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ABSTRACT

Congestion pricing imposes a usage fee on a public resource during times of high demand.

Road pricing involves cordoning off a section of the city and imposing a fee on vehicles

that enter it. Parking pricing increases the costs of on-street and perhaps off-street parking.

Following an historical review, we develop a new queueing model of the parking pricing

problem, recognizing that many urban drivers are simply looking for available on-street

parking. Often, reducing the number of such “cruising drivers” would reduce urban road

congestion dramatically, perhaps as effectively as cordoning off the center city.
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1. Introduction

Consider a typical recent study of street traffic congestion in urban America. This particular

report1 is from the Park Slope section of Brooklyn, New York, a thriving commercial and

residential zone. The purpose of the study was “…to ascertain the extent of the

neighborhood’s ever-worsening traffic and parking problems and to propose solutions to

both.” Based on data collected early in 2007, “…the study reveals an overwhelming

amount of traffic is simply circling the block “cruising” for parking, while the curbside

itself is nearly 100% filled with parked vehicles.” The researchers found that 45% of total

traffic and 64% of local traffic is cruising for a parking space. And the average curb

occupancy rate is 94%, with “…nearly 100% occupancy at metered spaces during peak

periods.”

Street congestion in a growing city is unavoidable. Incentives to use cars for ease, comfort,

and other pleasures increase as cars become more affordable, even when an extensive

public transportation system is available. As a result, people drive more frequently than

necessary, leading to overuse of limited road resources. In rural areas, sufficient road

networks can be provided to prevent road congestion because land is abundant and demand

is less. For large cities, however, supplying new roads is more difficult because of the huge

demand for land resources. As a result, major city streets become crowded and inconvenient

despite the availability of public transportation, resulting in economic losses to the

community.

Urban congestion is a challenge within a complex system that requires the simultaneous

consideration of many options. In most cases, the solution chosen combines several

initiatives such as the congestion pricing (CP) schemes described in this paper and other

incentives to motivate people’s serious consideration of substituting public transportation,

bicycles, or walking for personal motorized vehicles. The particular combination of options

chosen depends on a number of factors, notably the city of concern and those areas most
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affected within it.

Road Pricing (RP), one economic measure used in traffic management, has attracted the

attention of many mayors of heavily congested cities, especially since the successful

implementation of RP schemes in Singapore and London. However, current RP schemes

present two serious challenges:

(1) Schemes billed as “RP” that are now planned or implemented in many cities are not

actually road pricing, but rather cordon pricing (which approximates area pricing), and

thus less effective than a full-scale electronic RP scheme: Theoretically, a congestion

charge (CC) should apply to every road within a charged zone in a full-scale RP scheme

rather than to only those roads crossing cordon lines, as currently is often the case.

Otherwise, RP is ineffective, particularly when drivers make many trips wholly within

the inner city.

(2) Any type of RP is costly because a new technology infrastructure (e.g., electronic

gantries along cordon lines) need to be installed to detect traffic flow, and a

management organization must be established to oversee toll collection. Application of

RP has therefore been limited, and has been implemented effectively only in the

downtown areas of large cities.

To address these issues, we consider parking pricing (PP), which can improve traffic

control by (1) increasing the average parking price in an area, effectively imposing a

congestion charge on parkers, and (2) raising on-street parking prices to improve traffic

flow. Since on-street parking prices influence drivers’ decisions about how much time to

spend searching for available street parking spaces, these prices are especially important in

congested city centers and commercial districts (such as Brooklyn’s Park Slope), where

many drivers look for spaces. Parking pricing offers the following practical benefits: (1) PP

does not necessarily require an additional toll-collection organization, making it cost-
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effective for medium- and small-scale cities for which RP is not affordable, and (2) PP can

be extended as its affected area expands without costly additional infrastructure or the risk

of increasing the number of exempted residents, which could significantly reduce the

effectiveness of RP. Thus, PP is not only flexible and effective, but again can be applied

even in medium- and small-scale cities that are grappling with disconnected or unevenly

congested areas.

Good examples of the efficacy of parking pricing can be found in Japan,2 where at one time

only police enforced parking regulations. Although on-street parking officially has not been

allowed on most roads in Japan, until recently people parked almost anywhere because the

number of police was insufficient to check for violators, and officers permitted a grace

period of 15 minutes or more before issuing tickets. Since June 1, 2006, however, Japan has

enforced a strict parking regulation in Tokyo, Osaka, and other cities that has proved

equivalent to eliminating much “free” street parking. In particular, a June 1 revision of the

Road Traffic Law has enabled private vendors to enforce parking regulations by issuing

tickets immediately after identifying violators, without any grace period. With no grace

period and such improved enforcement, the 15 minutes or more of “free” parking that had

been granted drivers on most roads as a grace period (or otherwise overlooked) has risen to

an expensive on-street parking which costs 10,000 yen (US$86) (as a penalty fee) for

parkers. This implementation has effectively increased the on-street parking prices for

drivers and as a result, increased the average parking prices in major cities in Japan at the

same time. Three months after the June 1, 2006, implementation, the National Police

Agency reported a 27.2% decrease in the average length of traffic jams and a 9.5% decrease

in average travel time on the main streets of Tokyo, comparable to results achieved with

London’s RP scheme. In addition, a modal shift from cars to public transportation was

observed. In fact, such improvements were observed in not only Tokyo but also medium-

sized cities throughout Japan where strict parking regulations were enforced. Tokyo’s

example thus demonstrates that PP can be as effective as RP, and a cost-effective alternative

for cities of all sizes.
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2. Traffic Congestion

2.1 Cost of Congestion3, 4

As countries develop and the number of cars traversing them increases, the cost of

congestion greatly impedes their cities’ development. It has often been observed that

congestion increases as cities grow: In the United States, for example, the Texas

Transportation Institute (TTI) estimated5 the annual delay per peak-period traveler in very

large urban areas with populations of more than 3 million to be 61 h for the year 2003,

which is much larger than 13 h in small metropolitan areas with populations less than 0.5

million. The average annual delay for all cities has grown from 16 h to 47 h since 1982.

According to TTI’s estimate, congestion costs Americans $63.1 billion a year, based on

considerations of only time and fuel wasted. The total cost of congestion should be

considered in at least the following four categories, however:

(1) Waste of time: Congestion deprives businesses and individuals of work hours by

increasing commuting time. According to TTI, total delays reached 3.7 billion hours in

2003, a significant part of the total loss attributed to congestion. The simplest estimation

multiplies hours lost on congested roads by wage/hour. TTI used US$12.85/h for the

cost of time wasted in congestion,6 close to the average hourly wage in the US ($11.48)

for all goods-producing workers. However, this approach may overestimate the cost of

delay because delay cannot be completely eliminated from business activity. Another

method of estimation calculates net gains from reducing congestion. The former

estimation provides an upper bound for losses due to congestion; the latter method

yields a lower bound.

(2) Waste of resources and associated costs: Congestion wastes gasoline and damages
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pavement. According to TTI, engines idling in congested traffic wasted 2.3 billion

gallons of fuel in 2003. Gasoline wastage also contributes to the urgency of U.S.

strategic interests in the Middle East oil supply, which is much costlier in many ways

than the simple loss of material resources.

(3) Loss of environmental quality and associated costs: Congestion produces more air

pollution and noise than does smoothly flowing traffic, degrading the environmental

quality of roadside areas and consequently negatively impacting people’s health.

Congestion also produces excessive carbon dioxide (CO2) emissions that contribute to

global warming. The reduction in CO2 emissions from improved traffic flow can range

from several hundreds to thousands of tons, depending on city size. The cost associated

with emission credits7 is small, however, compared to the losses that can be considered

in terms of time and fuel.

(4) Loss of business: This loss to congestion is hard to estimate because congestion is a by-

product of business activity. Although many agree that excessive congestion leads to

inefficiencies and reduces a city’s attractiveness, many also believe that suppressing the

inflow of people might harm a city more than doing nothing since it may reduce the

number of people in the city and decrease business activity. This is often the case when

insufficient public transportation is offered to those who stop driving into the city after

RP is implemented. In fact, business leaders have raised the most opposition to RP in

London and New York.

2.2 Reasons for Congestion and Measures to Reduce It

(1) Demand-side problem: One obvious reason for congestion is people’s persistent

demand for private automotive transportation, which can be reduced by means of either

fuel tax or congestion pricing (CP) schemes—demand-side efforts. Fuel tax is not as

effective as congestion pricing in this regard because it reduces car usage uniformly

rather than coping with local and time-specific forms of congestion. Congestion pricing,
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however, can be applied effectively to specific areas and also made time-dependent if

the extra fee, or “congestion charge” (CC), is adjusted locally and dynamically in

accord with real-time traffic situations. According to some economic theories, the CC

level is set equal to the marginal external cost, as discussed in the second half of this

paper.

Congestion pricing can be implemented via RP by imposing fees on drivers crossing

cordoned lines, and/or via PP by imposing fees on drivers who park within the cordoned

area. Introducing truly local, dynamic CC is costly and technically difficult, though,

especially for RP: Currently available cordon-line-type RP cannot control trips taken

within cordoned areas effectively since road users are charged only once per day and

residents in cordoned areas are often exempted from paying full CC. Full-scale

electronic RP,8 which essentially prices every road in a city, requires advanced

technologies or numerous gantries in cordoned areas, making RP less cost-effective for

medium-scale cities than for larger cities. For the usual RP scheme, drivers are charged

fixed or pre-determined CCs, but its effectiveness is compromised. In contrast, PP can

effectively reduce trips taken within a cordoned area since the numbers of trips are

related to parking behaviors. Since parking lots are distributed throughout cities, PP is

locally and dynamically applied much more easily than is RP. PP can be applied to

disconnected, congested areas where cordon lines are hard to draw, and can be adapted

smoothly as congested areas expand.

(2) Supply-side problem: Excessive demand is not the only reason for congestion.

Insufficient parking capacity and inappropriate parking pricing are other reasons,

requiring supply-side efforts to counteract. Two observations9 in New York City have

especially interested us: (1) a recent survey conducted by Bruce Schaller, principal of

Schaller Consulting, showed that 28% of drivers in the SoHo district in Manhattan were

searching for on-street parking, and (2) as cited in this paper’s Introduction, a second

survey, by Transportation Alternatives, showed 45% of drivers were searching for on-
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street parking in the Park Slope neighborhood in Brooklyn.10 This, of course, is not

always the case, but often is during busy times in city centers, where most drivers try to

find a place to park. Historical data on the percentage of traffic cruising in selected

cities are displayed in Table 1 below. While these data are somewhat dated, we might

well find that the same cruising behavior observed downtown today has been in

evidence since the 1920s.

Table 1.

Percentage of traffic observed to be “cruising” for parking in selected cities.

Year City Share of traffic cruising

1927 Detroit (1) a 19%

1927 Detroit (2) 34%

1960 New Haven 17%

1977 Freiburg 74%

1985 Cambridge 30%

1993 New York 8%

Average 30%
aThe numbers refer to different locations within the same city.

Source: Shoup (2005); selected data.

The underlying problem is inappropriate PP when on-street parking capacity cannot

accommodate all who hope to park. In Manhattan, off-street parking (averaging US$24.42

per person per day) costs 14 times more than on-street parking (which averages US$1.73

per person per day).11 If prices for on-street parking are much lower than those charged by

off-street parking lots, drivers have strong incentive to search for parking on the street,

creating extra traffic and congestion. Well-planned PP dramatically improves traffic flow in

cities and decreases congestion without imposing CC on all drivers. We show the effect of
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PP on congestion in Section 4 of this paper.

3. Implementation

3.1 Examples of RP and PP Successes Around the World

3.1.1 London, England12 (RP)

Congestion charges went into effect in London on February 17, 2003, at an initial charge of

5 UK pounds (approximately US$10) per vehicle per day. Drivers paid the charge if their

vehicles entered a congestion-charging zone anytime between 7 a.m. and 6:30 p.m.

weekdays. Six hundred eighty-eight cameras in 203 locations within an 8-square-mile (21-

square-km) area captured the license plate numbers of about 250,000 vehicles daily. The

number of vehicles entering central London during charging hours declined about 25% the

day congestion charges were introduced. Since the time the RP scheme first went into

effect, vehicle delays due to traffic congestion have dropped about 30% and carbon dioxide

emissions have decreased more than 15%. In 2005-06, London’s RP scheme cost 230

million UK pounds (about US$460 million) to implement, while its annual operating costs

were around 88 million UK pounds (about US$176 million), its net revenue was 122

million UK pounds (about US$244 million),13 most of which was spent improving bus

services (London put 300 additional buses into service before introducing the congestion

charges). Bus passengers entering the charging zone during morning rush hour the first year

increased 37%.14

Because of such successes as well as a need to reduce traffic further, the City of London

raised its congestion charge to 8 pounds (US$16) per vehicle per business day in July 2005.

Since February 2007, the congestion-charging zone has extended west. Residents in the

zone can apply for a 90% discount price of 4 pounds (US$8) per business week.
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The success of London’s RP is usually explained as follows: First, the center city had been

heavily congested, and the citizens and mayor recognized the RP scheme should be

implemented. Second, the technology for gantries to automatically read license plates was

provided by the city, so citizens would not need to bear any related monetary burden such

as for the in-vehicle units (IVUs) that are required in Singapore’s case. Third, even before

implementation of RP in London, 85% of commuters used public transportation: more than

1 million riders per day. Hence, the additional expenses required to reinforce the public

transportation system in preparation for RP were minimal, and most of the commuting

public favored RP, expecting that it would improve public transportation.

3.1.2 Singapore15 (RP)

Congestion pricing was first adopted by the city of Singapore in 1975, using a paper license

scheme for want of a more reliable technology; the planners understood the scheme’s

limited effectiveness. Every vehicle containing three or fewer people was charged

Singapore$3 (about US$2) per business day on any given weekday upon initial entry to the

2.3-square-mile central area of the city between 7:30 a.m. and 10:15 a.m. This scheme

reduced the total peak-period traffic each business day by 45%. An electronic toll collection

system (Electronic RP, or ERP) using IVUs replaced paper licenses in April 1998 to better

control traffic. IVUs simplified the task of varying tolls by time of day or location.

Singapore initially did not change toll levels, hours, or boundaries to minimize controversy

over the charges, but gradually did start to vary tolls according to time and place; signs on

gantries now inform motorists of the toll in effect. Currently Singapore’s RP scheme is

closer than any other city’s to the ideal dynamic RP since the CC level changes with time

and location, using an ERP system.

3.1.3 Stockholm, Sweden16 (RP)

An RP scheme was applied in Stockholm on January 3, 2006. The system was scheduled to

run for seven months, then a vote on whether to continue was held on September 17, 2006.

In that referendum, the citizens of Stockholm voted for a congestion-charging scheme:
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51.7% in favor, 45.6% against.17 All parties in the city council promised to abide by the

results. A fee of 10 to 60 kronor (approximately US$1.4 to US$8.5) was charged vehicles

entering the inner city on weekdays between 6:30 a.m. and 6:30 p.m., payable by direct

debit. Traffic volumes were reduced 25%, and the number of vehicles during peak hours

fell by 100,000. At the same time, public transit rides increased by 40,000 per day. Retail

sales in central Stockholm shops also rose after the congestion-pricing scheme was

introduced, as people bought more locally rather than drive to suburban stores. The system

used cameras, but drivers were also encouraged to install radio-frequency identification

(RFID) transponders in their cars. . The permanent RP phase just started in Stockholm on

August 1, 2007, employing the same system used during the 7-month trial RP in 2006.

According to Prud’homme and Kopp,18 however, the Stockholm urban toll (UT) scheme

does not satisfy conditions for a successful RP scheme because (1) road congestion in

Stockholm is not very severe; (2) the implementation cost of RP is too high; and (3) the

marginal costs for public transportation improvements are high.

3.1.4 Trondheim, Norway (RP)

In the late 1980s an RP scheme was applied in Oslo, Bergen, and Trondheim in Norway.

Trondheim has used the RP scheme for nearly 20 years, since 1988. Its objectives are to not

only fund new ring roads, but also improve the public transportation system and pedestrian

ways, and invest in environmental measures. Currently the toll price is 7.5 to 25 Norwegian

Kroner (about US$1 to US$4)—much less than the 8 UK pounds (about US$16) charged in

London. Since pricing varies 24 hours each day from highs during peak hours to lows

during off-peak hours, this scheme controls traffic flow to prevent congestion.19

3.1.5 Tokyo, Japan (PP)

The city of Tokyo has been investigating RP schemes since 1999, when the current

governor of the Tokyo District, Shintaro Ishihara, was first elected. One challenge has been

that Tokyo is so large and congested everywhere. Many roads are congested not because of
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a large inflow from the suburbs but because of numerous intracity trips: according to one

estimate made by the Tokyo Metropolitan Government, about 40% of total trips in Tokyo

are intracity trips.20 Therefore, RP would not be effective if cordon-tolls similar to

London’s RP were implemented. PP would be more appropriate in Tokyo than a simple

cordon-line RP because PP can vary charges as needed to regulate intracity trips.

The effectiveness of PP in major Japanese cities can be illustrated by the following

example. Since June 1, 2006, parking violations have been regulated in such a way as to

drastically reduce congestion in major cities in Japan. Earlier, parking regulations had been

enforced only by police, who periodically would check to see how long cars had been

parked in banned areas, marking cars’ positions with chalk and ticketing them if parked

longer than 15–30 minutes. Since June 1, private firms have been consigned to issue tickets

for parking violations regardless of the number of minutes vehicles have been parked in

banned locations. Ticket fines range from 10,000 yen to 18,000 yen (US$86–155) for

regular cars, depending on the violation.

According to the National Police Agency,21 results of the first three months of strict parking

policy showed that illegal parking at main roads in Tokyo and Osaka had been reduced by

73.9% and 73.3%, respectively, congestion length on their main roads at 2p.m.-4p.m. had

been shortened by 27.3% and 23.1%, respectively, and travel speed at 2p.m.-4p.m. had

increased by 9.5% and 11.8%, respectively, compared to the same period the previous year.

The agency estimated economic benefits of this policy to be 181 billion yen (US$1.6

billion) and the reduction in CO2 emissions to be 15.2 thousand tons/yr. Retail shops with

parking lots have also attracted more people since implementation, while popular

restaurants without parking lots are said to have experienced a decrease in customers.

Increases in the average prices of off-street parking lots are also observed, due to

heightened demand for off-street parking. Also, more people have been using taxis and

buses to reach restaurants since the strict parking policy was implemented.
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3.1.6 Los Angeles, USA (PP)

Shoup examined eight case studies conducted from 1993 through 1995 on the effect of a

“cash-out” scheme in the Los Angeles region22. A cash-out scheme is one form of PP that

gives employees a choice between free parking and its cash equivalent, introducing the

market mechanism to companies’ free parking. This scheme does not remove a benefit

from employees since they can either continue driving to work or receive a cash benefit by

using public transportation. The results in Los Angeles were remarkable: after a cash-out

scheme was introduced, the number of solo drivers fell 17% while the number of carpoolers

rose 64%, and public transit ridership increased 50%. The number of miles traveled by

private vehicles declined 12%. This program has reduced the number of cars used to

commute without sacrificing the number of persons commuting, and, according to surveys

taken, has increased both employers’ and employees’ satisfaction.

3.2 Examples of RP and PP Under Review or Rejected

Some cities have experienced difficulties introducing an RP scheme, or at least have

required much time to consider doing so.

3.2.1 Edinburgh, Scotland (RP)

In February 2005, about 290,000 voters in and around the city of Edinburgh were asked

whether the city should implement an RP scheme similar to London’s. The plan proposed

was to charge 2 UK pounds (US$4) to enter the cordoned area and 60 UK pounds

(US$120) for violations—amounts much lower than those in London’s scheme. More than

74% of those queried rejected the scheme.23 Typical reasons Edinburgh citizens gave for

rejecting it follow:24

(1) Distrust of local government: Citizens regarded the RP scheme as a mere tool for

raising revenue rather than reducing congestion. Many thought alternative ways to

reduce congestion should be sought before additionally burdening citizens.
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(2) Currently inadequate public transportation: Edinburgh has a poor public transport

system. Citizens described it as expensive, dirty, and unreliable: an inadequate transport

framework in which to implement the RP scheme.

(3) Two cordons: Because the Edinburgh proposal recommended two cordoned areas, the

number of people impacted was greater than would have been the case with a simpler

one-cordon plan. Even though computer simulation showed the increased congestion at

two cordon lines would be minimal, people distrusted the results, worrying especially

about traffic increases in residential areas and around schools between the two cordon

lines.25

3.2.2 Hong Kong26 (RP)

Road pricing was first attempted in Hong Kong in the 1980s, using an electronic charge to

control traffic. In 1983, an experiment involved 2500 vehicles for five days. Full-scale

implementation was planned in 1985, but failed for two main reasons. First, people feared

being identified because the Chinese government might utilize RP as a tracking tool.27

Second, the electronic charging system was underdeveloped.

3.2.3 New York City, USA28 (RP)

New York City has been considering RP schemes for many years, but none have been fully

implemented. However, a recent news article indicated29 that Mayor Michael R.

Bloomberg’s RP plan received strong support from Governor Eliot Spitzer and the Bush

administration. The mayor’s plan would charge US$8 for cars and US$21 for commercial

trucks entering Manhattan below 86th street between 6 a.m. and 6 p.m. on weekdays, or

US$4 for all drivers within the congestion zone. However, the following concerns remain:

(1) New York might be hurt economically.30 A report by the Queens Chamber of

Commerce31 released in February 2006 estimated that a US$14 congestion charge

similar to London’s would reduce by 40,000 the number of people entering
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Manhattan’s central business district each weekday, causing a loss of US$2.7 billion

in economic output per year.

(2) There could be equity issues. Low-income drivers often lack flexibility to change a

given traffic pattern because they generally have fixed work schedules and

consequently difficult-to-change travel patterns. If they must drive to their required

destinations, they may have no option other than to pay any CC that is imposed.

However, a survey conducted32 in 2003 by Schaller Consulting for Transportation

Alternatives and the NYPIRG Straphangers Campaign showed that most people

who drive into Manhattan are wealthy. Specifically, Schaller Consulting conducted

a survey regarding the East River bridges connecting Manhattan with other parts of

the city. The East River bridges are inexpensive or even free, and therefore heavily

congested. In order to estimate the effect of charging fees to drivers crossing the

bridges, Schaller Consulting investigated the equity issue and found that lower-

income people are far more likely to take transit than to drive themselves across the

bridges. Since drivers crossing the bridges tend to be in the upper income ranges

anyway, therefore, Schaller concluded that a toll would have little impact on lower-

income drivers.33

3.2.4 Boston, USA34 (PP)

In 1975, Boston capped the number of off-street parking spaces available downtown at

35,500 spaces, in part to reduce people’s incentive to drive downtown. As a result, Boston’s

off-street parking price (averaging US$11 for the first hour) is now one of the nation’s

highest, next to New York City’s and Chicago’s. However, since the price gap between on-

street and off-street parking is wide, the incentive for drivers to find inexpensive street

parking is high—creating extra traffic. The average savings realized by finding on-street

parking in Boston is an estimated US$10/hour, again among the nation’s highest, next to

New York City and Chicago. Although no data exist concerning what percentage of total
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traffic is actually searching for street parking, the current pricing policy certainly does

affect traffic conditions negatively on most congested Boston streets.

3.3 Issues of RP and PP

Having reviewed several examples of RP and PP, we now can analyze the main issues

pertaining to these two sorts of pricing schemes as functional issues and other issues such

as stakeholder issues and equity issues. Functional issues can be addressed relatively

simply because they derive from RP and PP design.

Table 2.

Comparison of RP and PP

Type Road Pricing

(cordoned-area RP)

Road Pricing

(ful-scale RP)

Parking Pricing

Scheme

used

Congestion Charge Congestion Charge Congestion Charge,

Price differential

Fee

structure

Flat rate over charged

area, Per day fee

Locally adjusted fee,

Per trip fee

Locally adjusted fee,

Per trip fee

Excluded

(Exempted)

groups

Residents in charged

area, Public

transportation

Public transportation Through traffic,

Public Transportation

Both RP and PP can be implemented efficiently if no groups are excluded (exempted) and

congestion is uniform over the charged area. However, as the target area expands, the

number of residents within it increases and congestion within the area becomes less

uniform. In such a case, cordoned-area RP becomes less effective and full-scale RP
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becomes more appropriate although associated administrative costs are huge. PP does not

have these issues: residents are not exempted, and parking fees can be applied locally (i.e.,

varied by locale). The biggest problem with PP is when through traffic is responsible for

most of the congestion, since PP cannot impose a congestion charge (CC) on each driver if

he does not park. In reality, though, most large cities are serviced by an extensive network

of highways. Therefore, in most cases, drivers with remote destinations never even enter

local congested roads.35 (Our presentation of a PP model in the following section does not

even consider through traffic.)

Stakeholder issues often create political hurdles for implementing RP/PP schemes, and

conflicts of interest affect the choice of schemes. We summarize the primary stakeholders

and their respective roles below:

(1) Government: Federal and local governments might be less interested in PP schemes

since these do not generate much extra revenue compared to RP. Similarly, public

transportation companies prefer RP because revenue generated by RP is used to

improve an affected area’s public transit system.

(2) Residents: People living in cordoned areas oppose PP because they need to pay

additional fees for parking. Even though they can use on-street parking spaces reserved

for residents, especially after business hours, they must pay additional fees for parking

every time they make a trip outside their residential area: even residents in the zone are

not exempt from PP. Therefore, residents of cordoned areas prefer RP because they are

exempt while still benefiting from reduced congestion.

(3) Business: A scheme’s impact on business varies with the type of business and

sometimes even the industry segment. For example, the London Chamber of Commerce

reported in its retail survey published in 2005 that the RP scheme in London was

negatively affecting retail business.36 According to the report, 79% of Central London
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retailers had experienced a fall in receipts and over half (56%) had seen a drop in

number of customers. Forty-two percent of respondents indicated they felt the scheme

was all or mostly to blame. London First, however, whose members account for 17% of

all employees in London and contribute 22% to the city’s gross domestic product, has

viewed the scheme positively.37 According to London First’s survey in London in 2003,

68% believed the scheme was working.

(4) Shops: Retail shops often benefit from congested roads and fully occupied parking lots,

so their owners might not view favorably the elimination of street parking nearby.

Last, we consider equity issues. All economic measures are discriminatory policy because

they try to exclude less productive people from using limited resources in order to

maximize the “social surplus”. The major distributional equity issues follow:

(1) Poor and Rich: Unavoidably, RP (and, to a lesser extent, PP) deprive the poor of

opportunities to drive cars, in order to increase the efficiency of utilization of limited

road resources. However, this equity problem can be alleviated significantly by

improving any public transportation systems currently provided. Revenue from RP (and

PP) can be used not only to improve public transportation but also to install new

affordable public transportation services.

(2) Suburbanites commuting to a cordoned area and urban commuters living inside it: Most

current RP (specifically, cordoned area pricing) effectively distributes suburban

commuters’ money to urban commuters when the latter are exempt from paying CC,

and the inequities increase as a cordoned area expands. Urban commuters therefore

benefit from uncrowded roads after RP implementation without an appropriate CC

burden. This inequity is difficult to resolve by means of RP alone because urban

commuters have the power to reject a CP scheme if they are not exempted from paying

a CC. However, this equity issue can be corrected by using PP to collect CC rather than
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by using RP.

3.4 Key Factors for Successful Implementation

Both successful and unsuccessful implementations of RP/PP indicate the importance of

quality public transportation systems as well as parking policies.

3.4.1 Enhancement of Public Transportation (PT)

Building up a quality PT system before RP/PP implementation is important because RP/PP

shifts drivers to PT commutation. If the current PT is poor, people are likely to disapprove

RP/PP. The quality of a public transport system includes its vehicles’ speed, punctuality,

accessibility, network coverage, cleanliness and safety. For example, before implementing

RP, London introduced about 300 additional buses,38 set new bus routes, increased the

frequencies of bus operation. London also has enforced traffic rules strictly with police

cooperation. London currently has 130 km of priority bus lanes, and bus service 24 h/day.

Tokyo, too, is famous for its high-quality PT system. To compensate for its less than

punctual bus system, a GPS bus-locator system has become common in Japan so users can

check buses’ current location by Internet or cell phone.39 Trains in Japan are reliable and

their network is extensive. Hence, Japanese commuters can often correctly estimate within

minutes the time they will reach a destination—even if their itinerary includes ten

transfers.40 In contrast, Edinburgh’s citizens were generally dissatisfied with their city’s PT,

and as a result, roundly rejected the prospect of RP when that was raised. One important

difference between London/Tokyo and U.S. cities should be noted: U.S. cities are less

densely populated; therefore, providing extensive PT in the U.S. is more costly. A park-and-

ride system can therefore be especially important in the U.S.

3.4.2 Parking Design Improvement

(1) Increase on-street parking prices

Inexpensive street parking creates congestion or adds to it not only by attracting more

people to use cars but also by adding traffic to congested roads as cars queue up in
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search of available street parking spaces—often so average wage earners can save

money. Queueing theory suggests that just a few percentage points’ increase in traffic

on almost fully congested roads significantly delays traffic. Real-world estimates are

that between 8% and 74% of traffic may be cruising in search of available street parking

in major US cities, with an average time required to find a vacant spot ranging from 3.5

to 14 minutes.41 These numbers can block nearly congested roads.

To make matters worse, one can also observe counteracting measures such as the

following parking policy regarding New York City’s often packed Theater District in

Manhattan; this particular ad can be spotted on a prominent banner near the top of the

New York City Department of Transportation website:42

Driving to the Theater District?
Use On-Street Parking – Only $2.00 per hour

Evenings & Saturdays at Muni-Meters throughout the Theater District

Thus, on-street parking spaces are only $2 per hour on weekdays 6 p.m.–12 a.m. and on

Saturdays 8 a.m.–12 p.m., and free on Sundays. When one of this paper’s authors

visited the area recently, on-street parking spaces were full even before traffic had

become congested; some cars were double-parked in front of off-street parking lots as

their drivers waited for a space to open up close by. People able to find on-street

parking were either extremely lucky or patient enough (and possessing sufficient spare

minutes) to spend a long time cruising or double-parking. The on-street parking

capacity was obviously insufficient; therefore, the extremely inexpensive parking

policy—“Only $2 per hour”—exacerbates congestion in the Theater District every

evening and also on Saturdays—not to mention Sundays, when parking is free. When

congestion is expected, street parking should be eliminated or its price level increased

to that of nearby off-street parking.
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(2) Eliminate parking subsidies

Subsidizing employees’ commuting expenses with free or discounted parking in lots is

popular with employers but counteracts PP’s effectiveness. Census data for the year

2000 show that more than half (53%) of total commuters (about 230,000 people)

driving into congested Manhattan each workday come from New York’s five boroughs.

The data also show that 35% of government workers in Manhattan drive to work mainly

because they have free parking.43 This problem could be solved by employers giving

employees the cash equivalent of parking fees to spend on using an alternate mode of

transportation. In California, for example, a law was passed in 1992 (although it has not

been enforced) requiring all employers to make such cash-out options available to

employees (Downs, 2004).
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4. Queueing Model for Parking Pricing

In the following, we develop a model that depicts patrolling drivers seeking on-street

metered or free parking. The model is motivated by recent data from Park Slope, Brooklyn

and by extensive earlier analyses by Donald C. Shoup.

We assume that all parking spaces are occupied almost all of the time that would-be parkers

are seeking parking spaces. Drivers seeking parking spaces are assumed to be driving

around through the streets seeking the first available spot. As soon as one opens up,

meaning a parked car is driven away, the next patrolling car virtually immediately occupies

that spot. The platoon of patrolling cars is a moving queue serviced in random order. Not all

would-be parkers are served in this queue, as the arrival rate of would-be parkers exceeds

the departure rate of parked cars. So, we allow drivers in the patrolling queue to become

discouraged, leave the queue and presumably settle for more expensive off-street parking

(for instance, in a parking garage or in a parking lot).

For modeling purposes we assume an infinitely large homogeneous city with S parking

spaces per square mile. We assume that the statistics of parking space availability and

desirability are uniform over the city. We assume that the time any given parker occupies a

parking space is a random variable W with probability density function fW(x) and mean

E[W]=1/µ. Prospective or would-be parkers appear in a Poisson manner at rate λA/hour,

where A is defined to be the size of the area being considered (in sq. mi.). Prospective

parkers will patrol looking for the first available parking space. Any unsuccessful would-be

parker can become discouraged. We model this process by assuming that any would-be

parker will leave the queue of patrolling would-be parkers at an individual Poisson rate of

γ/hr.

There are two “large numbers” features in this system that allow us to model the queue as a

Markovian system. First, regardless of the details of the probability density function (pdf)
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fW(x), the aggregate process of parked cars leaving parking spaces is accurately modeled as

a Poisson process with rate ASµ/hr. This is because the departure process from any given

parking space is seen as a renewal process with inter-renewal pdf fW(x). As is well known,

the merger or pooling of a large number of (sufficiently well-behaved) renewal processes

converges to a Poisson process (Cox and Smith, 1954). We assume that the number of

parking spaces we are considering is sufficiently large so that this approximation is very

accurate. Second, the time until reneging of any would-be parker could be any well-

behaved random variable having mean 1/γ, not necessarily a negative exponential random

variable. But, if the moving queue of patrolling would-be parkers is sufficiently large, we

again have the pooling of many renewal processes --- each having the same probability

density function of time until “renewal” and each starting at a random time. Such pooling

will result in the aggregate process of N would-be parkers leaving the queue becoming a

Poisson process with rate Nγ, where N is typically large enough so that the Poisson

assumption is valid.

We require one additional assumption in order to model this process efficiently. We assume

that when there are zero cars patrolling in the modeled area, no parked cars leave their

spaces. We know that this assumption is incorrect, but we are focusing on large queues of

patrolling cars in which case the likelihood of zero patrolling cars is very small. If this

assumption in an application setting is not valid, one can eliminate it be creating a larger

Markovian model that includes the possibility of several or even many empty parking

spaces.

In our work we will focus on a square area of the city having unit area (i.e., one square mile

or one square kilometer). We will assume that this region is large enough for our saturation

congestion theory to be valid. One might argue that in any actual city no would-be parker

feels constrained to patrol within any arbitrary boundaries. This is true. But for every

would-be parker who starts within our modeled square and then ventures out of it looking

for an available parking space, there is statistically an another equivalent would-be parker
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who started in some near-by zone who ventures into our zone. Statistically, for everyone

who leaves, there is someone who enters. We can take care of this by placing “reflecting

barriers” around our zone, so that when anyone in the real system leaves, we simply reflect

him or her back into the zone, creating a statistical equivalence to the real non-cordoned

system.

We now can draw the state-rate-transition diagram for this queue, assuming one square mile

of operation, as shown in Figure 1.

Figure 1.  State-Rate-Transition Diagram for Queueing System

By the usual process of “telescoping” balance of flow equations, we can express each

steady state probability Pn in terms of P0 and a product of upward transition rates (λ’s)
divided by the product of downward transition rates between state n and state 0. The result

is
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∏
P0 (1)

Now, invoking the requirement that the steady state probabilities sum to one, we obtain
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€ 

P0 =1/(1+
λn

(Sµ + iγ)
i=1

n

∏
)

n=1

∞

∑ .

Hence,

€ 

Pn =

λn

(Sµ + iγ)
i=1

n

∏

(1+
λm

(Sµ + iγ)
i=1

m

∏
)

m=1

∞

∑
,   n =1,2,3,... (2)

For steady state to exist we require P0>0, which always occurs. But we want P0 to be very

small for our approximations to be valid.

From the solutions obtained above, we can find all of the quantities of Little’s Law, L, Lq,

W and Wq. The basic Little’s Law relationship is, of course, 

€ 

L = λW . Here since “the

system” is the queue only and service implies finding an empty parking space, we have the

equivalences, L = Lq  and W = Wq.  L is the time-average number of cars seeking parking

spaces, or equivalently, the mean size of the patrolling queue of would-be parkers. W is the

mean time that a patrolling car remains on patrol, until leaving either by finding a parking

space or by frustration and reneging from the queue.

There are other performance measures of interest. The mean number of parking spaces

becoming available per hour is 

€ 

(1− P0)Sµ ≈ Sµ since P0 <<1. The mean number of renegers

per hour is 

€ 

λ − (1− P0)Sµ ≈ λ − Sµ , assuming λ> Sµ (which is required for our

approximations to be valid). For a random patrolling would-be parker, the probability of

successfully getting a parking space is 

€ 

(1− P0)Sµ /λ ≈ Sµ /λ . This agrees with intuition. If

say 100 parking spaces become available per hour and 250 would-be parkers arrive each

hour, then 40% will succeed in finding a parking space and 60% will leave in frustration.
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In the following we will assume that 

€ 

0 < P0 ≈ 0. This means that the queue of patrolling

cars is, for all practical purposes, never empty. Under these conditions, we argue that the

mean number of patrolling cars is

€ 

L = Lq =
λ − Sµ
γ

(3)

This is a fundamental result for our saturated on-street parking system. We argue its validity

by changing the queue discipline from SIRO (Service In Random Order) to LCFS (Last

Come, First Served). It is well known that L and Lq are invariant under the set of queue

disciplines whose preferential orderings do not include customer-specific service times. The

LCFS discipline is one such discipline. By LCFS here we mean the following: The next

available parking space would be given instantaneously to that patrolling car that has been

patrolling for the least amount of time. Usually this car would be the last to have arrived in

queue. But it might be the case that the most recent car has already left the queue by

reneging, in which case the next “youngest” patrolling car would be selected. The rate of

successful parkings per hour is 

€ 

Sµ , and thus the fraction of would-be parkers who receive

parking spaces virtually instantaneously upon arrival is 

€ 

Sµ /λ . The cars that do not get

nearly instantaneous parking stay patrolling for an amount of time that is exponentially

distributed with mean 

€ 

1/γ . For this revised queueing system Wq, the mean time patrolling

can be written,

€ 

Wq ≈ (0)(Sµ /λ) + (1/γ)(1− Sµ /λ) =
λ − Sµ
λγ

Since 

€ 

Lq = λWq , we can write
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€ 

Lq ≈
λ − Sµ
γ

,

as was to be shown.

In the above argument we use “approximately equal to” signs instead of “equals signs.”

This is due to the fact that there is a small but positive delay between a car’s arrival in the

queue of patrolling cars and its selection as a recipient of a parking space. The mean delay

between the arrival of a newly patrolling car and the emergence of a newly available

parking space is 

€ 

1/Sµ, assumed to be very small in contrast to 1/γ.

In the following two subsections we model explicitly two alternative ways of implementing

the LCFS queue discipline, as discussed above. These analyses are to show the operational

feasibility of the revised but highly fictional LCFS queue discipline. The “real system” at

all times is still assumed to follow the SIRO queue discipline.

4.1 Random Walk

Assuming the postulated LCFS queue discipline, one can model the arrival of a newly

patrolling car as an entry into “state 1” an infinite random walk on the non-negative

integers, where state 0 implies that the car transitions to a trap state -- signifying successful

assignment to a parking space. Transitioning to any higher state j+1,

€ 

j ≥1, indicates that the

position in queue has been changed upward from j to j+1. Due to the LCFS discipline,

higher states imply less likelihood of eventually receiving a parking space. If we define

€ 

β0 ≡P{car enters the trap state}=

 P{car transitions down one state in the random walk} =

 P{car obtains a parking space},

then we can write
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€ 

β0 = P{first transition is to trap state}+ (1− P{first transition is to trap state})β0
2

The reason for the term 

€ 

β0
2  is the fact that if the car has transitioned into state 2, then to be

awarded a parking space it must first transition down to state 1 and then eventually to state

0. Each transition down one state occurs with probability 

€ 

β0 , and the transition processes in

each case are independent. The probability that the first transition is to the trap state is equal

to the probability that a parking spot becomes available before the next arrival, and that is

equal to 

€ 

Sµ /(Sµ + λ) . Thus we can write,

€ 

β0 =
Sµ

Sµ + λ
+

λ
Sµ + λ

β0
2

The solution to this quadratic equation is 

€ 

β0 = Sµ /λ , and that agrees with our intuition and

previous results.

There is a subtlety in the derivation, as the argument appears to ignore reneging. Since

reneging can occur, the “cars” in the argument are in fact ordered slots: youngest slot in

queue, 2nd youngest slot in queue, etc. The car occupant of any slot may change due to

reneging. Once that is seen, the results are seen to be valid, even in the presence of

reneging.

4.2 Queueing Newly Available Parking Spaces

If one does not wish to consider the LCFS policy analyzed above, perhaps due to unrealistic

demands on tracking newly arriving cars, one can accomplish the same objective by using a

queue discipline that we will call NCNS, Next Come, Next Served. In this scheme each

newly available parking slot enters a queue of other newly available parking slots, and this

queue is depleted by newly arriving cars seeking parking slots. Any driver in a car lucky

enough to arrive when this queue of available parking slots is nonempty is immediately
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given a slot. All others are denied slots forever, and they join the other patrollers who

eventually renege after patrolling a random time having mean 1/γ. This process can be

modeled as an M/M/1 queue, with state i indicating i available parking slots (i = 0,1,2,…),

and with upward transition rates Sµ and downward transition rates λ. Since λ> Sµ, we

know that the queue is stable and possesses a steady state solution. Using well-known

results from the M/M/1 queue, we immediately have,

P{an empty parking space is available at a random time}=

€ 

1− P0 = Sµ /λ <1.

Since Poisson Arrival See Time Averages (PASTA), we have

 P{a random arrival obtains a parking space}=

€ 

1− P0 = Sµ /λ <1,

as expected.

In steady state, the mean number of free parking spaces is,

€ 

Np = nPn
n=1

∞

∑ = P0 n(Sµ /λ)n
n=1

∞

∑ =
λ − Sµ
λ

n(Sµ /λ)n
n=1

∞

∑ =
Sµ

λ − Sµ
.

For example, if λ = 2Sµ, then Np = 1 free parking space. One free parking space would

remain free for an amount of time equal to the time of the next driver seeking a parking

space, having mean 1/λ. Usually this time is quite small in contrast other times in the

system. More generally, in this instance Little’s Law states that 

€ 

Np = SµWp , so we have the

mean time that a newly available parking space remains available is

€ 

Wp =
1

λ − Sµ
.
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As an example, if λ = 100 cars per hour and Sµ = 40 cars per hour, then Wp = (1/60) hour =

1 minute. Again, this time is small in contrast to other times in the system, and all of our

results are correct within acceptable “engineering approximations.”

In conclusion, we can feasibly implement a car-to-parking-space queue discipline that

supports Eq.(3), using either LCFS or NCNS. But we remember that the actual or “real”

discipline is still assumed to be SIRO.

4.3 The Distribution of Patrolling Cars

Using the above logic, we see that the entire system, conceptually augmented with either

LCFS or NCNS queue discipline; can be viewed as a Poisson arrival queue with infinite

number of servers, i.e., an 

€ 

M/G/∞  queue. “Service” occurs for any car the instant the car

obtains a parking space or reneges from patrolling. The distribution of numbers of

patrolling cars in the system is not affected by our augmented queueing discipline. Mean

service time M can be written,

€ 

M = (0) Sµ
λ

+ (λ − Sµ
λ

) 1
γ

=
λ − Sµ
λγ

.

The Poisson process arrival rate is λ. For the 

€ 

M/G/∞  queue having arrival rate λ and mean

service time M, the steady state probability distribution of the number N of customers in the

system is well-known to be Poisson with mean λ M, i.e.,

€ 

P{N = n) =
(λM)n

n!
e−λM ,   n = 0,1,2,...

In this case, we can write the probability that there are N cars patrolling for parking spaces

is equal to
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€ 

P{N = n) =
(λ − Sµ

γ
)n

n!
e
−
λ−Sµ
γ ,   n = 0,1,2,...

Here again we see that the mean number of patrolling cars is equal to 

€ 

λ − Sµ
γ

, the result of

Eq. (3). But now we know that the entire distribution – assuming our saturation conditions

– is Poisson. Finally, as saturation grows worse, that is as λ increases towards ever-greater

congestion, the Poisson distribution becomes a Gaussian or Normal distribution.

The next step to take with this model is to place hourly prices on on-street parking and off-

street parking. Then one makes certain model parameters dependent on these prices,

especially the price difference between on-street and off-street parking. These ideas build

on the suggestions of Shoup (2005). As the price difference between on-street and off-street

parking becomes less, one should have the rate γ at which one leaves the queue of

patrolling cars increase. That is, the desire to find an on-street parking space and the

patience it requires in the patrolling queue will decrease as the price advantage of on-street

parking decreases. Eventually as one gets closer to price parity, our approximate

assumption of an endless queue of patrolling cars becomes invalid and we must modify the

model accordingly. Shoup’s stated objective is to raise on-street prices so that one has

roughly 15% of the on-street parking spaces available in steady state. For the model, this

would require extending the state-rate-transition diagram down significantly into

unsaturated states but still allowing the artifice of stopping at some left-most nonzero state

that has very small steady state probability. We do not see the need to model the system all

the way down to zero parking spaces being occupied.

4.4 Congestion Pricing and Queueing Theory44

Congestion pricing theory is based on the following observation: The congestion cost

caused by the entrance of a driver to a queueing system consists of the cost of delay to this

driver (internal cost) plus the cost of additional delay to all other users caused by this driver
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(external cost). For example, if the driver enters into a congested road and experiences 5

minutes delay, the internal cost to him is the cost of 5 minutes. However, when the road is

very congested, the entrance of this driver may delay 1 minute to 7 other drivers. Then the

external cost generated by him is the cost of 7 minutes to the other drivers. In order to

achieve the most efficient use of the road facility, this external cost should be burdened by

each driver. In economic terms, the external cost should be internalized. This was first

pointed out by Vickrey45 and by Carlin and Park:46 They claimed that “Optimal use of a

transportation facility cannot be achieved unless each additional (marginal) user pays for

all the additional costs that this user imposes on all other users and on the facility itself. A

congestion toll not only contributes to maximizing social economic welfare, but is also

necessary to reach such a result.” In 1959, William Vickrey, Columbia University

economist and 1996 Nobel Laureate, proposed an electronic RP system in detail to the Joint

Committee on Washington Metropolitan Problems.47 At the time, he also pointed out the

importance of a variable pricing system for on-street parking spaces in order to ensure some

vacancy to accommodate the demand and avoid unnecessary traffic congestion caused by

on-street parking shortages.

We follow economic principles to obtain the “optimal” congestion pricing. Consider a

queueing facility with a single type of user in steady state and let

=λ demand rate per unit of time by road users.

c = cost of delay per unit time per user.

C= total cost of delay per unit time incurred by all users in the system.

Lq = expected number of users in queue.

Wq = expected delay time in queue for a random user.

We can also assume that L=Lq and W=Wq, as in our parking model.

Then the time-average total delay cost per unit time can be written,
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qq WccLC λ== ,

where Little’s Law is used. The marginal delay cost (MC) imposed by an additional road

user can be obtained as,

€ 

MC =
dC
dλ

= cWq + cλ
dWq

dλ
.

The first term on the right is the internal cost experienced by the additional road user, and

the second is the external cost due to the increase in the expected delay, 

€ 

dWq

dλ
, resulting

from the increased traffic created by this user. Hence, we can write two components of the

marginal delay cost MC as follows:

(1) Marginal internal cost: 

€ 

MCi = cWq

(2) Marginal external cost: 

€ 

MCe = cλ
dWq

dλ
.

Vickrey suggested that the marginal external cost MCe should be imposed on each road user

in order to realize socially “optimal” utilization of road resources. In the most common

cordoned-area RP scheme today, however, the fee for residents in cordoned areas is

significantly discounted; also, the CC level is set to a constant fee per day regardless of the

frequency of trips a driver makes. Therefore, imposing appropriate charges on each road

user is difficult for RP, and consequently road resources become overused, which is partly

the reason why implementing RP over a large area is difficult. PP, on the other hand, does

not present such issues because a parking fee is charged all road users impartially (except

for privileges granted to physically challenged people), per trip, regardless of whether or

not they are residents of the charging area.
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4.5 The Parking Pricing Model

From our previous work, for the parking process in saturation, the total delay cost per unit

time and associated marginal delay cost are

€ 

C = cLq ≈ λ − Sµ( ) c
γ

 (4)

and

γλ
cCMC ≈

∂

∂
= . (5)

We can also obtain the marginal internal cost and marginal external cost,

€ 

MCi = cWq ≈ 1−
Sµ
λ
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€ 
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The ratio of MCe/MCi is

λ
µ

λ
µ

γλ
µ
γλ

µ

S

S

cS

cS

MC
MCr

i

e

−
=

⋅






 −

⋅
≈=

11
(8)

Here, we observe an interesting result. For a given c, the marginal delay cost to society is

dependent only on γ and does not depend on Sµ or λ. In a sense, in saturation each

additional would-be parker “brings with him” an average of 1/γ of delay, to be incurred by

somebody or some combination of people. However, the marginal internal cost, the

marginal external cost and their ratio r are dependent only on 
λ
µS , which is the success

probability for would-be parkers to find on-street parking spaces. Eq. (7) shows that the
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marginal external cost MCe is proportional to the parking success probability. MCe becomes

larger when more would-be parkers expect they will find parking spaces. MCe decreases if

we reduce the number of on-street parking spaces S, or increase the arrival rate λ, or

increase the reneging rate γ. If half of would-be parkers will find a parking space, then

marginal internal and external costs are equal. If 90% of all would-be parkers are denied

parking, then the external cost MCe associated with one new would-be parker is only 0.1c/γ,

whereas the internal cost MCi is 0.9c/γ. This is due to the fact that 90% of the time our new

would-be parker arrives, he will be denied parking and will have to incur the mean

patrolling time (cost) 1/γ  almost all by himself; he denies others only 10% of the time.

4.6 Trading Off Cost Savings and Convenience

Economists like to speak of “optimal” charges for those imposing external costs, this

problem being no exception. But it is difficult to operationalize this concept. What precisely

is meant by optimal? Optimal is an absolute word requiring a precise and unambiguous

objective function and set of constraints. We do not have those conditions in the context of

on-street vs. off-street parking. And how do the fees collected get distributed to aggrieved

parties? As operations researchers and not as economists, we tend to think of drivers as

decision makers who weigh their options and act accordingly.

Without significant empirical research, it is not possible to know precisely how would-be

parkers would behave in our “patrolling queue” situation. But we can make some plausible

first-order assumptions, presented in a transparent manner for review and critique. First, it

seems clear that some drivers would value their time more than others, and those would

tend to leave the queue of patrolling drivers more quickly than others. Second, a driver’s

willingness to spend time in the patrolling queue would rise or fall with the price

differential between on-street and off-street parking, with higher price differentials meaning

more willingness to spend time looking for less expensive on-street parking. Third, any

unsuccessful patrolling driver will eventually become discouraged, “cut his losses,” and

leave the queue for more expensive off-street parking.
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We can develop a simple model reflecting these assumptions. Suppose there are D

categories of drivers, where category d, 

€ 

1≤ d ≤ D, has a self-assessed value for time of Wd

dollars per hour. We assume the categories are rank-ordered such that

€ 

W1 ≥W2 ≥W3 ≥ ...≥WD . Let pd be the fraction of all would-be parkers belonging to

category d, 

€ 

1≤ d ≤ D. Clearly, 

€ 

pd
d=1

D

∑ =1. Let 

€ 

Δ  be the hourly parking price differential (in

dollars) between off-street and on-street parking, with the on-street parking being less

expensive. We now need a decision criterion for a patrolling driver to leave the queue and

accept the more expensive off-street parking. One plausible criterion is this: When the value

of the time already invested in patrolling for a less expensive on-street parking space equals

the price differential between off-street and on-street parking, then the expected values of

the respective options – when including sunk costs – become equal. But the variance of

costs for continued patrolling is large, whereas the variance of cost associated with the off-

street option is zero (a known, published parking fee). Thus, the decision rule is to leave the

queue and switch to off-street parking when the sunk cost of time invested becomes equal

to the parking price differential. This set of assumptions provides a basis for evaluating the

resultant reneging parameter γ as a function of the price differential 

€ 

Δ . The mean time that

a category d patrolling driver would remain patrolling is 

€ 

1
γ d

=
Δ
Wd

.

Including all D categories, weighed by their respective relative frequencies, the resulting

relationship can be written,

€ 

1
γ

= Δ
pd
Wdd=1

D

∑ . (9)

As a numerical example, consider one-hour parking with D = 3; pd = 1/3 for d = 1, 2, 3;

€ 

W1 =100, W2 = 25, W3 =10. Then
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€ 

1
γ

=
Δ
3
( 1
100

+
1
25

+
1
10
) =

Δ
3
(0.01+ 0.04 + 0.10) = 0.05Δ .

If 

€ 

Δ  = US$10/hr. then (1/γ)= 0.5 hr. = 30 minutes. If 

€ 

Δ  = US$20/hr., then (1/γ) is doubled

to 60 minutes. One socially positive aspect of the driver behavior assumed in this model is

that the successful on-street parkers are differentially more likely to be poorer people who

value their time less than others. Those who value their time highly will tend to leave the

queue more quickly and pay the higher off-street parking rates.

4.7 Extending the Model to Include Heterogeneous Drivers

In this section, we confirm the intuition that “poorer people are more likely to be successful

on-street parkers than richer people”. Assume there are two types of drivers, or “would-be-

parkers,” Type 1 and Type 2, whose corresponding arrival rates and reneging rates are λi

and γi  (i=1, 2), respectively. We construct a 2-dimensional state-rate-transition diagram for

the Markovian queue created by two types of drivers. Assume that each state is represented

by the ordered pair n1 and n2, which correspond to the respective numbers of Type 1 and

Type 2 drivers in the system. The state-rate-transition diagram is shown in Figure 2.

Figure 2.  State-Rate-Transition Diagram for

Queueing System with Two Types of Drivers



38

As before, we continue to assume that 0<

€ 

P00 ≈ 0, but now for this 2-dimensional system.

Again as before, we assume that the road is congested, with either type of driver able to fill

all available parking spaces: µλ S≥1  and µλ S≥2 .

We can write a set of balance-of-flow equations, where the balanced flows occur across

complete horizontal cuts of the network of Figure 2,

€ 

(λ1 + λ2)P00 = (Sµ + γ1)P10 + (Sµ + γ 2)P01 = Sµ(P10 + P01) + γ1 P10 + 0P01( ) + γ 2(P01 + 0P10)

€ 

(λ1 + λ2)(P10 + P01) = (Sµ + 2γ1)P20 + (1
2
Sµ + γ1)P11 + (1

2
Sµ + γ 2)P11 + (Sµ + 2γ 2)P02

= Sµ(P20 + P11 + P02) + γ1 2P20 + P11 + 0P02( ) + γ 2 2P02 + P11 + 0P20( )



39

€ 

(λ1 + λ2)(P20 + P11 + P02) = (Sµ + 3γ1)P30 + (2
3
Sµ + 2γ1)P21 + (1

3
Sµ + γ1)P12

+(1
3
Sµ + γ 2)P21 + (2

3
Sµ + 2γ 2)P12 + (Sµ + 3γ 2)P03

= Sµ(P30 + P21 + P12 + P03) + γ1 3P30 + 2P21 + P12 + 0P03( ) + γ 2 3P03 + 2P12 + P21 + 0P30( )

…

€ 

(λ1 + λ2)(P(n−1)0 + P(n−2)1 + ...+ P0(n−1)) = Sµ(Pn0 + P(n−1)1 + ...+ P0n )

+γ1 nPn0 + (n −1)P(n−1)1 + ...+1P1(n−1) + 0P0n( ) + γ 2 nP0n + (n −1)P1(n−1) + ...+1P(n−1)1 + 0Pn0( )
…

Adding up the countably infinite set of balance equations, we obtain

€ 

(λ1 + λ2)( Pnm
n,m= 0

∞

∑ ) = Sµ( Pnm
n,m= 0

∞

∑ − P00) + γ1 nPnm
n,m= 0

∞

∑
 

 
 

 

 
 + γ 2 mPnm

n,m= 0

∞

∑
 

 
 

 

 
 .

Using the assumption 

€ 

P00 ≈ 0, invoking the normalizing condition

€ 

Pnm
n,m= 0

∞

∑ =1, and using the

definitions 

€ 

L1 = nPnm
n,m= 0

∞

∑  and 

€ 

L2 = mPnm
n,m= 0

∞

∑ , we obtain

€ 

λ1 + λ2 = Sµ + γ1L1 + γ 2L2 .                     (10)

We need to derive one more equation to solve for L1 and L2. In order to do this, consider the

mean number of Type 1 and Type 2 renegers per hour, which are

€ 

nγ1Pnm
n,m= 0

∞

∑ = γ1 nPnm
n,m= 0

∞

∑
 

 
 

 

 
 = γ1L1 and 

€ 

γ 2L2 , respectively. Using these, the steady state mean

number of parking spaces available and taken by Type 1 and Type 2 parkers per hour are

€ 

λ1 − γ1L1 and 

€ 

λ2 − γ 2L2 , respectively. Note that the sum of the mean number of parking

spaces available and taken by Type 1 and Type 2 parkers per hour is

€ 

λ1 − γ1L1( ) + λ2 − γ 2L2( ) = Sµ , using Eq. (10). Note also that both 

€ 

λ1 − γ1L1 and 

€ 

λ2 − γ 2L2  are
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positive because the mean number of renegers 

€ 

γ1L1 and 

€ 

γ 2L2must be less than the arrival

rate λ1 and λ2, respectively, in steady state.

We now argue that the proportion of parking spaces taken hourly by Type 1 (Type 2) drivers

is equal to the proportion of cruising drivers who are Type 1 (Type 2). For if not, then Type

1 (Type 2) drivers would be more or less skilled than Type 2 (Type 1) drivers at finding

parking spaces. Due to the SIRO queue discipline that rewards that driver, Type 1 or Type

2, who just happens to be closest to the newly available parking space, each type of driver

is by definition equally skilled. And clearly the proportion of parking spaces taken per hour

by Type 1 (Type 2) drivers is equal to the fraction of parking spaces occupied by Type 1

(Type 2) drivers. For if not, then the parking time statistics of the two types of drivers

would differ, and this is not allowed in our model.

Invoking these results, we can write

    

€ 

L2
L1

=
λ2 − γ 2L2
λ1 − γ1L1

,   or, simplifying,   

€ 

γ 2 − γ1 =
λ2
L2
−
λ1
L1

         (11)

Combining Eqs. (10) and (11), we have

€ 

γ 2 − γ1 =
λ2
L2
−

λ1
λ1 + λ2 − Sµ

γ1
−
γ 2
γ1
L2

                 (12)

and

1

1

1
2

1

2

21

2
12 LLS

λ

γ

γ

γ

µλλ
λ

γγ −
−

−+
=−                  (13)

Since both 

€ 

λ1 − γ1L1 and 

€ 

λ2 − γ 2L2  are positive, the denominators in Eqs. (12) and (13) are

all positive. Therefore, unique positive solutions for both L1 and L2 are guaranteed in the

above equations. Analytical solutions can be obtained for both L1 and L2 using the quadratic
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formula. The method extends to three or any number of different types of drivers.

For simple illustrative purposes, consider a numerical example. Assume there are two types

of drivers: 100 poor people per hour arrive to the system and their per-person reneging rate

is 1/hr., and 300 rich people per hour arrive to the same system and their per-person

reneging rate is 3/hr. Both types of drivers are trying to find on-street parking spaces which

capacity is 50=µS /hr. In this case, one could argue that poor people value their time at a

rate of 1/3 that of rich people. By placing numbers in Eqs. (12) and (13), we obtain

2
2

1
3

1
50300100

10030013
LL −

−+
−=−  and 

1
1

100

3
1

3
50300100

30013
LL

−
−

−+
=−

Solving, we have 

€ 

L1 = 77  and 

€ 

L2 = 91. Hence, the ratio of poor and rich in parking spaces

are

€ 

Poor :Rich = L1 : L2 = 77 : 91= 46% :54% .

The interpretation is as follows: Even though poor people’s arrival is 25% of the total

arrivals, poor people occupy nearly half of the on-street parking spaces because of their

lower reneging rate, their greater “patience” while cruising for an available parking space.

Furthermore, the success rate of finding available parking spaces for poor and rich are

€ 

λ1 − γ1L1
λ1

=
100 −1⋅ 77
100

= 23%  and 

€ 

λ2 − γ 2L2
λ2

=
300 − 3 ⋅ 91
300

= 9%, respectively. Therefore, in

terms of distributional equity, the provision of on-street parking spaces can be seen as

“good” because poor people tend to utilize inexpensive parking more often than rich

people. However, the result also suggests that poor people are more apt to patrol than rich

people, thereby maintaining levels of street congestion that may be found unacceptable.

The way to fix that problem is to raise the price of on-street parking, and that would

increase the reneging rate of poor people since the price advantage of patrolling for on-
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street parking diminishes.

5. Conclusion

We reviewed current various road pricing (RP) and parking pricing (PP) schemes for

implementing congestion pricing (CP). We found PP is not only a cost effective alternative

to RP which can be implemented in a small city but also has a capability of controlling

local and time-varying traffic congestion using the price differentials between on-street

parking and off-street parking. Following the review, we developed a new queueing model

of the parking problem. We found (1) the queueing delay is inversely proportional to

reneging rate and the distribution of number of patrolling drivers follows Poisson

distribution, (2) the marginal delay cost imposed by an additional road user becomes

constant as a result of reneging when on-street parking spaces are full, and (3) the

congestion charge (CC) is calculated as the marginal external cost. We then extend the

homogeneous model to heterogeneous model with two types of drivers. We found that the

successful on-street parkers are differentially more likely to be poorer people who value

their time less than others.
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