android code
examples and verified they run under SymDroid, a Davlik
bytecode symbolic executor [17], using our merged model.
(Section 7 describes our experiments.)

Contributions. Insummary, this paper makes the following
contributions:

o We introduce PASKET, a new tool that takes a first step
toward automatically synthesizing framework models
sufficient for symbolic execution.

e We formulate the synthesis problem as design pattern
instantiation and show how to use the framework API
and log of framework/client calls to constrain the de-
sign pattern instantiation process. (Sections 3 and 4)

e We show how to encode the synthesis problem as a
SKETCH synthesis problem. (Sections 5 and 6)

e We present experimental results showing PASKET can
synthesize a model of a subset of Swing and a subset of
Android, and that model is sufficient to symbolically
execute a range of programs. (Section 7)

2. RUNNING EXAMPLE

As a running example, we show how PASKET synthesizes
a Java Swing framework model from the tutorial program
in Figure 2, which is a simplified extract from one of the
tutorials for Java Swing.

Here the main method (not shown) calls createAndShowGUI
(line 15), which instantiates a new window and adds a new
instance of ButtonDemo to it. The ButtonDemo constructor

1
2
3
4
5
6
7
8
9

class ButtonDemo implements ActionListener {
public ButtonDemo() {
b1 = new JButton("Disable middle button”, ...);
b1.setActionCommand("disable");
b2 = new JButton("Middle button", ...); ...
b3 = new JButton("Enable middle button", ...);

b1.addActionListener(this); b3.addActionListener(this);
add(b1); add(b2); add(b3);

}

public void actionPerformed(ActionEvent e) {
if ("disable".equals(e.getActionCommand())) {

bl
private static void createAndShowGUI() {

JFrame frame = new JFrame("ButtonDemo");
ButtonDemo newContentPane = new ButtonDemo(); ...
frame.setContentPane(newContentPane); ...

Figure 2: ButtonDemo source code (simplified).

(line 2) creates and initializes button objects b1 through b3,
each of which are labeled (line 4). The code then registers
this as an observer for clicks to b1 and b3 (line 8) and then
adds the buttons to the window. When either button is
clicked, Swing calls the actionPerformed method of the reg-
istered observer (line 11), whose behavior depends on the
label of the button that was clicked (line 12).

In addition to the tutorial, the second input to PASKET
is the framework API, consisting of classes, methods, and
types. The API is then completed by PASKET to produce a
complete model like the Swing model that is partially shown
in Figure 3. The black text in the figure corresponds to the
original API given as input; package names are omitted for
space reasons. The rest of the code (highlighted in blue) is
generated by PASKET given a log from a sample run of But-
tonDemo. For example, PASKET discovers that AbstractButton
is a subject in the observer pattern—thus it has a list olist
of observers, initialized in the constructor—and its attach
method is addActionListener. The handle and handle_1 methods
are introduced entirely by the synthesizer to model the way
in which the AbstractButton invokes the actionPerformed methods
in its registered listeners. In this model, the runtime posts
events into the EventQueue and dispatches them by calling
run. The model then propagates those events to any listeners
that have been registered with a button. PASKET also dis-
covers that EventObject, AWTEvent, and ActionEvent participate
in the accessor pattern, with a field set via their constructor
and retrieved via getSource in the case of EventObject.

Notice that PASKET abstracts several constructors and
methods to have empty bodies, because this particular tu-
torial program does not rely on their functionality. For
example, the argument to the JButton constructor is never
retrieved. Thus, the tutorials control PASKET’s level of ab-
straction. Unneeded framework features can be omitted so
they will not be synthesized, and framework features can be
added by introducing tutorials that exercise them.

3. LOGGING AND LOG CONFORMITY

As explained earlier, PASKET executes the tutorial pro-
gram to produce a log of the calls between an application
and the framework. Figure 4 shows a partial log from But-
tonDemo. Each log entry records a call or return. In the

20

PO

&

@ om w w @
&8

SN

class EventDispatchThread {
private EventQueue q;
void run() {
EventObiject e;
while ((e = g.getNextEvent()) |= null) g.dispatchEvent(e);
}od
class EventQueue {
private Queue<EventObject> q;
void postEvent(EventObject e) { g.add(e); }
void dispatchEvent(EventObject event) {
if (event instanceof ActionEvent) {
AbstractButton btn = (AbstractButton)event.getSource();
btn.handle((ActionEvent)event);
[]
} oo}
class AbstractButton extends JComponent {
private List<ActionListener> olist;
private String fld1;
AbstractButton() {olist = new LinkedList<ActionListener>();}
void addActionListener(ActionListener |) {olist.add(l);}
String getActionCommand() {return fld1;}
void setActionCommand(String actionCmd) {fld1 = actionCmd;}
void handle(ActionEvent event) { handle_1(event); }
void handle_1(ActionEvent event) {
for (ActionListener o : olist) { o.actionPerformed(event); }
} oo}
class JButton extends AbstractButton {
JButton(String text, Icon icon) {// empty} }
class JFrame extends Frame { ... }
class EventObject {
private Object source;
EventObject(Object source) {this.source = source;}
Object getSource() {return source;}
}
class AWTEvent extends EventObject { ... }
class ActionEvent extends AWTEvent {
priavte String command;
ActionEvent(Object source, int id, String command) {
super(source, id); this.command = command;
}
String getActionCommand() {return command;}

}

Figure 3: Framework API to be modeled (partial). High-
lighted code produced by synthesis.

figure, this is the first parameter to each call, and we use
indentation to indicate nested calls. Constructor calls and
object parameters are annotated with a Java object id. For
example, JButton@8 is a JButton with object id 8. Using ob-
ject ids provides us with a simple way to match the same
object across different calls. Thus, the log contains detailed
information about both the values that flow across the API
and the sequencing of calls and returns.

That detailed information is exactly what is needed to
sufficiently constrain the synthesis problem. For example,
line 67 has a call to addActionListener with arguments JBut-
ton@8 and ButtonDemo@9. Subsequently, on line 71 an Action-
Event associated with this button is created and immediately
posted into the EventQueue; after this, the run method in the
EventDispatchThread is called. The details of what happens
inside the framework after the call to run are ignored by the
logger because it does not involve methods in the given API.
The next log entry in line 74 corresponds to the framework’s
call to the actionPerformed method in the application. It will

75
76
77

79
80
81
82
83

84

ButtonDemo.main()
ButtonDemo.createAndShowGUI()

ButtonDemo.ButtonDemo@9()
JButton.setActionCommand(JButton@8, “disable”)
JButton.setEnabled(JButton@4, false)
JButton.addActionListener(JButton@8, ButtonDemo@?9)
JButton.addActionListener(JButton@4, ButtonDemo@?9)

JFrame.setContentPane(JFrame@8, ButtonDemo@9)

ActionEvent.ActionEvent@7(JButton@8, 0, "disable")
EventQueue.postEvent(EventQueue@1, ActionEvent@7)
EventDispatchThread.run(EventDispatchThread@0)
ButtonDemo.actionPerformed(ButtonDemo@9, ActionEvent@7)
ActionEvent.getActionCommand(ActionEvent@7)
return "disable"

ActionEvent.ActionEvent@5(JButton@4, 0, "enable")
EventQueue.postEvent(EventQueue@1, ActionEvent@5)
EventDispatchThread.run(EventDispatchThread@0)
ButtonDemo.actionPerformed(ButtonDemo@9, ActionEvent@5)
ActionEvent.getActionCommand(ActionEvent@5)
return "enable"

Figure 4: Sample output log from ButtonDemo.

be up to PASKET to infer that this sequence of log entries is
part of the observer design pattern. PASKET will then use its
knowledge of the pattern to infer the contents of postEvent,
run, and all the other functions that were invoked inside the
framework to eventually call actionPerformed.

As another example, line 75 shows getActionCommand re-
turning the string “disable”’, which was set in the setter on
line 65. Thus, again given PASKET’s library of design pat-
terns, these log elements must be part of an accessor pattern.

The log conformity constraint is that a correct framework
model, run against the same tutorial program under the
same inputs, should produce the same log as the actual
framework. In reactive frameworks such as Swing or An-
droid, however, events such as button clicks are relayed by
the runtime system to the framework, and the framework in-
teracts with the application in response to these events. For
such a reactive framework, these events are what constitute
the “inputs” to the framework/application pair, so to check
log conformity, the system needs to check that the combined
framework model and application react to these events in the
same way as the original framework and application did.

One subtle aspect of the log conformity constraint is that
the objects created when running against the real frame-
work will have different ids from those created when run-
ning against the model, so the log conformity check must
allow for the renaming of objects of the same type when
comparing the logs for the two executions.

In the next section, we discuss PASKET’s design patterns,
and then in Section 5 we show how to combine the API,
logs, and design pattern knowledge to synthesize a frame-
work model using SKETCH.

4. DESIGN PATTERN INSTANTIATION

PASKET synthesizes the code in Figure 3 by instantiat-
ing design patterns. To understand the synthesis process,
consider Figures 5 and 6, which show two of the four design
patterns supported by PASKET. The UML diagrams in these
figures have boxes for classes and interfaces, with fields at

the top and methods at the bottom, arrows for subclass or
implements relationships, and diamond edges for contain-
ment. Unless marked private, fields and methods are public.

The key novelty in these diagrams are design pattern vari-
ables, indicated in colored italics. These are unknowns that
PASKET solves to determine which classes and methods play
which roles in the patterns. For example, the observer pat-
tern in Figure 5 includes several different design pattern vari-
ables, including the names of the Subject and Observer classes,
the name of the /Observer interface, and the names of the at-
tach and detach methods. The main technical challenge for
PASKET is to match these pattern variables with class, inter-
face, and method names from the API description. In our
running example, PASKET determines there must be an ob-
server pattern instance with AbstractButton as the Subject and
addActionListener as the attach method. Thus to create the
framework model, PASKET instantiates the field olist from
the pattern as a new field of AbstractButton, and it instanti-
ates the body of the attach method into addActionListener. The
other roles are instantiated to other classes in the API.

In addition to design pattern variables, the design pattern
descriptions also leave certain implementation details to be
discovered by the synthesizer. For example, inside the handle
method, the synthesizer can decide what event types should
invoke which individual handlers, and in the handler handle_i,
the synthesizer is left to choose in what direction to iterate
over the observer list. Note that if the synthesizer chooses to
iterate forward through the list, PASKET replaces the while
loop with a for loop as seen in Figure 3.

PASKET uses the same basic idea of design pattern in-
stantiation to create the entire framework model. We next
discuss the patterns currently supported by PASKET, and
then discuss the problem of synthesizing multiple patterns
simultaneously. We selected this set of patterns to support
the experiments in Section 7, but we have designed PASKET
to support extensibility with more patterns; if necessary, it
is even possible to create specialized patterns when we need
very platform-specific behavior.

Observers and Events. We have already discussed several
aspects of the observer pattern in Figure 5. The Subject
maintains a list of /Observer’s, initialized in the constructor.
Observers can be attached or detatched to the list, and both
methods are optional, i.e., they may or may not be present.
Notice update_i has no code in the pattern, since the Observer
is part of the client rather than the framework. For example,
in Figure 2, the update i method is actionPerformed.

We mark the methods handle and handle_i as auziliary to in-
dicate they are not part of the original framework. The real
framework has some (possibly complicated) logic to deter-
mine how to call the update_ i methods when the run method
of the EventDispatchThread is called, and the methods handle
and handle_i are our way of modeling this logic. Because we
do not need to match them with methods in the API, their
names are not pattern variables. This is why they were
added with these same names to AbstractButton in Figure 3,
where the synthesizer instantiated handle to just call handle_1
and handle_1 to iterate forward through olist while calling the
update method actionPerformed.

Accessors. Figure 6 shows the accessor pattern, used for
classes with getters and setters. The class has k fields fl1
through fk. As in Java, each field has a default value before

Class Subject
private List</Observer> olist;

Interface /Observer

Class EventDispatchThread
private EventQueue q;

optional void detach(/Observer obs) {

Subject(){ void update_i(Evie); void run() {
olist = new LinkedList<>(); riel.k* IEvte;
while ((e = g.nextEvent()) != null) {
optional void attach(/Observer obs) { g.dispatchEvent(e);
olist.add(obs); lCIass Observer 1)
void update_i(Evt e);
[Miel.k*l

olist.remove(obs);
}

Class EventQueue
private Queue</Evi>q;

auxiliary void handle(Evt e) {

Interface /Evt

auxiliary void dispatchEvent(/Evi e) {

if (e.getType() = ??) handle_1(e);

Object getSource(); < if (e instanceof Evi)

int getType(); ((Subject) e.getSource())
if (e.getType() = ??) handle_k(e); .handle(e);
else handle_k(e); }
Class Evt void postEvent(IEvt e) {
auxiliary void handle_i(Evte) {/*ie 1.k */ Subject getSource(); return g.add(e);
inti=[[0 | olist.size()-11]; int getType();

while (0 <=i && i < olist.size()) {
IObserver o = olist.get(i);
o.update_i(e);
i=[[i+1]i-1]];
o}

auxiliary /Evt nextEvent() {
return g.remove();
}

Figure 5: Observer pattern in PASKET.

Class Accessor

private Tifi; /*ie l.k*/

Accessor(Tl o1, ..., Tio){ I"j<=k*/
if ([[true | false 1]) super([[ol | ... 10j]*);
fl =ol;...;fj=0j;
if ([[true | false 1)) fj+1 =[[new cis() | ??]];

if ([true | false T)) fk = [[new cis() | 22 11;

Ti get fi(void){return [[fL | ... 1Tk];}/*iel.nr<=k*/
void set fi(Tiv) {[[fL|...I1fk]l=v;} /*iel.s,s<=k*/
Figure 6: Accessor pattern in PASKET.

any initialization or update (0 for int, false for boolean, and
null for all object fields). There are also r getter methods
get fl through get fr and s getter methods set fl through
set fs. Each getter method get fi retrieves the value of a
field chosen from f1 through fk; similarly, each setter method
updates a field chosen from f1 through fk with the input v.

The Accessor class also has a single constructor that ac-
cepts j arguments, for some j < k. The i-th argument is
used to initialize the i-th field fi, respectively. This incurs no
loss of generality since PASKET can choose to enumerate the
fields in any order. For those fields beyond {7, i.e., fields fj+1
through fk, PASKET may opt to initialize some of them im-
plicitly with either a new instance of some class cls or some
constant value (indicated by a hole ??), depending on field’s
type. For the former case, we assume that the new instance
is constructed by a public, no-argument constructor cls().

Before these fields are initialized, the constructor may or
may not call the superclass constructor with a subset of
the j arguments, written [[ol | ... | 0j]]*. For example, in
Figure 3 we see that ActionEvent’s constructor passes only two
parameters to its superclass AWTEvent, which in turn passes
only one parameter to its superclass EventObject. Finally, the
constructor initializes the fields appropriately.

Other Patterns. PASKET also supports the singleton pat-
tern and the adapter pattern, which are not shown due to
lack of space. The singleton pattern supports classes that
have a single instance, such as system-level services. The
adapter pattern is used to delegate calls to another object,
e.g., in Swing, InvocationEvent is an adapter that dispatches
run calls to a Runnable object stored in a field. More details

about other patterns, along with UML diagrams, can be
found in [16].

Multi-pattern Synthesis. In practice, frameworks may have
zero, one, or multiple instances of each pattern, and they
may use multiple patterns. Currently, the number of in-
stances of each pattern is a parameter to PASKET. In our
experiments, for each framework we fix these numbers across
all tutorial programs, and then discard any unused pattern
instances, as discussed further in Section 6.

Since the same class might be involved in multiple pat-
terns, the design patterns in Figures 5 and 6 should be taken
as minimal specifications of classes—PASKET always allows
classes to contain additional fields and methods than are
listed in a diagram. Those additional class members either
get their code from a different pattern (or different instance
of the same pattern), or are left with empty method bod-
ies (or return the default value of the return type). In our
running example, the AbstractButton class is involved in both
the observer pattern and the accessor pattern: its methods
addActionListener, removeActionListener and fireActionPerformed in-
stantiate an observer pattern, and its methods getActionCom-
mand and setActionCommand instantiate an accessor pattern.
Currently PASKET requires that each method body be in-
stantiated from at most one pattern.

5. FRAMEWORK SKETCHING

PASKET uses SKETCH to discover how to instantiate the
design patterns from Section 4 into the method bodies in
Figure 3 to satisfy log conformity.

Background. The input to SKETCH is a space of programs
in a C-like language. The space is represented as a pro-
gram with choices and assertions. The choices can include
unknown constants, written ??, as well as explicit choices
between alternative expressions, written [[e; | ... | en]]l. The
goal of SKETCH is to find a program in the space that satis-
fies the assertions [35]. For example, given a program

void double(intx) { int t = [[x | 0]] = ??; assertt =x +x; }

SKETCH will choose 2 for the constant ?? and x for the choice.
Full details about SKETCH can be found elsewhere [34, 35].

%
%

89

©

0

1

©

2
93
4
95

©

©

6

7

©

8
99
1

S

0

8!

&

86
87

assert Subject # Observer;

assert subcls[Subject][belongsTo[attach]];
assert subcls[Subject][belongsTo[detach]];
assert argNum[attach] == 1;

assert argNum[detach] == 1;

assert argType[attach][0] == IObserver;
assert argType[detach][0] == IObserver;
assert retType[attach][0] == VOID;
assert retType[detach][0] == VOID;
assert subcls[Observer][IObserver];

assert attach # detach;

Figure 7: Constraints on design pattern variables (partial).

The Encoder component in PASKET consumes the frame-
work API, the tutorial and the log, and produces a frame-
work sketch, which is a SKETCH input file. The framework
sketch is comprised of four main pieces: (1) the tutorial code,
(2) driver code to invoke the framework/tutorial with the se-
quence of events captured in the log, (3) the framework API
filled in with all possible design pattern implementations
guarded by unknowns that allow the synthesizer to choose
which roles of which patterns to use in each method, and
(4) additional code to assert log conformity and other con-
straints, e.g., from subtyping relationships. When SKETCH
finds a solution, it will thereby discover the implementations
of framework methods such that when the framework is run
in combination with the app, log conformity will be satisfied.

From Java to SKETCH. The first issue we face in building
the framework sketch is that it must include Java code, e.g.,
for the client app and framework method implementations.
However, SKETCH’s language is not object-oriented. To solve
this problem, PASKET follows the approach of JSKETCH [20],
a tool that adds a Java front-end to SKETCH. We currently
do not use JSKETCH directly, for two reasons. First, for
log conformity, we need to retrieve runtime instances, which
requires modifying an object allocation function. Second,
to check log conformity only for calls that cross the bound-
ary between the framework and the client app, we need to
slightly modify method signatures and call sites to include
a framework/client flag.

Like JSKETCH, we introduce a new type V_Object, defined
as a struct containing all possible fields plus an integer identi-
fier for the class. More precisely, if C1, ..., Cy, are all classes
in the program, then we define:

struct V_Object {
int class_id; fields-from-C1
1

... fields-from-Cp,

where each C; gets its own unique id.

PASKET also assigns every method a unique id, and it cre-
ates various constant arrays that record type information.
For a method id m, we set belongsTo[m] to be its class id;
argNum[m] to be its number of arguments; and argType[m][i]
to be the type of its i-th argument. We model the inher-
itance hierarchy using a two-dimensional array subcls such
that subcls[i][j] is true if class i is a subclass of class j.

Using this encoding, we can translate the client app di-
rectly into the framework sketch.

103
104
105
106
107
108

113
114

101
102

void addActionListener(V_Object self, V_Object) {
/% addActionListener has id 19 x/
int[] params = { 19, self.obj_id, I.obj_id };
check_log(params);
/x Check that "params" is the next log entry */
/% and advance the log counter by one x/
if (attach ==19) { A4 code for attach =/}
else if (detach == 19){ /4 code for detach =/}
else if ...
int[] ret ={ —19}
check_log(ret);
1

Figure 8: Framework sketch (partial).

Driving Execution. The next piece of the framework sketch
is a driver that launches the client app and injects events
according to the log. More specifically, looking at Figure 4,
we see three items that come from “outside” both the client
app and the framework: the initial call to main (line 62) and
the user inputs on lines 71 and 78. The driver is responsi-
ble for triggering these events, which it does by calling the
appropriate (hard-coded) method names in Figure 5 for the
event queue (or the appropriate names for Android if apply-
ing PASKET to that domain).

Design Pattern Implementations. The next component
of the framework sketch is the framework APT itself, with
code for the design patterns, checks of log conformity, and
constraints on design pattern instantiation.

For each possible pattern instantiation, and each possi-
ble design pattern variable, we introduce a corresponding
variable in the framework sketch, initialized with a gener-
ator. For example, to encode the observer pattern, every
role name (in italics in Figure 5) will be a variable in the
framework sketch:

int Subject=1[[1| 2|
int attach = [[18| 19| ..

I; int Observer=[[1] 2] .. 1;
II; int detach=1[18] 19| ... |;

Here each design pattern variable’s generator lists the pos-
sible class or method ids that could instantiate those roles.
(If there were multiple occurrences of the observer pattern,
there would be multiple variables attach1, attach2, etc.)

Next, PASKET generates a series of assertions that con-
strain the design pattern variables according to the structure
of the pattern. Figure 7 shows some of the constraints for
the observer pattern. The first line requires that two differ-
ent classes are chosen as Subject and Observer. The next lines
check that the attach and detach methods are members of or
inherited by the Subject, and that those methods have the
same signature—taking a single argument of an appropriate
type (a superclass of Observer) and returning void. Finally,
it checks that distinct roles (e.g., attach and detach) in the
design pattern are instantiated with different methods.

Finally, for each API method, we add a corresponding
function to the framework sketch that checks log confor-
mity at entrance and exit of the method, and in between
conditionally dispatches to every possible method of every
possible design pattern.

For example, Figure 8 depicts the framework sketch code
corresponding to addActionListener (Figure 3). The first state-
ment (line 105) creates a call descriptor that includes the
method’s id and the object ids of the parameters. This call
descriptor is passed to check_log (on line 106), which asserts

it matches the next entry in the global log array (created in
the driver) and advances the global log counter. Next the
code dispatches to various design pattern method implemen-
tations based on the role chosen for this method. Finally,
the code checks that the return (indicated by negating the
method id) matches the log; here the method returns void.
(Note that void returns are included in the actual log though
we omitted them from Figure 4.)

Putting this all together, the check_log assertions will only
allow this method to be called at appropriate points in the
trace, specifically lines 67 and 68 of Figure 4. SKETCH will
determine that attach is 19, hence the attach method code
will be called in the function body.

Model Generation. After SKETCH has found a solution,
the last step is to generate the framework model. PASKET
uses SKETCH’s solution for each variable (attach, detach, etc.)
to emit the appropriate implementation of each method in
the model. For example, since we discover that addAction-
Listener is the attach method of the observer pattern, we will
emit its body as shown in Figure 3, along with the other
methods and fields involved in the same pattern.

In some cases, methods in the framework API will be left
unconstrained by the tutorial program. In these cases, PAs-
KET either leaves the method body empty if it returns void,
or adds a return statement with default values, such as 0,
false, or null, according to the method’s return type.

6. IMPLEMENTATION

We implemented PASKET! as a series of Python scripts
that invoke SKETCH as a subroutine. PASKET comprises
roughly 14K lines of code, excluding the Java parser.

We specify name and type information for the framework
via a set of Java files containing declarations of the pub-
lic classes and methods of the framework, with no method
bodies. PASKET parses these files using the Python front-
end of ANTLR v3.1.3 [28] and its standard Java grammar.
After solving the synthesis problem, PASKET then unparses
these same Java files, but with method bodies and private
fields instantiated according to the synthesis results. We use
partial parsing [10] to make this output process simpler.

There are several additional implementation details.

Logging. For Swing tutorials, PASKET gathers logs via a
logger agent, which is implemented with the Java Instru-
mentation API [2] using javassist [8]. This allows PASKET
to add logging statements to the entry and exit of every
method at class loading time. PASKET also inserts logging
statements before and after framework method invocations.
In this way, it captures call-return sequences from the frame-
work to clients, and vice versa. Altogether, the logger agent
is approximately 368 lines of Java code.

For Android tutorials, PASKET uses Redexer [18], a gen-
eral purpose binary rewriting tool for Android, to instru-
ment the tutorial bytecode. Similarly to our approach for
Swing, we use Redexer to add logging at the entry and exit
of every method in the app, and also insert logging state-
ments before and after framework method invocations. The
logging statements emit specially tagged messages, and we
read the log over the Android Debugging Bridge (adb).

Thttps://github.com /plum-umd/pasket

Java Libraries. Recall that several of our design patterns
use classes and interfaces from the Java standard library,
typically for collections such as List. Client applications also
use the standard library. Thus, as part of our translation
from Java to SKETCH, we provide SKETCH implementations
of standard library methods used in our experiments.

Android Layouts. Android apps typically include XML lay-
out files that specify what controls (called views in Android)
are on the screen. In addition to the class of each control
and its ID, the layout may specify the initial state of a con-
trol, such as whether a checkbox is checked, or in some cases
an event handler for the control. Since layout information
is needed to analyze an app’s behavior, we manually trans-
late the layout files for each tutorial and subject app into
equivalent Java code. The translated layout files instantiate
each view in the layout file, set properties as specified in the
XML, and add it to the Activity’s view hierarchy.

Multi-pattern Synthesis. Recall from Section 4 that we
need to synthesize models with multiple design patterns at
once; thus PASKET needs to know how many possible in-
stances of each pattern are needed. For Swing, we choose
5 observer patterns, 9 accessor patterns, 1 adapter pattern,
and 1 singleton pattern per tutorial program, and for An-
droid, we choose 1 observer pattern, 10 accessor patterns,
and 5 singleton patterns per tutorial program. These counts
are sufficient for the tutorial programs in our experiments.

Most of the time, not all pattern instances will actually be
needed. If this is the case, the input we pass to SKETCH will
underconstrain the synthesis problem, allowing SKETCH to
choose arbitrary values for holes in unused pattern instances.
In turn this would produce a framework model that is correct
for that particular tutorial program, but may not work for
other programs. Thus, PASKET includes an extra pass to
identify and discard unused pattern instances.

Merging Multiple Models. As described so far, PASKET
processes a single tutorial program to produce a model of
the framework. In practice, however, we expect to have
many different tutorials that illustrate different parts of the
framework. Thus, to make our approach scalable, we need
to merge the models produced from different tutorials.

Our merging procedure iterates through the solutions for
each tutorial program, accumulating a model as it goes along
by merging the current accumulated model with the next
tutorial’s results. At each step, for each design pattern, we
need to consider only three cases: either the pattern covers
classes and methods only in the accumulated model; only
in the new results for the tutorial program; or in both. In
the first case, there is nothing to do. In the second case, we
add the new pattern information to the accumulated model,
since it covers a new part of the framework. In the last
case, we check that both models assign the same classes or
methods to design pattern variables, i.e., that the results
for those classes and methods are consistent across tutorial
programs. (Note for this check to work, we must ensure class
and method ids are consistent across runs of PASKET.)

7. EXPERIMENTS

We evaluated PASKET by using it to separately synthesize
a Swing framework model and an Android framework model

Tutorial SKETCH w/ AC Patterns Java

Name LoC Log | LoC Std(s) || Tm(s) Tot(s) |O Ac Ad S| LoC C M
ButtonDemo 150 90 | 8,785 64 | 358 8 60 1 4 1 11263 95 296 30
CheckBoxDemo 235 90 | 8,758 139 | 375 9 65 1 3 1 11263 95 296 30
ColorChooserDemo 116 40 | 8,466 15 | 336 5 56 1 3 1 112626 95 296 30
ComboBoxDemo 147 38 | 8,540 16 | 256 4 42 1 3 1 112629 95 296 30

ED CustomlconDemo 233 82 | 8,837 69 | 449 9 80 1 4 1 11263 95 296 30
; FileChooserDemo 183 58 | 8,706 33 | 380 11 69 1 4 1 112633 95 296 30
»n | MenuDemo 276 150 | 9,481 764 | 488 67 190 2 5 1 112643 95 296 30
SplitPaneDividerDemo 134 46 | 8,699 236 | 428 8 67 1 3 1 112627 95 296 30
TextFieldDemo 244 40 | 8,728 OOM | 400 39 104 3 5 1 1265 95 297 30
ToolBarDemo 199 78 | 8,751 135 | 428 13 72 1 4 1 112645 95 296 30
Model (merging) 14| 5 9 1 112676 95 297 30

T | UlButton 50 46 | 5,258 8 | 113 1 16 1 10 0 51412 50 169 10
2 | UlCheckBox 96 82 | 5,455 25 | 209 7 33 1 10 0 51419 50 169 10
S | Telephony 86 54 | 5,131 6| 30 1 11l o 9 0 5|1412 50 169 10
< | Model (merging) 1 1 10 0 5| 1,419 50 169 10

Table 1: PASKET results. LoC stands for lines of code; Log indicates number of log entries; Std(s) is the median running time

under the standard version of SKETCH; || shows the median number of parallel processes forked to find a solution; Tm(s)
is the median running time of a single process that found a solution; Tot(s) is the median total running time; O(bserver),
Ac(cessor), Ad(apter), and S(ingleton) are the number of instantiations of each design pattern; C and M are the number of
synthesized classes and methods; and) is the number of empty methods.

from tutorial programs. Table 1 summarizes the results,
which we discuss in detail next.

Synthesis Inputs. To synthesize the Swing model, we used
ten tutorial programs distributed by Oracle. The names of
the tutorials are listed on the left of Swing group in Ta-
ble 1, along with their sizes. In total, the tutorials comprise
just over 1,900 lines of code. The tutorial names are self
explanatory, e.g., CheckBoxDemo illustrates JCheckBox’s be-
havior. The last row of the Swing section reports statistics
for the merged model.

We ran each tutorial manually to generate the logs. For
instance, for the ButtonDemo code from Figure 2, we clicked
the left-most button and then the right-most button; only
one is enabled at a time. It was very easy to exercise all fea-
tures of these small, simple programs. The third column in
the table lists the sizes of the resulting logs. We also created
Java files containing the subset of the API syntactically used
by these programs. It contains 95 classes, 263 methods, and
92 (final constant) fields.

To synthesize an Android model, we used three tutorial
apps, listed in the Android group of Table 1. Two of them,
UlIButton and UICheckBox, were examples in a 2014 Cours-
era class on Android programming. The third tutorial app,
Telephony, is from an online tutorial site.?> Table 1 gives
the size of each tutorial after translating the layout files
into Java, as described above. We treated the tutorial apps
similarly to the Swing programs: we ran the Android apps
manually to generate logs, and we created a subset API con-
taining the 50 classes, 153 methods, and 36 (final constant)
fields referred to by these programs.

Synthesis Time. Given the logs and API information, we
then ran PASKET to synthesize a model from each tutorial
program individually. The middle set of columns in the table
summarizes the results. Performance reports are based on
seven runs of the synthesis process on a server equipped
with forty 2.4 GHz Intel Xeon processors and 99 GB RAM,
running Ubuntu 14.04.3 LTS.

The column SKETCH LoC lists the lines of code of the

2 http://www.javatpoint.com/android-telephony-manager-tutorial

framework sketch files. We should emphasize that this is a
very challenging synthesis problem, and these sketches are
much larger than SKETCH has typically been used for, both
in terms of lines of code and search space. For example,
based on the combinatorics of the classes and methods avail-
able to fill the roles, the search space for the Swing frame-
work is at least size 952! x 263%7. In fact, one of the sketches
is so hard to solve that SKETCH runs out of memory.

To address this problem, we adopted Adaptive Concretiza-
tion (AC) [19], an extension to SKETCH that adaptively com-
bines brute force and symbolic search to yield a paralleliz-
able, and much more scalable, synthesis algorithm. The
remaining columns under SKETCH in the table report the
results of running both with and without AC. The Std col-
umn lists the median running time under SKETCH without
AC. The || column lists the median number of parallel pro-
cesses forked and executed before a solution is found under
AC. The next column reports the median running time of
a single trial that found a solution. The last column lists
the median total running time under AC. We can see that
overall, synthesis just takes a few minutes, and AC tends to
reduce the running time, sometimes quite significantly for
larger programs.

The bottom row of each section of the table lists the time
to merge the individual models together, which is trivial
compared to the synthesis time.

Synthesis Results. The next group of columns summarizes
how many instantiations of each design pattern (O for ob-
server, Ac for accessor, Ad for adapter, and S for singleton)
were found during synthesis. The last four columns report
the lines of code and the number of classes, methods, and
empty methods (i.e., those that are essentially abstracted
away) in the synthesized model.

In Swing, most tutorials handle only one kind of event
and one event type, and hence have a single instance of the
observer pattern. Looking at the bottom row of the table,
we can see there is a lot of overlap between the different
tutorial programs—in the end, the merged model has five
observer pattern instances.

In terms of the accessor pattern, again there is a lot of
overlap between different tutorials, resulting in nine total

Name LoC Tutorials

ToolbarFrame2 76 | ToolBarDemo
ToolbarFrame3 156 | ToolBarDemo

+ CustomlconDemo
JButtonEvents 40 | ButtonDemo

+ CheckBoxDemo
JToggleButtonEvents 43 | ButtonDemo

+ CheckBoxDemo

SimpleSplitPane 45 | SplitPaneDividerDemo
+ FileChooserDemo
ColorPicker 35 | ColorChooserDemo
+ ButtonDemo
ColorPicker3 72 | ColorChooserDemo
+ ButtonDemo
SimpleFileChooser 94 | FileChooserDemo

Table 2: Examples from O’Reilly’s Java Swing, 2nd Edition.

pattern instances in the merged model. Finally, all tutorials
have exactly one instance of the adapter pattern for Invoca-
tionEvent and one instance of the singleton pattern for Toolkit,
which are part of the Swing event-handling framework.

We manually inspected the set of empty methods in the
merged model, and found that most of these methods influ-
ence how things are displayed on screen. E.g., Window.pack()
resizes a window to fit its contents, and Component.setVisible()
shows or hides a window. Thus, while these methods are
important in an actual running Swing program, they can be
left abstract in terms of control flow.

We also found some (5 of the 30 empty methods) cases
of setter-like methods that were called in a tutorial, but the
set value was never retrieved, hence it did not affect log
conformity. Thus, for this set of tutorial programs these are
safe to abstract, while another set of tutorial programs might
cause these to be matched against the accessor pattern.

In general, synthesis results in Android are similar to those
in Swing. Most tutorials in Android also handle only one
kind of event and one event type, resulting in a single in-
stance of the observer pattern. Similarly, for the observer
pattern and the accessor pattern, there is a lot of overlap
between different tutorials.

One noticeable difference between Swing and Android is
the number of instances of the singleton pattern. In An-
droid, many system-level services are running in background
and providing useful features to applications. For easier
maintainance, those system-level services are usually imple-
mented as singletons.

Correctness. To check the correctness of the merged Swing
model, we developed a sanity checker that verifies that a
tutorial program produces the same logs when run against
the merged model as when run against Swing. Recall that
the logs include the events, i.e., the user interactions, that
produced the original logs used for synthesis. Thus, we de-
veloped a script to translate the logged events into a main()
method containing a sequence of Java method calls simulat-
ing reception of those events. Then we replay the tutorial
under the model by running this main() method with the tu-
torial and model code, recording the calls and returns in the
execution. We then compare against the original log. Using
this approach, we successfully verified log conformity for all
ten tutorial programs.

To check the correctness of the merged Android model,
we ran the tutorial apps under the SymDroid [17] symbolic
executor. Since the Android model is much smaller than
that of Swing, we manually examined SymDroid’s outputs

Name LoC Tutorials
Visibility | 114 | UlButton + UlCheckBox
“Bump” 50 | UlButton 4+ UlCheckBox + Telephony

Table 3: Example apps for Android.

to verify the correctness of the model: we ran SymDroid
and recorded its detailed execution steps; checked branching
points of interest, while walking through those symbolic ex-
ecution traces; and double-checked that expected branches
were taken and that expected assertions passed accordingly.

Java PathFinder’s Model. Next, we compared our syn-
thesized Swing model to an existing, manually created model:
the Swing model [24] that ships as part of Java PathFinder [30]
(JPF). We ran JPF, under both models, on eight of the ten
tutorials. We omitted two tutorials, ColorChooserDemo and
FileChooserDemo, since those cannot easily be run under JPF
due to limitations in JPF’s Swing event generator. Note
that there are no symbolic variables in this use of JPF, i.e.,
we explore only the path taken to create the original log.
Surprisingly, we found that, run with JPF’s own model,
JPF failed on all tutorial programs, for a fairly trivial reason:
Some method with uninteresting behavior (i.e., that our syn-
thesis process left empty) was missing. In contrast, all eight
tutorials run successfully under JPF using PASKET’s merged
model. This shows one benefit of PASKET’s approach: By us-
ing automation, PASKET avoids simple but nonetheless frus-
trating problems like forgetting to implement a method.

Applicability to Other Programs. Finally, we ran sym-
bolic execution on several other programs under each model,
to demonstrate that a model derived from one set of pro-
grams can apply to other programs.

We chose eight Java Swing code examples from O’Reilly’s
Java Swing, 2nd Edition [23] that use the same part of the
framework as the Oracle tutorials we used. Table 2 lists the
eight examples, along with their sizes. All ran successfully
using JPF under our merged model. The rightmost column
lists which Oracle tutorials are needed to cover the frame-
work functionality used by the O’Reilly example programs.
Interestingly, we found that in addition to the “obvious” Or-
acle tutorial (based on just the name), often the O’Reilly
example programs also needed another tutorial. For exam-
ple, ToolbarFrame3 needed functionality from both ToolBarDemo
(the obvious correspondence) and CustomlconDemo.

We also ran two apps under the synthesized model of An-
droid; they are listed in Table 3. Visibility is an activity ex-
tracted from the API Demos app in the Android SDK exam-
ples.® “Bump” is an app (created for an earlier project [25])
that looks up a phone number and/or device ID from the
TelephonyManager, depending on the state of two check boxes.
We manually translated the layout files to Java for these two
apps, as we did for the tutorial apps. As with the O’Reilly
examples, these apps needed framework functionality from
multiple tutorials.

In our earlier project [25], we introduced interaction-based
declassification policies along with a policy checker based on
symbolic executions. Using the model generated by PAs-
KET, we conducted similar experiments. We ran the policy
checker against the original, secure version of the Bump app,
and found the checker yielded the correct results with the

3http://developer‘amdroid.com/sdk/installing/adding- packages.html

synthesized framework model. For the Visibility app, we
conducted the same correctness check as the other tutorial
apps: we ran the app under SymDroid, and double-checked
that the simulated events of user clicks were properly propa-
gated to the app’s event handlers via our synthesized frame-
work model.

8. RELATED WORK

Modeling. As mentioned earlier, symbolic execution tools
for framework-based applications usually rely on manually
crafted framework models. For example, as discussed ear-
lier JPF-AWT [24] models the Java AWT /Swing framework.
The model is tightly tied to the JPF-AWT tool and cannot
easily be used by other analysis tools. Moreover, as we saw
in Section 7, the model is missing several methods.

There are some studies that attempted to automatically
create models of Swing [7] and Android [40] for JPF. The
techniques from these papers are quite different as they rely
primarily on slicing. One advantage of PASKET is that it
could generate more concise models for complex frameworks
because it is unconstrained by the original implementation’s
structure. Nonetheless, the techniques used in those papers
could help identify which parts of the framework to model.

Several researchers have developed tools that generate
Android models. EDGEMINER [6] ran backward data-flow
analysis over the Android source code to find implicit flows.
Modelgen [9] infers a model in terms of information flows,
to support taint analysis. To learn behaviors of the tar-
get framework, it inputs concrete executions generated by
Droidrecord, similarly to our logging using Redexer [18].
Both of these systems target information flow, which is in-
sufficient to support symbolic execution.

Given an app, Droidel [4] generates a per-app driver that
simulates the Android lifecycle. This enables some program
analysis of the app without requiring analysis of the Android
framework, which uses reflection to implement the lifecycle.
A key limitation of Droidel is that it is customized to the
lifecycle and to a particular Android version.

Mimic [15] aims to synthesize models that perform the
same computations as opaque or obfuscated Javascript code.
Mimic uses random search inspired by machine learning tech-
niques. Mimic focuses on relatively small but potentially
complex code snippets, whereas PASKET synthesizes large
amounts of code based on design patterns.

Samimi et al. [31] propose automatically generating mock
objects for unit tests, using manually written pre- and post-
conditions. This is also quite different from PASKET, which
synthesizes a model using knowledge of design patterns.

Synthesis. There is a rich literature on algorithmic program
synthesis since the pioneering work by Pnueli and Rosner
[29], which synthesizes reactive finite-state programs. Most
of these synthesizers aim to produce low-level programs,
e.g., synthesis techniques that are also sketch-based [36, 37,
38]. The idea of encoding a richer type system as a single
struct type with a type id was also used in the Autograder
work [33]. Component-based synthesis techniques [14, 22]
aim at higher-level synthesis and generate desired programs
from composing library components. Our approach is novel
in both its target (abstract models for programming frame-
works) and its specification (logs of the interaction between

the client and the framework, and an annotated API).

The idea of synthesizing programs based on I/O sam-
ples has been studied for different applications. Godefroid
and Taly [13] propose a synthesis algorithm that can effi-
ciently produce bit-vector circuits for processor instructions,
based on smart sampling. Storyboard [32] is a program-
ming platform that can synthesize low-level data-structure-
manipulating programs from user-provided abstract I/O ex-
amples. TRANSIT [39], a tool to specify distributed proto-
cols, inputs user-given scenarios as concolic snippets, which
correspond to call-return sequences PASKET logs. In our
approach, the synthesis goal is also specified in terms of in-
put (event sequences) and output (log traces), and our case
studies show that the I/O samples can also help synthesize
complex frameworks that use design patterns.

Design Patterns. In their original form, design patterns [12]
are general “solutions” to common problems in software de-
sign, rather than complete code. That is, there is flexibility
in how developers go from the design pattern to the details.
Several studies formalize design patterns, detect uses of de-
sign patterns, and generate code using design patterns.

Mikkonen [26] formalizes the temporal behavior of design
patterns. The formalism models how participants in each
pattern (e.g., observer and subject) are associated (e.g., attach),
how they communicate to preserve data consistency (e.g.,
update), etc. Mikkonen’s formalism omits structural concerns
such as what classes or methods appear in.

Albin-amiot et al. [1] propose a declarative meta-model of
design patterns and use it to detect design patterns in user
code. They also use their meta-model to mechanically pro-
duce code. Jeon et al. [21] propose design pattern inference
rules to identify proper spots to conduct refactoring. These
approaches capture structural properties, but omit tempo-
ral behaviors, such as which observers should be invoked for
a given an event. In contrast, PASKET accounts for both
structural properties and temporal behaviors. We leverage
design patterns as structural constraints and logs from tu-
torial programs as behavioral constraints for synthesis.

Antkiewicz et al. [3] aim to check whether client code
conforms to high-level framework concepts. They extract
framework-specific models, which indicate which expected
code patterns are actually implemented in client code. This
is quite different from the symbolically executable frame-
work model synthesized by PASKET.

9. CONCLUSION

We presented PASKET, the first tool to automatically de-
rive symbolically executable Java framework models. PAs-
KET consumes the framework API and logs from tutorial
program executions. Using these, it instantiates the ob-
server, accessor, singleton, and adapter patterns to construct
a framework model that satisfies log conformity. Internally,
PASKET uses SKETCH to perform synthesis, and it merges
together models from multiple tutorial programs to produce
a unified model. We used PASKET to synthesize a model of a
subset of Swing used by ten tutorial programs, and a subset
of Android used by three tutorial programs. We found that
synthesis completed in a reasonable amount of time; the re-
sulting models passed log conformity checks for all tutorials;
and the models were sufficient to execute the tutorial pro-
grams and other code examples that use the same portion
of the frameworks. We believe PASKET makes an important

step forward in automatically constructing symbolically ex-
ecutable Java framework models.

Acknowledgments

Supported in part by NSF CCF-1139021, CCF-1139056, CCF-

1161775, and the partnership between UMIACS and the
Laboratory for Telecommunication Sciences.

References

1]

H. Albin-amiot, Y. gaél Guéhéneuc, and R. A. Kastler.
Meta-Modeling Design Patterns: Application to Pat-
tern Detection and Code Synthesis. In Workshop Au-
tomating OOSD Methods, pages 01-35, 2001.

T. R. Andersen. Add Logging at Class Load Time,
Apr. 22 2008. https://today.java.net/article/2008/04/
22 /add-logging-class-load-time-java-instrumentation.

M. Antkiewicz, T. T. Bartolomei, and K. Czarnecki.
Automatic extraction of framework-specific models
from framework-based application code. In Proceedings
of the Twenty-second IEEE/ACM International Con-
ference on Automated Software Engineering, ASE ’07,
pages 214-223, 2007.

S. Blackshear, A. Gendreau, and B.-Y. E. Chang.
Droidel: A general approach to android framework
modeling. In SOAP, pages 19-25. ACM, 2015.

C. Cadar, D. Dunbar, and D. R. Engler. KLEE: unas-
sisted and automatic generation of high-coverage tests
for complex systems programs. In OSDI, pages 209—
224, 2008.

Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele,
C. Kruegel, G. Vigna, and Y. Chen. Edgeminer: Au-
tomatically detecting implicit control flow transitions
through the android framework. In NDSS ’15, 2015.

M. Ceccarello and O. Tkachuk. Automated generation
of model classes for java pathfinder. SIGSOFT Softw.
Eng. Notes, 39(1):1-5, Feb. 2014.

S. Chiba. Load-Time Structural Reflection in Java. In
ECOOP, pages 313-336, 2000.

L. Clapp, S. Anand, and A. Aiken. Modelgen: Mining
explicit information flow specifications from concrete
executions. In ISSTA, pages 129-140. ACM, 2015.

A. Demaille, R. Levillain, and B. Sigoure. TWEAST: A
Simple and Effective Technique to Implement Concrete-
syntax AST Rewriting Using Partial Parsing. In SAC,
pages 1924-1929, 2009.

M. Fowler. InversionOfControl, June 2005. http:
//martinfowler.com/bliki/InversionOfControl.html.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional, 1994.

P. Godefroid and A. Taly. Automated Synthesis of
Symbolic Instruction Encodings from I/O Samples. In
PLDI, pages 441-452, 2012.

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

(24]

(25]

[26]

27]

S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Syn-
thesis of Loop-free Programs. In PLDI, pages 62-73,
2011.

S. Heule, M. Sridharan, and S. Chandra. Mimic: Com-
puting models for opaque code. In Furopean Software
Engineering Conference and Foundations of Software
Engineering (ESEC/FSE), pages 710-720. ACM, Sep
2015.

J. Jeon. Framework Synthesis for Symbolic Execution
of Event-Driven Frameworks. PhD thesis, University of
Maryland, College Park, Feb 2016.

J. Jeon, K. K. Micinski, and J. S. Foster. SymDroid:
Symbolic Execution for Dalvik Bytecode. Technical Re-
port CS-TR-5022, Department of Computer Science,
University of Maryland, College Park, Jul 2012.

J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel,
N. Reddy, J. S. Foster, and T. Millstein. Dr. Android
and Mr. Hide: Fine-grained Permissions in Android Ap-
plications. In ACM CCS Workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM),
pages 3-14, Oct 2012.

J. Jeon, X. Qiu, A. Solar-Lezama, and J. S. Foster.
Adaptive Concretization for Parallel Program Synthe-
sis. In Computer Aided Verification (CAV), volume
9207 of Lecture Notes in Computer Science, pages 377—
394, Jul 2015.

J. Jeon, X. Qiu, A. Solar-Lezama, and J. S. Foster.
JSKETCH: Sketching for Java. In FEuropean Software
Engineering Conference and Foundations of Software
Engineering (ESEC/FSE), Sep 2015.

S.-U. Jeon, J.-S. Lee, and D.-H. Bae. An automated
refactoring approach to design pattern-based program
transformations in Java programs. In Asia-Pacific Soft-
ware Engineering Conference, pages 337-345, 2002.

S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-
guided component-based program synthesis. In ICSE,
pages 215-224, 2010.

M. Loy, R. Eckstein, D. Wood, J. Elliott, and B. Cole.
Java swing, 2nd edition: Code examples, 2003. http:
/ /examples.oreilly.com/jswing2/code/.

P. C. Mehlitz, O. Tkachuk, and M. Ujma. JPF-AWT:
Model checking GUT applications. In ASE, pages 584—
587, 2011.

K. Micinski, J. Fetter-Degges, J. Jeon, J. S. Foster, and
M. R. Clarkson. Checking Interaction-Based Declassifi-
cation Policies for Android Using Symbolic Execution.
In Furopean Symposium on Research in Computer Se-
curity (ESORICS), Vienna, Austria, Sep 2015.

T. Mikkonen. Formalizing Design Patterns. In ICSE,
pages 115-124, 1998.

Oracle Corporation. Using swing components: Ex-
amples, 2015. https://docs.oracle.com/javase/tutorial/
uiswing/examples/components//.

[28]

[31]

[32]

[33]

[34]

T. Parr and K. Fisher. LL(*): The Foundation of the
ANTLR Parser Generator. In PLDI, pages 425-436,
2011.

A. Pnueli and R. Rosner. On the Synthesis of an Asyn-
chronous Reactive Module. In ICALP, pages 652671,
1989.

N. Rungta, P. C. Mehlitzy, and W. Visser.
JPF Tutorial, ASE 2013, 2013. URL http:
/ /babelfish.arc.nasa.gov/trac/jpf/raw-attachment/
wiki/presentations/start/ASE13-tutorial.pdf.

H. Samimi, R. Hicks, A. Fogel, and T. Millstein. Declar-
ative mocking. In Proceedings of the 2013 International
Symposium on Software Testing and Analysis, ISSTA
2013, pages 246-256, 2013.

R. Singh and A. Solar-Lezama. Synthesizing data struc-
ture manipulations from storyboards. In FSFE, pages
289-299, 2011.

R. Singh, S. Gulwani, and A. Solar-Lezama. Auto-
mated Feedback Generation for Introductory Program-
ming Assignments. In PLDI, pages 1526, 2013.

A. Solar-Lezama. Program sketching. International

(35]

(36]

37]

(38]

(39]

(40]

Journal on Software Tools for Technology Transfer, 15
(5-6):475-495, 2013.

A. Solar-Lezama.
2015. Version 1.6.7.

The Sketch Programmers Manual,

A. Solar-Lezama, R. Rabbah, R. Bodik, and
K. Ebcioglu. Programming by sketching for bit-
streaming programs. In PLDI, pages 281-294, 2005.

A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodik,
V. Saraswat, and S. Seshia. Sketching stencils. In PLDI,
pages 167-178, 2007.

A. Solar-Lezama, C. G. Jones, and R. Bodik. Sketching
concurrent data structures. In PLDI, pages 136-148,
2008.

A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-
Haim, M. M. Martin, and R. Alur. TRANSIT: Specify-
ing Protocols with Concolic Snippets. In PLDI, pages
287-296, 2013.

H. van der Merwe, O. Tkachuk, B. van der Merwe, and
W. Visser. Generation of library models for verification
of android applications. SIGSOFT Softw. Eng. Notes,
40(1):1-5, Feb. 2015.

