
ESD Working Paper Series

ESD-WP-2012-09 March 2012

Controlling Change Within Complex Systems Through Pliability 

Brian Mekdeci

Massachusetts Institute of Technology
Cambridge, MA 02139, USA 
mekdeci�mit.edu

Adam M. Ross

Massachusetts Institute of Technology
Cambridge, MA 02139, USA 
adamross�mit.edu

Donna H. Rhodes

Massachusetts Institute of Technology
Cambridge, MA 02139, USA 
rhodes�mit.edu

Daniel E. Hastings

Massachusetts Institute of Technology
Cambridge, MA 02139, USA 
hastings�mit.edu

esd.mit.edu/wps

Paper submitted for the Third International Engineering Systems Symposium 
(co-sponsored by CESUN, ESD, and TU Delft), to be held June 18-20, 2012 at TU Delft.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78070445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Third International Engineering Systems Symposium 

CESUN 2012, Delft University of Technology, 18-20 June 2012 

 

Controlling Change Within Complex Systems Through 

Pliability 

Brian Mekdeci1, Adam M. Ross
2
,  Donna H. Rhodes3, and Daniel E. Hastings4 

 

Massachusetts Institute of Technology, Cambridge, MA 02139, USA  

 

mekdeci@mit.edu, adamross@mit.edu, rhodes@mit.edu, hastings@mit.edu 

Abstract. As systems become larger, more complex, and operate for longer periods of 

time, some change within the system often becomes inevitable.  Particularly in 

systems of systems, with diverse stakeholders, evolutionary development and 

managerial independence, it is not unusual for constituent systems to change in form 

or the way they operate.  Changeability, the ability of a system to change, is often 

considered to be a desirable attribute that allows systems to be robust and to adapt in 

response to changes in context.  However, involuntary changes, such as those that 

occur as a result of a disturbance, are more often problematic than favorable.  In 

some ways, the survivability of a system depends on its ability to prevent, mitigate and 

recover from unintentional changes within the system brought about by disturbances.  

For certain large systems of systems, where there are complex interactions and a 

diverse set of stakeholders, even voluntary changes may be frowned upon, since it 

may be an expensive and time consuming process to approve changes. This paper 

discusses pliability, a new “-ility” that places constraints on the changes a system is 

allowed to make.  Pliability is the ability of a system to change, without “breaking” 

or violating an architecture that the system architects intended and validated.  Like 

changeability, pliability increases robustness by allowing systems to voluntarily 

change in response to changing contexts, and increases survivability by increasing 

the likelihood that unintentional changes are still within the set of allowable 

instances.  It also distinguishes allowable changes from those that would require 

validation and approval from decision makers, making it easier to actually implement 

those changes in large, complex systems.  

Keywords. Pliability, value robustness, survivability, changeability, flexibility, agility, 

CONOPs, concept of operations, system architecture. 

1   Engineering for Change 

“Nothing endures but change.” 

-Heraclites (c. 535 BC – 475 BC).  

 

As systems are expected to do more, their complexity often increases as well.  They 

become more expensive to design, test, build, launch, operate and maintain.  With 

shrinking budgets, particularly in public projects, stakeholders expect large, complex 



systems to have long lifecycles and provide value in spite of changes in context. The 

longer a system exists, the more complex its behavior is, or the more dynamic the 

context in which it operates, the more likely something within the system will change.  

Perhaps there will be a change in components, either in the number and type of 

components, or their attributes and capabilities.  This is particularly an issue with 

systems of systems (SoS), since they are often never fully formed, but rather go 

through evolutionary development as components are added, removed and changed 

over time (Maier, 1998).  Even if the components themselves don’t change, what they 

do within the overall system might change.  Certain F-16s, acting as components of a 

larger military SoS, may change from air-to-air combat roles to air-to-surface attack 

roles.  An emergency response dispatcher may process calls in a priority queuing 

manner (based on location or some other factor), instead of a first-in, first-out (FIFO) 

sequence.  Of course, changes often do not occur in isolation.  A change in 

components, will often require operational changes as well, and vice-versa.  If the 

wireless LAN suddenly fails, then mobile system components may be forced to 

operate near an available Ethernet port.  Similarly, a decision to operate certain 

components in a mobile fashion may require batteries or some other portable power 

source instead of an AC power supply.  

 

There has been increasing research studying how, when and why systems need to 

change in response to shifts in context (McManus and Hastings, 2006).  In particular, 

research has areas such as  

 

 Designing latent capabilities that grant the ability to change at a later date 

(e.g., de Neufville and Scholtes, 2011) 

 The ability to change during operational phases (e.g., Gupta and Goyal, 

1989) 

 The ability to change easily / rapidly (e.g., McGaughey, 1999) 

 The ability to change in size only (e.g., Elkins et al., 2004) 

 

The terms “flexible”, “adaptable”, “agile”, and “modifiable” are some of the labels 

that have been used to describe the ability to change.  Unfortunately, most of these 

terms are not consistently defined in the literature, and there is ambiguity as to their 

exact meaning when applied to systems engineering.  This makes it very difficult for 

stakeholders to communicate the properties that they desire, and for architects to 

know that they’ve met those requirements. The ability to change, known as 

changeability (Ross et al., 2008), is an important quality of a system that allows 

stakeholders to reduce the impact of uncertainty of future contexts. However, not all 

changes are beneficial and care must be taken by architects to ensure that any 

modifications to the components or the way they operate, will not reduce value 

delivery to its stakeholders. 

2   Problems with Change 

While it may seem that the more a system can change, the better it will be able to 

respond to shifts in context, there are limits.  In their minds, and sometimes in 



documents, system architects have a concept of operations (CONOPs)1 that describes 

how the components within the system function and interact with each other to 

produce value to the stakeholders within the context of an operational environment 

(Mekdeci et al, 2011) .  A change in one of the components, their capabilities, or in 

the way the components interact or function, may violate an aspect of the CONOPs, 

and cause a reduction in value delivery.  It is important then to only change what 

should be changed, and not change what shouldn’t.  There are many types of change 

to consider, but they can be broadly categorized into intentional changes and 

unintentional changes. 

Intentional Changes.  Intentional changes are those that decision makers choose to 

execute, often in response to a shift in context or stakeholder needs.  An example of 

an intentional change would be if airline engineers added AC power ports to all the 

seats in an existing aircraft to keep up with market demand.  Intentional changes are 

typically the types of changes described by researchers when they discuss 

changeability, flexibility, agility and other types of change-related system properties.  

However, the concept of “intentional” changes should be clarified further than has 

traditionally been the case.  Sometimes, decision makers may want to implement a 

change to improve value delivery, but end up reducing it instead.  This is because as 

the system complexity grows, and as more changes are made to the system, it 

becomes increasingly difficult to verify and validate the effects that changes will 

have.  Sometimes, the original architects and engineers who designed the system and 

really understood the CONOPs may no longer be available to evaluate impacts of 

planned changes. Subtle assumptions that were not made explicit, may be violated 

with any new changes and could prove to be not only disastrous, but difficult to find 

until it’s too late.  This is particularly a problem with systems of systems that have 

autonomous constituent systems with emergent behavior that is notoriously difficult 

to model.  The larger the system, or the more expensive, or the more stakeholders 

involved, the likelihood of someone wanting to accept responsibility for any one 

particular change decreases.  Thus, there may be a substantial bureaucratic process 

involved for any complex system that makes it extremely time-consuming and costly 

for all but trivial changes to be made.  This “red tape” can seriously impair the ability 

of the system to respond quickly to changes in context, especially if it takes years to 

approve any significant changes.  

 

Unintentional Changes.  Unintentional changes are those that the system is “forced” 

to undergo, that is, changes that occur whether the decision makers want them to or 

not. Some unintentional changes just happen without any intervention or “approval” 

from the stakeholders.  A collision with a bird may cause an engine to malfunction, or 

a power outage may cause a monitoring system to fail. Other unintentional changes 

happen after decision makers authorize them, but only because they have to, in 

response to some other event beyond their control.  A labor strike may force a city’s 

engineers to shut down the subway, or a new environmental regulation may cause a 

chemical plant to replace certain older equipment with newer, more environmentally-

friendly models.  Since unintended changes are likely to be problematic, system 

                                                           
1 To some researchers and practitioners, the word “CONOPs” refers to documentation that 

describes how a system works, rather than the concept of how the system works itself.  



architects typically try to minimize their causes and effects as much as possible.  

Unintentional changes that are the result of endogenous forces, such as random 

component failure, are the focus of reliability engineering (Leveson, 1995), whereas 

system survivability and robustness strive to prevent, mitigate and recover from 

unintended changes caused by exogenous forces such as lightning strikes and resource 

shortages. 

3   Change in Tradespace Studies 

 

Tradespace studies are often used to help decision makers assess and compare various 

system designs in the conceptual stage of a system’s lifecycle (Stump et al., 2004).  

Typically, designs are modeled and simulated and their overall utility (as determined 

by stakeholder/decision maker preferences) is plotted against cost.  For a system that 

does not change, the utility and cost is constant for a particular context (Figure 1).  

However, if the system can change, then for a given context, there can be a range of 

utility/cost that a system can achieve or change to (Figure 2).  Several interesting 

questions arise. Suppose in Figure 2 that system B differs from system A only in that 

an extra component is added (providing additional value at additional cost).  Are these 

systems just two different instances of a similar architecture?  Should the 

changeability of systems A and B be represented somehow in the tradespace (Ross 

and Hastings, 2006)?  When does a change cause a system to become another system?  

What defines a simple transition change from an evolution change?  

 

Fig. 1. Sample plot of static system.                            Fig. 2. Sample plot of changeable system.                             

 

Changes are not always as discrete and obvious as adding components.  Sometimes 

small changes in the way a system operates could have large cost and performance 

consequences. As an example, if a 911 call center prioritizes calls based on location, it 

may have vastly different performance results that one whose mode of operation is to 

respond to calls in a first-in, first-out manner.  Explicitly trading the modes of 

operation may result in multiple points in the tradespace for the same set of 

components. If the modes of operation are not traded, then system architects must 



recognize that if operators use the same system in a different way, it may appear to 

“move” in the tradespace. It is for this reason that system architects should explicitly 

consider an operations “envelope” around points to account for various modes of 

operation. 

 

It is clear that systems may need to change in response to varying contexts and do 

change (intentionally or not).  What is lacking is a system property that explicitly 

addresses the need to specify limits on what should be allowed to change, in order to 

ensure that any modifications of the system’s form or mode of operation does not 

adversely affect its value delivery. The authors feel that a new “ility” is needed – one 

that recognizes the need for change, but also recognizes that there are limits to what 

should be allowed (i.e. there are “bad” changes that should be avoided or prevented). 

The term we use for this new ility, pliability, has not been widely used in the literature 

before. Our research seeks to precisely define the term and make it useful to 

researchers and practitioners alike. 

4   Defining Pliability 

The English word pliable is defined as “capable of being bent or flexed or twisted 

without breaking” (WordNet 3.1, 2012). For systems engineering, pliability can be 

defined as “…the ability of a system to change, without breaking its system 

architecture”.  We define a system architecture to be a collection of components and 

an associated concept of operations (CONOPs), whose instances provide some value, 

within a particular context.  Since a system architecture can allow different sets of 

components and CONOPs, the form of a system is a specific collection of components 

(and their associated capabilities), while a mode of operation is a specific CONOPs (a 

way that those components are functioning and interacting with each other).  An 

instance is a specific form and mode of operation pair, that belongs to the system 

architecture.  Thus, 

 

             (1) 

 

where Iij is the instance consisting of the ith form specified in the set of 

components and the jth mode of operations specified in the CONOPs of some 

particular system architecture.  The pliable set of a system architecture, is the 

set of all possible instances that are allowed by the system architects to belong 

to that system architecture.  Thus, we can write that for system architecture X: 

 

 

                                (2) 

 

where n is the total number of sets of components and m is the total number of modes 

of operation specified in the form and CONOPs respectively.  We can also say that a 

realized system, is an actual physical realization of a system architecture that provides 

value to stakeholders.  Therefore, pliability is the property of a system to be able to 



switch to other allowable instances of a system architecture, specified by the 

architecture’s pliable set. 

 

If a system architecture has multiple instances, then a system always assumes one of 

these instances at any time t, and can transition to the other instances defined in the 

pliable set of its system architecture, while remaining the same system.  If a system 

transitions to an instance outside of its system architecture, then it becomes an 

unapproved system.  Whether this new system will “work” (i.e. provide adequate 

value to the stakeholders) is unknown (at best), since it does not belong to the set of 

allowable instances, defined by the architects who designed the system to begin with.  

Thus, it is usually in the best interest of the architects and decision makers to not let 

systems change into instances outside of their system architecture.  

5    Using Pliability 

After we have defined what a system architecture is and its relationship to an instance 

and a realized system, the concepts and usefulness of pliability can be illustrated with 

a simple example.  Suppose a port authority wants to develop a maritime security 

system of systems (SoS) that will identify targets as they pass through a particular 

area of interest (AOI).  The stakeholders identify two choices that they wish to 

explore: The first choice is the number of unmanned aerial vehicles (UAVs) to 

include in the SoS (either 4 or 8), and the second choice relates to the use of a manned 

patrol aircraft (MPA).  If a MPA is added to the SoS, then it is possible to operate in a 

double target confirmation mode by requiring both manned and unmanned vehicles to 

positively identify a target.  This mode takes longer, but typically has more accurate 

results as opposed to a single target confirmation done by UAVs only.  Therefore, the 

stakeholders initially want the system architects to develop and test four designs: 

 

1. D1 = [4 UAVs / 0 MPA, Single target confirmation] 

2. D2 = [8 UAVs / 0 MPA, Single target confirmation] 

3. D3 = [4 UAVs / 1 MPA, Double target confirmation] 

4. D4 = [8 UAVs / 1 MPA, Double target confirmation] 

 

Using Pliability in Architecting Systems.  Given the requirements, the system 

architects can model and simulate the four systems that satisfy the component and 

CONOPs considerations that stakeholders are interested in.  However, the acquirers 

ask the architects to make the systems pliable, then the architects must specify exactly 

what changes can be made to the systems without breaking their system architecture.  

Based on their initial concepts, the architects realize that switching between 4 and 8 

UAVs is trivial.  If this is the case, then perhaps a system architecture can be defined 

that has two instances – one with 4 UAVs and one with 8 UAVs, and a system can 

transition between the two, as necessary.   However, due to safety concerns, mixing 

manned and unmanned vehicles requires a more complex air traffic control (ATC) 

implementation than just having unmanned vehicles alone, and therefore it is not 

possible for a system to transition from one type of ATC to another without a very 

high cost.  For the stakeholder preferences under consideration, this change cost 



would be considered prohibitive.  A purely unmanned vehicle system can work with 

the complex ATC, so transitions are possible if such a system were to be 

implemented.  Therefore, there are actually two distinct system architectures, defined 

by the type of ATC they use (illustrated with their connected instances in Figure 3) 

meaning there are two distinct systems, SS and SC not four.  One system can transition 

between two instances (4 or 8 UAVs), while the other can transition between four 

instances (4 or 8 UAVs, 0 or 1 MPA).  

 

1. Simple ATC SoS (Ss):  

o I1S = [4 UAVs / 0 MPA, Single target confirmation] 

o I2S = [8 UAVs / 0 MPA, Single target confirmation] 

2. Complex ATC SoS (Sc): 

o I1C = [4 UAVs / 0 MPA, Single target confirmation] 

o I2C = [8 UAVs / 0 MPA, Single target confirmation] 

o I3C = [4 UAVs / 1 MPA, Double target confirmation] 

o I4C = [8 UAVs / 1 MPA, Double target confirmation] 

 

 

 

Fig. 3. Comparison between two different system architectures of the maritime security SoS. 

 

When the two systems are modeled and simulated, they generate tradespaces as 

shown in Figure 4.  Note, that a system with multiple instances doesn’t just generate a 

single utility/cost point in a tradespace for a given context.  Instead, it is a collection 

of utility/cost points generated by each of the instances in its architecture that it can 

transition to.  Similarly, a tradespace can be generated “top-down” from a system 

architecture, by generating utility/cost points for all allowable instances within its 

pliable set. 



 

Fig. 4. Tradespace for two different system architectures of the maritime security SoS. 

6.   Using Pliability to Achieve Survivability, Value Robustness and 

Agility 

Survivability has been defined as the ability of systems to minimize the impact of 

finite-duration disturbances on value delivery (Richards, 2009).  This requires the 

effective handling of change within systems – either by preventing, mitigating or 

recovering from unwanted change caused by disturbances, or intentionally changing 

in response to new contexts.  By requiring that systems be pliable, survivability and 

value robustness can be increased in three different ways; (1) By requiring system 

architects to go through a design cycle that explores the limits of their systems, (2) by 

increasing the number of safe instances that system can transition to, and (3) pre-

validating change options to reduce the time and effort required for stakeholders to 

approve changes, allowing them to be implemented quicker and easier.  These 

benefits are discussed below: 

 

Disturbance Discovery and the Pliability Design Cycle. In defining the pliability of 

systems, the architects must specify what is allowed to be changeable within the 

system, which means they must provide some guarantee that such changes will not 

adversely harm its value delivery.  To do this, they need to examine the parameters 

within the system architecture, both in components and in CONOPs, to see what can 

vary, what can’t, and what the limits should be.  This exercise forces architects to 

think about the causes and effects of change within their system, perhaps at a level 

they normally would not have.  In the maritime security example, system architects 

would have to determine how many UAVs the SoS would support beyond the 4 and 8 

suggested by the stakeholders.  This is because it’s possible that some disturbance 

may cause UAVs to be unavailable, or perhaps an increase in traffic would necessitate 

adding additional vehicles to meet the demand.  In this example, they might realize 

that due to range limitations, they have to divide the AOI into two areas, meaning the 

minimum number of UAVs necessary to cover the AOI would be two.  Similarly, due 

to bandwidth constraints, the maximum number of UAVs would be 12.  At this point, 

they can analyze whether these constraints will satisfy their value robustness 



requirements.  What is the likelihood, given labor shortages, bad weather, random 

component failures, and other disturbances, that the SoS may find itself with less than 

two available UAVs?  Similarly, what conditions would have to exist for the system 

to need more than 12 UAVs?  In an iterative fashion, as more disturbances and 

change agents are considered, changes in a candidate architecture are made, which 

lead to an expansion or reduction in the pliable set, from which feasible systems are 

evaluated.  Thus, the process of defining an architecture and its pliable set becomes a 

cycle (Figure 5), where system architectures and systems are analyzed in the presence 

of disturbances and change agents, through the concept of pliability. 

 

 

Fig. 5. System cycle for pliability 

 

Increasing Available Options. If a system is pliable, then that means it can change 

(to some extent) and still maintain acceptable performance under the original contexts 

that were considered.  Survivability is increased automatically as the pliable set of a 

system architecture expands, simply because the outcome system state of an 

unintentional change is more likely to be contained within the pliability of the system 

it affects.  Returning to the maritime security example, a system that provides 

acceptable value with between 2 and 12 UAVs is going to be able to survive hostile 

attacks, component failures, increases in fuel prices and all sorts of other endogenous 

and exogenous changes that impacts the number of operational UAVs better than a 

system that is only designed to be able to accommodate either 4 or 8 UAVs.   

 

Increasing Agility.  By pre-validating reachable instances in the conceptual phase, 

the amount of approval necessary for changes after design should decrease.  This 

reduces the “red tape” and allows complex systems to respond quicker to context 

shifts, increasing the ability for a system to change quickly (i.e. increasing agility 

(McGaughey, 1999)) in response to changes in context.    

7    Conclusion 

Change happens, and it is something that system architects must consider for complex 

systems with long lifecycle, operating in dynamic environments.  Not all change is 

valuable, and successful systems will be able to avoid, mitigate and recover from 

harmful changes, and implement beneficial ones in a timely and cost-efficient 

manner. Incorporating change into engineering design is something that many 

researchers and practitioners realize is necessary; however, pliability distinguishes 



systems from their architectures, and introduces the concept that the architecture 

should be validated so that it has multiple valid instances to which a system may 

transition, should the need arise.  In this way, pliability increases survivability, value 

robustness, and possibly agility, by requiring architects to consider disturbances, 

context changes and changes that might not have been considered, increases the safe 

options available to a system in the event that a change occurs (intentional or not), 

and decreases the red tape involved in implementing intended changes.   

References 

De Neufville, R., Scholtes, S. (2011). Flexibility in Engineering Design. MIT Press, 

Cambridge. 

Elkins, D.A., Huang, N., Alden, J.M. (2004). Agile manufacturing systems in the 

automotive industry. In: International Journal of Production Economics, pp. 201-214.  

Elsevier,  Burlington. 

Leveson, N. (1995). Safeware: System Safety and Computers. Addison-Wesley, Boston. 

Gupta, Y.P., Goyal, S.  Flexibility of manufacturing systems: Concepts and measurements. 

In: European Journal of Operational Research, pp. 119-135. Elsevier,  Burlington, MA. 

McManus, H., Hastings, D. (2006).  A Framework for Understanding Uncertainty and its 

Mitigation and Exploitation in Complex Systems. In: IEEE Engineering Management 

Review, pp. 81-94. 

McManus, H.M., Richards, M.G., Ross, A.M., Hastings, D.E. (2007).  A Framework for 

Incorporating "ilities" in Tradespace Studies.  Proceeding of AIAA Space 2007, Long Beach, 

CA. 

McGaughey, R. E. (1999). Internet technology: contributing to agility in the twenty-first 

century. In: International Journal of Agile Management Systems, pp. 7-13.  Emerald, 

Bingley, UK. 

Mekdeci, B., Ross, A.M, Rhodes, D.H., Hastings, D.E. (2011). System Architecture 

Pliability and Trading Operations in Tradespace Exploration. In: Proceedings of IEEE 

International Systems Conference. Montreal, PQ. 

Richards, M. G. (2009). Multi-Attribute Tradespace Exploration for Survivability. PhD 

Thesis.  Massachusetts Institute of Technology, Cambridge, MA. 

Ross, A.M., Hastings, D.E. (2006). Assessing Changeability in Aerospace Systems 

Architecting and Design Using Dynamic Multi-Attribute Tradespace Exploration. In: 

Proceedings of AIAA Space 2006, San Jose, CA. 

Ross, A.M., Rhodes, D.H., Hastings, D.E., Defining Changeability: Reconciling Flexibility, 

Adaptability, Scalability, Modifiability, and Robustness for Maintaining Lifecycle Value.  

In: Systems Engineering, pp. 246-262.  Wiley, Hoboken, NJ,  

WordNet 3.1 Online Lexical Database, wordnetweb.princeton.edu. (last accessed on 27 Feb 

2012). 

Stump, G.M., Yukish, M., Simpson, T.W., O'Hara, J.J. (2004). Trade space exploration of 

satellite datasets using a design by shopping paradigm. In: 2004 IEEE Aerospace 

Conference Proceedings, pp. 3885-3895.  Big Sky, MT. 




