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Engineering Effective Response to Outbreaks of Influenza



Abstract

Objective. Allocation of vaccines and deployment of non-pharmaceutical
interventions (NPIs) are critical to controlling influenza. We examine how these
policies can minimize the societal impact.

Methods. An engineering systems framing and modeling approach incorporates
theories and data on the spread of influenza. Models employed data from the CDC
and state governments on cases and vaccine administered during the 2009 HIN1
outbreak, and published literature on how to reduce human-to-human contacts.
Results. During the outbreak, barely half of all states received proportional
allotments of vaccine in time to protect any citizens, while fewer sought vaccine
after the peak. While individuals prone to contract and spread infection drive the
progression, diligent hygiene practices and social distancing measures can drive
down the number of cases.

Conclusions. NPIs are highly effective in reducing the spread of influenza before,
but also after vaccine is administered. Policies to allocate vaccine in direct
proportion to population should be replaced and larger stocks sent to regions where
greater numbers of persons stand to be protected.



Introduction

Seasonal outbreaks of influenza are costly in human and economic terms. In the U.S.
tens of thousands die each year, and orders of magnitude more worldwide. Annual
economic losses have been estimated to be tens of billions of dollars, accounting for
costs of medical care and loss of life.! Pandemics, occurring much less frequently,
have the potential to be more disastrous than an exchange between warring nations.
According to historical accounts, the 1918-19 Spanish Flu pandemic killed more
than 40 million people; more than died during the First World War.2

Vaccines traditionally have been considered to be the most effective societal
interventions to mitigate the impact of influenza outbreaks. Periods as long as six
months may elapse while the vaccine is configured, tested, manufactured and
distributed. Changes in human behavior with respect to hygiene and social
distancing also constitute first-order control of the spread of infections and have
been termed, “Non-Pharmaceutical Interventions” (NPI’s). Considered by many to
serve as “placeholders” until vaccine becomes available, it is now clear that
continual use of diligent behaviors confers great benefits before, during and after
outbreaks of contagious illness. Vaccines and NPIs have been incorporated into
mitigation policies advocated by public health officials and are widely publicized.

Engineering effective response to outbreaks of influenza aims to derive the greatest
value from vaccines, from NPIs and the interaction between these two types of
interventions. Current practices for allocating and distributing vaccine are
fundamentally flawed, sometimes resulting in its arrival to regions where the illness
outbreak has peaked, and where individuals have little interest in becoming
immunized. And NPI’s could have even greater impact when targeted at population
groups most at risk to transmit or contract illness.

We report findings from models of transmission of influenza that examine
alternative policies for the prevention and control on influenza. We argue that a new
approach to the distribution of vaccine, coupled with suitably targeted and
appropriately timed advocacy of NPIs can saves lives, reduce cases and costs, in the
event of a seasonal outbreak or pandemic.

METHODS

Engineering effective response to an outbreak requires design of processes to
mitigate the seriousness and consequences of the illness and to mount a total
system response to it. Components of this approach include effective design of
vaccine allocation and distribution processes and developing solutions to
anticipated supply chain disruptions that are highly likely to occur. A broad
engineering mindset extends beyond addressing well-defined operational issues, to
developing new models of disease control. Understanding disease dynamics is key.
Influenza disease dynamics are partly under our individual and collective control
and any engineered system in anticipation of flu must take this into account.



We constructed mathematical models that afford the evaluation of the effectiveness
of vaccines and also both government-imposed and individually elective behavioral
measures, including social distancing and personal hygiene practices. Following is a
review of the key concepts incorporated into the models and the sources of data
used in their execution.

CONCEPTS UNDERLYING THE MODELS

REFLECTING ON Ry, THE REPRODUCTIVE RATIO. A critical parameter used in
almost everyone‘s modeling of influenza transmission is Ry, the basic reproductive
ratio or basic reproductive number, usually defined to be the average number of new
infections generated by a “typical” infected person in a population of 100%
susceptible individuals. Note that Ry is an average, implying that it has a probability
distribution whose mean is Ry. Early in the outbreak, Ry is the average growth factor,
“generation to generation” of newly infected individuals. An Ry of 2, for instance,
would indicate that early in the outbreak an average infected person transmits the
disease to an average of two others. Any Ry less than 1.0 virtually guarantees that
the illness will die out. A near-term exponential increase in the number of people
who will become infected with the flu is usually associated with an Ry value greater
than 1.0. But even the concept of Ry is problematic, as we discuss below.

A significant issue with the flu is that an infected and infectious person can be
asymptomatic for a day or more, unknowingly spreading the flu to others, and only
later come down with flu symptoms - at which point he or she will most likely self-
isolate and most often eventually recover. This fact makes Ry larger than it would
have been, had there been no asymptomatic infectious period prior to arrival of flu
symptoms.

How is Rp determined? The World Health Organization (WHO) and U.S. Centers for
Disease Control and Prevention (CDC) often ‘announce’ the Ry value for a new flu
virus. For instance, the numerical values estimated for Ry for the 2009 H1N1 flu
tended to be between 1.4 and above 2.0.3 These announcements and associated
research papers seem to assume a world in which Ry is beyond human control, as if
Ro were “nature’s constant” associated with a given virus. But Larson demonstrated
that Ry can be represented in terms of human behavior and the innate
characteristics of the virus. The relationship involves an infected person’s
frequency of human-to-human contact (1) and his/her conditional probability of
transmitting illness (p), given close contact, as follows:

Ro=Ap. (1)

This simple equation shows that Ryis a function of both the inherent properties of
the given virus - as represented in part by p - and the population’s behavioral
responses to it — as represented by A and also by p.



How do we reduce A and p? One reduces A simply by having fewer face-to-face
contacts each day. What about p? Vaccines are probably the best-known way of
reducing p. But p is a function of three factors: (1) the innate infectivity of the virus;
(2) the hygienic practices of the infected and infectious individual having the close
contact; and (3) the vaccine status and hygienic practices of the non-infected but
possibly susceptible individual on the other side of the close contact. While (1) is
uncontrollable, (2) and (3) represent opportunities to reduce the likelihood of
passing the infection along to the individual who is susceptible without vaccine. NPI
examples including personal hygiene practices such as frequent aggressive hot-
water hand washing and not touching one’s face with one’s hands. Social distancing
also plays a critical role, as in avoiding handshakes, perhaps bowing instead. In our
models, Ry is a key measure incorporating the range of determinants of the spread
and control of an infectious outbreak.

STOCHASTICITY. While Ry provides an easy and computationally intuitive basis for
describing disease dynamics, it has a number of limitations, and these tend to be
distributional. First, as mentioned above, Ry is the mean of a probability mass
function. Consider an Ry value of 2.0. At one extreme, all the probability may be
located at 2, and with deterministic regularity each newly infected person early in
the pandemic would infect exactly 2 others. But that is idealistically simplistic, and
no human population would behave in such a robotic manner. More likely, the
probability mass function might resemble a geometric function, starting at 0 and
having mean 2. Such a function anticipates a great deal of variability on the number
of new infections generated by any infectious individual. And one can think of
limiting cases at the other extreme with most probability located at zero and with a
small amount at a large number such as 40, with mean still equal to 2. This type of
situation involves so-called ‘super-spreaders’ who if active early in the pandemic
can catapult it to major status but who if they do not appear early will result in a flu
that dies out rapidly, even with an Ry value of 2. So, we must remember that Ry is
the mean of a distribution and its variance and in fact entire functional form will
have a huge role to play the evolution of the disease.

HETEROGENEITY. In addition to stochasticity, we have another distributional issue
with Ry - heterogeneity of the population. Members of a population are
heterogeneous with respect to their personal characteristics and their behaviors. In
a sense, each person in the population has his or her “own” value of Ry. And this is
to a large extent under the control of the individual. A possibly infectious grocery
store checkout clerk who interacts with perhaps hundreds of persons each day can,
by staying home for a day, greatly reduce her personal Ryp. And during a workday,
she can reduce her Ry by not touching people directly and by washing hands with
hot soapy water frequently.

As an outbreak of influenza evolves, decision makers receive aggregate statistics in
the form of the number of people reporting to physicians with flu-like symptoms,
number of related hospital admissions, number of flu-related deaths, and number of
vaccinations administered. Yet, aggregate statistics hide the fact that early



transmission and propagation of the disease are driven largely by particular
segments of the population: (1) those who are highly active in daily face-to-face
encounters; (2) those who are overly prone to become infected given exposure; and
(3) those who shed virus and spread the disease more than average. Any person can
be characterized along a spectrum of these three attributes: social activity,
proneness to infection, and proneness to shed virus and spread infection. Those
who are at the ‘right-hand-tails’ of one or more of these distributional attributes
play a significant role in the early spread of the disease. Such individuals, due to
early infection and later immunity, drop out of the susceptible population near the
middle and almost certainly by the end of the outbreak.

The best available data on human contacts is from two published sources. Fu
reports a study of 3000 respondents from nine countries and 46 different settings
who were asked to estimate daily personal contacts, including face-to-face,
telephone, mail and Internet. In a separate study, for Taiwan only, Fu found that
83% of reported contacts were face-to-face#. In a separate report, the Mossong
group conducted a thorough study of contacts by participants in eight European
countries. Participants were asked to record their daily contacts, defined as either
“skin-to-skin” or a two-way conversation with three or more words in the physical
presence of another person. The information from participants’ diaries was weighed
to match the demographics of participating countries. The group published
distributions of daily contacts by individuals from each country.6 We incorporated
data from four of those countries, Belgium, Great Britain, Germany and Poland into
our models and subsequent analysis.

Population heterogeneity due to widely differing frequencies of social contacts and
also due to infection proneness and to virus shedding behavior plays a key role in
the speed of infection spread aside and brings into question the estimation and even
definition of Ry. It is reasonable to assume that people who are most susceptible to
infection are also those that are most likely to spread it to others; the most socially
active people combine these two attributes. To understand the dynamics of flu
spread, or the spread of any human-to-human infectious disease, one must account
for such population heterogeneities. With regard to Ry, people who have one or
more of these attributes largely drive the early exponential growth of the disease:
socially active, infection-prone and efficient virus shedders. This suggests that our
definition of Ry, if it is to represent the generation-to-generation early exponential
growth of the disease, needs to be more nuanced that simply: “...average number of
new infections generated by a ‘typical’ infected person in a population of 100%
susceptible individuals.” “Typical” is too vague. One suggested change is to replace
“typical infected person” with “typical face-to-face interaction with an infected
person.” Such a change would automatically account for those early in the disease
growth with greater-than-average social activity - focusing on interactions and not
individuals.



Most published models of population heterogeneity utilize ‘compartmentalized
models,’ in effect discretizing the population and placing each person into one of a
finite number of homogeneous segments. Larson and Teytelman’ generalize that
approach to eliminate the need for a finite number of discrete classes of statistically
identical individuals, and instead, introduce a continuous distribution for all the key
parameters in question, in essence employing an infinite number of classes. Their
generalized model deals with all three attributes introduced above: social activity,
proneness to infection, and proneness to spread infection. The model relies on just a
few equations that define the state of infection at a given time.

Model structure

The most common models for influenza spread follow some variant of the S-I-R
compartmental approach, where each person is susceptible, infected, recovered (or
deceased). These models are most-often used in a homogeneous setting, where all
people in a compartment behave identically, and mix randomly. One may call the
approach “models of statistical clones.” As discussed above, this approach is
incomplete because it ignores heterogeneity, of which a well-known example is the
notion of “super-spreaders”. More typical are populations in which some members
more actively spread or contract illness than others. Our approach has been to use
discrete-time models and to account for heterogeneity via proportional mixing,
where an individual is likely to become infected in proportion to his or her contact
rate. We introduce a continuous distribution for three parameters of interest -
social activity, proneness to infection and proneness to spread infection. The initial
focus is on contact rates, the available measure of social activity. The model relies on
difference equations that define the state of infection at a given time and allow the
calculation of R(t), the analog of Ry at any point in time, as the outbreak evolves. The
unit of time is a generation of influenza, defined here as the two-to-three day period
during which a person becomes infected and soon infectious and interacts in society.
R(t) is defined as the mean number of new infections caused by a ‘typical’ infected
person during generation t of disease progression. Since more and more people
become immune to infection as the disease progresses, due to vaccination or to
recovery and hence immunity to further infection, we always have or any flu
generation t >1, R(t+1) < R(¢) < R,. That s, the exponential rate of growth slows,
grows less than exponentially, eventually stops growing (when R(t) = 1), and then
declines. The full formulation of the model has been published elsewhere.?

HUMAN CONTACT AND BEHAVIOR. When studying and modeling sexually
transmitted diseases, especially HIV/AIDS, behavioral changes are often cited as the
main factors determining transmission dynamics, but when it comes to modeling flu,
behavior is almost always ignored. This is puzzling, and in our opinion quite an
incorrect approach. Few would dispute the observation that people alter their
behavior during an outbreak by adopting more diligent hygiene, and by decreasing
their frequency and intensity or closeness of human contacts. Recent history has
provided us with multiple examples of people responding to news of a disease by
altering their daily behavior.



Consider the example of the social behavior changes that occurred during SARS in
Hong Kong, 2003. One survey indicates that during the SARS outbreak in Hong Kong
87% of the population covered their mouths while sneezing or coughing, 76% of
individuals wore masks, 65% washed their hands after contact with possibly
contaminated objects. Residents who thought that they might have been exposed to
SARS voluntarily self-isolated for up to ten days. Economic factor studies in SARS-
affected cities of Hong Kong, Beijing, Singapore and Toronto indicate that there was
a sharp drop in interactive social activities as restaurants and entertainment centers
suffered plummeting numbers of clientele. Specifically in Hong Kong, tourism was
crippled in March 2003 when the WHO issued a rare warning for travelers to avoid
Hong Kong and China’s Guangdong Province. As a result of weakening demand,
airlines slashed more than a third of flights, and hotels in Hong Kong reportedly
were up to 90% empty. But SARS was stopped, and yet no pharmaceutical cure was
found.®

To the best of our knowledge, the eradication of SARS was due to collective
behavioral changes of the overall population and of medical caregivers, in effect
causing Ry to drop significantly below 1.0. This represents an existence proof that
Ry can be largely determined by individual and collective behavioral change. This is
a profound result. It suggests that Ry is not defined in the abstract as a constant of
any given infectious disease. To be concrete, it makes no sense for the WHO or the
CDC to state publicly that a new influenza virus is circulating the Earth with an Ry
value of, say, 1.432. Rather, the local population and their individual and collective
behaviors contextually determine Ry. In the future, it is entirely plausible that when
a novel virus surfaces there will be communities for which Ry is less than 1.0 and
other communities, such as those living in close and closed quarters, where Ry could
exceed 2 or 3 or more.

DATA

Disease dynamics and vaccine distribution. We applied our modeling approach
using data from the CDC and state health departments from the 2008-09 outbreak of
H1N1 influenza. We estimated the epidemic curves for the US as a whole and for 48
states with influenza-like-illness (ILI) data, obtained from state health departments.
The CDC considers ILI data to be an effective means of following the dynamics of
progression of the outbreak. Sentinel sites report the proportion of outpatient visits,
hospitalizations and deaths associated with ILIs to the CDC via ILINet, an online
reporting system.1? The CDC tabulates these data on national and regional levels and
publishes results weekly in FluView.1! We compared the epidemic curves we
derived with two sources of vaccine distribution data. The first is vaccine shipment
data, which track, for all fifty states, the number of doses of vaccine shipped to each
state over time. The second source provided data on vaccine actually administered,
as each healthcare provider was required to report numbers of flu vaccinations
administered by state and local health authorities before being given additional
vaccine. We obtained this latter information from individual health departments of
nine states.



Results

IlIness dynamics and vaccine allocations as delivered

As previously reported, during the 2008-09 outbreak of HI1N1 influenza, in 24 of 50
states, the outbreak had already begun to decline before individuals were actually
protected by vaccination immunization. Further, among 11 states, no more than 2%
of the state’s residents were vaccinated before the outbreak had peaked.

For each of eleven states, our model was fitted to the reported ILI data to create two
separate model-estimated epidemic curves: the first assuming no vaccines
delivered and the second incorporating actual vaccine administration data for the
state. We also generated a third model-based epidemic curve, one showing the
curve if the vaccine had been delivered two weeks earlier than actual. We were then
able to infer the proportion of infections that (1) were averted due to the
administration of vaccine, even if late; and (2) would have been averted if the
vaccine supplies had been received two weeks earlier. Averted infections ranged
from as much as nearly 14% of the population in Massachusetts, where the outbreak
occurred later, to as little as 0.14% in Mississippi which experienced a much-earlier
outbreak.

Discussion

To engineer an effective response to an outbreak of influenza, one would deploy
technology (e.g., vaccine) and effect changes in human behavior, in order to reduce
the contract rate and the probability of illness transmission. Both NPI's and vaccines
are, of course, key components of the public health response.

It is unlikely that society will implement severe measures as they did in 1918-1919
making it “unlawful to cough and sneeze” punishing violators with up to a year in
jail. However, even without forceful implementation people are likely to try to
decrease their likelihood of becoming ill by improving hygiene related behaviors.

We control the contact rate, for example, by switching from daily to weekly grocery
shopping, or, better yet, to having groceries delivered to one’s door. If you manage a
team of employees, rather than having face-to-face meetings during a flu emergency,
have conference calls instead, with many workers telecommuting. Many companies
have already created comprehensive pandemic flu plans that include telecommuting,
reduced face-to-face encounters and even increased desk spacing between workers.

Vaccines and NPI’s both contribute to reducing the probability that any given face-
to-face contact will result in a new infection. Wash hands with hot water and soap
several times daily. Do not shake hands during greetings with colleagues. Cough or
sneeze into your elbow, not into the open air or your bare hand. Be careful not to
touch surfaces that might have recently been contaminated with flu virus.
Encourage your city’s large employers to stagger work hours, so that public
transportation subways and busses are less crowded during now-stretched-out rush
hours. Even run the subways and busses with windows opened.1?



Targeting High Activity Populations

As we have discussed, the at-risk population is heterogeneous in its social activity
and in its susceptibility to contract and transmit illness. Of particular interest is to
consider how social behavior influences the propagation of disease. The model
results demonstrate convincingly that targeting high activity population
components have the greatest role in transmitting illness and can have great impact
on how quickly the outbreak can be controlled.

High activity members of a population can contribute to mitigating the effects of an
outbreak by accepting vaccine to reduce their own susceptibility and
transmissibility, by reducing human contacts, and by adopting NPIs to reduce
transmissibility.

Vaccines offer greatest societal benefit when administered early to highly active
population members. This observation should be considered when constituting
“high risk” groups to be offered early access to immunization. In addition to first
responders, health care workers, elderly and chronically ill, a portion of the first
available doses of vaccine might be targeted to those individuals having large
numbers of daily human contacts.

Diligent personal hygiene among high activity persons benefits not only themselves,
but also others with whom they have contact, and can have a disproportionate role
in reducing spread. Hence, there should be great value in targeting these same
groups with messaging to adopt NPIs.

How to target persons having high frequencies of human contacts? Public health
practices commonly address school age children and others spending time in closed
and confined quarters. Those who make use of our various transportation networks
are also thought of as potentially disproportionate illness transmitters.
Consideration has been given to imposing travel restrictions, however, many
published articles suggest that it offers low payoff, at best.13

Users of all forms of public transportation - subways, trains, buses and planes - can
be considered “high activity” and targeted for behavior change, that can include,
depending on outbreak severity, encouragement to take vaccine and practice
various NPIs. Short of any mandated shutdown of transport networks, voluntary
measures, if adopted, could prove to be major contributions to control of an
outbreak. Potential benefits from this approach extend to individuals engaging in
private modes of transportation, including taxicabs, carpools and even solo
commuters, who come in contact with others at gasoline stations and fast food
restaurants.

The bottom line is that targeting members of a highly active population group to

change behavior is likely to be more successful than a broad public campaign. This
has proven true in the marketing of many consumer products and in screening for
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treatable illness, and would be very worthwhile in the control of outbreaks of
infectious disease.

Vaccine Allocation

In the 2009 H1N1 pandemic, vaccines arrived late. This is not surprising due to the
six or more month delay between identifying a novel flu virus, inventing an
appropriate new vaccine, and manufacturing it for distribution. The pandemic was
already well underway in the U.S. when vaccine distribution commenced in October
of 2009. Early deliveries were rationed and delivered to collections of states
(“regions”) by the CDC in direct proportion to each region’s census population,
regardless of the status of the flu wave in the region. This deployment method is at
least partly driven by perceptions of equity and other “political” considerations.

We conjecture that the timeliness of vaccines is closely related to the proportion of
the population who will accept vaccines. During the 2009 H1N1 outbreak in
Mississippi, for example, less than 40% of its allocated vaccine was used, most likely
due to “flu fatigue”. South Carolina managed to immunize only 8% of its population.
Had vaccine been available and delivered there before the outbreak peaked, its
effectiveness would have been greater with respect to both disease dynamics and
participation rate. Similar observations can be made about the experience of many
other states, especially in the U.S. southeast, where schools open in August and the
flu waves started then.

Our model results suggest that incorporating an adaptive component to the
allocation of vaccine during an outbreak will reduce the eventual number of
infections. The peak of an infection is expected to occur when “herd immunity” is
achieved, after which every contagious person infects, on average, one person or
fewer. Early administration of vaccines, with respect to the eventual peak of the
outbreak decreases the number of individuals who remain to be infected or
protected. Late administration has marginal effect on the dynamics of an initial
outbreak, but could still prove to be important, if flu returns in a later wave.

Our model results suggest that the CDC’s population-based flu allocation approach is
far from optimal, as it does not attempt to minimize the total number of flu
infections that will occur nationally. Rather its objective function is to equalize per
capita distribution of the vaccine regardless of its potential flu-averting benefits
nationally. A better policy would be to allocate vaccine not in proportion to state
populations, but to vulnerable regions that have seen fewer cases, that will have a
higher fraction of its population susceptible, and thus where a vaccine can avert the
maximum number of future infections. Our flu vaccine deployment method, if it had
been used in 2009, would likely have averted about 7,000,000 of the estimated
21,000,000 Americans infected with HIN1 flu.14

Limitations
The full formulations of the models and interpretation, as well as limitations of the
analyses have been published elsewhere.1>7813
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CONCLUSION

Outbreaks of influenza can be grave threats to lives and to the security of our
homeland. A great benefit of our efforts to engineer effective response to seasonal
outbreaks of influenza or pandemic influenza, is that it forced a logical and
systematic consideration of all aspects of the problem. The value of immunization is
greatly enhanced when it is deployed in relation to the dynamics of the progression
of the illness. The benefits from diligent personal hygiene and social distancing,
while widely recognized, can be much greater if public education initiatives are
targeted toward population members having disproportionate numbers of human
contacts. We are hopeful that the approaches we have described and the results
obtained offer the prospects of mitigating the future impact of these kinds of
adverse events.
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