
ESD Working Paper Series

ESD-WP-2013-17 August 2013

Congestion Mitigation through Schedule Coordination at JFK:

An Integrated Approach

Alexandre Jacquillat 

PhD Student
Engineering Systems Division
Massachusetts Institute of Technology
Email: alexjacq�mit.edu

Amedeo R. Odoni

Professor
Aeronautics & Astronautics and Civil and
Environmental Engineering
Massachusetts Institute of Technology
Email: arodoni�mit.edu

esd.mit.edu/wps

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78070489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Congestion Mitigation through Schedule Coordination at JFK:

An Integrated Approach

Alexandre Jacquillat Amedeo R. Odoni
Massachusetts Institute of Technology, Cambridge, MA 02139

alexjacq@mit.edu, arodoni@mit.edu

Abstract

Most of the flight delays in the United States are created by large imbalances between

demand and capacity at the busiest airports. Absent opportunities for significant capacity

increases, airport congestion can only be mitigated by reducing peak scheduling levels through

schedule coordination. This paper introduces an integrated approach to schedule coordination

that jointly optimizes the rescheduling of flights at the strategic level and the efficiency of airport

operations at the tactical level. Given an original schedule of flights created by the airlines in

the absence of any demand management measure, a modified schedule is proposed to meet delay

reduction objectives while minimizing the displacement from the original schedule. The modified

schedule does not eliminate any flight from the original schedule and maintains all aircraft and

passenger connections. An original iterative solution algorithm is developed to integrate airport

stochastic queue dynamics and a dynamic control of arrival and departure service rates into

an Integer Programming model of flight scheduling. The application of the model to one of

the busiest US airports, John F. Kennedy (JFK) International Airport, suggests that very

substantial delay reductions can be achieved through a moderate level of schedule coordination.

In particular, peak expected arrival and departure delays can be reduced by as much as 33%

and 55%, respectively, without modifying the scheduled time of 83% of the flights arriving at

of departing from JFK and without shifting the scheduled time of any flight by more than 30

minutes.

Key words airport, capacity, delay, schedule coordination, demand management, integer programming, dynamic

programming, queuing model

1 Introduction

Due to the combination of air traffic growth and limitations in airport capacity, airport congestion

has become an increasingly important phenomenon worldwide. In the United States, flight delays

reached an all-time peak in 2007 and induced nationwide costs of over $30 billion during that

calendar year [1]. Most of these delays originate in demand-capacity mismatches resulting from
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airlines scheduling more flights than available capacity at airports and in the propagation of delays

through the National Aviation System [8].

Flight delays can therefore be significantly mitigated by reducing the imbalance between de-

mand and capacity at the busiest airports. This can first be achieved by increasing airport ca-

pacity through infrastructure expansion, the development of new air traffic management technolo-

gies, etc. However, such projects are investment-intensive and, more importantly, are either very

time-consuming or even infeasible in the densest and most constrained regions. Delays can also be

reduced through improvements in air traffic flow management. Typical levers include the allocation

of available capacity to arriving and departing flights [14], the selection of runway configurations

[5, 21], the control of the departure process [34, 22], the ground holding of departures in the Ground

Delay Program [32, 17, 15, 2], etc. These approaches adjust the flow of aircraft to reduce conges-

tion costs at the tactical level. However, they are generally inadequate for reasonably mitigating

congestion at airports where demand and scheduling levels exceed capacity by a significant margin.

Absent opportunities for substantial capacity increases or improvements in operational effi-

ciency, demand-capacity mismatches can only be significantly reduced through schedule coordina-

tion to reduce the number of flights scheduled at peak hours and to distribute flights more evenly

over the course of the day. Most of the busy airports outside the United States operate under slot

control policies that allocate slots administratively to carriers. In contrast, flight schedules have

been weakly constrained at US airports since the phase-out of the High Density Rule, effective in

2007. In 2008, hourly flight caps were introduced at a few airports, including JFK. However, these

caps have been loosely enforced and have been criticized as being too high to substantially mitigate

congestion [11, 26, 16].

Determining the “optimal” stringency of demand management measures remains an open ques-

tion. Any form of schedule coordination involves complex tradeoffs in a multi-stakeholder envi-

ronment. Schedule coordination can lead to significant delay reductions at busy airports [30] and

thus reduce the congestion costs borne by airlines and passengers [36, 35]. On the other hand,

it constrains flight schedules and may create distortions in airline competition. The design and

assessment of demand management measures therefore requires careful analysis of their effects on

airline competitive scheduling and on airport congestion.

This paper introduces a congestion mitigation tool that optimizes schedule coordination to

achieve policy objectives of delay reduction while minimizing interference with airline competition.

We develop a Schedule Coordination Model that, given an original schedule of flights resulting

from airlines’ decisions in the absence of any demand management measure, reschedules flights

more evenly through the course of the day to meet delay reduction targets. It is based on the

well-known observation that, for a given number of flights scheduled in a day, the more evenly

they are distributed over its course, the lower expected delays will be [30, 20]. The smoothed

schedule produced by the Schedule Coordination Model is chosen “as close as possible” to the
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original schedule. We apply the model to JFK using scheduling data from 2007, when no flight cap

was in place at this airport. Results suggest that delays can be substantially mitigated through

even a moderate level of schedule coordination. In particular, peak departure delays can be reduced

by over 50% while (i) no flight originally scheduled is eliminated, (ii) all aircraft itineraries are left

unchanged, (iii) all passenger connections are maintained and (iv) no flight is displaced by more

than 30 minutes.

1.1 Literature Review

The body of literature on demand management falls into three categories: models of airport oper-

ations, economic analyses of demand management and models of airline scheduling.

In the first category, capacity estimates have been developed [14, 33] and subsequently used in

descriptive models of airport congestion that quantify the relationships between flight schedules

and delays [19, 29, 25]. These models consider flight schedules as fixed. Therefore, they do not

directly inform on how demand should be managed to reduce delays.

The problem of regulating access to commercial airports has also been the focus of numerous

economic studies [10]. Some compare quantity-based (e.g., slot controls) to price-based (e.g., con-

gestion pricing, slot auctions) capacity allocation mechanisms [7, 4, 9]. Others aim at determining

the optimal stringency of demand management measures for different market structures [6, 12, 27].

These studies provide important insights on the economic performance of demand management

policies. However, they typically consider simplified operational settings and fail to capture the

complexity and variability of airport operations and of airlines’ networks of flights.

Last, recent studies modeled the effects of demand management measures on airline schedules

and, in turn, on airport congestion. Vaze and Barnhart developed a game-theoretic framework

of airline frequency competition under slot control and congestion pricing constraints [36]. They

found that these measures would result in delay reductions at US airports as well as an increase in

operating profits of carriers. However, the time-scale of this study was a full day of operations, and

thus too coarse to account for the dynamics of the formation and propagation of delays during the

course of the day. Pyrgiotis and Odoni simulated the effects of scheduling limits at the busiest US

airports on airlines’ schedules by minimizing the displacement from an original schedule of flights

planned in the absence of any demand management measure [30]. They demonstrated that substan-

tial delay reductions could be achieved under “mild” scheduling constraints while keeping airlines’

networks of flights and passengers’ itineraries unchanged. Finally, Zografos, Salouras and Madas

optimized the allocation of airport capacity to airlines at slot-controlled airports by minimizing the

difference between the requested and allocated scheduled times [37]. They showed that significant

efficiency improvements can be achieved to better accommodate airlines’ preferences through the

slot allocation process at congested European airports.
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1.2 Contributions of this Paper

The main contribution of this paper is the development of an integrated approach to congestion

mitigation that is both tactical and strategic. We jointly optimize the coordination of flight sched-

ules at the strategic level and the utilization of airport capacity at the tactical level. The approach

combines (a) estimates of airport capacity; (b) stochastic and dynamic queuing models of airport

congestion; (c) a dynamic control of runway configurations and of arrival and departure service

rates that optimizes airport efficiency at the tactical level; and (d) an Integer Programming model

of flight scheduling. We believe that it represents the first attempt to integrate airport stochas-

tic queue dynamics and operating procedures into a flight scheduling model aimed at mitigating

congestion at the strategic level.

From a methodological standpoint, we develop a bi-level iterative approach that enables the

integration of a stochastic and dynamic queuing model of airport congestion into any Integer Pro-

gramming model of flight scheduling. First, we integrate a deterministic queuing model of airport

congestion into the scheduling model. This provides an optimal schedule of flights, given determin-

istic queue dynamics. Then, we evaluate this solution using a stochastic queuing model. Iterating

between these two phases determines, in turn, the optimal schedule of flights given stochastic queue

dynamics.

Moreover, we develop a Tail Number Reconstruction Model that reconstructs aircraft itineraries,

using information available in the Aviation Performance Metrics (APM) database. This database,

maintained by the Federal Aviation Administration (FAA), reports extensive information on most

commercial flights operated in the United States. However, it is incomplete when it comes to

reporting aircraft tail numbers, which identify the aircraft used to operate each flight. Our Tail

Number Reconstruction Model imputes missing data by optimizing the routing of aircraft, given

available APM data. In turn, the reconstructed aircraft itineraries are integrated into the Schedule

Coordination Model in order to maintain the connectivity of airlines’ networks of flights in our

scheduling model.

From a practical standpoint, this paper provides a congestion mitigation tool that optimizes

and simulates “Level 2 coordination”. Under this type of schedule coordination, airlines submit

their flight schedules at the subject airport to a schedule facilitator (in this case, the FAA), who

may then propose some adjustments to reduce anticipated delays [10]. This type of intervention is

currently in place at a few busy US airports where scheduling levels exceed capacity significantly.

However, no standardized procedure is applied and flight rescheduling typically takes place on an ad

hoc basis, often through voluntary compliance by the airlines. The Schedule Coordination Model

developed in this paper provides a general tool that optimizes the rescheduling of flights under this

type of coordination. In addition, the application of the model informs on the extent to which

delays can possibly be reduced through schedule coordination while minimizing interference with

the original flight schedules submitted by the airlines.
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The remainder of this paper is organized as follows. Section 2 develops the Schedule Coordi-

nation Model. We introduce successively the flight scheduling framework, the stochastic queuing

model of airport congestion and the dynamic control of arrival and departure service rates. We

then describe the iterative solution algorithm that integrates stochastic queue dynamics and air-

port operating procedures into the scheduling framework at the strategic level. Section 3 presents

the experimental setup at JFK. In this context, we also develop the Tail Number Reconstruction

Model that reconstructs aircraft itineraries from APM data. Section 4 presents the results of the

implementation of the model at JFK. The impacts of schedule coordination on flight schedules and

flight delays are quantified. Finally, Section 5 summarizes the findings of the paper.

2 The Schedule Coordination Model

The Schedule Coordination Model takes as inputs (i) the original schedule of flights created by

the airlines on a given day in the absence of any demand management measure and (ii) estimates

of airport capacity. It generates a schedule of flights that minimizes the displacement from the

original schedule, while ensuring that the connectivity of flights is maintained and that delays

are kept below predefined delay reduction targets. We use the demand-smoothing framework

based on Integer Programming developed by Pyrgiotis and Odoni [30]. The framework provides a

methodology for producing a schedule of flights which does not eliminate any flight, while leaving

all aircraft itineraries unchanged and maintaining all passenger connections. However - and most

importantly - we integrate delay reduction objectives within the scheduling algorithm instead of

applying predetermined schedule limits.

For this purpose, we integrate into the Schedule Coordination Model a stochastic and dynamic

queuing model of airport congestion that quantifies, for any schedule of flights, the probabilistic

distribution of arrival and departure queue lengths over the course of the day. In order to integrate

this model into the scheduling framework, we impose constraints on arrival and departure queue

lengths. Note that constraints on delays can be mapped into constraints on queue lengths by

approximating the expected delay by the ratio of the expected queue length over the average

service rate at the airport.

A schematic formulation of the model is given as follows, where AMAX and DMAX denote the

limits that are placed on expected arrival and departure queue lengths, respectively. Note that the

formulation applies reduction targets to peak expected queue lengths. This formulation can easily

be modified to apply reduction targets to total expected queue lengths or to estimates of peak

maximal (e.g., 95th percentile) queue lengths.
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minimize Schedule Displacement

subject to No flight eliminated

Scheduled block-times unchanged

Aircraft connections maintained

Passenger connections maintained

Peak expected arrival queue length lower than AMAX

Peak expected departure queue length lower than DMAX

In addition, we integrate into the Schedule Coordination Model a control of runway configura-

tions and of arrival and departure service rates that optimizes the dynamic allocation of available

capacity to arriving and departing aircraft over the course of the day [21]. In turn, the Schedule

Coordination Model optimizes the rescheduling of flights at the strategic level and maximizes, at

the same time, the efficiency of airport operations at the tactical level. Jointly optimizing flight

schedules and the utilization of airport capacity is crucial as the latter is a function of the former.

Consider, for instance, a period of the day during which a large number of takeoffs has been sched-

uled and let us assume that schedule coordination lowers this departure peak in order to reduce

departure delays. Then the allocation of airport capacity to arriving and departing aircraft at the

considered period may have to change. Given the inherent tradeoff between arrival and departure

throughput, it may indeed be beneficial to lower the departure service rate and increase the arrival

service rate to best serve the changed balance between arrival and departure demand.

A schematic representation of the integrated approach is provided in Figure 1.
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Figure 1: Representation of the integrated approach of the Schedule Coordination Model
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2.1 Scheduling Framework

We first introduce the Integer Programming framework of the scheduling model. It builds on the

model developed in [30]. We denote by A the airport where schedule coordination is applied (in this

case, JFK)1. We divide a day of operations into T periods of length 15 minutes each. We denote

by F the number of flights that are included in the scheduling model. This includes all flights that

arrive at A or that leave from A, as well as all flights that are flown by an aircraft that visits A

during the day. For instance, if an aircraft flies the itinerary A→ B → C, then both flights A→ B

and B → C are included in the model. This is because the rescheduling of flight A → B might

require a change in the scheduled time of flight B → C to maintain a feasible connection between

both flights. We define below the sets, parameters, variables and constraints of the scheduling

model.

2.1.1 Sets

F = the set of flights, {1, ..., F};
T = the set of time intervals, {1, ..., T};

2.1.2 Parameters

Sarr
it /S

dep
it =

{
1 if flight i is originally scheduled to land / take off in period t

0 otherwise

Aarr
i /Adep

i =

{
1 if flight i is scheduled to land at / take off from airport A

0 otherwise

zij =


1 if flight i and flight j are flown by the same aircraft

and if flight j is the immediate successor of flight i

0 otherwise

tmin
ij = the minimum aircraft turnaround time between flight i and flight j

tmax
ij = the maximum aircraft turnaround time between flight i and flight j

paxij =

{
1 if there is at least 1 passenger connecting from flight i to flight j

0 otherwise

τpaxij = the minimum passenger connection time between flight i and flight j

The parameters tmin
ij , tmax

ij and τpaxij are expressed as numbers of 15-minute periods. For in-

stance, if an aircraft connection requires a turnaround time of at least 45 minutes, then we set the

corresponding value of tmin
ij to 3.

1The model can be easily extended to apply schedule coordination simultaneously at several airports.
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2.1.3 Variables

xit/yit =

{
1 if flight i is rescheduled to land / take off in period t

0 otherwise

ui = the displacement of flight i

δ = the maximal displacement of any single flight

∆ = the total displacement of all flights

The displacement variables ui, δ and ∆ are also expressed as numbers of 15-minute periods.

Moreover, the value of ui can be positive or negative, thus allowing any flight to be rescheduled

later or earlier in the day.

2.1.4 Objective

The objective of the Schedule Coordination Model is to minimize the maximal displacement δ

that any flight will sustain in order to meet the expected queue length targets AMAX and DMAX.

Among all feasible schedules that can be obtained under this objective, we select one that minimizes

the total displacement ∆. In other words, we consider a two-stage formulation where we first

determine the minimal value of the maximal displacement, denoted by δ∗, and then we minimize

the total displacement ∆ among all feasible solutions satisfying the constraint δ = δ∗. This choice

is motivated by equity concerns, as it ensures that no flight will incur a disproportionately large

displacement [30].

2.1.5 Constraints

The scheduling constraints are provided below. Constraint (1) (resp. Constraint (2)) defines the

displacement of any flight as the difference between its rescheduled arrival (resp. departure) time

and its original arrival (resp. departure) time. In addition, the combination of Constraints (1)

and (2) ensures that scheduled block times are left unchanged. Constraints (3) and (4) state that

each flight is assigned to exactly one scheduled departure time and to one scheduled arrival time.

Constraints (5) and (6) force aircraft turnaround times to be larger than the minimum turnaround

times and smaller than the maximum turnaround times that are imposed. Finally, Constraint (7)

ensures that passenger connecting times are kept larger than the minimum time required to connect

between two flights at each of the airports visited by the flights in F .
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∑
t∈T

txit =
∑
t∈T

tSarr
it + ui ∀i ∈ F (1)∑

t∈T
tyit =

∑
t∈T

tSdep
it + ui ∀i ∈ F (2)∑

t∈T
xit = 1 ∀i ∈ F (3)∑

t∈T
yit = 1 ∀i ∈ F (4)(∑

t∈T
tyjt −

∑
t∈T

txit

)
zij ≥ tmin

ij ∀i, j ∈ F (5)(∑
t∈T

tyjt −
∑
t∈T

txit

)
zij ≤ tmax

ij ∀i, j ∈ F (6)(∑
t∈T

tyjt −
∑
t∈T

txit

)
paxij ≥ τpaxij ∀i, j ∈ F (7)

We add the following two constraints, which respectively define the maximal displacement of

flights and the total displacement of flights.

|ui| ≤ δ ∀i ∈ F (8)∑
i∈F
|ui| ≤ ∆ (9)

The remaining constraints to be included in the formulation are the queuing constraints. We

describe in the next section our model of airport congestion.

2.2 Stochastic Queue Dynamics

We model the relationship between flight schedules and flight delays by means of a stochastic and

dynamic queuing model. We characterize the airport as a queuing system. Service is provided

by the runway system, which is generally the main bottleneck of operations at congested airports

[11]. Aircraft join the queue when they demand the use of the runway system to land or to take

off at the airport. We model the arrival queue and the departure queue by means of two distinct

M(t)/Ek(t)/1 queuing systems, i.e., the demand processes and the service processes are respectively

modeled as Poisson processes and as Erlang processes of order k. We use a value of k = 3 [20].

The stochasticity of the model is intended to capture the uncertainty and the variability associated

with the actual queuing processes. The model has been found to approximate well the magnitude

and dynamics of delays at busy US airports [31, 24, 20].
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We divide a day of operations between 6 a.m. and 12 a.m. into 72 15-minute periods. We

assume that the demand rates and the service rates within each 15-minute period are constant.

Demand rates are determined by the number of landings and takeoffs scheduled per 15-minute

period. With the notations introduced in the previous section, the arrival (resp. departure) demand

rate at airport A during any period t is equal to
∑

i∈F A
arr
i xit (resp.

∑
i∈F A

dep
i yit).

Service rates are determined by airport capacity. However, they are not exogenously determined

in advance. They depend instead on operating decisions made by air traffic controllers through

the course of the day. These decisions are typically based on flight schedules, on meteorological

conditions and on observed arrival and departure queue lengths. We integrate into the model of

airport congestion a control of arrival and departure service rates. For any schedule of flights, the

control optimizes the dynamic allocation of airport capacity to arriving and departing aircraft at

the tactical level to minimize congestion costs. The details are presented in the next section.

2.3 Dynamic Control of Arrival and Departure Service Rates

We represent the capacity of an airport, in a given runway configuration, by means of a piece-wise

linear Operational Throughput Envelope, which determines the non-increasing relationship between

the average number of landings and the average number of takeoffs that can be operated per unit

of time [33]. Given that airport throughput is significantly impacted by weather conditions, we

consider one VMC envelope and one IMC envelope for each runway configuration. A schematic

representation of these envelopes for a given runway configuration is provided in Figure 2. Points

1 and 2 represent two pairs of achievable average arrival and departure service rates in VMC and

Point 3 represents a pair of achievable average service rates in IMC.

We consider a dynamic programming model of the control of runway configurations and of

arrival and departure service rates [21]. At the beginning of each 15-minute period, the runway

configuration and the arrival and departure service rates are jointly selected. First, the runway con-

figuration, along with the weather conditions observed at the airport, determines the Operational

Throughput Envelope, i.e., the set of achievable arrival and departure service rates. Second, arrival

and departure service rates are selected among the set of achievable service rates determined by the

Operational Throughput Envelope. The control is exercised as a function of observed arrival and

departure queue lengths, of the runway configuration in use, of weather conditions, which impact

the efficiency of airport operations, and of winds, which might restrict the set of runways that can

be used. In [21] this control has been shown to provide significant operational benefits.

However, the computational requirements of the full control outlined above prevent it from

being used repeatedly with different flight schedules. Computational efficiency is necessary to

enable successful integration of the control into the Schedule Coordination Model. Therefore, we

implement an approximate version of the control. For this purpose, we assume that the schedule

of use of runway configurations is exogenously determined in advance. It is obtained from the
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Figure 2: Representation of the VMC and IMC Operational Throughput Envelopes of an airport
in a given runway configuration

application of the full control developed in [21] with the schedule of flights on a representative day.

Subsequently, the schedule of use of runway configurations is treated as fixed and the control is

restricted to the selection of arrival and departure service rates at the beginning of each 15-minute

period. For the observed weather conditions (VMC or IMC), the service rates are constrained

by the corresponding Operational Throughput Envelope of the runway configuration in use. This

simplification reduces considerably the dimensionality of the decision space and therefore accelerates

the dynamic programming algorithm.

The resulting control can be formulated as follows. At each period t = 1, ..., T , the decision-

maker observes (i) the arrival and departure queue lengths at the end of the previous period, respec-

tively denoted by at−1 and dt−1 and (ii) the weather conditions, denoted by wt ∈ {VMC, IMC}.
The runway configuration for period t, denoted by RCt, is given. The decision-maker selects the

arrival rate for period t, denoted by µat . The upper bound for this choice depends on the run-

way configuration and weather conditions and is denoted by ARCt,wt . The departure service rate

is subsequently determined by the Operational Throughput Envelope. Congestion costs are as-

sumed to depend quadratically on arrival and departure queue lengths. Moreover, we weight the

costs associated with arrival delays by a factor α ≥ 1 in order to capture the potentially larger

costs of arrival delays than departure delays. The objective function is therefore expressed as

α
∑T

t=1 a
2
t +

∑T
t=1 d

2
t . The Bellman equation is then formulated as follows, where Jt(at−1, dt−1, wt)
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represents the cost-to-go of being in state (at−1, dt−1, wt) at the beginning of period t:

Jt(at−1, dt−1, wt) = min
µat∈[0,ARCt,wt ]

(
αE
[
a2t
]

+ E
[
d2t
]

+ E [Jt+1 (at, dt, wt+1)]
)
, ∀t = 1, ..., T (10)

Finally, we integrate a simple model of weather variations into the control of arrival and de-

parture service rates and into the stochastic queuing model of airport congestion. We use “Visual

Meteorological Conditions” (VMC) and “Instrument Meteorological Conditions” (IMC) as surro-

gates of “good” and “poor” weather conditions, respectively. We introduce two categories of days:

all-VMC days that have only VMC periods, and VMC/IMC days that have some VMC and some

IMC periods. The probability that a given day is all-VMC is unbiasedly estimated by the empirical

proportion of days that have only VMC periods. The weather “profile” on VMC/IMC days is

modeled as a two-state Markov chain, with transition matrix:

(VMC IMC

VMC 1− p p

IMC q 1− q

)

The probability p (resp. q) represents the probability that, for a VMC/IMC day, period t + 1

is in IMC (resp. VMC) given that period t is in VMC (resp. IMC). We estimate p (resp. q) by its

maximum likelihood estimator, i.e., the empirical ratio of the number of transitions from VMC to

IMC (resp. from IMC to VMC) over the number of periods in VMC (resp. in IMC). The model

of weather variations has been shown to replicate quite accurately historical records of weather

conditions at JFK [20].

2.4 Integration of Deterministic Queue Dynamics into the Scheduling Model

Unfortunately, the stochastic and dynamic queuing model of airport congestion described in Sec-

tion 2.2 and the control of arrival and departure service rates presented in Section 2.3 cannot be

directly integrated into the Integer Programming scheduling model. This is because (a) the proba-

bilistic evolution of arrival and departure queues depends endogenously on the schedule of flights,

and (b) the stochastic relationship between flight schedules and flight delays is nonlinear [11]. In

other words, changes in flight schedules, i.e. changes in the decision variables, induce nonlinear

changes in the probabilistic dynamics of arrival and departure queues. This relationship cannot be

expressed through a set of linear constraints in the scheduling model.

In contrast, we can easily integrate deterministic queue dynamics into our Integer Programming

scheduling framework. In this section, we describe the corresponding parameters, variables and

constraints. In the following section, we describe how we use this formulation to solve the Schedule

Coordination Model with stochastic queue dynamics.
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We first define the following set:

St = the set of linear segments of the VMC Operational Throughput Envelope

of the runway configuration in use during period t

The VMC Operational Throughput Envelope of the runway configuration in use at period t

can then be expressed by the following set of linear equations, where αs, βs and γs denote the

parameters defining each linear segment of the envelope:

αsx+ βsy ≤ γs, ∀s ∈ St

We add two pairs of variables:

µat /µ
d
t = the arrival / departure service rate selected during period t

at/dt = the arrival / departure queue length at the end of period t

Finally, we add 3 constraints. Constraint (11) ensures that, at any period t, the arrival and

departure service rates lie within the bounds defined by the VMC Operational Throughput Envelope

of the runway configuration in use. In addition, it provides a degree of freedom as any set of arrival

and departure service rates that satisfies the constraint can be selected (e.g., Point 1 or Point 2 or

any other point of the VMC envelope in Figure 2). This integrates the control of service rates into

the Integer Programming framework. Constraints (12) and (13) define the deterministic dynamics

of arrival and departure queues. The arrival (resp. departure) queue length at the end of period t

is simply equal to the sum of the arrival (resp. departure) queue length at the end of period t− 1

and the number of landings (resp. takeoffs) scheduled during period t, i.e.
∑

i∈F A
arr
i xit (resp.∑

i∈F A
dep
i yit), minus the number of landings (resp. takeoffs) operated during period t, i.e., µat

(resp. µdt ).

αsµ
a
t + βsµ

d
t ≤ γs ∀t ∈ T ,∀s ∈ St (11)

at = at−1 +

(∑
i∈F

Aarri xit

)
− µat ∀t ∈ T (12)

dt = dt−1 +

(∑
i∈F

Adepi yit

)
− µdt ∀t ∈ T (13)

2.5 Iterative Solution Algorithm

At this point, we have developed an Integer Programming model that can determine the optimal

schedule of flights meeting delay reduction targets under deterministic queue dynamics. However,

we aim at finding the optimal schedule meeting delay reduction targets under stochastic queue dy-

namics. Previous research has shown that deterministic queuing models lead to significantly smaller
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delay estimates than stochastic queuing models [19]. Therefore, solving the Schedule Coordination

Model with deterministic queue dynamics would lead to an overly optimistic schedule. Indeed, a

schedule of flights might meet the delay reduction targets with deterministic queue dynamics, but

not with stochastic queue dynamics.

Nonetheless, it has also been found that delays estimated with stochastic and deterministic

queuing models exhibit some degree of collinearity [19]. Whereas stochastic delays are larger than

deterministic delays, the dynamics of formation and propagation of delays through the course of

the day are similar under deterministic and stochastic queue dynamics. We therefore make the

following assumption: given two distinct schedules of flights, the one that leads to the smallest

peak deterministic delays will also lead to the smallest peak expected stochastic delays. Under this

assumption, for any given schedule displacement, the schedule that minimizes peak deterministic

delays will also be the schedule that minimizes peak expected stochastic delays.

Using this assumption, we develop an iterative bi-level solution algorithm to the Schedule Co-

ordination Model. At the higher level, we determine, for a given value of the maximal displacement

δ and/or of the total displacement ∆, a schedule that minimizes peak deterministic delays. Using

the Integer Programming framework developed above, we minimize the following expression:

qMAX := M

[
max

(
1

AMAX
max
t∈T

at,
1

DMAX
max
t∈T

dt

)]
+
∑
t∈T

(
at

AMAX
+

dt
DMAX

)
, (14)

where M >> 1 is a very large scalar. In other words, we first minimize the largest arrival and

departure queue lengths that are incurred during the day, with the arrival (resp. departure) queue

length “normalized” by a factor AMAX (resp. DMAX). The purpose of the normalization is to

capture the relative “cost” of increasing the expected arrival (resp. departure) queue length vis-à-

vis the target levels AMAX (resp. DMAX). Among all schedules that minimize the largest normalized

queue lengths, we select the one that minimizes the “total” normalized queue length, expressed as∑
t∈T

(
at

AMAX
+ dt

DMAX

)
.

At the lower level, we use the resulting schedule of flights to simulate delays using stochastic

queue dynamics. We determine in this way whether the optimal displacement is larger or smaller

than the considered displacement (see details in the next two paragraphs). If the peak expected

stochastic delays are found larger than the expected queue length targets AMAX and DMAX, then

the displacement has to increase, i.e., schedule coordination has to be more aggressive in order

to meet the targets. If, however, the stochastic delays are found smaller than the queue length

targets, then the optimal displacement is smaller than the considered displacement, i.e., schedule

coordination might be less aggressive and targets might still be met. This approach is based on

the non-increasing relationship between displacement and delays.

Figure 3 presents the algorithm that determines the optimal maximal displacement δ∗ by iter-

atively updating a lower bound of δ∗, denoted by δ. We initialize the algorithm with a value of
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δ = 0, i.e., no flight is displaced. We optimize the control of arrival and departure service rates

and we estimate stochastic delays with the original schedule of flights. If the queue length targets

are met, then the optimal maximal displacement δ∗ is equal to 0. Otherwise, we increase the value

of δ to 1. We obtain the schedule that minimizes peak delays for a value of δ = 1. Note that we do

not impose any restriction on the total displacement at this point, and therefore Constraint (9) is

relaxed. Using the modified schedule, we re-optimize the control of service rates and we simulate

stochastic delays. If the queue length targets are met, then the optimal maximal displacement δ∗

is equal to 1. Otherwise, we increase the value of δ to 2, and repeat the process until the targets

are met. �
�

�
�Initialization

δ = 0

?
minimize qMAX (Equation 14)
subject to Scheduling constraints: Equations (1) to (7)

Deterministic queuing constraints: Equations (11) to (13)
Maximal displacement constraint: Equation (8)
Maximal displacement: δ = δ
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Figure 3: Determination of the optimal maximal displacement δ∗

Figure 4 shows the iterative algorithm that determines the optimal total displacement ∆∗,

given the optimal maximal displacement δ∗. We denote by ∆ and ∆ an upper bound and a lower

bound of ∆∗, respectively. We initialize the algorithm by setting ∆ to Fδ∗, which corresponds to the
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situation where all flights are displaced by δ∗, and ∆ to 0, which corresponds to the situation where

no flight is displaced. We proceed by dichotomy. At each iteration, we consider a tentative value

of the total displacement, denoted by ∆try, at the midpoint of ∆ and ∆. We find the schedule that

minimizes peak deterministic delays for the value of ∆ = ∆try. Using this schedule, we optimize

the control of arrival and departure service rates and we simulate stochastic delays. If the queue

length targets are met, then the optimal total displacement is at most equal to ∆try, so we set ∆

to ∆try. Otherwise, the optimal total displacement is larger than ∆try, so we set ∆ to ∆try. We

repeat this process until ∆ and ∆ have converged to the same value, which is then equal to the

optimal total displacement ∆∗.

Note that the iterative algorithm relies on our assumption that the schedule that minimizes

peak deterministic delays, for a given schedule displacement, is identical to the schedule that

minimizes peak expected stochastic delays. In fact, this assumption may introduce an error in

some instances. For example, there may exist, for a given displacement, a schedule of flights that

reduces peak expected stochastic delays to a greater extent than the schedule minimizing peak

deterministic delays. In such instances, the algorithm may not be able to find the exact optimal

solution. Nonetheless, we expect such errors to be of second order. In general, the modified schedule

of flights that we obtain is expected to be very close to the optimal schedule.

2.6 Summary

We have developed a Schedule Coordination Model that reschedules flights in order to meet delay

reduction targets. The model minimizes the displacement from the original schedule, while preserv-

ing the networks of flights and keeping peak expected arrival and departure queue lengths below

predetermined limits. Since we could not integrate stochastic queue dynamics into the Integer

Programming formulation of the model, we have developed an original iterative approach. For any

schedule displacement, we determine the schedule of flights that minimizes peak deterministic de-

lays. We use this modified schedule to simulate stochastic delays. The comparison of the stochastic

delays to the expected queue length targets informs on whether the considered displacement is

too small or too large. Iterating this algorithm determines, in turn, a good approximation of the

optimal displacement and of the optimal schedule meeting the expected queue length targets.

3 Experimentation Setup at JFK

We now apply our Schedule Coordination Model to the schedule of 05/25/2007 at JFK. This was

one of the busiest days of the year 2007, with the number of scheduled flights corresponding to the

90th percentile of the distribution of the number of daily flights at JFK during that year. Flight

schedules were obtained from the Aviation Performance Metrics (APM) database [13]. Among

other metrics, the database reports, for each flight taking off or landing at the main airports in the
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Figure 4: Determination of the optimal total displacement ∆∗, given the optimal value of the
maximal displacement δ∗

United States, its origin, its destination and its scheduled takeoff and landing times, as well as the

carrier operating the flight, the type of aircraft used (e.g., A320, B777, etc.), the flight number and
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the aircraft tail number.

However, the aircraft tail number, which identifies the aircraft operating a flight, is missing

for approximately 40% of the flights reported in the database, including all international flights.

This information is required to identify aircraft connections and to define the related constraints in

the Schedule Coordination Model. For this reason, we implement in the next section a simple Tail

Number Reconstruction Model that, given available information in the APM database, reconstructs

aircraft itineraries to maximize the number of connections.

3.1 A Tail Number Reconstruction Model

Let us consider a single airline, denoted by AL and a single aircraft type, denoted by AC. Let

us also consider a given week of operations, denoted by w. From the information available in the

APM database, we identify the set of flights operated by airline AL and flown by aircraft type AC

during week w. We denote this set by I.

We introduce the following two parameters. In the definitions below, a direct connection between

flight i and flight j means that flights i and j are flown by the same aircraft and that flight j is the

immediate successor of flight i.

ATNR
ij =

{
1 if a direct connection between flight i and flight j is feasible

0 otherwise

BTNR
ij =

{
1 if a direct connection between flight i and flight j was actually planned

0 otherwise

A connection between flights i and j is assumed to be “feasible” if flight j departs from the

airport where flight i arrived and if the difference between flight j’s departure time and flight i’s

arrival time is larger than the minimum time required for the aircraft to turn around. A connection

between flights i and j is identified as “actually planned” if the tail numbers of flights i and j are

reported in the APM database, if they are identical to each other and if the difference between

flight j’s departure time and flight i’s arrival time is small enough to ensure that the aircraft has

not flown other flights between flight i and flight j.

The Tail Number Reconstruction Model determines aircraft itineraries that minimize the num-

ber of aircraft used to operate the set of flights in I. It is a simplified version of the extensively

studied Fleet Assignment Model (see, e.g., [18, 23]), applied to the set of flights operated by airline

AL with an aircraft type AC. In other words, the assignment of aircraft types to the scheduled

flights is assumed to have already been performed by the airline and we determine the routing or

aircraft that minimizes the aircraft count, or, equivalently, that maximizes the number of connec-

tions.
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We therefore define the following binary variable:

zTNR
ij =

{
1 if a connection between flight i and flight j is imposed

0 otherwise

The Tail Number Reconstruction Model can be formulated as follows. The objective func-

tion (15) maximizes the number of aircraft connections. Constraint (16) states that there cannot

be a connection between any pair of flights if the connection is not feasible. Constraint (17) main-

tains the connections that were actually planned. Constraint (18) (resp. (19)) states that any flight

can be immediately preceded (resp. followed) by at most one flight.

maximize
∑
i∈I

∑
j∈I

zTNR
ij (15)

subject to zTNR
ij ≤ ATNR

ij ∀i, j ∈ I (16)

zTNR
ij ≥ BTNR

ij ∀i, j ∈ I (17)∑
i∈I

zTNR
ij ≤ 1 ∀j ∈ I (18)∑

j∈I
zTNR
ij ≤ 1 ∀i ∈ I (19)

zTNR
ij ∈ {0, 1} ∀i, j ∈ I (20)

We applied the Tail Number Reconstruction Model over the week spanning from three days

before to three days after the day considered in the Schedule Coordination Model (in this case,

05/25/2007). We considered the networks of flights operated by all airlines that operated at least

1% of all flights scheduled at JFK on 05/25/2007. For each of these airlines, we consider the aircraft

types that operated at least 100 flights during the considered week, i.e., between 05/22/2007 and

05/28/2007. We applied the Tail Number Reconstruction Model for each of these airlines and for

each of these aircraft types during the considered week. Finally, we reconstructed the remaining

itineraries (i.e., the itineraries operated by the airlines that operated less than 1% of the flights at

JFK on 05/25/2007 and the itineraries flown by aircraft types that operated less than 100 flights

during the considered week) using a manual procedure similar to the one outlined by Pyrgiotis [28].

Since this procedure optimizes the routing of aircraft to minimize the number of aircraft used

over a week of operations, it is expected to approximate the fleet assignment decisions made by the

airlines. It is likely, however, that the resulting routing will not match exactly the one that was used

by the airlines on the considered day. For instance, considerations such as aircraft maintenance

routing and crew scheduling are not included in the model. Nonetheless, the procedure is quite

conservative: since it maximizes the number of aircraft connections, it constrains the Schedule

Coordination Model as much as possible. Therefore, the solution to the Schedule Coordination
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Model with any alternative routing of aircraft is expected to induce a smaller displacement than

the solution that we obtain with the optimized routing.

3.2 Schedule Coordination Model Setup

As described in Section 2.1, we include in the Schedule Coordination Model all flights operated by

all aircraft that visited JFK at least once during this day. This includes F = 1, 645 fights, among

which 1, 229 flights were scheduled to land at or take off from JFK.

The aircraft connections parameters zij are obtained from the results of the Tail Number Recon-

struction procedure described in Section 3.1. Note that, by construction, all connections reported

in the APM database are maintained. We use the minimum aircraft turnaround time between any

pair of flights estimated by Pyrgiotis [28]. It is a function of the aircraft type, of the airline and

of whether the airport is a hub airport for the airline or not. Moreover, we define the maximum

turnaround time of any pair of successive flights as the turnaround time that was actually planned

on 05/27/2007 plus 15 minutes. In other words, we impose the condition that no aircraft connection

will incur an increase in its turnaround time of more than 15 minutes. This ensures that aircraft

utilization remains very close to what was originally planned by the airline.

We obtained passenger connection data from a database developed by Barnhart, Fearing and

Vaze [3]. It is based on a discrete choice model for estimating historical passenger route choices. We

estimated the minimum passenger connection time at JFK as the 5th percentile of the distribution

of all planned passenger connection times.

Finally, we obtained the VMC and IMC Operational Throughput Envelopes of JFK’s main

runway configurations from Simaiakis [33]. These envelopes were used previously in developing the

control of runway configurations and of arrival and departure service rates at JFK [21].

4 Implementation Results

4.1 Convergence of the Iterative Algorithm

In this section, we describe the convergence of the iterative algorithm developed in this paper. We

use expected queue length targets equal to AMAX = 10 and DMAX = 15, i.e. we require that

the expected arrival and departure queue lengths should not exceed 10 aircraft and 15 aircraft,

respectively. Figure 5a shows the value of the maximal displacement δ and of the upper and lower

bounds of the total displacement, ∆ and ∆, after each iteration of the algorithm. Figure 5b shows

the peak expected arrival and departure queue lengths after each iteration as well as the expected

queue length targets.

During the first three iterations, the value of the maximal displacement δ is updated (see

Figure 3). After the first iteration, i.e. with the original schedule of flights on 05/25/2007, peak

expected arrival and departure queue lengths are respectively equal to 13.7 and 32.3 aircraft.
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(a) Maximal and total displacement (b) Peak expected arrival and departure queues

Figure 5: Convergence of the algorithm: displacement and queue lengths per iteration

After the second iteration, i.e. with a maximal displacement of 1 15-minute period, the queue

length targets are still not met as the expected departure queue length peaks at 19 aircraft. At

the third iteration, a schedule that meets the queue length targets is found with a value of the

maximal displacement δ = 2. Therefore, the optimal maximal displacement δ∗ is equal to 2. In the

remaining iterations, we apply the algorithm shown in Figure 4 to minimize the total displacement.

The algorithm adjusts the upper and lower bounds of the total displacement to find the schedule

that leads to expected delays as close as possible to the queue length targets. The algorithm

terminates when the upper and lower bounds converge to the same value. In this case, the optimal

total displacement is equal to ∆∗ = 293 15-minute periods.

Note that the optimal solution is obtained after 15 iterations. As described in Section 2.5,

each iteration consists in (i) the application of the Integer Programming scheduling model, which

provides a modified flight schedule, (ii) the optimization of the control of arrival and departure

service rates using the dynamic programming model and (iii) the simulation of arrival and departure

queue lengths using our stochastic and dynamic queuing model. We implemented the Integer

Programming scheduling model in GAMS 24.0 using CPLEX 8 and the control of arrival and

departure service rates and the simulation of arrival and departure queues in MATLAB 8.1. The

average time of each iteration is equal to 10 minutes on an Intel(R) Core(TM) i7 running at 2.6 GHz

16 GB RAM. In total, the 15 iterations terminate in approximately 2 hours and 30 minutes. This

computational time is perfectly acceptable in view of the strategic nature of the model. Moreover,

a close-to-optimal solution is found after only 10 iterations, a 33% computational improvement.

Indeed, the range between the upper bound and the lower bound of the total displacement is lower

than 10% after 10 iterations. Therefore, a modified schedule that meets the queue length targets

while minimizing the changes from the original schedule of flights is obtained quickly after a small

number of iterations.
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4.2 Effects of Schedule Coordination on Flight Schedules

In this section, we describe how the schedule of flights is modified through schedule coordination.

As in the previous section, we use expected queue length targets equal to AMAX = 10 aircraft and

DMAX = 15 aircraft. The results from the previous section indicate that a schedule that meets

these targets is obtained with a maximal displacement of 2 15-minute periods and with a total

displacement of 293 periods. In particular, no flight is eliminated and all aircraft connections and

all passenger connections are maintained. Among the 1, 229 flights scheduled to land at or to take

off from JFK, the scheduled time of 1, 019 flights, i.e., 83%, is not modified. Among the 1, 645

fights considered in the model, the scheduled time of 1,453 flights (or 88%) is left unchanged, the

scheduled time of 151 flights is shifted by 15 minutes and the scheduled time of 71 flights is shifted

by 30 minutes.

Figure 6 depicts the original schedule of arrivals and departures on 05/25/2007 (Figure 6a) and

the coordinated schedule (Figure 6b). As expected, schedule coordination reduces peak scheduling

levels by rescheduling flights more evenly through the course of the day. Whereas over 30 flights

were originally scheduled during some periods of the day, no more than 25 flights are scheduled

at any period after schedule coordination. Moreover, schedule coordination affects differently the

arrival schedule and the departure schedule depending on whether more landings or takeoffs are

scheduled. For instance, a large number of departures are scheduled at JFK in the morning while

arrival demand lies below capacity. As a result, the Schedule Coordination Model smooths the

morning schedule of takeoffs but leaves the arrival schedule almost unchanged.

(a) Original schedule (b) Coordinated schedule

Figure 6: Original and coordinated schedules of flights (AMAX = 10 and DMAX = 15)

Please note that the coordinated schedule is not distributed evenly over the course of the day.

This is an important observation that underlines the advantages of our integrated approach. It

is well known that, for a given number of scheduled flights, expected delays will be the smallest

when the flights are evenly distributed over the course of the day. But a “flat” schedule would
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generally induce a larger displacement than the solution produced by the Schedule Coordination

Model. Instead, the model maintains some peaks and valleys in the schedule of flights, albeit of

smaller magnitude than the corresponding variations in the original schedule. This is far more

realistic and consistent with airline preferences than a flat schedule. The optimal schedule exhibits

above-capacity scheduling levels at some peak morning and afternoon hours and a schedule slack

at off-peak hours. As well, the relative proportion of arrivals and departures is also maintained.

The coordinated schedule, like the original schedule, has a departure peak in the morning and an

arrival peak in early afternoon. Thus, the optimal schedule lies “closer” to the original schedule

than a flat schedule.

These results underscore the importance of integrating queue dynamics into the Schedule Coor-

dination Model. Indeed, the optimal schedule may maintain some peaks and slacks in the schedule

and may thus differ from a schedule obtained by simply flattening the schedule of flights through

the imposition of schedule limits. Therefore, for a given schedule displacement, applying ex post

flight caps may not result in a delay-minimizing schedule of flights. Put another way, for given delay

reduction targets, the Schedule Coordination Model developed in this paper will generally produce

a solution that induces smaller changes to the original schedule of flights than a solution that caps

the number of arrivals, the number of departures and the total number of flights scheduled per

15-minute period of the day.

4.3 Effects of Schedule Coordination on Flight Delays

The smoothing of flight schedules through schedule coordination reduces the imbalances between

airport demand and capacity. This section quantifies the resulting reductions in flight delays.

We define, in Table 1, 5 different scenarios by imposing 5 increasingly stringent sets of expected

queue length targets AMAX and DMAX. For each test, the table reports the optimal displacement2,

the peak expected queue lengths and the average arrival and departure delays. In the first test,

we impose no constraint on arrival and departure delays. The original schedule is therefore left

unchanged and the expected arrival and departure queue lengths peak at 13.7 aircraft and 32.3

aircraft, respectively. In the four remaining tests, we progressively reduce the limits AMAX and

DMAX that are placed on expected queue lengths. As a result, the minimal schedule displacement

required to meet the queue length targets increases and flight delays decrease.

Note that very substantial delay reductions can be achieved through a limited level of schedule

coordination. The peak expected arrival and departure delays can be reduced by 12% and 39%,

respectively, without displacing any flight by more than 15 minutes. This corresponds to respective

declines in the average delays during the whole day by 5% and 21%. Further delay reductions

can be achieved by displacing some flights by 30 minutes, while keeping the total displacement ∆∗

2The values of the maximal displacement δ∗ and of the total displacement ∆∗ are given as numbers of 15-minute
periods.
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Table 1: Displacement and delays for different expected queue length targets

Test
Queue Length Targets Optimal Displacement Peak Queue Lengths Average Delay

AMAX DMAX δ∗ ∆∗ Arrival Departure Arrival Departure

1 – – 0 0 13.7 A/C 32.3 A/C 9.1 min. 21.5 min.

2 13 25 1 38
12.9 A/C 24.2 A/C 8.9 min. 19.0 min.

(-5.8%) (-25.1%) (-2.38%) (-11.40%)

3 12 20 1 104
12.0 A/C 19.6 A/C 8.6 min. 17.0 min.

(-12.4%) (-39.4%) (-5.32%) (-21.00%)

4 10 15 2 293
9.2 A/C 14.5 A/C 7.7 min. 12.9 min.

(-32.8%) (-55.2%) (-15.59%) (-40.15%)

5 8 10 2 837
6.7 A/C 9.6 A/C 5.8 min. 8.6 min.

(-51.3%) (-70.4%) (-36.80%) (-60.06%)

relatively low. Tests 4 and 5 indicate that the peak expected arrival and departure delays can be

reduced by as much as 30% to 50% and 50% to 70%, respectively. This corresponds to reductions

in the average arrival delay by 4 to 5 minutes per flight, or 15% to 35%, and reductions in the

average departure delay by 10 to 13 minutes per flight, or 40% to 60%.

Figure 7 shows the evolution of the expected arrival (Figure 7a) and departure (Figure 7b)

queue lengths over the course of the day under the original schedule and the coordinated schedules

from Tests 3, 4 and 5. The coordinated schedules correspond to respective expected queue length

targets equal to AMAX = 12 and DMAX = 20, to AMAX = 10 and DMAX = 15 and to AMAX = 8

and DMAX = 10. As suggested in Table 1, schedule coordination results, in these cases, in very

substantial delay reductions. The reductions in peak expected arrival and departure delays are

estimated at 10% to 50% and at 40% to 70%, respectively. Note, also, that schedule coordination

results in a slight extension of the peak scheduling periods. For instance, the arrival peak scheduled

originally at 14:45 is smoothed between 14:00 and 15:00 (Figure 6). As a result, queues may form

earlier with the coordinated schedules than with the original schedule. For instance, afternoon de-

parture delays become significant around 3 pm after schedule coordination, while they remain very

low until 4 pm under the original schedule. However, the magnitude of these delays remains much

more manageable under the coordinated schedule. Instead of increasing almost instantaneously

to over 30 aircraft, the expected departure queue length increases at a lower rate up to 10 to 20

aircraft, depending on the scenario considered. The queue lengths then become stable until the

end of the evening peak under the coordinated schedules.

4.4 Sensitivity of the Optimal Displacement to Queue Length Targets

Finally, we investigate the sensitivity of the optimal schedule displacement to the delay reduction

targets. Figure 8 shows the optimal values of the maximal displacement δ∗ and the total displace-

ment ∆∗ as a function of the expected queue length targets AMAX and DMAX. In this figure, we

impose the same constraint on the arrival and departure queue lengths, i.e. we set AMAX = DMAX.
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(a) Arrival queue lengths (b) Departure queue lengths

Figure 7: Expected arrival and departure queue lengths before and after coordination

Note that, under this assumption, the constraint on the departure queue length is the most likely

to be binding as the departure queue was more peaked than the arrival queue under the original

schedule (see Figure 7).

Figure 8: Sensitivity of the optimal displacement as a function of AMAX = DMAX

Note that the optimal schedule displacement increases exponentially as delay reduction targets

become more stringent. In other words, significant delay reductions can be achieved through limited

interference with the schedule of flights, while the most stringent delay reduction objectives may

require disproportionately large displacements of flights.

First, peak expected departure delays can be reduced by nearly 50% with a small schedule

displacement. Expected queue length targets as low as AMAX = DMAX = 18 aircraft can be met

without displacing any flight by more than 15 minutes (δ∗ = 1). Further delay reductions can
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be achieved by displacing some flights by 30 minutes, while keeping the total displacement ∆∗

relatively low. For instance, imposing expected queue length targets equal to AMAX = DMAX = 15

aircraft reduces peak expected departure delays by 54% with a total displacement equal to 289

15-minute periods.

In contrast, the most stringent delay reduction targets induce significantly larger schedule dis-

placements. For instance, reducing the peak expected departure queue from 20 aircraft to 10

aircraft requires an increase in the optimal total displacement from 98 to 836 15-minute periods. In

addition, the most aggressive delay reduction objectives cannot be achieved without substantially

interfering with airlines’ schedules. For instance, the expected arrival and departure queue lengths

cannot be kept below 8 aircraft at any time of the day without displacing some flights by more

than 30 minutes. Moreover, further reducing the queue length targets might require even more

substantial changes in the planned network of flights, including the elimination of some flights. In

other words, the most stringent delay reduction targets cannot be met through Level 2 coordination

and would require more aggressive demand management strategies. Nonetheless, the results from

this section suggest that limited changes in airlines’ schedules through Level 2 coordination can

result in very substantial mitigation of airport congestion.

5 Conclusion

We have developed an integrated approach to airport congestion mitigation that jointly optimizes

the rescheduling of flights through schedule coordination at the strategic level and the efficiency

of airport operations at the tactical level. We have introduced and implemented a Schedule Coor-

dination Model that optimizes and simulates Level 2 coordination. The model provides a feasible

schedule of flights that meets delay reduction objectives while minimizing the changes in airlines’

schedules. To the best of our knowledge, this is the first study that attempts to integrate stochastic

airport queue dynamics and a tactical model of airport capacity utilization into a strategic flight

scheduling model. To this end, we have developed an original solution algorithm that iteratively

optimizes the rescheduling of flights under deterministic queue dynamics and evaluates flight delays

under stochastic queue dynamics.

The application of the model to JFK suggests that very large delay reductions can be achieved

with limited interference with the flight schedules of airlines. In particular, we have shown that

peak arrival and departure delays can be reduced by as much as 33% and 55%, respectively, without

eliminating any flight, without modifying the scheduled time of over 80% of the flights arriving at or

departing from JFK and without shifting the scheduled time of any flight by more than 30 minutes.

In addition, the proposed schedule maintains all aircraft connections and all passenger connections.

In summary, this paper has shown that even a moderate level of schedule coordination can

provide large system-wide benefits by reducing substantially the congestion costs borne by airlines,

passengers and society. An important next step in this line of research consists in investigating
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the longer-term, dynamic impacts of schedule coordination on airlines’ strategic planning. Future

work can therefore investigate the problem of congestion mitigation from the perspective of the

airlines in a competitive environment. The integrated approach developed in this paper provides a

methodology for addressing these issues.
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