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Abstract

Focusing on mitigation strategies for global pandemic influenza, we use elementary

mathematical models to evaluate the implementation and timing of intervention strategies such

as travel restrictions, vaccination, social distancing and improved hygiene.  A spreadsheet model

of infection spread between several linked heterogeneous communities is based on analytical

calculations and Monte Carlo simulations.  Since human behavior will likely change during the

course of a pandemic, thereby altering the dynamics of the disease, we incorporate a feedback

parameter into our model to reflect altered behavior.  Our results indicate that while a flu

pandemic could be devastating; there are coping methods that when implemented quickly and

correctly can significantly mitigate the severity of a global outbreak.
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Introduction

Influenza pandemics have occurred intermittently over centuries killing millions of

people worldwide. When a novel influenza virus emerges from the animal or avian reservoir

humans do not have immunity to this new strain and so everyone is susceptible. While medical

advances over the past century have been significant, it still takes four to six months, sometimes

more, to develop and produce sufficient vaccine. Thus, if a new flu virus emerges, it can spread

quickly throughout the world causing a pandemic. Such a disaster would not only place

extraordinary and sustained demands on the public health and medical care systems, but will also

burden the providers of essential services and strain the operations of all businesses. Federal

government forecasts estimate that up to 40% of the US population may be absent from their

daily routines for extended periods of time as a result of illness or care-giving responsibilities

[IPNSPI, (May 2006)].  High rates of worker absenteeism could in turn affect critical

infrastructure, including the operations of water treatment facilities and power plants, while

efforts to slow the spread of disease could limit the availability of food. A pandemic would

impact all sectors of society.

The U.S. National Intelligence Council’s 2020 Project “Mapping the Global Future”

identified a flu pandemic as the single most important threat to the global economy [Karesh,

Cook (2005)]. A report from the Lowy Institute for International Policy concluded that even a

very mild pandemic, like the 1968-9 version, would result in a global economic loss of $330

billion and a human loss of 1.4 million [McKibbin (February 2006)]. A catastrophically severe

1918 version is forecasted to wipe out $4.4 trillion of global economic output and kill more than

140 million people [McKibbin (February 2006)].  The potential number of deaths is greater than

those forecasted from a nuclear exchange between two warring nations.

 The current most discussed pandemic threat is caused by the H5N1 strain of the

Influenza A virus which has resulted in an outbreak of avian influenza in Asia, Africa and

Europe. The virus has infected birds in over 35 countries and has resulted in the deaths, through

illness and culling, of over 200 million birds across Asia. Various control measures have been

attempted, but the virus persists and is endemic in Southeast Asia, found in long-range migratory

birds, and is unlikely to be eradicated soon. The H5N1 virus is able to infect a wide range of

hosts, and as of August 31st 2007 has been reported to have infected 327 people in twelve

countries, resulting in 199 deaths [WHO (August 2007)].  While this virus has not shown an
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ability to transmit efficiently between humans, there is concern that it will acquire this capability

through genetic mutation or exchange of genetic material with a human influenza virus. Even if

the currently circulating H5N1 virus does not result in the next human pandemic, evidence

suggests that a different influenza strain is likely to emerge and cause the next catastrophic

pandemic. For example: H9N2 infected children in China in 1999 and 2003; H7N2 caused

infections in New York and Virginia in 2002 and 2003; and H7N3 infected poultry workers in

Canada in 2004[CDC (2005)]. In 2003 H7N7 infected more than 1,000 people in the

Netherlands, even passing from human to human [Ensernik (2004)]. Overall, the National

Academy of Sciences, CDC and chief medical personnel across the world agree that an influenza

pandemic is only a matter of time [Gerberding (2005), Car-Brown(2005), Knox(2005)].

The potential magnitude of this disaster requires advance planning, early preparedness

and rapid action after detection of efficient transmission of a new and lethal virus. During the

past few years policymakers have begun to realize the severity of this threat, and preparedness

plans have started to develop across many layers of government. The US Department of Health

and Human Services issued guidelines in November 2005, but left it to the states to make

specific plans, indicating that states shouldn’t rely of the federal government for much help

during a pandemic. States have released versions of their pandemic plans, but most states do not

include personal contact-avoidance or other more nonpharmacologic containment steps

[Holmberg (2006), HHS (2007)]. One authority was even quoted saying that “short of obtaining

[antiviral] drugs, there isn’t much we can do to prepare” for a pandemic [Weaver (2005)]. To

explain this omission, policymakers point to the lack of epidemiologic data proving the

effectiveness of nonpharmaceutical community interventions. However, evidence from the

SARS outbreak indicate that improved hygiene, masks and other behavioral changes decreased

the spread of respiratory disease by 90% [Lo (2005)]! Modeling these disease spread processes

helps us understand the potential effect of interventions before the flu hits. The goal is to help

provide decision makers with a systematic approach to evaluating and comparing the

effectiveness of various government imposed containment strategies and voluntary behavioral

changes.   

In this paper, we review the implications and then build on Larson’s model [Larson

(2007)] to consider the spread of infection between several loosely linked communities. After

adding this spatial structure, we discuss the effectiveness of more complex and realistic control
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strategies and consider the consequences of reactive behavioral changes. The analysis of

imposed interventions includes the evaluation of travel restrictions’ efficacy in stopping the

spread of the virus to neighboring communities. We also consider different distribution strategies

of limited vaccine. Since people are likely to alter their daily behavior based on the information

they receive regarding the extent of the infection, we propose a unique approach to incorporating

human reaction into our model and then analyze its impact. After examining each of these factors

individually we compare and consider their combined potential in decreasing the extent of the

outbreak. Our results indicate that with proper planning, even without any vaccines or anti-virals,

we can make a difference in the course of the next pandemic.

1. Background

1.1 Literature Review

The types of models that have been used to describe the spread of infection range from

basic differential equations models to detailed stochastic agent based simulations. One of the

most widely used approaches relies on one specific parameter for the description of infection

spread – the basic reproductive number R0: the average number of infections a typical infectious

individual will generate in a fully susceptible population [Diekmann (1990)]. An infection can

grow in a fully susceptible population if and only if  R0>1 [Hethcote (2000)]. As the population

of susceptibles is depleted the generation specific reproduction number, R(t) reflects how many

secondary infections will result from each newly infected individual on generation t. There are

three types of approaches based on the basic reproduction number: models that express R0 in

terms of parameters that describe the virus’ virulence and morbidity [MacDonald (1952), Hyman

(2000)], models that fit the R0 parameter to data using branching or martingale models [Becker

(1974, 1989)] and models that use endemic equilibrium data to derive R0 [Dietz (1975, 2002)].

While using R(t) or R0 provides a computationally intuitive basis for describing disease

dynamics, this approach neglects important heterogeneity and stochasticity complexities [Eubank

(2004), Larson (2007)] . Unfortunately, while R0 has some benefits, it has often been a limiting

modeling approach that many adhere to without question.

Many recent models have incorporated information about social network structures in

order to understand the impact of social mixing patterns. Network models can range from simple

lattice and random mixing networks, to small-world graphs, to incredibly detailed social
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networks where the nodes represent people, and edges represent specified relationships or

interactions. These networks provide a backbone for stochastic Monte Carlo models that

simulate how an infection could spread from one source node to the rest of the population. These

studies have shown that the degree, betweenness and farness of nodes alter disease dynamics

[Christley (2005)].

There are also stylized models of more realistic social networks such as the Glass et al.

model. In their work all persons within each household were linked to each other with mean link

contact frequencies of 6/day. Every person also belonged to 1 multiage extended family group

with a mean link contact frequency of 1/day. Furthermore, mean link contact frequencies for

children in a school are 6/day. Teenager classes, adult work, and gatherings of older adults result

in 1 mean link contact per day. By incorporating these more realistic nuances the group found

the importance of children mixing schools as a key driver of infection. Their dramatic finding

was that children and teenagers who compose only 29% of the population are responsible for

59% of infection. This group did not rely on R0, in fact they point out that the calculation of R0

from small-community data such as theirs is ambiguous.

A significant portion of current research has taken this even further making use of the

advancement of computer capabilities. For example, Los Alamos with the use of their

supercomputer, initially created for nuclear weapons’ study, models every individual within the

US and study flu spread [German (2006)]. Using census data and transportation information they

produced a complex program which simulated, at a very detailed level, the interaction of over

240 million “people” over 180 days. The modelers openly acknowledge that “the spontaneous

public response to news of an approaching pandemic will affect social behavior in unpredictable

ways.” To reflect that in their simulation they implement various social distancing behaviors that

are expected given an initial pandemic curve. The problem is that human reaction should reflect

the updated epidemic, but this dynamic concept is not incorporated. As a result the social

intervention strategies are terminated too early to be fully effective. The researchers’ conclusions

are that vaccines and antiviral drugs will be the salvation to the pandemic disaster; however,

limiting contact between people through travel restrictions, quarantine and school closing will

only buy time, perhaps enough time for vaccine production, but will not stop the epidemic.

Two other recently developed agent-based models attempt to predict the scenario that

could occur in Southeast Asia where the disease is expected to commence. Ferguson et al.
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conclude that as long as the virus was less transmissible than the 1918 flu, combining

geographically and socially targeted prophylaxis and social distancing could stop a nascent

pandemic[Ferguson (2005)]. Similar in intention, the Longini et al. group has similar findings

[Longini (2005)]. Both works highlight the importance of early diagnosis and immediate

treatment, the significance of proper timing is a shared finding that should sway policy makers’

flu containment measures. Yet again these models do not attempt to model reactive human

behavior changes because it is too unpredictable.

1. 2 Model Basics

In order to capture the complexities of a heterogeneous population, we follow Larson’s

approach and divide the population of each community into several groups based on their daily

social activity levels. We will assume that face-to-face social contacts within each community

will occur as a homogenous Poisson process with rate parameters dependant on the level of

social activity. For the rest of the numerical calculations and simulations we split the population

of each community into 3 groups: high, medium and low activity persons. Let us define:

λH
A = Average number of social contacts of a High activity person in Community A/day

λM
A

 = Average number of social contacts of a Medium activity person in Community A/day
λL

A
 = Average number of social contacts of a Low activity person in Community A/day

nH 
A = Initial total population of High activity persons in Community A
(t)n AI

H = Number of High activity infective & asymptomatic persons in Community A on day t

(t)n AS
H = Number of High activity susceptible persons in Community A on day t *

Let us clarify that throughout our work we define one day as one generation of the infectious

period of the virus. One day in our model is closer to 2-3 actual days.

We initiate the outbreak with one infectious individual who spreads the disease during

day 0. By the end of this day the initial seeder self-isolates, recovers or dies, and only the newly

infected individuals spread the virus on day one.  Evidence of self-isolating behavior has been

observed in practice [Zeng (2002)] and reflects peoples’ departure from the infectious category.

An infected individual never reenters the susceptible population since people gain immunity if

they survive the disease. This pattern continues for the rest of the outbreak.

                                                  
* The remaining variables for each of the activity groups are defined according to the above established pattern.
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From Larson’s paper we know that for a random person on day t in Community A the

probability that the next interaction will be with an infected individual is:
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Given all the λ’s and assuming homogeneous susceptibility:

p = probability that a susceptible person become infected, given contact with an

infectious individual.

We know that the probability that a random susceptible High activity person in Community A

gets infected on day t is:

ptAS
H

AA
Hetp )(1)( βλ−−=

In Table 1, we present the base case parameter values that we continue to use throughout this

paper to present the results of our modeling analysis based on the above formulations.

Graph 1 is an illustration of average infection spread within a hypothetical community;

notice that the virus spreads faster through a population with several activity levels when

compared to a homogeneous community with an equivalent overall average activity level.  The

imprecise, but widely accepted, definition of R0 is the average number of people infected by the

initial seeder in a fully susceptible population. For the heterogeneous and uniform communities,

the expected number of daily contact of a randomly selected person from either population will

be the same, thus using one interpretation, without knowledge of the intra activity group

interactions, R0 is identical in both instances. Graph 1 illustrates a fundamental flaw in the usage

one averaging parameter such as R0 (or R(t)) as the sole modeling factor.

Diversity of human activity levels is not the only heterogeneity that differentiates

individuals; we can also include heterogeneity of people’s susceptibility to infection. We can

split the population into groups based on their vulnerability to the disease; in this case we define

different probabilities of transmission given contact with an infected individual. For the sake of

fair comparison we ensure that on average susceptibility - the probability of infection given

contact - is identical in the uniform and diverse populations. Scenarios of how different types of

disparities within the population affect the proliferation of the disease are summarized in Graph

2. Again, the diverse groups have a higher and earlier epidemiological peak, and potentially

fewer total infections since the disease can die out faster. Relying singly on R0 would not have



8

captured the possibility of these significantly different outcomes. R0 is meaningless and often

misleading without knowledge of the societal structure and immunal propensity to the flu of the

underlying population. A central observation from Graphs 1 & 2 is that the immunally weak and

socially active individuals are not only themselves more predisposed to the flu, but are also the

key spreaders of infection to the other groups.†

2. Spatial Spread: Multi-Community Models

Historical examples show that one infected traveler is enough to infect a whole

population. During the 1918-1919 flu many Alaskan villages were completely devastated by

influenza because the man who brought the villagers their mail also brought the flu [Underwood

(2005)].  In China’s remote Shanxi province, the spread of the 1918 pandemic was traced to a

single woodcutter, tramping from village to village [Greger (2006)]. In Canada, the virus wore

the uniform of a stubborn Canadian Pacific Railways official who flouted quarantine, dropping

off infected repatriate soldiers from Quebec all the way west to Vancouver [Greger (2006)]. The

only places to escape unscathed during the 1918 pandemic were 3 small islands completely shut

off from the outside refusing even mail delivery [Herda (1995)]. On mainland one successful

resort town in New Zealand went to the extreme of cutting itself off from the world using a

“rotating roster of shortgun-wielding vigilants” [Greger (2006)].

There are more recent examples of one traveler sparking a large outbreak; a pilgrim

returning from Mecca was the source of a large smallpox outbreak in Yugoslavia in the early

1970s that resulted in 174 Yugoslav cases and 35 deaths [WHO (1972)]. The pilgrim contracted

the infection in Baghdad while visiting a religious site, but because his symptoms were mild, he

was never confined to bed and was able to continue his travels, return home and start an

outbreak. Finally, in the case of SARS, studies indicate that thermal screening and health

declarations of travelers didn’t significantly stop the flow of determined travelers or the spread of

SARS [Bell (2004)]. These examples indicate the importance of a model that captures

geographical dispersion of infection resulting from very few traveling infected people.

                                                  
† These qualitative results are supported by findings of the real-time surveillance system at Boston’s Children’s
Hospital which found children, who, compared to adults, have more contacts and increased vulnerability, to be the
drivers of seasonal flu; in particular, preschoolers are considered to be “hotbeds of infection” [Neergaard (2005)].
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2. 1 Fully Connected Communities Model

Two Communities Model

The first layer of realism that we added to Larson’s model is spatial complexity: we

developed a loosely connected multi-community structure using Monte Carlo simulation to

model disease spread between cities. In a two community model each community has its own

demographic and epidemiological composition. The populations are loosely connected by very

few random daily travelers. A certain number of randomly selected people from each activity

level j, TAB
j, travel overnight from A to stay exactly one day in B before returning home the next

night. In the base case TAB
j = TBA

j =2, giving us a total of 12 travelers going back and forth

between two communities. During a visitor’s one-day stay in the adjacent community his

interaction level does not change from what it was within his/her home community.

We initiate the outbreak with an infectious seed in Community A, and the disease

propagates to other individuals within this community (Graphs 1 and 2). Since travelers

continue their movement between communities, eventually it is likely that one of the travelers

becomes infected, thus he becomes the passageway for the transition of the infection from one

community to another. Let us emphasize that there are 2 ways that Community B can get the

infection:

1. An infected individual residing in A travels from A to B and infects people in

Community B which instigates the outbreak in B (even though the traveler returns to A at

the end of the day)

2. A susceptible individual residing in B travels from B to A and gets infected while visiting

Community A. The newly infected individual returns home to Community B and

becomes the initial spreader within his community.

We have two processes competing to bring the pandemic to Community B. After the pandemic is

in both populations, we assume that the few individuals traveling back and forth, with or without

the infection, will not change the disease dynamics in either of the communities.

This structure allows us to apply large population-based averaging techniques to model

the occurrences within the community. At the same time, we use Monte Carlo simulation to

model the stochastic person-to-person transmission of infection to reflect the varying intra

community spread of infection. Using this structure, we address the question: if the initial case of
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the virus occurs on day 0 within Community A, on average how quickly will it spread to an

adjacent community?

The probability of the virus spreading to a new community changes on a daily basis. In

order to find the probability that on day i at least one infectious individual from activity level j

visits Community B, we can “identify” this random individual and find the probability that this

traveler gets infected during day i-1. The probability that exactly k infected individuals of

activity level j travel from A to B and bring in the virus on day i is:

( )( ) kTptkpt
j
ABAB

j

j
ABAA

j
AA

j ee
k
T

tkp
−

−βλ−−βλ−−
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Thus the probability that none of day i's  travelers from A to B are infectious is:

( )∏∏ −βλ−=
j

Tpt

j

AB
j

j
ABAA

jetp )1(),0(

Symmetrically, the probability that a traveler from Community B gets infected and brings back

home the infection on day i is the same. So ),( tkp ABj = ),( tkpBAj . Lastly the probability of having

the infection enter for the first time on day i is:

( )),0(),0(1*),0(),0()Bin infection  ofday 1st   theis (
1

0

ipiptptpiP BA
j

AB
j

i

t j

BA
j

AB
j −=∏∏

−
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Notice that the probability of never infecting a neighboring community is greater than 0, thus the

expected time till the next community gets contaminated is infinity. As a result we can’t rely on

expected value, instead it is helpful to know the probability that day t is the first day of infection

entering into the neighboring community. From Graph 3 we see the probability of infection

spread is almost certain if the twelve travelers maintain their trips and if the virus is relatively

transmissible amongst individuals.

Performing sensitivity analysis on the transmissibility parameter we find that if p is low

enough, not only will the infection die out quickly within Community A, but the probability of

spreading to Community B also decreases significantly. One approach is to use the often referred

to fact that infection dies out at R0<1 and apply it to calculate the point at which the virus would

not be able to grow into an epidemic. One way to evaluate R0 is to consider the number of daily

contacts multiplied by the probability that one such contact will lead to transmission and then

averaged over the whole population. Assuming that the population is large enough and that each
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interaction outcome is independent of the others R0 can be simplified to the population’s average

number of daily contacts multiplied by the average probability of transmission per contact. Then

in the community on average there will be (50+10+2)/3 =20.67 daily contacts, so this implies

that a p<0.0484 should stop the pandemic. Yet when we use our heterogeneous community

model we find different results. Graph 4 illustrates how the probability of spread to the

neighboring communities changes with the transmissibility of the infection. The infection will

not spread to its neighboring communities if probability of transmission is decreased to below p

<0.03, which is significantly different then p<0.0484. As long as the virus does not achieve

epidemic status within the initial community, it is not likely to transfer to neighboring towns, but

heterogeneous communities make the infection more persistent.

We also varied the number of travelers between the cities from our baseline number of 12

daily travelers between two communities of 300,000 each to between 1 to 120 daily travelers.

Our results are summarized in Graph 5. We find that as the number of travelers increases the

infection becomes more likely to reach the adjacent community earlier. The startling finding is

that even with only one daily highly-active traveler between the two communities the disease

still spreads to the adjacent community with an incredibly high probability.

Travel Restrictions

This result indicates that travel restrictions unless 100% effective will fail to stop

infection spread. Yet during SARS some governments forced travel restrictions, and even simple

travel advisories decreased the number of voluntary travelers to SARS infected communities

[Bell (2004)]. This experience suggests that travel patterns will change in the case of flu, so it is

interesting to further consider the potential effect of travel restrictions.

From Graph 3 we see which days are the most risky for the spread of infection, so we

restrict travel during those critical days. The results in Graph 6 indicate that partial restrictions,

such as halving the number of travelers, are practically ineffective. This is because during the

outbreak the number of sick grows exponentially, while the restriction only decreases travel by a

fixed factor, as a result incomplete travel controls only delay the spread, by one or two days until

the exponentially growing number of sick becomes high enough. In order to stop the disease

from moving into a neighboring city all travel must be stopped and the intervention must be

initiated early on (~Day 5) and sustained beyond the peak of the epidemic (~Day 15) until the
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threat of the transition is small. Since travel restrictions need to last during the peak of the

epidemic, the more virulent strains of the virus, which flame out faster, will require earlier, but

shorter travel restrictions.

The worst case is when travel restrictions are used in combination with other

interventions that spread out the burden of the virus over a longer period. If combined with

vaccination, antiviral or social distancing measures the travel restrictions duration becomes

overly burdensome. Lastly, once a travel restriction fails and an infected individual enters a fully

susceptible town, the travel restriction becomes totally useless because it does not change the

dynamics of the disease within the newly infected town. Overall, travel restrictions are

expensive, almost impossible to implement and are often ineffective.

Three Communities Model

Now let us consider a fully interconnected three community model with one infection

source community and two neighboring susceptible communities (Figure 1). Since the number of

travelers is miniscule, the addition of another community does not alter the overall dynamics.

The infection spreads almost concurrently to all of its adjacent communities, usually within the

early half of the pandemic in the original community (Graph 7). The severity of the virus is

going to be the same in the secondary communities unless the virus changes its epidemiological

parameters or the community alters its behavior. Given the highly connected nature of our

society, unless preventative measures are put in place, the virus will spread very rapidly

attacking many cities in a very short time. In addition, travel restrictions will not be effective and

high active individuals will make it difficult to eradicate the infection. This can be catastrophic

for the healthcare and other emergency systems which may be able to handle individual

disasters, but not the “equivalent of 50 Hurricane Katrinas” hitting the United States all at once.

Figure 1.

A three-community model that is loosely connected through daily travelers.

Community B

Community C

TAB

TBA

 TBC

 TCB

TCA
TAC

Community A
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Another possible scenario is one where susceptible cities are connected to multiple

sources of infection. The spread to Community C occurs when one of the competing processes:

infection spreading from Community A or entering from Community B occurs. The time of

infection transfer is likely to be dominated by the Community that is experiencing a more severe

epidemic. If the flu is present in both Communities A and B on day 0 the spread to Community C

is likely to occur slightly earlier, but still there is a short time lag between the peak of the

epidemic in the source and secondary community epidemics (Graph 8). In a pandemic the flu

will spread to new cities at accelerating speeds; as more cities become infected, the faster other

cities will also get the disease.

2.2 Chain Community Model:

Next we address how the infection spreads to an indirectly connected community over a

longer period of time. We create a chain model where the population consists of 5 communities

labeled A through E and all travel is restricted between “adjacent” communities. (i.e., A residents

can only visit B, B residents can only visit A or C, etc). As seen in Graph 9, in our base case,

once the infection enters a new community the scenario is repeated. This stylized model allows

us to study the spatial disease propagation through a set of towns along the river, interstate or

trade route. We avoid creating complicated community connection schematics that would be area

specific, but detailed geographically tailored models exist [Ford (January 2006), Colizza (2007)].

In addition to insight on infection spread on a larger scale, we consider the effectiveness

and timing of interventions impacting several communities over time. As the government and

public learn more about the disease, they will apply the lessons learned in the early infected

communities to control and alter the course of the epidemic. A model should incorporate these

response and control strategies in order to assess the expected damage of the pandemic.  This

provides a direct segway into the next section of this paper: interventions and behavior changes

and their effects in slowing down the spread of infection.

3. Interventions and Behavior Changes:

If the flu becomes easily transmissible, some people have a fatalistic view that nothing

short of a vaccine will stop the infection and all other efforts will only slightly postpone and slow

down the virus. There is currently a dearth of strong evidence concerning the efficacy of social
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containment strategies in decreasing the cumulative burden of infection, which is particularly

troublesome given the fact that many of these interventions will carry significant economic,

social, ethical, and logistical consequences. At the same time World Health Organization (WHO)

recommends nonpharmaceutical public health interventions as a means of containing the

infection, delaying its spread and otherwise reducing the impact of the disease [WHO (2004)].

Our results indicate that these behavior altering strategies could be more effective than expected.

In this section we describe which nonmedical policies and behavior changes have the potential to

stop the epidemic and how they compare to the benefits of the medical interventions. The range

of possible disease management strategies can be separated into pharmaceutical interventions:

vaccines, antivirals, and non-medical responses: closures, social distancing, self isolation, masks,

etc. We also distinguish between the government interventions and community and self-imposed

feedback reactions to news of the pandemic.

3.1 Government Interventions:

Antivirals

Antivirals, if supplied early and consistently to the exposed population, should be

effective in preventing and treating flu in individuals. Economic costs and logistics are

challenges for communities considering the use of antivirals for treatment and prophylaxis. For

effective treatment antivirals must be administered within 48 hours of the infectious contact, yet

there is little information on a procedure which would allow cities to administer the drugs

sufficiently quickly to many people. Additionally, prophylactic use requires repeat doses during

the period of exposure. As a result limited stockpiles may force the creation of prioritization

schemes focused on maintaining vital systems. Ethical concerns may arise if some individuals or

communities can afford to stockpile drugs, while others cannot. Selective stockpiling can deplete

supplies and lead to inappropriate use of these limited resources (e.g., for those who do not have

influenza). In addition, the drugs have sometimes been associated with serious adverse reactions.

Finally, resistance to antiviral drugs could develop rapidly and this intervention could be

rendered completely useless.

There is limited information regarding which virus parameters the antivirals will alter –

the length or level of infectivity, the mortality or morbidity level or simply the duration of



15

infection. In general we can deduce that antivirals are likely to help delay and mitigate the peak

of the outbreak. However, due to many parameter uncertainties and execution complications,

antiviral interventions are not considered quantitatively in this paper.

Vaccines

No country in the world will have sufficient vaccine stockpiles that are ready before the

onset of the epidemic and will cover the entire population. Given the current practical

considerations for vaccine development – manufacturing capacity, ability of candidate vaccine

strains to grow in eggs, and the biological safety containment of parent strains – at least four to

six months after the isolation of the virus will be needed to produce the first doses of vaccine

[Stohr (2004)]. At the same time many believe that if we are able to slow down or prevent

infection spread for those 4 to 6 months, eventually the vaccine will be the ultimate cure for the

epidemic [Monto (2005), GlaxoSmithKline(2007)].  New cell based production lines give people

hope that the wait for an effective vaccine may be shorter. Since a large portion of experts is

relying on vaccine effectiveness, we incorporate vaccination strategies into our model.

In our simple vaccination model we assume that vaccination equally changes the

probability of infection given contact with an infected individual for all vaccinated individuals.

In this model vaccine efficacy is determined by the parameter veff. Thus the probability of

becoming infected on any given day for a highly active and vaccinated individual from

Community A becomes:

eff
AA

H pvtAV
H etp )(1)( βλ−−=

Note, that we acknowledge that there are no vaccines that offer perfect protection, or vaccination

strategies that perfectly identify individuals’ activity levels. However, since there are no data

indicating the value any of these parameters, we consider some extreme value in our analysis.
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The goal is to gain insight that can be applied to develop reasonable policy recommendations

even without precise parameter data.

Since the amount of vaccine, especially early on, will be limited, vaccination plans

require judicious and preplanned distribution of this minimal supply. We consider targeting

certain population groups as a possible strategy to more optimal vaccine allocation. Before

addressing the tradeoffs between vaccine efficacy, vaccine quantity and the delivery time we

confirmed that the most beneficial allocation of limited vaccine is the prioritized distribution of

the vaccine to the most socially active individuals as early as possible. It is clear that during a

pandemic scenario many members of the community will self isolate. At the same time certain

people may not be able to significantly decrease their average daily number of contacts. Doctors,

nurses even grocery store cashiers are all likely to still have significantly many contacts and

these individuals are the ones that should be the first to receive the limited vaccine. This

prioritized distribution will not only ensure the least number of infected individuals, but also

provide the most resilient social structure for the duration of the pandemic.

Next we found that given limited vaccine it is best to focus on stopping the infection in

specific cities rather than equally dividing the vaccine amongst all potentially susceptible cities.

For example, suppose there is sufficient vaccine for either 1) vaccinating 90% of the highly

active population in Community A or 2) vaccinating 45% of the highly active individuals in both

communities A and B. While the first vaccination strategy may seem unethical or unfair to

members of Community B, it is the better strategy in the sense that it will result in fewer

cumulative infections. It will also decrease the likelihood of Community B ever getting infected.

While this raises moral concerns, we do not address them in this paper.
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Another tradeoff that should be considered is between a larger quantity of less effective

vaccine versus a smaller quantity of more effective vaccine. The precise antigenic properties of a

nascent pandemic strain cannot be predicted ahead of time; however, stockpiles of vaccine for

the expected strain are often created ahead of time. This vaccine supply is likely to be poorly

antigenically matched to the actual pandemic virus, but it will be available in larger quantities

earlier on. First we address the question of quality of effectiveness versus quantity of the

vaccine. We compared the pandemic curves between communities where the vaccine

effectiveness was the vaccine quantity and vice-versa. For example, we compared a vaccine that

is 30% effective and is distributed to 85% of the individuals to a scenario where a vaccine of

85% efficacy is distributed to 30% of the population. The results are practically identical for the

two cases. This suggests that stockpiling simply for the sake of quantity may not be the best

strategy. Yet the true benefit of stockpiling lies in the ability to have readily available vaccine

very early on. It is clear from Graph 10 that the vaccine will only be effective if it takes effect in

less than seven days after the virus enters the population. Mass vaccine production takes several

months and several weeks are necessary before an administered vaccine becomes effective. This

suggests that unless we can have stockpiled quantities of a viable vaccine we will not be able to

rely on vaccination.

Since there is no guarantee that the vaccine will be equally effective in all individuals we

consider a possibility where a certain portion of the vaccinated people experiences lesser benefits

of the vaccine either as a result of improper administration or biological diversity. This is also

similar to administering two types of vaccine: the stockpiled less effective vaccine and the

antigenically matched vaccine. We incorporate this by splitting the vaccinated population into

further groups of those who experience the full benefits of the vaccine and those who feel a
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lesser benefit. Now we define two parameters: vH
eff high vaccine efficacy, vL

eff  low vaccine

efficacy. The remaining calculations are identical. We compare scenarios where the average

vaccine efficacy is the same regardless of the uniformity of the efficacy.  We find that the

vaccine that is uniformly effective in all vaccinated individuals is slightly worse than the vaccine

that has different benefits for the vaccines. For example, it is preferable to have a vaccine that

offers 100% protection in 50% of the vaccinated individuals and 0% protection for the rest then

to have a vaccine that provides 50% protection in all of the vaccinated people. It is also clear that

the suboptimality gap define between these two scenarios grows if we assume optimal allocation

and larger quantities of the vaccine.

3.2 Behavior Changes:

Historical Accounts

It is unlikely that society will implement measures from 1918-1919 making it “unlawful

to cough and sneeze” punishing violators with up to a year in jail [Hudson (1999)]. Making it a

crime to shake hands and throwing people in jail for not wearing masks is an extreme that would

only perpetuate panic and protest [Collier (1974)], but it is clear that even without forceful

implementation people will try to decrease their likelihoods of getting ill by improving hygiene

related behaviors. Most people will not maintain their daily routines if they discover that there is

a deadly disease attacking within their city, state, country or world. Based on the information

portrayed in the media, individuals are likely to both limit their daily contacts and decrease the

closeness of the remaining contacts. History has provided us with multiple examples of people

responding to news of a disease by altering their daily behavior.

Recent statistical studies of the 1918 influenza pandemic in US cities have supported the

hypothesis that early implementation of multiple nonpharmaceutical interventions could reduce

transmission rates by 30-50% and lower the peak death rates by about 50% [Bootsma (April,

2007), Hatchett ( April, 2007)]. The timing and force of these interventions have been attributed

as one of the main reasons for the variation of different cities’ experiences [Bootsma (April,
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2007)]. The array of outcomes ranges from the Philadelphia one hump epidemic curve lasting a

month and a half with a peak excess death rate of over 250/100,000 population, to the St. Louis

two wave four month experience with a peak excess death rate of less than 75/100,000

population [Hatchett (April, 2007)]. The findings of these studies suggest that these interventions

within cities helped save lives during the 1918-1919 pandemic, and may help save future lives.

A much more recent example of the social behavior changes that occurred during SARS

supports the importance of incorporating non-pharmaceutical interventions into our model.

Surveys indicate that during the SARS outbreak in Hong Kong 78% of the population covered

their mouths while sneezing or coughing, 76% of individuals wore masks, 65% washed their

hands after contact with a possibly contaminated objects [Lo (2005)]. Economic factor studies in

Hong Kong, Singapore and Toronto indicate that there was a sharp drop in interactive social

activities as restaurants and entertainment centers suffered sharp drops in clientele [Fan (2003)].

Specifically in Hong Kong, tourism was crippled in March when the WHO issued a rare warning

for travelers to avoid Hong Kong and the Guangdong Province. As a result of weakening

demand airlines slashed more than a third of flights and hotels reportedly were up to 90% empty

[Wiseman (2003)]. In Singapore sales were down about 30% as people avoided stores and malls,

some stores suffered up to 75% declines in sales [Wiseman (2003)]. It is clear that voluntary

activities like tourism were strongly affected by fear of the disease.

Similarly, in a more Western city of Toronto, during the SARS outbreak there was a

reported drop of up to 71.5% in revenue per available hotel room for downtown Toronto. This

translates into hotel occupancy rates in the range of 30% to 40%, instead of the seasonal 70%

average [Rosszell(2003)]. Additionally, at least five major citywide conventions were called off,

contributing a loss of over 20,000 attendees, and this doesn’t include the vast amount of

individual-hotel convention businesses that were also cancelled [Rosszell(2003)]. Other Toronto

SARS casualties include over 800 bus tours, music concerts, corporate travel, and school field

trips; the list of voluntary social behavior changes goes on and on [Rosszell(2003)].  All these

examples are strong evidence that people will not maintain their daily actions. While we have not

found any reports correlating these behavior reactions to media reports on a daily basis, we know

that the effect of these “soft” and self-imposed interventions was significant [Tang(2003)]. Thus
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while there are significant gaps in our knowledge concerning these behavior changes,

overlooking these behavior changes would be indefensible.

Modeling the Human Concern Factor

It is clear that people will react to the news of infection spread and alter their daily

routines depending on the severity of the news.  There are several social behavior models that

predict that people will alter their behavior given knowledge of a deadly infection. Coping

responses affect human functions to moderate and decrease the negative impacts and stressors in

life’s circumstances [Pearlin (1981)]. Protection motivation theory, the transactional model of

stress and coping, the health belief model (HBM) and behavior intention model (BIM) all

indicate that individuals will attempt to assess their perceived risk or attitude towards the threat

based on factors like threat severity and their vulnerability [TCW (2004)]. Combining this threat

assessment with the perceived response efficacy and the level of confidence in one’s ability to

react appropriately, individuals determine their intended and actual behavior [TCW (2004)]. A

comparative study of the HBM and BIM in predicting human intentions regarding the swine flu

vaccination program undertaken in October 1976 found that while the BIM is a better predictor,

practitioners can apply the concepts of either model to the decision making process [Oliver

(1979)]. Motivated by various social science risk perception and health behavior models, a

survey based study of 5 European and 3 Asian regions revealed that in a hypothetical influenza

pandemic the precautionary measures would be taken across all regions, the measures included

avoidance of public transportation, entertainment venues and partial isolation within the home

[Sadique (September, 2007)]. In the scenario where vaccines and antivirals are unavailable, the

concern level will increase throughout the epidemic and individuals’ coping options will be to

limit their daily contacts and/or decrease the probability of transmission given contact. Before

delving into these two cases we first explain our approach to evaluating the overall perceived

level of concern in communities.

It is difficult to predict which kind of information people will use to assess their

“perceived threat”. Logical choices for evaluating susceptibility will be the virus’ proximity to

home and its virulence, while mortality and morbidity rates are likely to determine perceived

severity. Since we do not specify the death rate for the disease the number of infected individuals

is the best gauge that reflects both community members’ vulnerability to the disease and the
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severity of the threat. We apply the concepts of the various behavior models and use this factor

to gauge human reaction. Before we proceed, let us point out that while our approach may seem

primitive, there has been little progress in the field of quantitative health behavior modeling

[Weinstein (2004)]. Our approach suggests one method to incorporating behavior changes into

our model and it is supported by the Sadique’s questionnaire study results, but further research is

required in this area [Sadique (September, 2007)].

In order to incorporate behavior change into our model we use !X(t) as a feedback

parameter that indicates the “concern level” within Community X on day t. If !X(t)=1 then there

is no anxiety or behavior change within the community, for !X(t)=0 the community practically

shuts down. We describe three possible data sets that the population could use to gauge their risk

levels, to define their !X(t) and consequently alter their behavior.

1. The first communities that experience the virus will not be able to use the lessons learned

by their neighbors. Early on the only information people will have will be the experience of

their own community. People may use the number of yesterday’s new infections ignoring

everything that happened before yesterday. We quantify this memoryless approach of

evaluating the risk factor as !1
X(t, C1):

!1
X(t, C1)= 

1

XCommunity in  population  totalThe
1day  from XCommunity in  people infected ofNumber 1

C
t








 −
−

C1 an input that represents the importance of yesterday’s information to the people. For C1 =1

the number of infected individuals is linearly correlated to the risk level. As C1 grows, the

relevance and impact of yesterday’s news grows polynomially.‡

2. Individuals are likely to rely on more than yesterday’s information. Since the media is

likely to present the cumulative number of infections within the community, this is another

possible data set that people may use to estimate their risk levels.  We quantify the related

concern parameter !2
X(t) as:

!2
X(t, C2)= 

2

XCommunity in  population  totalThe
1day  including and upto XCommunity in  infecteds ofNumber 1

C
t








 −
−

                                                  
‡ Let us point out that the authors have not been able to find the application of the behavior forecasting models to predict general
behavior changes in the case of pandemic flu, but we have found numerous examples of HBM used to estimate altered human
interactions to reduce their risk for HIV infection. Studies in this area indicate that there may be non-linear relationships between
the factors and the dependent variable, thus we allowed for this variability through the addition of the C parameters. [Stiles
(2004)]
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C2 is another input which represents the strength of impact of this cumulative information.

We acknowledge that C1 will have a smaller impact than C2 of the exact same value. §

3. It is also clear that if a city’s adjacent communities all get infected the level of concern

within the city will be heightened to reflect the suffering of its neighbors. This presents us

with another factor in evaluating the behavior change feedback parameter, !3
X(t):

!3
X(t, C3)= 

€ 

1− Number of infecteds in all Communities up to and including day t −1
The total population in all Communities that have been infected

 

 
 

 

 
 

C3

Again C3 is an input representing the impact of this information. Notice the denominator is

the population of only the infected communities, so this reflects a human informational bias

that focuses on only the infected communities.‡

In reality each individual is likely to change her behavior using a combination of all three

described approaches. In our model we can uniformly alter the actions of people within each

group using !X(t, C1, C2, C3)= !1
X(t, C1)* !2

X(t, C2)* !3
X(t, C3) as the feedback parameter for

behavior change. The two parameters that will incorporate !X(t, C1, C2, C3) to reflect changing

behavior due to awareness and alarm over the infection areλ and p.

Limited Contact

People in all activity levels are likely to decrease the number of contacts that they have

on a daily level. It is highly probable that children will be kept at home, public transportation

will be avoided, entertainment activities such as shopping or going to the movies will be

temporarily suspended, even the number of contacts within the office may decrease as

conference calls replace face-to-face contacts [Sadique (September, 2007)]. All these behavior

changes were observed during the SARS outbreak [Wiseman]. We model this behavior change

by updating the average number of daily contacts, jλ  by multiplying it by, !X(t, C1, C2, C3), the

appropriate level of impact. As can be seen from Graph 11, relying on yesterday’s information

as the indicator for the concern level results in a lowered peak of the epidemic but a much slower

decline of the disease. While the cumulative number of infections is decreased the virus

maintains its presence within the community for a long period of time thus increasing the

probability of infecting the neighboring communities and making travel restrictions ineffective.

                                                  
§ Studies in this area indicate that there may be non-linear relationships between the factors and the dependent variable, thus we
allowed for this variability through the addition of the C parameters.
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However, as implied earlier people are likely to use more than just yesterday’s information to

define their behavior. If the community “remembers” the number of people who were infected

before yesterday then the decline of the virus will be much faster. Graph 12 illustrates the

potential success of social distancing in decreasing the cumulative number of infecteds to a small

fraction of the total population and in stopping the infection within a community. Refer to

Graph 13 to see how the experiences of prior infected communities can benefit the communities

further down the infection chain. Social distancing where the average number of daily contacts is

decreased up to 80%, at the height of the danger for each activity group, is extent of limited

contact sufficient to stop the outbreak in Community B. It is clear that the most cautious

communities that change their behavior prior to the infection entrance are the most successful.

This voluntary public action will also decrease the probability of the infection entering the

community in the first place.

The average number of interactions is likely to decrease, but it is unlikely that theλ ’s are

going to change the same for each activity level. Highly active people will be able to decrease

their number of interactions drastically, but less active people may be unable to sever their few,

but vital ties to the community. For example, a politician may decide to cancel his/her campaign

rally, stay at home and contact his office through telecommunication. On the other extreme, a

retired handicapped grandmother whose only daily contact is with her grandson who brings her

daily groceries, is not likely to change her pattern at all.

This leads us to consider the scenario where only the highly active individuals, with

many voluntary contacts, limit their daily contacts. The results are presented in Graph 14; just

changing the behavior of the highly active individuals has a similar level of impact as decreasing

the behavior of the whole community. If the highly active individuals decrease their number of

daily contacts by a little over 80% during the riskiest time, then the massive communitywide

outbreak could be prevented. This has important implications for policies during the pandemic.

For instance, this result underlines the importance of closing schools since children have a high

number of non-vital daily contacts within a school setting. All individuals who act as social focal

points should decrease their average number of contacts especially if this can be done without

disrupting the community.

Decreased Probability of Transmission
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Reduced closeness of contact and improved hygiene are coping mechanisms that will

decrease the probability of transmission given contact between an infected and susceptible

individual. In order to reflect this phenomenon we update the probability of transmission given

contact on a daily basis by multiplying pj by the appropriate, !X(t, C1, C2, C3), level of impact. In

our model the impact of this decreased susceptibility is the same as the impact of decreased

contact. Since our model provides us with the expected number of infecteds, we incorporate

decreased probability of transmission by integrating a multiple of the risk factor in the exponent.

As before if people start taking precautions based solely on yesterday’s information they will

lower the peak and extend the length of the epidemic curve (Graph 11). If the probability of

transmission is dependent on all information up to and including yesterday then the length of the

epidemic is shorter (Graph 12). Also, we can combine the two protective approaches and

decrease the average number of contacts and limit the probability of transmission. For the

example shown in Graph 14, the extent of social action required of the highly active individuals

to stop the outbreak is a decrease to an average of 15 daily contacts and a transmission parameter

of about 5.5%.

Implications of Behavior Models

Some of the concepts that are highlighted in the social behavior predicting models

strengthen the importance of our findings. One of the important factors in the BIM is the

perceived behavioral control – the ability to perform the behavior [TCW (2004)]. If individuals

believe that they can easily fulfill the requirements necessary they are much more likely to act

accordingly [TCW (2004)]. This implies that the relevant institutions should be prepared to

implement appropriate leave of absence laws and help citizens maintain high levels of hygiene

during the pandemic. BIM also emphasizes the importance of subjective norms – humans actions

reflect what others believe is the right thing to do [TCW (2004)].  In the course of the pandemic

public figures from the local and federal governments could influence their constituents if they

present the importance of the control measures to the public. The transaction model of stress and

coping indicates that in a stressful situation individuals will demonstrate “information seeking

behavior”, thus it is important that the media portrays information in a constructive manner

[TCW (2004)].  One study indicates that educating the public is one way to ensure the

cooperation of individuals: when people don’t understand the risks they do not act [Hong
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(2006)]. The main conclusion that can be drawn from these various behavior feedback models is

that the information portrayed in the media: both about the extent of the epidemic and people’s

ability to manage the situation, will help determine peoples’ reactions and therefore directly

impact the course of the pandemic.

4. Conclusions and Policy Implications

“How would a nation so greatly moved and touched by the 3,000 dead of September 11th

react to half a million dead? In 1918–1919 the mortality rate was between 2.5% and 5%,
which seems merciful in comparison to the 55% mortality rate of the current avian flu. In
just 18 months, this avian flu has killed or forced the culling of more than 100 million
animals. And now that it has jumped from birds to infect humans in 10 Asian nations,
how many human lives will it or another virus like it take? How, then, would a nation
greatly moved and touched by 3,000 dead, react to 5 or 50 million dead?”

~Senator Bill Frist, 2005.

Conclusions

The paradox of a pandemic is that while it is a worldwide catastrophe it is going to be felt

at the intensely local level since there is no one who will be “outside” of the pandemic to send

help [Greger (2006), Dept.Agr. (2006)]. Communities will have to use their own resources to

cope with the pandemic. Therefore it is vital that all levels of society: families, schools,

businesses, cities, states, countries, are all prepared for the pandemic. The best plan will require

the cooperation of the American people, and in order to gain the trust and understanding of 300

million people it is important to be ready and prepared to educate the public on the important

factors of the infection.

While epidemiologists sometimes refer to a lack of parameter knowledge as reason to

avoid adding complexity to models, we believe that intuitive understanding of disease dynamics

can only be improved by looking at lessons learned from experience, logic, and most importantly

well organized models. In the end, mathematical models remain just that – models, not real life.

All models use assumptions and simplifying approaches and no approach should be thought of as

the only modeling strategy. Even the most established modeling approaches should not be seen

as boundaries, but as starting points for future work. By moving beyond the highly used R0

parameter in our modeling work, we were able to observe the vital importance of highly active

individuals in the spread of infection. Avoiding this limiting approach we were able to include a

dynamically updating component to describe reactive behavior changes into our model. As a
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result our study provides insights regarding the effectiveness of intervention strategies in

reducing the illness and death caused by pandemic influenza and its spread in the community.

Policy Implications

The bad news is that a flu pandemic is coming; the good news is that our society has the

capacity to mitigate its outcome. To succeed we require careful, deliberate and thorough plans

that are prepared and reviewed today, before the outbreak, and are ready to be implemented

immediately at the first sign of a dangerous easily transmitting flu strain. Ethical dilemmas of

forced restrictions or unequal treatment should be dealt with now, otherwise they will consume

crucial time when our society should be taking action. In this research we addressed several

disease management strategies; we hope that our insights are used in the creation and updating of

pandemic flu containment policy.

Travel restrictions are impossible and useless once the infection is circulating within the

country. There is no easy way to regulate the travel patterns of all individuals through all

transportation networks including cars, buses, trains, etc, so the restrictions will be imperfect.

Imperfect travel restrictions are extremely costly, but even worse, they are also futile. Our

recommendation regarding travel restrictions is to avoid government enforced travel restrictions,

but possibly create early travel advisories before the virus enters the country to prevent

recreational and voluntary travel and potentially delay the pandemic without severe economic

losses.

From our research we find while these advisories may slightly delay the spread of the flu,

they will not stop it from reaching the US. Virtually every community in the US should be

prepared that they will become infected. The focus of these communities’ mitigation strategies

must be inner-community interventions: social distancing, hygienic steps and if possible partial

vaccinations. If communities are able to decrease their maximum number of daily infected

individuals they will reduce the probability of intra-community infection transmission as a

byproduct of the inner community action.** Our findings are encouraging and support the

hypothesis that limited interaction will decrease the effect of the pandemic. The deeper insight of

this result is that these interventions are effective because they attack the source of the problem

                                                  
** The reverse is not true. Travel restrictions have no impact on inner community infection dynamics.
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by decreasing the exponential growth factor. Preventing exponential explosion of the number of

infecteds will prevent the pandemic.

Another result of our behavioral study is that the focus must be on the group most

culpable for infection spread: the highly susceptible and highly active individuals. These are the

people who must be deterred from maintaining their daily actions. In addition, it is critical for all

people to remember the effect of the epidemic and maintain their distance beyond the peak of the

outbreak. The media should present information regarding the events over the whole history of

the epidemic, remind communities about the state of their neighboring and other communities

and educates individuals and empowers them to take preventative action. These informative

messages will determine human behavior and that will determine the course of the pandemic.
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5. Tables

Parameter Name Parameter

Label

Community A

Population of High activity level nH 
A 100,000

Population of Medium activity level nM 
A 100,000

Population of Low activity level nL 
A 100,000

Social contacts of High activity persons A
Hλ 50

Social contacts of Medium activity persons A
Mλ 10

Social contacts of Low activity persons A
Lλ 2

Probability of successful transmission given

contact

P .10

Travelers from A to B of High activity level TAB
H 2

Travelers from A to B of Medium activity level TAB
M 2

Travelers from A to B of Low activity level TAB
L 2

Travelers from B to A of High activity level TBA
H 2

Travelers from B to A of Medium activity level TBA
M 2

Travelers from B to A of Low activity level TBA
L 2

Table 1.

Parameters used as the base case for the research. ††

                                                  
†† We use the Wallinga paper as a base for our average number of daily contacts [Wallinga (2006)].
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6. Graphs/Figures:

Impact of Heterogeneous Activity Groups
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Graph 1: Comparing spread of infection between heterogeneously and uniformly active

communities of 300,000 individuals.

In the case of the heterogeneous group, we use the base case parameters (Table 1). Every

individual in the homogeneous population has an average of λ  = 20.66 daily contacts. There is

no heterogeneity in the susceptibility of either population. p = 10%. The total number of

infections is higher in the uniform group, but the peak is decreased and delayed.
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Impact of Heterogeneous Activity Groups
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Graph 2: The impact of various heterogeneities on the epidemic curve.

Heterogeneity in contact patterns is presented with the base case parameters. Heterogeneous

susceptibility in the most vulnerable group in the population is p1= 20%. Members of the second

group have a stronger resistance, p2=10%. The most resilient group, has p3 = 5%. Individuals in

the homogeneous population have an average of 20.66 contacts per day and a p = 10%

probability of getting infected given contact. The most diverse population spreads the infection

most rapidly, but has the fewest cumulative number of infections.
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Probability of All Travelers Between A and B Being Healthy
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Graph 3. Probability of infection not spreading to a neighboring community on day i.

Given that the infection begins in Community A, the probability that all travelers between A and

B stay healthy changes on a daily basis. It is most likely that an individual from the highest

activity level will be the initial spreader.
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P(All healthy travelers) vs. Infectiousness
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Graph 4. Sensitivity of Infection Transfer on the Susceptibility parameter.

From the above graph we see that if we can decrease the probability of infection given contact to

bellow 2.5%, the infection is very unlike to enter Community B. The infection dies out in

Community A without achieving epidemic status. Using average community parameter and

R0 <1 as the point at which the virus no longer achieves epidemic status predicts that the

infection should not be able to spread at p<0.0484.
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Histogram First Day of Infection in the Next Community
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Graph 5: The histogram for the number of days between infection initiations amongst

neighboring communities.

The number of days between infection transitions into neighboring communities is not very

varied when neither community has intervention strategies. Even when the number of travelers is

varied from 120 down to 1 traveler per day, the first day of infection in Community B only

changes by 2 days.
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The Effect of Travel Restriction
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Graph 6. The effectiveness of various levels of travel restrictions.

We had 2 travelers going in each direction from each activity level – thus 12 people traveled on a

daily basis in the base case with no restrictions. Simulations of varying levels of travel

restrictions indicate that in order to be effective travel restrictions must be started early and

maintained for a large portion of the epidemic. In addition partial travel restrictions are not

effective in preventing the spread of the disease.
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Infection Spread Among 3 Fully Connected Communities
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Graph 7. Infection will spread concurrently to all neighboring communities.

The infection begins in Community A and after a small time lag the outbreak reappears in the

neighboring communities.  The problem is that the neighboring communities are likely to be hit

all within the same time period amplifying the burden experienced by the country as a whole.
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First Day of Infection in New Community Histogram
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Graph 8: The histogram for the number of days between infection initiations amongst

three neighboring communities.

The number of days between infection transitions into neighboring communities is not very

varied when neither community has intervention strategies. When a susceptible community

neighbors two infected communities the first day of infection is likely to be only slightly earlier.

In this case the first day of infection is expected half a day earlier.
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Infection Spread Among 5 Communities
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Graph 9. Typical spread of infection over a chain of 5 connected communities with no

intervention strategies.

In a chain of 5 connected, identical communities the infection spreads almost identically, if no

intervention strategies are put into place. On average it takes about 6 to 7 days for the infection

to jump to the next neighboring community.



38

The Effect of Early Vaccination
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Graph 10. The effect of timely vaccination

In all cases the community vaccinates 50% of the highly active individuals with a vaccine that

has 75% effectiveness in all of the vaccinated individuals. The varying factor is the day that the

vaccine starts protecting the vaccinated individuals. If the goal is to significantly reduce the total

number of infected individuals then the community will only have about 5 to 6 days to vaccinate

the highly active people before vaccination become useless.
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Infection Spread in Community A 
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Graph 11: Infection spread within a community that reacts, by proportional scaling back

the average number of contacts for all its members, to previous day’s news only.

This proportional scaling back of the average number of contacts can be described as social

distancing. Notice that the peak of the infection is lower and earlier; in addition the infection

duration is drawn out over a longer period of time. This elongation of the disease makes travel

restriction less feasible. At the same time the total number of infections is decreased to 117,174.

For similar reactionary hygiene improvements we have the same expected results as social

distancing.
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Infection Spread in Community B
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Graph 12: Infection spread within a community that reacts, by social distancing, to news

cumulative over all previous days across all communities.

Social distancing that occurs before the infection has a chance to strike a significant portion of

the population is very effective. Here Community B reacted to the news of an outbreak in

Community A. In this example social distancing successfully decreases the total number of

infecteds to 120 people. The extent of social distancing decreases the average number of daily

contacts to 14, 3 and 1 for each activity group and the probability of transmission down to 5%.
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Infection Spread Among 5 Communities
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Graph 13: The spread of infection amongst a linked chain of five communities where each

community implements an intermediate level social distancing strategies based on the

experiences of the previous communities.

As communities learn more from the experiences of other communities the extent of the

infection decreases in communities that get infected later.
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Infection Spread in Community B
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Graph 14: Infection spread within a community that reacts by social distancing only in the

highly active group, to news over all previous days across all communities.

Social distancing just the highly active group has practically the same result as social distancing

the whole community. The main difference is that the tail of the infection is elongated. From this

we learn the importance of the highly active group. In this example the total number of infecteds

is 380 people. The extent of social action taken by the highly active individuals decreases the

average number of their daily contacts to about 15 and the transmission parameter to about 5.5%.
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