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Abstract— While Agile software development has many advocates, acceptance in the 

government and defense sectors has been limited. To address questions of meanings to the term 

“Agile,” we examine a range of Agile methods practiced and develop a framework of seven 

characteristics, which we call the Agile Genome. We gain insight into the dynamics of how 

Agile development compares to classic “waterfall” approaches by constructing a System 

Dynamics model for software projects. The Agile Project Dynamics (APD) model captures each 

of the Agile genes as a separate component of the model and allows experimentation with 

combinations of practices and management policies. Experimentation with the APD model is 

used to explore how different genes work in combination with one another to produce both 

positive and negative effects. The extensible design of the APD model provides the basis for 

further study of Agile methods and management practices. 

1.  Introduction 

In the commercial sector, many organizations have embraced Agile methodologies as the way 

to better flexibility, greater responsiveness, and improved time-to-market in the development of 

software. Forrester Research surveys of 1000+ IT professionals in 2009 and in 2010, showed a 

decline in the use of “Traditional” development methodologies, and a rise in adoption of Agile. 

About 40% of organizations reported using one or another of the Agile family of methodologies 

[29,30]. Studies show a wide range of positive effects of Agile: 5% to 61% reductions in cost, 

24% to 58% reductions in development time, and 11% to 83% reductions in product defects [33].  

Despite these results, in the government, and particularly the defense sector, Agile is resisted. 

A 2010 study of Agile in defense software acquisition [32] found that Agile was only likely to be 

used in two circumstances: 1) the program is urgent and mission critical for combat forces and has 

the clout to get a waiver from the normal process, or 2) the program is failing and likely to be 

canceled.  

This research uses System Dynamics to examine the characteristics of so-called “Agile” 

software development methodologies. We focus specifically on large-scale government-type 

software development efforts – though many of the findings apply to the private sector as well. 

Our objective is to use System Dynamics to help answer these questions:  

 What do people really mean by “Agile”? 

 Why the wide variation in reported ROI compared to traditional methods?  

 Can Agile ever make things worse? 

 What are management options and implications? and 

 Can Agile succeed in the large-scale government systems development domain? 

1.1 Agile and Speed of  Requirements Change 

A common attitude in the software industry has been that Agile only works for small-scale 

projects with small experienced teams, and that traditional Waterfall is better suited for larger 

scale projects. Large-scale software engineering organizations have traditionally used plan-driven, 
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heavyweight, waterfall-style approaches for the planning, execution, and monitoring of software 

development efforts. This approach often results in relatively long development schedules that are 

susceptible to failure, especially in a rapidly changing environment. Schedule pressure, defects, 

and requirements changes can drive endless redesign, delay the project, and incur extra cost. The 

success of the waterfall development life cycle is dependent upon a stable business environment 

(i.e. stable requirements) and breaks down in a high change environment [16]. Whether it is to 

support the war efforts in the 2000s, to address rapidly-evolving cyber-security threats, or to 

compete in an ever-more net-centric world: the demands of the government software customer 

today are such that capabilities are needed on shorter time horizons, quality is expected out of the 

gate. Software producers are expected to be nimble enough to mirror the fast-paced changes in 

their customer’s needs and environment changes [33].  

Taking inspiration from the world of biology, Charles Fine argues that each industry has its 

own evolutionary life cycle (or “clockspeed”), measured by the rate at which it introduces new 

products, processes, and organizational structures[13]. The government systems software market 

had historically been a slow-to-medium-clockspeed environment, with software being only a 

component within large multi-year programs. It is now becoming a fast-clockspeed environment, 

with demand for quick software delivery to run on existing networks, infrastructure, and systems. 

Fine argues that firms must adapt to the changing environment to maintain any competitive 

advantage. Government software contractors must then adapt to survive. The government 

software contractor community is looking at Agile development to deliver capabilities at the pace 

and cost needed to stay competitive in the new government software market.  

Many in the consumer-faced commercial software sector have dealt with a fast-clockspeed 

environment by adopting Agile software development, since it was designed to be flexible and 

responsive to high rates of change. The promise of Agile is that it will help organizations lower 

costs and shorten development times while improving quality. 

1.2 Agile in Government Software Development 

Previous results [28] have found dramatic differences in the performance of commercial 

software development compared to defense. Defense takes much longer and goes through more 

cycles to refine defects out of software products. Commercial and defense sectors differ in the 

control system that determines the value of the product. Government and defense (as well as some 

bureaucratic parts of private organizations) do not have a market to set value. Defense also 

operates by contracting out software development and has evolved elaborate bureaucratic 

planning processes that try to control costs, expedite delivery, and make sure the government gets 

value for its money. These processes were originally developed to control large weapons systems 

acquisitions programs (for aircraft, tanks, ships, etc.) and transferred to software acquisition 

(including software development)[15].  

Concerns about the sluggishness of large scale government and defense IT development has 

been expressed repeatedly for over thirty years. A 2009 Defense Science Board report found that 

the average time from concept to initial operating capability was 91 months – over seven years 

[17]. As long ago as 1982, a defense study recommended an agile-like process to “buy a little, test 

a little” to minimize overall software development exposure and risk [14]. Thirty years later, a 

2012 Brookings study found a “growing consensus on the need for agile approaches” in defense 

IT system acquisition[15]. 

In 2010, then Under Secretary of Defense for Acquisition, Technology and Logistics, Dr. 

Ashton Carter issued a memo entitled “Better Buying Power: Guidance for Obtaining Greater 

Efficiency and Productivity in Defense Spending.” He was on a mission to rein in cost overruns 
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and spending as part of an overall plan to cut $100 billion from the Pentagon budget over the 

subsequent five years. Carter also directed acquisition managers to award more services contracts 

to small businesses to increase competition and provide with “an important degree of agility and 

innovation,” with lower overhead costs[4]. 

The big government software contractors took note… The Pentagon budget is shrinking and 

they now will increasingly have to compete with small/nimble firms for contracts. This is perhaps 

the single driving force behind why these companies are taking a serious look at disrupting their 

mature product development practices by incorporating Agile software development as practiced 

in the commercial world, including in today’s dominant “born-on-the-web” software giants like 

Google, Facebook, and Amazon. 

1.3 Plan of the Paper 

Software development teams that are said to employ “Agile development” make use of a 

variety of practices that are advertised to reduce coordination costs, to focus teams on capability 

objectives, and to produce stable product iterations that can be released incrementally. Agile 

software development has become a de-facto approach to the engineering of software systems in 

the web-based and other consumer-faced software sector and is now entering aerospace and 

defense. But it is not clear whether Agile can work in these risk-averse and heavily plan-based 

environments. 

In section 2, we present a framework for understanding Agile systems development practices, 

which we call the “Agile Genome.” A study of a broad range of Agile methodologies leads us to 

the identification of seven representative characteristics of Agile software projects: 1) 

story/feature-driven, 2) iterative-incremental, 3) micro-optimizing, 4) refactoring, 5) continuous 

integration, 6) team dynamics, and 7) customer involvement.  

In section 3, we describe the System Dynamics model developed in this research, which we 

call the Agile Project Dynamics (APD) model. In developing an Agile software development 

project model, the Agile Genome provided structure for capturing of the impact of each of the 

Agile genes on the emergent behavior of medium to large scale software development projects. 

System Dynamics models can be used to aid in proactive, strategic/tactical management of design 

and development projects [11]. Our modeling of Agile projects builds upon an existing model and 

integrative view of software development project management [12] that models the classic 

Waterfall approach to development. 

In section 4, we illustrate the use of the model in experiments to study how agile methods can 

be successfully applied within the context of government and defense software acquisition. The 

model helps to understand and simulate the impact of alternative management policies involving 

the adoption of one, many, or all of the Agile genes and to compare resulting project performance 

in terms of cost, schedule, and quality. The model can be used to compare the performance of 

projects using classic Waterfall-style approaches versus those using various Agile methodologies 

and combinations of Agile practices.  

Section 5 presents conclusions and directions for future research. 

2.  Identifying The Agile Genome 

As part of an effort to develop a System Dynamics model, which can be used to understand the 

impact of Agile practices on software and systems engineering project performance, there was a 

need to identify and characterize “agile” practices employed by software and system development 

organizations. In other words: in order to model the dynamic effects of agile practices, we had to 

first understand the “essence of agility”: What makes development Agile? 
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We reviewed a range of common Agile development methodologies, including Scrum[6], 

eXtreme Programming, Feature Driven Design, and Test Driven Design. After review and 

analysis of many approaches, we found that they share common characteristics. The project teams 

that employ these methodologies in effect practice combinations of some or all of seven 

remarkably similar “agile techniques.” We call these “the Genome of Agile,” consisting of the 

seven genes shown in Table 1. Each of these genes will be described in the following sections. 

Table 2 showing how the genes map to some popular methodologies is included in section 2.8 . 

 
Gene Name Short Description 

Story/Feature Driven Break up of project into manageable pieces of functionality; sometimes 
named “features”, “stories”, “use cases”, or “threads”. 

Iterative-Incremental Development is performed in repeated cycles (iterative) and in portions at a 
time (incremental.)  

Micro-Optimizing Teams are empowered to modify aspects of the process or dynamically 
adapt to changing circumstances. Small improvements and variable changes 
are made frequently and as needed. 

Refactoring Refinement of the software design and architecture to improve software 
maintainability and flexibility. 

Continuous Integration  Policies and practices related to Configuration Management, and software 
build and test automation. 

Team Dynamics “Soft” factors related to the project team. Daily meetings, agile workspaces, 
pair programming, schedule/peer pressure, experience gain, etc. 

Customer-Involvement Customer/User involved in demonstrations of functionality to 
verify/validate features. Higher frequency feedback and clarification of 
uncertainty. Availability to  participate in development meetings. 

Table 1 - The Genome of Agile 

2.1 Story/Feature Driven 

Most Agile projects decompose the system being developed into manageable sets of 

“features” or “stories.” The terminology differs (“use case”, “thread”, “feature”, “capability,” 

etc) across methodologies and organizations, but the concept is the same: The system is 

segmented into sets of client-valued functionality, and development work is organized around 

producing these features. An advantage of the feature driven paradigm is that, as features are 

produced, they become available for early deployment, customer demonstrations, or early 

integration and test activities – all of which can help reduce uncertainty, detect functional defects 

early in the development cycle, or deliver early capabilities to customers (as opposed to waiting 

for a full-featured product).  Decomposing a system into feature sets allows functional problems 

and requirements issues to be identified much earlier (as soon as each feature is implemented and 

available to be tested).   

In contrast, traditional  approaches generally employ “Functional Decomposition” where a 

system is broken into sub-components (e.g. user-interface component, database component, etc) 

which are implemented in parallel, and integrated in late stages of development.[1] For this 

“waterfall” approach to be viable, the up-front requirements specifications must be locked-down 

and perfectly match the ultimate needs of users. Despite requirements lock-down, functional and 

requirements issues can surface late in the project, when the integrated system becomes visible in 

functionally testing.  

From a management perspective, the feature driven approach also yields a concrete measure 

of progress by feature (i.e. 9 out of 10 features implemented means 90% complete, assuming all 
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features weighted equally.) This differs from traditional measures of progress, based on arguably 

arbitrary milestones, where for example, the completion of a design phase might translate to 

claiming forty percent of the project complete. One class of problems associated with using a 

functional decomposition approach is that a project can report to be at 90% completion, yet still 

have no functioning software to show for it.  

2.2 Iterative-Incremental 

Whereas traditional development approaches call for complete requirements analysis phase, 

followed by lengthy design, coding, and test phases, Agile projects tend to develop an initial 

increment of software which then incrementally evolves into the final product through a series of 

short design/code/test iterations. This allows development to begin without necessarily having 

completely finalized requirements. 

 This gene combines with the Feature-Driven gene to allow the system to continually evolve 

as a series of increments, each one adding more features to the existing previous incarnation. The 

Iterative-Incremental concept is neither novel nor unique to Agile methodologies. In fact, 

extensive use of Incremental Iterative Development (IID) for major software development efforts 

dates back to the Sixties[3].  

Figure 1 illustrates the process of Feature-Driven and Iterative-Incremental development. On 

the far left is the Product Backlog, which consists of the required features to be built. On the far 

right is the Delivered Product which is shipped to the customer. In the middle are successively 

smaller cycles – releases and sprints. The pitcher on top of the Product Backlog is a reminder 

that requirements often change over time. 

In a single-pass waterfall development project, there would be no middle stages. The entire 

product requirements set would be put through a plan-driven process aimed at delivering the 

product in one step. Incremental Iterative Development uses many of the same plan-driven 

processes, but delivers software in a series of releases, each adding new functionality, often 

spaced at 6-12 month intervals. The best value is obtained when iterations are designed such that 

early tasks help resolve uncertainty later in the project. Rather than one big design phase, one big 

implementation phase, one big integration phase, then one big test phase, many iterations are 

performed, each consisting of a shorter design-implement-integrate-test cycle. In Figure 1, 

required features from the Product Backlog are selected and transferred to the Release Backlog. 

Figure 1 Feature-Driven and Iterative-Incremental Development 
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After development is completed, a Shippable Release is produced, which then becomes part of 

the Delivered Product. 

One principle of the Agile Manifesto[2] is to “deliver working software frequently, from a 

couple of weeks to a couple of months.” Development is performed in repeated cycles (iterative) 

and in segments of work at a time (incremental.) This allows developers to focus on short-term 

objectives while taking advantage of what was learned during earlier development in later 

iterations. Figure 1 illustrates the frequent cycles of the Agile approach as a series of time-boxed 

“sprints,” each of which moves a subset of the Release Backlog into a Sprint Backlog and 

produces a Potentially Shippable Product Increment in a fixed period of time (often 2-4 weeks). 

The diagram also shows a Daily Scrum meeting that is used in some forms of Agile to help keep 

the project team on target. The product of all the sprints accumulates into a release, which in turn 

becomes the deliverable product. 

2.3 Micro-Optimizing 

The Micro-Optimizing gene represents the adaptive nature of Agile management processes. 

We employ the term “Optimizing” because Agile teams in most Agile methodologies are 

encouraged to tailor aspects of the development process to dynamically adapt to changing 

circumstances. “Micro” indicates small process adjustments and improvements made frequently. 

Micro-optimizing also includes a Double Loop Learning [5] effect where the team steps back, 

reviews results, questions assumptions and goals, and revises them to improve future results. 

This contrasts with Single Loop Learning where an individual or a team learns to be more 

efficient and productive from repetition of similar tasks. In other words, double loop learning 

changes “what we do” rather than “how we do it”. 

Classic development processes can exhibit a “light” flavor of this gene in the form of “Lessons 

Learned” activities that are called for at the completion of a project, but which rarely feeds into 

the next development cycle and yields little improvement effect on subsequent development 

projects. In the context of Agile, however, iterations (e.g. sprints) are short and frequent enough 

so that process adjustment is near-continuous throughout the life of a project in between 

iterations. For example, the Crystal family of methods calls for “reflection workshops” to be held 

every few weeks. 

Teams are also trusted to self-adjust and gradually learn about how much work they can handle 

in a given period of time. For example, the measure of “Sprint Velocity” in Scrum represents 

how much product backlog a team can handle in one sprint. It is established as the team learns 

about the project and about working with each other. Typically, team velocity improves as sprint 

cycles are completed and experience gained. 

2.4 Refactoring 

Several agile methodologies consider refactoring to be a primary development practice. 

Refactoring consists of taking apart existing working code, factoring out common elements, and 

rebuilding it to provide a stronger base for subsequent development. It can also mean refining the 

design or architecture of the system to allow for greater flexibility and extensibility. 

Refactoring has the disadvantage that it takes extra effort and requires changing baseline 

software without any direct or apparent return on investment (ROI). A project manager may ask 

“why are we spending effort re-designing portions of the system unrelated to the next planned set 

of features?” The answer is that future development will be lower cost and higher quality if the 

code base is restructured now. 
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The downside of a feature-driven and iterative-incremental approach is that over time, the 

product/system starts to exhibit signs of having “high coupling” and “low cohesion,” making it 

harder (and more costly) to maintain and evolve. Coupling refers to the degree to which system 

components depend on each other – in a system with high coupling there is a high degree of 

dependency; changes to one element is likely to have ripple effects and impact on the behavior of 

other elements. Cohesion is a measure of how strongly related the responsibilities of a single 

component are – low cohesion is an indicator of lack of structure in the system. Over time, the 

evolution of a system feature-by-feature, incrementally, can lead to “high coupling” and “low 

cohesion,” making new changes increasingly more difficult. 

 One metaphor for this effect is “technical/design debt.” Similar to credit debt, technical debt 

accrues interest payments in the form of extra effort that must be made in subsequent 

development cycles. The practice of refactoring pays off “technical/design debt” which has 

accrued over time, especially when incremental and evolutionary design results in a sub-optimal 

or inflexible architecture, duplication, and other undesirable side effects. 

2.5 Continuous Integration 

Continuous Integration involves methods of maintaining an updated code base that includes 

all changes that have been made and regularly building a testable version of the product. Agile 

projects often include policies and approaches to Configuration Management (CM) as well as 

automation of development workflow and processes. Automation can speed up development by 

eliminating repetitive and manual tasks.  

Configuration Management– Traditionally, the popular CM approach is to have different 

teams develop portions of software in isolated environments (i.e. separate “branches” of a version 

tree), and integrate their work products later in the development cycle. However, we know that 

the later in development that a defect is found, the costlier it is to fix.[8] Moreover, significant 

number of defects are interface defects.[9]  Thus it can be very advantageous to integrate 

components early and often. 

In the mid-1990s, Microsoft moved to a "synch-and-stabilize" process which relied on daily 

builds for frequent synchronizations and incremental milestones for periodic stabilizations of the 

products under development.[10]  This is one of the early examples of frequently integrating 

various pieces of software under development to detect early conflicts.  

Automated Testing – Continuous Integration includes test automation at various levels, from 

unit testing of individual software modules, up to system-level functional tests. Test automation 

complements the automation of other manual tasks, such as software builds. 

There can be a significant up-front cost associated with developing test suites and an 

infrastructure to support them. Nevertheless, there are benefits from having software perform 

testing that would otherwise need to be done manually. Once tests have been automated, they can 

be run quickly and repeatedly. Systems that have a long maintenance life can benefit from an 

automated regression test suite – legacy projects for these types of systems often require copious 

and costly manual regression testing to verify that there is no breakage in baseline functionality 

introduced by added features. When Agile software is developed incrementally, automated testing 

assures that new development integrates with prior work. 

2.6 Team Dynamics 

The Team Dynamics gene represents the collection of “soft factors” and effects related to 

unique practices that influence the development team’s performance. The majority of Agile 

methods call for frequent meetings to allow teams to self-organize, prioritize, and assign tasks, 
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while communicating roadblocks. The most efficient and effective method of conveying 

information to and within a development team is face-to-face conversation.[7]  Practices such as 

“pair programming,” and attitudes such as “collective code ownership” are also claimed to have 

positive effects on project performance. Team co-location and open workspaces and environments 

are also preferred. These help promote the flow of information between and drive team 

performance through transparency. 

Another unique team dynamic that emerges in agile teams is a distinctive “social/schedule 

pressure” effect. In Scrum, for example, as teams convene daily to report on what they are doing, 

what they have done, and what they plan to do next, a certain level of peer pressure comes into 

play, driving individuals to perform at a higher productivity. When paired with short 

increments/sprints, this produces more frequent bouts of schedule pressure coinciding with the 

end of each time-boxed iteration, as opposed to a single schedule crunch at the end of a waterfall 

project.  

2.7 Customer-Involvement 

The Customer Involvement gene means accepting changing requirements and including the 

user and/or customer in the development team (to the degree that this is possible). This can be in 

daily stand-up meetings, design reviews and product demos. The customer’s availability and input 

to the development process helps to reduce uncertainty and identify rework early. This requires 

collaborating with the user/customer to evolve the requirements throughout the process – with 

later requirements informed by insights gained from earlier development.  

This gene can exhibit itself even on projects which appear prima facie to be “non-agile.”  

Large classic Waterfall projects may hold User Involvement Events (UIEs) or deliver proof-of-

concept prototypes. These types of activities can help to clarify requirements and improve 

responsiveness to customers early in the design/architecture phases. 

A more traditional contracting approach is to lock-in the system requirements early on in the 

project. Any subsequent change requires contractual re-negotiations for “added scope” or “scope 

change”. This type of project control mechanism is intended to help keep the size of the project 

in check (thus helping limit growth in costs and schedule). Nevertheless, it may mean that a long 

time is spent up-front developing, refining, and validating requirements. By the time the product 

is delivered, it may well meet the specifications agreed to contractually, but not be what is really 

need to support the mission, especially in light of changing mission needs. Many requirements 

agreed to up front turn out to be unnecessary, while other capabilities were not known and not 

delivered. 

There are two distinct problems with a “fixed requirements” attitude: (1) The “ah-hah” 

moment: the first time that you actually use the working product. You immediately think of 20 

ways you could have made it better. Unfortunately, these very valuable insights often come at the 

end.[6]  When requirements are locked-in up front, there is no room for making the product 

better later in the development cycle. (2) Undetected requirements defects can wreak havoc on a 

project if detected late in the schedule. Indeed, that is one of the reasons that the Waterfall 

method came to be, to lock-down and specify the requirements so that later development could 

proceed without turbulence. However, as discussed previously, when real user needs are 

changing, requirements must evolve.  

Often the customer interfaces with the contractor’s business operations and project managers. 

Requirements are generated by business analysts (in some industries “system engineers” or 

“domain experts”) and are flowed down to the development team. In such cases, those 

implementing the software are at least two or three degrees of separation away from the end user. 
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2.8 Summary of the Agile Genome Framework 

Applying the Agile Genome framework to describe five popular Agile methodologies, Table 2 

shows that all five of the example methodologies include the Feature Driven and Iterative 

Incremental genes. The other five genes are present in some of these methodologies and missing 

in others.  

 Agile Gene  

Methodology 
Feature 
Driven  

Iterative-
Incremental  

Refactoring  
Micro-

Optimizing  
Customer 

Involvement  
Team 

Dynamics 
Continuous 
Integration  

Scrum X X   X X X   

XP  X X X X X X   

TDD X X X       X 

FDD X X           

Crystal  X X   X X     

Table 2 - Agile Genes Mapped to Several Popular Agile Methodologies 

3.  The System Dynamic Model of Agile Project Dynamics (APD) 

System Dynamics models can be used to aid in a proactive, strategic/tactical management of 

design and development projects[11]. Our modeling of Agile projects builds upon an existing 

model and integrative view of software development project management in [12] which examined 

the classic single-pass Waterfall approach to development. Another sophisticated model [20] 

looked at the commercial sector, XP and SCRUM methods, and the interaction of customer 

involvement, pair programming, and refactoring. The model in [21] looks at the effect of short 

Agile cycle time and automated testing on project performance compare to waterfall under stable 

and varying requirements patterns and finds Agile better unless software production quality falls. 

The model in [23] focuses on schedule pressure effects and concludes that cycle times should be 

somewhat longer than typically practiced. A study examining range of cases [22] finds that a 

System Dynamics rework cycle model is well suited to Agile management processes.  Feedback 

cycles inherent in Agile is examined in [24] with recommendations for improved manager 

understanding of these effects, along with single and double loop learning effects.  The research in 

[26] applies grounded theory to develop propositions about communications effects in Agile. A 

feedback loop is proposed in [25] to examine the effects of schedule pressure in Agile software 

maintenance processes. The model presented in [27] uses a two-stage backlog with rework cycle 

to evaluate Kanban and Scrum against waterfall and recommends further modeling investigation. 

The Agile Project Dynamics (APD) model presented here builds on prior work to develop an 

extensible model for comparison of variants of Agile to each other and to traditional waterfall 

methods. The model is built around a central core work production model based on the rework 

cycle paradigm [28]. The features and genes of Agile are detachable and replaceable sub-models. 

Sub-models for Agile genes influence the main production model through both positive and 

negative as well as interactive effects on: 

• the rate at which work is accomplished,  

• the size and relative effectiveness of the staff on the project, 

• the rate at which defects are produced,  

• the rate at which defects are discovered, and  

• the rate at which working software is released. 
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System Dynamics is particularly appropriate for this work since it provides transparency into 

both model structure and parameters. We expect that critiques of aspects of the model will lead to 

improved sub-models and thence an improved model. In some sense, we can say that the 

development of the APD is in and of itself an Agile process in that the various features (i.e. sub-

models) have evolve incrementally and have been refactored as new insights have over time led to 

the refinement of sub-models (much akin to requirements changes in a software project).  

Illustrations of model behavior below use representative values for exogenous parameters 

(such as Nominal Fraction Correct and Complete) that are consistent with the authors’ 

experience, but would need calibration against historical data in applying the model in a particular 

organization. In the tradition of System Dynamics, all of these exogenous parameter values are 

adjustable and not fixed in the model structure. The Management Dashboard shown in Figure 11 

includes sliders for adjusting key parameters in experimenting with the model.  Experimenting 

with changes to parameters can be used to evaluate the impact of assumptions or possible changes 

within the organization 

3.1 Feature-Driven and Iterative-Incremental 

Figure 2 shows a simplified illustration of the core software production process model and 

rework loops used in APD. Development tasks begin in the Product Backlog on the upper left. 

Work to be done, work being done, and work completed are all measured in units of “tasks.” 

Development production rates are measured in tasks per week. 

If releases are used, then the release planning process moves a portion of the Product Backlog 

into the Release Backlog at the beginning of each release. For a single-pass waterfall process or an 

Agile project with a single release, the whole Product Backlog is moved into the Release Backlog 

immediately. 

Software production takes place in the “sprint” section of the model on the right side. In Agile, 

a sprint is time-boxed. That means that it has a fixed period of time to complete its work (usually 

2-4 weeks). The model of waterfall also uses the “sprint” production process, but is not time-

boxed and runs to project completion. 

The sprint planning model (which ties into the Micro-Optimizing gene) determines how much 

work is moved at the beginning of the sprint from the Release Backlog into the Sprint Backlog. 

From that point to the end of the sprint, work is accomplished at a rate determined by current 

Productivity and Effective Staff (both of which derive from the effects of other genes and their 

parameters).  

All work completed flows into Work Done in Release, which accumulated all the work that has 

apparently been completed during the release. Some of the apparently completed work is correct 

and complete; some is not. The lower right of the diagram shows the accumulation of 

Undiscovered Rework in Sprint. The model variable Fraction Correct and Complete (which is 

influenced by to all the other gene models) estimates how much of the Sprint Work Being 

Accomplished has defects or other problems that will need additional rework to perfect. 

Undiscovered rework is not directly visible or measureable until the defects are found by 

testing and further development work. The rate that rework is found is controlled by Development 

Rework Discovery Rate (which is influenced by other genes). When defects are found, the rework 

tasks are added to the Sprint Backlog to be worked. This works like a standard rework model 

except that the control variables are determined by the interaction of sub-models for each of the 

Agile genes. 
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Figure 2 - APD Model, Agile Core Rework Cycle 

The sprint ends either when either the Sprint Backlog is empty or when the Sprint Duration 

time runs out. At the end of the sprint, all remaining tasks in the Sprint Backlog are transferred 

back to the Release Backlog as shown by the flow at the top center of the diagram. All work that 

has apparently been completed becomes part of the release product to be tested or shipped.  

At the end of the sprint, because the sprint is time-boxed, all remaining Undiscovered Rework 

in Sprint is transferred into Undiscovered Rework in Release. This models the defects that remain 

in the completed product at the end of the sprint. If release integration and system test is practiced 

(controlled by model parameters), defects in the product waiting for release will be found at the 

Release Rework Discovery rate. These defects are then added to the Release Backlog as shown in 

the arrow flowing up in the left center of the diagram. Once returned to the Release Backlog, 

rework tasks are processed by a subsequent sprint. 

A release completes when its backlog is empty and the rate of new defects discovered in 

system testing falls to an acceptable threshold. At the end of a release, the completed product is 

shipped. If any undiscovered defects remain, they also escape into the shipped product. When a 

release completes, the cycle continues with planning and executing the next release. When the 

entire Product Backlog is empty, the project is complete. Figure 3 illustrates how work flows 

through the three levels of backlog for a four-release Agile project. 

 

Product Backlog

Product Backlog

Work Generation

Release Backlog

Release Planning

Work Generation

Sprint Backlog

Sprint Planning

Work Generation

Work
Performed in

ReleaseSprint Work Being

Accomplished

Undiscovered
Rework in

Sprint

Sprint Rework

Generation

Fraction Correct
and CompleteSprint Rework

Discovery

End of Sprint
Remaining Work

Transfer

Undiscovered
Rework in

Release
Rework Escaping

Sprint into Release

Development
Rework

Discovery Rate

Productivity
Effective Staff

Defects Escaping

into Product

Release Rework

Discovery

Extra Work For

Release



12 

 

 
Figure 3 - Transfer of Work through Backlogs 

3.2 Schedule Pressure Effects 

In [11] schedule pressure was found to be a significant factor in project performance on large 

multi-year projects managed under waterfall. In that type of project, pressure to meet the deadline 

rises late in the project as the scheduled delivery date comes closer.  

A unique team dynamic that emerges in agile teams is a distinctive “social/schedule pressure” 

effect – As teams convene frequently (on a daily basis, in most cases) to report on what they are 

doing, what they have done, and what they plan to do next, a certain level of peer pressure comes 

into play, driving individuals to perform at a higher productivity. Additionally, when developing 

in short increments/sprints, the team experiences more frequent bouts of schedule pressure 

coinciding with the end of each sprint, as opposed to a single end-of-project schedule pressure 

effect.  

As will be seen in the section on the Micro-Optimizing gene, teams learn to adjust the size of 

work taken on in the sprint to their team capacity and velocity of work production. An ideal sprint 

has enough schedule pressure to motivate performance, but not so much as to be detrimental. The 

section of the APD model in Figure 4 below shows how two effects of schedule pressure are 

modeled: Working Harder and Haste Makes Waste. 

Working Harder at End of Sprint: In the top loop in the diagram, the Number of Developers 

Needed to Complete on Schedule (for the sprint) is calculated based on the Time Left in Sprint and 

the Effort Remaining in Sprint. If this number is greater than zero, then Schedule Pressure is 

perceived, after a short delay (controlled by Time to Perceive Sched Pressure). Schedule Pressure 

in turn drives work intensity (working harder, and using overtime), which then increases the 

Effective Staff (the product of actual Staff by Work Intensity). That will increase the Sprint Work 

Rate and tasks will be accomplished faster. 

Haste Makes Waste: Working at higher intensity also leads to more defect generation as shown 

on the lower right of the diagram. Work Intensity not only speeds up the completion of correct 

work, but also speeds up the generation of defects. This is modeled by a delayed effect that 

depresses Fraction Correct and Complete from what it would otherwise be. 
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Figure 4 - Schedule Pressure Effects 

3.3 Micro-Optimizing 

As discussed above, the Micro-Optimizing gene represents the adaptive nature of a given 

project’s development processes. In an Agile project, we can model this by recognizing that at the 

end of each sprint, the team tweaks and fine tunes the process to achieve incremental gains in 

Productivity, FCC, and Development Rework Discovery Rate. Additionally, the team learns over 

time what their work capacity is, and they dynamically adjust the size of each sprint by reducing 

or increasing the amount of work they choose to tackle in the next sprint, based on performance in 

previous sprints 

Figure 5 illustrates the APD model for sprint size adjustment. If the Micro-Optimizing gene is 

turned on, at the end of each sprint, any work is remaining in the Sprint Backlog, it represents the 

“gap” between the size of the previous sprint and the amount of work that the team was able to 

accomplish. This gap is captured by the variable Sprint Size Gap at end of Sprint. If the gap 

amount is positive, it is used to decrease Ideal Sprint Size, at the next Sprint End Event. In turn, 

Ideal Sprint Size is used to set the variable controlling the size of the next sprint, Sprint Size.  

On the other hand, if the team finishes all of the Sprint Backlog work before the end of the 

sprint, the Time Left In Sprint at that point is used to determine how much Extra Bandwidth the 

team had to spare in that sprint, and that amount will be used to increase the size of the next sprint 

via the Sprint Size Increase flow. 
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Figure 5 - Sprint Size Adjustment from Micro-Optimization 

Figure 6 below shows an example of the behavior produced when we turn on the Allow Micro-

Optimization lever. The Sprint Size changes dynamically over time when running this model. We 

interpret this graph as follows: the team selects an initial sprint size of 7500 tasks, based on initial 

project parameters (Sprint Duration, Number of Releases, and Release Size). Then, as 

development work proceeds, the team learns and adapts while dynamically changing the sprint 

size, which represents how much work the team can handle within a single sprint.  

 
Figure 6 - Example of Dynamically Changing Sprint Size 

 
Figure 7 - Example Model Behavior: FCC Improvement as 

a Function of Sprints Completed 

At first, there is a dip in this capacity, as the project is still assimilating its’ new inexperienced 

staff, and while requirements are still uncertain. As the project progresses, the team becomes more 

and more productive, while generating fewer defects, allowing them to tackle larger amounts of 

work in each sprint as the project proceeds. This behavior matches what is observed in industry: 
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Scrum teams report that after a dozen or more sprints they become “fine-tuned” and capable of 

handling more work per sprint. 

The other set of effects gathered under the micro-optimization genes, as discussed earlier, are 

impacts on Fraction Correct and Complete, on Rework Discovery Time, and on Productivity. In 

its current form the APD model uses a simple approach for modeling these simply as a function of 

the number of sprints completed. In other words, the more sprints, the better the team performs 

along these dimensions. While the model will benefit from additional calibration against historical 

performance data, we have used a simple lookup table with very conservative values. This 

produces the following improvement over time for FCC, for example as seen in Figure 7 above. 

3.4 Refactoring and Technical Debt 

Refactoring is a technique used to pay off the “technical/design debt” which accrues over time, 

especially when incremental and evolutionary design results in a bloated code base, inflexible 

architecture, duplication, and other undesirable side effects. After refactoring, the code becomes 

easier to maintain and modify for subsequent requirements. 

The metaphor of technical debt was coined in 1992 by Ward Cunningham (creator of the Wiki) 

to describe what happens as the complexity and architecture of a software project grow and it 

becomes more and more difficult to make enhancements. Cunningham describes the technical 

debt concept as [18]: 

Another, more serious pitfall is the failure to consolidate. Although immature 

code may work fine and be completely acceptable to the customer, excess 

quantities will make a program unmasterable, leading to extreme specialization of 

programmers and finally an inflexible product. Shipping first time code is like 

going into debt. A little debt speeds development so long as it is paid back 

promptly with a rewrite. … The danger occurs when the debt is not repaid. Every 

minute spent on not-quite-right code counts as interest on that debt. Entire 

engineering organizations can be brought to a stand-still under the debt load of an 

unconsolidated implementation, object- oriented or otherwise. 

The concept of technical debt has become popular as it can be understood by both technical 

minded and business minded people. Just like credit debt, technical debt accrues interest payments 

in the form of extra effort that must be made in subsequent development cycles. Management can 

choose to pay down the principal on this debt by refactoring, and keep the future cost of change as 

low as possible.  

Controlling the cost of change is very important for an Agile project, since the philosophy is to 

embrace change. Indeed one of the twelve principles of the Agile Manifesto [2] is to welcome 

changing requirements, even late in development. Agile processes harness change for the 

customer's competitive advantage. Therefore, refactoring is critical to keeping the agile process 

sustainable through the pay-down of technical debt.  

Many agile methodologies (in particular XP) consider refactoring to be a primary development 

practice. The technical debt metaphor comes in handy as a tool for communicating the business 

impact of design and architectural decisions. 

 The project management may resist refactoring with: “If we do refactoring, we will have to re-

test and re-certify existing baseline functionality, at added effort and cost to the project!” Any 

change has the potential to reduce the maturity and the stability of the software, requiring 

regression testing and revalidation of the baseline feature set. This is why it is advantageous to 

practice refactoring in conjunction with test-heavy practices (e.g. TDD) and Continuous 

Integration techniques.  
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An example of a software organization that embraces refactoring as part of its software 

engineering culture is Google. The following points, taken from Google’s Agile Training [19] 

summarize some of the reasons behind their embrace of Refactoring: 

 As code ages, the cost of change goes up 

 As Google grows, the percentage of code in maintenance mode grows with it 

 We need to keep code flexible, so we can change it to suit new market conditions quickly 

 It’s not important if all you’re trying to do is get new products out. (Smart programmers can 
develop very good applications without tests, but those applications will be much harder to 
maintain.) 

A final note on refactoring and technical/design debt is that this phenomenon can be observed 

at the enterprise level. We observe that much of the work involved in converting legacy systems 

to an SOA (Service-Oriented Architecture) or Cloud platform consists of factoring out parts of the 

application code that will now be supplied by the platform. Through the lens of the technical debt 

metaphor, these projects can be seen as grand-scale exercises in refactoring. 

 

 
Figure 8 - Model Elements for Technical Debt and Refactoring 

Figure 8 shows the APD model structure elements and feedbacks for accumulating technical 

debt and paying it off by initiating refactoring. As work in performed in the project, Technical 

Debt accrues at the Technical Debt Accrual Rate based on Sprint Work Being Accomplished. Tech 

Debt Accrued per unit of Work represents the percentage of each completed work task that is 

susceptible to refactoring at a later point in time. Quantifying the Technical Debt Accrual Rate is 

extremely difficult; it cannot be calculated a priori, especially for a legacy program where 

development may occur “on top of” an existing baseline with an unknown technical debt quantity.  

One way to derive a measure for technical debt is to assess the “quality” of one’s code. The 

SQALE (Software Quality Assessment based on Lifecycle Expectations) is one model for doing 

this. It is a methodology for assessing the quality of code, using algorithms to score software 

quality along the dimensions of: Reusability, Maintainability, Efficiency, Changeability, 
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Reliability, and Testability. This type of analysis is available in several static analysis packages 

including:  Insite SaaS, Sonar, SQuORE, and Mia-Quality (see http://www.sqale.org/tools). Some 

have been using the SQALE SQI (Software Quality Index) as a measure of technical debt. 

Agile practitioners suggest other, simpler approaches: Agile teams can monitor the amount of 

refactoring compared to the amount of new feature work in each sprint or iteration to establish a 

historical baseline for Technical Debt Accrual.  

 
Figure 9 - Accumulation and Pay Off of Technical Debt 

If Refactoring is practiced (using the switch Allow Refactoring), when Technical Debt level 

reaches the Technical Debt Pay Off Amount of Work, then that amount of work is moved into 

Planned Refactoring Work to be performed in the next sprint. Once it reaches Technical Debt Pay 

Off Amount of Work, the stock is drained as the work is planned into the next release. Figure 9 

illustrates Technical Debt accumulation and payoff over time assuming a constant rate of 5 units 

of technical debt for every 100 correct tasks completed to drive Technical Debt Accrual and 

refactoring when the debt reaches 120 technical debt units. 

Technical debt that is not paid off becomes an increasing drag on the project by reducing the 

Fraction Correct and Complete, which results in rework. Note that technical debt and 

undiscovered rework are related, but distinguishable, concepts. Undiscovered rework represents 

defects in the product that must be removed to meet customer requirements. Technical debt makes 

progress more difficult and errors more likely, but does not constitute a defect in the product per 

se. 

3.5 Continuous Integration 

Continuous Integration can be broken into two sub-practices: Configuration Management 

(CM), and Test Automation, which will require acquiring, installing, and configuring the tools 

and servers and process specification specific to the project. This may involve custom scripting 

and development to automate certain aspects of the build process, or even modification of the 

software product to add harnessing or support for test automation. This can be a costly up-front 

effort for any project, but the project cannot enjoy the benefits of CI until this environment is 

available.  

As shown in Figure 10, the APD model uses exogenous parameters to calculate the upfront 

cost of CI setup. At the beginning of the project, if the CI gene is turned on, the project CI setup 

work is the first set of tasks that are transferred into the Release Backlog. 
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Figure 10 - APD Model Elements for Continuous Integration 

Figure 10 also shows a lever parameter variable called CM and Build Environment Automation 

Level which can be set from 0 to 10 to indicate the level of automation (how much of the process 

of preparing and building the software for daily development use and especially for release is 

automated and repeatable). Level of Automated Testing Used likewise represents how much test 

automation is in the system; this can range from 0 (no automation) to 10 (fully automated unit 

testing as well as fully automated functional tests – the system can completely self-test as part of a 

nightly build.) 

This allows the configuration of the Continuous Integration gene depending on the nature and 

purpose of the simulation experiment to have varying degrees of impact on productivity and 

rework discovery. Simply put, more automation means more productivity, as repetitive manual 

labor is replaced by software that automated portions of the workflow. 

3.6 Team Dynamics 

The model of schedule pressure effects in team dynamics is described in section 3.2 above. 

The model also includes team dynamics effects for frequency of team meetings on error 

generation (Fraction Correct and Complete) and on rework discovery (Development Rework 

Discovery Rate), as well as coordination overhead that reduces the rate of work accomplishment 

(Productivity). 

The last team dynamics effect included in the model is Pair Programming. When Pair 

Programming is turned on (Allow Pair Programming), the model recognizes that developers 

usually spend only part of their day actually paired up. This is modeled with an exogenous 

parameter (Percent Time Spent on PP). Pair Programming produces indirect effects through the 
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learning curve rate of staff experience gain and reduction of the load on experience staff for non-

productive training time. Pair Programming also produces positive effects on the work production 

rate (Productivity) and reduction in defect generation (Fraction Correct and Complete) as well as 

the rate of rework discovery (Development Rework Discovery Rate).  

3.7 Customer Involvement 

Customer Involvement has some positive and some negative effects on the core APD rework 

cycle. The positive effects of Customer Involvement are captured in Effect of Customer 

Involvement on FCC and Effect of Customer Involvement on Rework Discovery Time.  

Effect of Customer Involvement on FCC: A large part of software defects are caused by 

requirements uncertainty. As progress is made during each sprint, requirements uncertainty is 

eliminated with customer feedback and product demos. This in turn improves FCC. 

Effect of Customer Involvement on Rework Discovery Time: Likewise, customer availability to 

answer questions, detect conflicts, resolve misunderstandings and to identify usability issues 

during product demonstrations means that the project is more likely to identify rework early in the 

process.  

What could be considered a negative effect is the fact that continuous customer input results in 

a certain level of requirements churn. We model this by calculating a measure of work progress, 

which is used with a lookup table to estimate Effect of Customer Involvement on Requirements 

Churn. This variable represents the percentage of the requirements that will change based on 

customer input and how far along in the release the project has proceeded. For the purposes of this 

model we are using a bell-curve reference mode, with a maximum of 10% churn. The rationale 

behind this is that the most churn occurs toward the middle of the release as tangible software is 

produced and allows the customer to feedback changes into the release. Requirements churn feeds 

new tasks into the Product Backlog in the core model. 

3.8 Project Staffing and Experience 

Following [12], the APD model used a two level exponential delay for hiring and project 

experience gain (assimilation). The levels are called New Staff and Experienced Staff. While these 

are both measured in units of full-time equivalent people, these levels do not represent whole 

people who move from one level to the next. Instead, they are a mathematical formulation of the 

experience level of the whole staff on the project. Experience in this sense does not refer to career 

experience, but to experience with project goals and requirements, working relationships and 

organizational culture, the way that technology is being applied in the project, all of which need to 

be learned on a specific project to be fully effective. 

The model includes a simple first order delay for hiring new staff needed to meet planned total 

staffing needs and another first order delay representing the turnover of staff leaving the project 

(which has the dynamic effect of requiring new staff hiring). In this context, “hiring” could mean 

either actually bringing new people in from the outside or transferring people from other projects. 

In either case, they need time to learn the project. The model also includes a “Brooks Law” effect 

[31] where the assimilation of new staff imposes a training load on experienced staff that reduces 

the time they can apply to production. 

We use an exogenous variable Relative Experience of New Staff to represent the relative 

effectiveness of new staff joining the project. Using this relative experience ratio we can 

formulate values for the Effect of Experience on Productivity and the Effect of Experience on 

FCC. The effect is based on the fraction of staff which are inexperienced and the Relative 
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Experience of New Staff. These effects impact Productivity and Fraction Correct and Complete in 

the core model rework cycle. 

4.  APD Model Simulation Experiments 

In order to perform “what if” analysis and sensitivity tests on the effects produced from the 

interaction of gene combinations and management policy variables, we have constructed a 

“Management Dashboard” that allows us to “pull the levers” of the project parameters and 

observe the results (see Figure 11). 

 
Figure 11 - APD Management Dashboard 

The three project performance graphs that we choose to observe in our dashboard are based on 

the three sides of the “Iron Triangle” of project management: Schedule, Cost, and Quality. 

Schedule completion is determined based on the amount of time it takes to drain the Product, 

Release, and Sprint backlogs. Cost is estimated based on the cumulative amount of development 

effort spent on the project. Quality is estimated based on the amount and duration of rework 

(defects) that are encountered in the project.  

The base case parameters are: 

Project Size = 200,000 tasks 

Initial Number of Inexperienced Staff = 10 people 

Initial Number of Experienced Staff = 10 people 

Nominal Productivity = 200 tasks per-week, per-person  

Nominal Fraction Correct and Complete = 80% 

Relative Experience of New Staff = 20% 
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The baseline case is a single-pass waterfall project. We will then “turn on” agile genes one-by-

one to observe their cumulative effects on project performance. Table 3, summarizes the set of 

cases covered in the series of experiments. 

Case 
Switch for 
Waterfall 

Iterative/ 
incremental 
& Feature-

driven 
Micro-

Optimization Refactoring 
Continuous 
Integration 

Customer 
Involvement 

Pair 
Programming 

Base Case 0 Waterfall OFF OFF OFF OFF OFF OFF 

Case 1 Agile ON OFF OFF OFF OFF OFF 

Case 2 Agile ON ON OFF OFF OFF OFF 

Case 3 Agile ON ON ON OFF OFF OFF 

Case 4 Agile ON ON ON ON OFF OFF 

Table 3 - APD Model Experiements Design Summary 

The APD model and set of experiments is not intended to predict or re-create results from real 

projects, but to compare behavior of a project under different scenarios. Different exogenous 

parameters would produce different results, but here exogenous parameters are held constant to 

perform a relative comparison of behavior based solely on the selection of Agile genes. Results of 

the experiments is summarized in Table 4 in section 4.6 below. 

4.1 Base Case 0: Single-pass Traditional Waterfall 

As a base-case, we start by executing the model in “waterfall mode” by using our ‘Switch for 

Waterfall”. It yields the following results: 

Project End Time: 79 Weeks (see Figure 12). The project end time is the point at which all of 

the work backlogs have been depleted, including rework discovered in system testing. In this 

example, the project spends the last several weeks clearing up discovered rework.  

 

 
Figure 12 - APD Base Case Schedule 

 
Figure 13 - APD Base Case Cost 

Project Cost: 250,223 tasks (see Figure 13). Note that for management, this is translatable into 

a dollar cost. We are currently using “task” as a fungible unit of work. This can easily be 

substituted with person-hours. Using this in conjunction with labor costs, we can quickly 

determine the dollar amount of the effort spent. For our purposes, however, “task” is an 

acceptable unit of cost. 

Project Quality: The single-pass waterfall project completes its work without fully 

discovering all the defects in the code. Note that here we are measuring quality by the amount of 

undiscovered rework tasks that escape into the delivered product that is passed along to a follow 

on system test or beta test stage. Additional work will be required after the project is “complete” 
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to discover and repair these defects. In government software development, this defect discovery 

and repair effort is often incorporated in total project time and cost performance. In commercial 

software, defect discovery is sometimes left to be done by the end user (which can be a less 

effective form of “customer involvement” than the Agile gene counterpart). 

4.2 Case 1: Fixed-schedule Feature-Driven Iterative/Incremental 

In the next experiment, we ‘turn off’ the waterfall switch. This activates the 

iterative/incremental Agile gene and the feature-driven Agile gene. The project is performed in 

four equal-sized releases delivered in regular intervals in feature sets. Executing the model with 

these settings produces the project performance the agile Case 1 row of Table 4. 

Looking at these results, we find that the same project now takes 16 extra weeks, ending at 

week 95, and incurs extra cost (roughly 25000 more tasks). However, the product now is 

delivered with zero defects. Cost and Quality graphs can be observed in Figure 14. 

 

Figure 14 – Agile Case 1 Cost and Quality 

Moreover, there is a much more subtle difference generated by this case: the software is now 

delivered in four releases, i.e. four functional increments. These are annotated below on the 

Schedule graph in Figure 15. Each release is not just a random chunk of the software, but a 

cohesive feature set that is “potentially shippable” and has client/end-user value. Each release can 

be tested against system-level specifications and user expectations. 

This can be of tremendous value to the recipient of the software release: they can immediately 

start providing feedback and acting as a “beta-tester” as of release #1 in week 24. If the recipient 

of this release is an integration, test, or quality assurance organization, they can get a head start on 

testing the software against the system specifications, performing boundary case tests, and so on. 

In fact, depending on the project environment, being able to several early increments of 

functionality may be more valuable to the customer than the added cost incurred by this case. 

Cost (Development Effort Spent)

400,000

200,000

0

0 24 48 72 96

Time (Week)

ta
sk

Development Effort

Quality (Defects in Product)

800 task

1 Dmnl

400 task

0.5 Dmnl

0 task

0 Dmnl

0 24 48 72 96

Time (Week)

Defects task

Project Finished Dmnl

Project End 



23 

 

 
Figure 15 – Agile Case 1 Schedule 

4.3   Agile Case 2: Introduction of Micro-Optimization. 

Next, we will enable Micro-Optimization, simulates the management policy of empowering 

the development team to self-manage workload, and to perform process tweaks in between 

sprints, using learning from prior sprints to improve future sprint performance. The previous 

Agile settings are retained and the Micro-Optimization gene is turned on. The model produces the 

project performance shown in the Agile Case 2 row of Table 4. 

We see improved project duration, down to 82 weeks instead of 95 in case 1. Cost is 244K 

tasks is also lower than both the base case (250K tasks) and case 1 (275K tasks). Although this 

may seem counter-intuitive to management, the results here suggest that a team empowered to 

self-regulate their workload may curtail costs and schedule overrun as opposed to an incremental 

delivery model whose releases are dictated in advance.  

 
Figure 16 – Agile Case 2 Schedule 

Given more time, it is almost always possible to improve the product and this could lead to the 

“gold-plating” effect where teams spend time over-engineering the product beyond what is 
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necessary to achieve the desired functionality (it is almost the opposite of ‘technical debt’). 

However, the fact that agile iterations are time-boxed and feature-driven mitigates this effect, as 

teams will give priority and focus to completing specific features.  

Examining work backlogs in Figure 16, we see that roughly two-thirds of the functionality is 

delivered in the first two releases, around week 50. What has happened here, as opposed to the 

previous case, is that teams can gradually handle more work than was allotted to them per-sprint 

in the previous case, and have self-regulated the amount of work they do per-sprint. This allows 

them to get more sprints completed by week 50 than in the previous case. 

4.4 Agile Case 3: Introduction of Refactoring 

In this case we will allow refactoring. When the “technical/design debt” for the project reaches 

a threshold, the development team will take time to work on additional refactoring tasks to 

improve the quality of the software and keep it flexible and lower the cost for expansion and 

addition of future features. Executing the model with three of the genes, now produces the project 

performance shown in the Agile Case 3 row of Table 4. 

Intuitively, management may have thought that allowing refactoring is akin to scope creep, and 

thus may have thought that this would have increased either cost or slipped the schedule. Our 

results, on the contrary, show that allowing refactoring resulted in a very minor (albeit negligible) 

improvement in schedule and in cost. To explain this, let us take a look at the graph for Technical 

Debt in case 3 vs. case 2 – see Figure 17. Refactoring keeps the technical debt “balance” lower, 

resulting in  a less detrimental effect on Fraction Correct and Complete than letting technical debt 

get out of hand, as shown in Figure 18  

 Finally, there is one more subtle benefit observed in comparing these two cases. Introducing 

refactoring in Case 3 cuts the accumulated defects at the end of a release by 75%. In other words, 

refactoring also allows the development team to produce better quality incremental releases. This 

makes sense intuitively, as it is clear that refactoring to optimize will improve the quality of the 

software, however the surprising part is the previous finding: that refactoring has no detrimental 

effect on cost or schedule. This is because of the upward effect that unpaid technical debt has on 

defect generation. 

 
Figure 17 - Technical Debt Over Time Figure 18 - Effect of Technical Debt on FCC

On a larger scale, if project managers see refactoring as valuable to their current project and 

the project is finished with less technical debt, then cost imposed on future improvement projects 
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will be much lower. On small projects, the effect of technical debt may not be enough to have any 

immediate impact, though again long term effects will accumulate and may overwhelm a future 

project. 

4.5 Agile Case 4: Introduction of Continuous Integration 

Next the Continuous Integration lever is activated. This will increase load in tasks to be 

performed, representing the initial effort to set up and configure the development and delivery 

environment. Later, once that environment is available and automated tests begin to accumulate, 

Continuous Integration enhances productivity, and the ability to detect rework tasks by automated 

testing. Executing the model with these parameters produces the project performance results in 

the Agile Case 4 row of Table 4. 

 
Figure 19 – Agile Case 4 Quality 

There are no surprises here: Introducing Continuous Integration increases cost somewhat, due 

to the up-front investment to configure such an environment. However, the cost is recouped in 

schedule time. The project duration is shortened thanks to a significant speed-up in rework 

discovery. If the project were extended beyond 104 weeks to several years, this up-front cost 

becomes less significant. Another interesting observation with this gene is the quality profile as 

exhibited in Figure 19. 

Compared to what was seen in cases 2 and 3, the quality profile shows that defects have a short 

life, as they are quickly discovered and addressed. This has several positive effects. Chiefly: the 

“Errors upon Errors” dynamic is less powerful, since there are fewer undiscovered rework tasks 

dormant in the system at any given time. 

4.6 Summary of Experiments and Comparison with Experience 

Table 4 shows the results of experiments described above – the Single-Pass Waterfall base 

case and the four Agile cases that each add one more Agile gene. From these experiments, it is 

clear that Agile can produce substantially improved performance or can lead to worse 

performance, depending on what form of Agile is implemented. For example, the Refactoring 

gene adds extra work in the short term to pay down “technical debt” and save work later (often on 

a subsequent project). That extra work can be compensated by the “Continuous Integration” gene 

which accelerates rework discovery. 
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Case 
Schedule 
(weeks) 

Cost  
(tasks) 

Quality 
(level) 

Base Case 0: Single-Pass Waterfall 79 250,223 L 

Agile Case 1: Iterative-Incremental 95 275,111 M 

Agile Case 2: add Micro-Optimization 82 244,436 M 

Agile Case 3: add Refactoring 81.6 243,904 M 

Agile Case 4: add Continuous Integration 62.8 255,593 H 
Table 4 - Summary of Experimental Results 

Experimentation with the APD has led to better understanding of some of results observed by 

one of the author’s personal experience with Agile. This author reports that during the times when 

some form of Agile development was practiced, there was never a case where all seven of the 

Agile genes were employed. Customer Involvement was never truly practiced. In one project a 

System Engineer (SE) filled the role of customer proxy, and was either unwilling or unable to 

participate in daily scrums. Moreover, there is no guarantee that an SE could really represent the 

vision of the end user. Continuous Integration was also not truly practiced. Although automatic 

unit-testing was used, very little else was automated. Functional tests were still long and laborious 

procedure-driven tasks. Configuration Management policy was also isolationist: in other words, 

pieces of functionality were developed in isolation and only integrated (“merged”) near the end of 

the development cycle, thus no “continuous” aspect of integration to identify rework early. 

Refactoring (at least, large-scale refactoring) was also a frowned-upon practice. It was 

considered by managers who did not understand the concept of Technical Debt to be extra non-

value-added work. The net result was that in most of this author’s experience with Agile, the only 

elements employed were the Feature-Driven, Iterative-Incremental, and Micro-Optimizing genes. 

The observed results of a natural experiment in the author’s personal experience are shown in 

Table 5  

Case 
Schedule 
(weeks) 

Cost  
(tasks) 

Quality 
(tasks) 

Base Case 79 250223 L 

“Personal” Agile Case 82 242213 M 
Table 5 - APD Project Performance for “Personal” Case 

These results are consistent with Agile Case 2 above. As we can see, this configuration saves 

some cost, improves quality, and yet delays the project by three weeks. This is by no means a win 

for agile over waterfall, or grounds to declare one superior to the other. Depending on program 

priorities, schedule may be the most important factor. However this explains a bit more about the 

promise and reality of agile practices. 

5.  Conclusions and Future Research 

We have presented the Agile Genome, a unifying framework for describing characteristics of 

Agile software development management practices. The framework has been used both to show 

the commonalties and differences in popular methodologies and to indicate other combinations of 

practices which may be employed.  We have found the Agile Genome useful in the development 

of the APD model for software development projects, which is capable of simulating both Agile 

and Waterfall methodologies. The modular architecture of APD is such that any of the Agile Gene 

sub-models can be evolved and refined over time as we gain more insight through personal 
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experience, research and interviews with subject matter experts and software engineering 

professionals.  

A Systems Thinking perspective would suggest that the software product itself is part of the 

system under study here, in addition to the people, processes, and tools and the interactions 

thereof that we are trying to model. Holistically speaking, one could argue that true Agile is not 

only about the agility of the development process, or the team, but also about the software product 

itself. If the software code is constantly refactored to keep it easy to adapt and evolve along with 

the requirements, needs, or market environment, then the project can truly be agile. This is one of 

the notions that APD helps us explore, thanks to the Refactoring gene sub-model, which includes 

a construct for the metaphor of Technical Debt. 

The model also gives us insight into the reason why the adoption of Agile in the large-scale 

software engineering world has yet to reap the full benefits of Agile: Experiments with the APD 

suggest that, for projects to gain the full benefits of Agile, they cannot simply cherry-pick easy-to-

adopt development techniques and hope to derive positive project performance results. We have 

learned that each practice, combined with project policies, can produce both positive and negative 

effects on the project performance. However, in reality organizations are quick to adopt practices 

such as the Daily Scrum but will not practice Refactoring, or have not been able to adopt cutting-

edge Continuous Integration practices. As such, they see little ROI from Agile adoption to date. 

The selection of management policies and combination of agile practices by software 

development organizations needs to be balanced to optimize the system. Combinations of Agile 

genes counter-balance negative effects with positive effects. For example: incremental 

development can lead, over time, to high technical debt with negative consequences on 

development time and quality. This effect can be counter-balanced by practicing refactoring. 

Similarly, the loss in productivity from refactoring can be counter-balanced by gains from the 

continuous integration and automated testing.  

The goal for management is to configure the project-system in a fashion that maximizes the 

up-sides while minimizing the downsides of methods. This underscores the Systems Thinking 

adage that “a system is not a sum of its parts, but a product of their interactions”. The APD model 

assists in the study of the interactions of the various “parts” of Agile and understanding of the 

pluses and minuses of using any combination of methods. The APD’s management dashboard can 

act as a “flight simulator” to facilitate this exploration.  

By decomposing the Agile concept into component genes, some of the difficulties with 

adoption in the government sector become more clear. There are many stakeholders (such as 

program sponsors, contracting managers, program managers, and contractors) each of which has 

its own perspectives, power, authority, and sense of urgency about any project. Some of the Agile 

genes fall almost completely within the domain of the contractor (e.g. pair programming and team 

meeting practices). Some are shared responsibility (e.g., incremental releases and customer 

involvement). Some practices run contrary to traditional program control processes (such as risk 

aversion to any change or rework vs. accepting change as inevitable and maximizing value). 

Some Agile practices (such as customer involvement) would require new cooperation between 

government and contractors (the government by allowing customers to influence requirements 

changes during the project and the contractor by not taking advantage of customer contact to 

demand excessive cost increases). The APD model can assist in developing collaborative change 

by helping all parties to test the effects of new policies before they are put in place. 

The APD model is explicitly designed to evolve as more is learned about Agile methods and 

other aspects of project management. By substituting a more complete staffing model, for 
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example, we have been able to investigate how Agile practices respond to budget gaps and 

fluctuations on software projects[34], and whether Agile projects are more resilient to such 

funding problems. We expect to continue to test and evolve the Agile Genome framework and 

extend the model to management practices that guide the definition and prioritization of features 

for software development and to the interaction of software product with users. 
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