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Abstract 

We present an algorithm for decomposing a social network into an optimal number of 

structurally equivalent classes.  The k-means method is used to determine the best 

decomposition of the social network for various numbers of subgroups.  The best 

number of subgroups into which to decompose a network is determined by minimizing 

the intra-cluster variance of similarity subject to the constraint that the improvement in 

going to more subgroups is better than a random network would achieve.  We also 

describe a decomposability metric that assesses how closely the derived decomposition 

approaches an ideal network having only structurally equivalent classes. 

Three well known network data sets were used to demonstrate the algorithm and 

decomposability metric.  These demonstrations indicate the utility of the approach and 

suggest how it can be used in a complementary way to the Generalized Blockmodeling. 

                                                 
* Corresponding author. Tel.: +1 617 577 5843; fax: +1 617 258 0485. 

 E-mail addresses: mohan76@mit.edu (Mo-Han Hsieh), cmagee@mit.edu (Christopher L. Magee). 

 



 2

1. Introduction 

In the network analysis literature, two lines of research have been pursued to 

develop methods of decomposing networks into meaningful subgroups (Wasserman and 

Faust 1994).  These are: (1) research that seeks to identify cohesive subgroups (Frank 

1995); and (2) research that seeks equivalent classes in a network (Lorrain and White 

1971; Breiger, Boorman et al. 1975).  While numerous methods have been proposed to 

conceptualize the idea of cohesive subgroups (including the algorithm recently proposed 

by Newman and Girvan (2004)), the recent efforts in social networks research have been 

on developing methods that identify equivalent classes.   

Among the methods that identify equivalent classes, Batagelj et al. (1992) proposed 

to divide them into direct and indirect methods.  An indirect method typically composes 

two major parts: (1) a definition of dissimilarity that is compatible with the selected type of 

equivalence (e.g. the corrected Euclidean-like dissimilarity (Burt and Minor 1983)) and (2) 

an algorithm that produces good clustering solutions (e.g. hierarchical clustering).  The 

method is indirect in the sense that the relational information among vertices is first used 

to create a partition, and the partition is then evaluated with an explicit criterion function 

(Batagelj, Ferligoj et al. 1992).  While most of these methods generate dissimilarity 

measures that are compatible with the selected types of equivalence, the clustering 

solutions based on these dissimilarity measures are generally not satisfying.   

The often used method, CONCOR (Breiger, Boorman et al. 1975), is considered as 

having the aspects of both the indirect and direct method (Batagelj, Ferligoj et al. 1992).  

However, CONCOR procedure always splits a set of vertices into exactly two subsets.  

Repeated application of CONCOR would result in a series of subdivided bi-partitions of 
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the network.  In this case, the partition outcome is at least partially determined by the 

procedure, not by the actual structure of the network (Schwartz 1977). 

Indeed, the most recently developed approach in identifying equivalence subgroups 

is Generalized Blockmodeling (GBM) (Doreian, Batagelj et al. 2005).  The method 

considers ideal blockmodels and uses optimization methods to fit them to empirical data.  

This direct method allows for use of context information in forming hypotheses and gives 

a criterion function (i.e. inconsistencies) that measures the fit of a specified blockmodel or 

decomposition structure to the actual data.  GBM has been shown to give “better” 

decompositions of social network data based upon comparing inconsistencies (Batagelj, 

Ferligoj et al. 1992; Doreian, Batagelj et al. 2005).  However, GBM does not have a clear 

definition of a “best” decomposition since (as noted in (Doreian, Batagelj et al. 2005)) 

hypotheses with more subgroups can always be found to lower the number of 

inconsistencies to zero.  In many cases, this involves the decomposition to numerous 

singletons and of course in the limit one can trivially decompose a network to all 

singletons with no inconsistencies but also with no meaning.  In other words, to become 

an inductive approach, GBM needs a criterion for stopping decomposition. 

In this paper, we propose a new indirect method of partitioning a network into 

structural equivalence classes.  Overall, the method consists of: (1) an unsupervised 

clustering method, in which vertices are assigned to clusters to minimize the intra-cluster 

variance of dissimilarity; (2) an approach that takes into consideration not only the 

dissimilarity between the pair of vertices but also the pair’s dissimilarities with all other 

vertices; (3) a quantitative stopping criteria for determining the number of subgroups that 

a network should be divided into to best represent its underlying equivalence structure.  

The method is seen as a companion to BGM offering additional insight in certain kinds of 
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studies (where inductive learning is useful) and having a similar limitation.  The new 

method, at this point, is limited to structural equivalence basically because of the lack of 

valid dissimilarity measures for the potentially more interesting types of equivalence such 

as “regular” equivalence. 

The paper presents the new method for finding structural equivalence classes and 

its application to ideal structurally equivalent networks in Section 2.  In section 3, we 

develop a normalized decomposability metric for assessing how close non-ideal 

networks are to the ideal networks found by our (or any) decomposition methodology.  

Application of our method including the decomposability metric to three known social 

networks is presented in Section 4.  Brief concluding remarks are given in Section 5. 

2. A New Method for Finding Structural Equivalence Classes 

The method starts with any dissimilarity measure of vertices that is compatible  with 

structural equivalence.  For an n-node network, these dissimilarity measures can be 

arranged in an n by n matrix, whose entries give the dissimilarity between the row 

vertices i and the column vertices j.  Hierarchical clustering generates the hierarchy of 

vertices by using these measures and different definitions of dissimilarity between the 

new clusters.  Our method treats the n by n dissimilarity matrix as n data points in the 

n-dimensional space that we wish to partition.  That is, we read row i of the dissimilarity 

matrix as the n-dimensional coordinates of the ith data points.  Since the dissimilarity 

matrix is symmetric, the coordinates can also be read as the column elements.   

With n data points in the n-dimensional space, we then repeatedly apply the 

k-means method to partition the n data points into k=2 to k=n clusters.  Lloyd’s k-means 

algorithm (Lloyd 1982) begins with a set of k reference points which are randomly 
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selected from the data set.  All of the data points are partitioned into k clusters by 

assigning each point to the cluster of its closest reference point.  In each iteration, the 

centroid for each cluster is calculated.  A new partition is then made by using those 

centroids as reference points for all of the data points.  It has been proven (Bottou and 

Bengio 1995) that the iterative process will eventually converge to a configuration where 

each data point is closer to the reference point of its cluster than to any other reference 

point and each reference point is the centroid of its cluster.  Since different initial 

reference points can generate different partitions, multiple sets of initial points are used to 

evaluate whether the obtained partition has approached its minimum sum of intra-cluster 

distances.  Information about the k-means method and its many variations can be found 

in (Kaufman and Rousseeuw 2005). 

For each round of the k-means method that partitions the n data points into k clusters, 

we have the sum of the within cluster points-to-centroid distances as 

2

1∑ ∑= ∈
−=

k

i Sj ijk i cxD                 (1) 

where Si (i=1,2,…,k) is the cluster and ci is the centroid or mean point of all of the 

data points xj in cluster Si.   

In the process of decomposing the network into more subgroups (i.e. as k increases), 

Dk gradually decreases as more centroids are generated.  A smaller Dk is desirable 

because we want a partition that has a smaller intra-cluster variance.  Dk is zero when 

all of the equivalent classes (including singletons) have been identified by at least one 

centroid.  For ideal networks having only structurally equivalent classes, an algorithm 

could stop further partitioning the network when Dk is zero.  However, for most real 

networks, the monolithic decreasing Dk goes to zero only after every singleton has been 
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individually identified as unique equivalent classes.  In the case of k = n, Dk is always 

zero because every node is identified as itself an equivalent class.  The result of 

identifying a great number of singletons is relatively meaningless since it does not inform 

us about the underlying structure of the network.  To avoid generating an excessive 

number of classes for real networks, a quantitative criterion must be designed to 

appropriately stop further decomposition of the networks.   

For any assigned number of subgroups, the k-means method seeks to minimize Dk 

with the same number of centroids.  Because nodes of the same equivalent class have 

the same coordinates, a lower Dk can be obtained by first grouping them with centroids.    

Therefore, if a network has equivalent classes, Dk decreases significantly with newly 

added centroids until every equivalent class has been identified by at least one centroid.  

The decrease of Dk slows down with larger k when singletons start to appear as classes.  

To some extent, these singletons, with their unique linkage patterns, are similar to 

randomly wired nodes in a network.  Therefore, the gradual decrease of Dk during the 

generation of singletons is similar to that of a random network.  Thus, we stop further 

dividing a network into additional subgroups by comparing the decrease of Dk with that of 

a random network with the same size and density.  In other words, we stop further 

partitioning the network if the decrease of its Dk from k to k + 1 is less than that of a 

comparable random network.  We thus define a fitness index as simply 

DDF real
k

random
kk −=                  (2) 

where random
kD  is the sum of intra-cluster point-to-centroid distances of the random 

network and real
kD  is that of the real network.  We find the maximum of Fk as a function 
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of k, and the corresponding k represents the appropriate subdivision of the network 

because further subdivision is only reducing Dk at random (or less than random) rates.  

The nodes belonging to the k different clusters then form the equivalent classes of the 

network. 

 In theory, our method works for all of the ideal networks having only structurally 

equivalent classes because nodes of the same equivalent class cause a larger decrease 

of the sum of intra-cluster point-to-centroid distances than nodes that belong to no 

equivalent class.  This also works in practice as we have tried the algorithm for a variety 

of ideal networks and the algorithm identifies the correct subgroups for all of them.  

However, there are easy and difficult cases of using the fitness index to identify the right 

number of classes that the network has.  The difficult cases are the networks whose 

decrease of the sum of intra-cluster point-to-centroid distances is only slightly higher than 

that of the random network.  Figure 1 shows two sets of comparison between these 

difficult and easy cases.  Each fitness value in the figure is normalized between zero 

and one so that we can compare their resolution.  Figure 1(a) shows the fitness index for 

two ideal networks with the same minimum equivalent class size (i.e. C=5) but different 

network size (i.e. n=25 and 100).  As shown in the figure, it is easier to identify the peak 

of fitness index for the network with smaller size because the fitness index has better 

resolution.  Figure 1(b) shows the fitness index for two ideal networks with the same 

network size (i.e. n=50) but different minimum equivalent class size (i.e. C=2 and 10).  

As shown in the figure, the network with larger minimum equivalent class size has better 

resolution, thus makes it easier to identify the peak of fitness index.  In general, 

networks having small equivalent classes and larger network sizes are the difficult cases 

of using the fitness index to identify the right number of classes that the network has.  



 8

Nonetheless, the method identifies the correct ideal network in all cases. 
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(b) 

Figure 1. (a) Fitness index for ideal networks with the same minimum equivalent class size (i.e. C=5) but 

different network size (i.e. n=25 and 100). (b) Fitness index for two ideal networks with the same network 

size (i.e. n=50) but different minimum equivalent class size (i.e. C=2 and 10). 

3. Measuring the decomposability of a network 

 By applying our class finding algorithm, networks are divided into subgroups that 

correspond to their underlying equivalent structures.  However, we want to differentiate 

among networks whose subgroups are not all ideal equivalent classes.  In this case, we 

define perfect decomposability of a network as that achieved when a network is 

composed of only equivalent classes.   

 Having a normalized objective measurement of decomposability is useful.  For 

example, we can compare two networks and determine which network is more similar to 

an ideal network having only equivalent classes.  Lower decomposability can be used to 

infer that the suggested decomposition is more forced and thus should be cautiously 

utilized in further analysis.  Moreover, if other variables (or time series data) are known, 

the change of decomposability with the variables (or with time) affecting the network can 

be found.  This can allow one to find how various variables influence the structural roles 

in a given network or a variety of different networks.   
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 To determine the normalized decomposability of a network, we construct an 

objective measurement that places networks with only equivalent classes at one end and 

those without any equivalent class at the other.  We use the sum of intra-cluster distance, 

Dk, of Eq. (1), to quantify the similarity between a real network and an ideal network.  

For an ideal network having only equivalent classes, its sum of intra-cluster distance, 

Dideal, equals to zero.  This is because every member of the same equivalent class, 

when viewed as a node in the multidimensional space, has the same coordinates.  

Therefore, their intra-cluster distances equals to zero and the sum of these distances, 

Dideal, equals to zero. 

In addition to the value of Dideal , we want the upper bound of the sum of intra-cluster 

distance, Dmax(n,k), for networks having n nodes and k clusters.  With the lower bound, 

Dideal=0, and the upper bound, Dmax(n,k), we can thus obtain the normalized 

decomposability, Q, for the network as 

),max(),max(

11
kn

k

idealkn

idealk

D
D

DD
DDQ −=
−

−
−=              (3) 

which defines Q as 1 for perfect decomposability and 0 for Dk = Dmax(n,k) which is 

equivalent to no decomposability.  To obtain the upper bound, Dmax(n,k), we are seeking a 

network that has the maximum possible value of Dk while having the same size and is 

divided into the same number of clusters as that of the ideal network.  To obtain the 

upper bound of Dk, we apply the Monte Carlo method to obtain an approximate solution 

for the network with size, n, and number of clusters, k.  By using the corrected 

Euclidean-like dissimilarity (Burt and Minor 1983) as the dissimilarity measure for 

structure equivalence, Table 1 shows some examples of Dmax(n,k) (with three significant 

figures) for network with different sizes and number of clusters. 
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Size of Network (n)  6 7 8 9 10 11 12 13 14 15 
2 21.3 32.2 44.6 60.3 76.7 96.4 120 146 168 196 
3 14.3 23.2 33.5 46.8 61.7 77.4 97.2 121 144 168 
4 8.39 16.4 26.5 36.8 49.5 65.1 82.8 102 125 146 

Number of 
Clusters (k) 

5 4.51 10.5 17.8 27.6 41.4 54.6 68.8 86.9 106 131 

Table 1.  Dmax for network with different sizes and number of clusters 

In the table, the maximum possible Dk for a 9-node network, for example, divided into 

three clusters is Dmax(n,k)=Dmax(9,3)=46.8.  With this information, we consider three 9-node 

networks as shown in Figure 2. 

 

Network 1 and its adjacency matrix 

  1 2 3 4 5 6 7 8 9 
1 0 1 1 0 0 0 0 0 1 
2 1 0 1 0 0 0 0 0 0 
3 1 1 0 0 0 0 0 0 0 
4 0 0 0 0 1 1 0 0 0 
5 0 0 0 1 0 1 0 0 0 
6 0 0 0 1 1 0 0 0 0 
7 0 0 0 0 0 0 0 1 1 
8 0 0 0 0 0 0 1 0 1 
9 0 0 0 1 0 0 1 1 0 

 

Network 2 and its adjacency matrix 

  1 2 3 4 5 6 7 8 9 
1 0 1 1 0 0 0 0 0 1 
2 1 0 1 0 0 0 0 0 0 
3 1 1 0 0 0 0 0 0 0 
4 0 0 0 0 1 1 0 0 0 
5 0 0 0 1 0 1 0 0 0 
6 0 0 0 1 1 0 0 0 0 
7 1 0 0 0 0 0 0 1 1 
8 0 0 0 0 0 0 1 0 1 
9 0 0 0 1 0 0 1 1 0 

 

 
Network 3 and its adjacency matrix 

  1 2 3 4 5 6 7 8 9 
1 0 1 1 0 0 0 0 0 1 
2 1 0 1 0 0 0 1 0 0 
3 1 1 0 0 0 0 0 0 0 
4 0 0 0 0 1 1 0 1 0 
5 0 0 0 1 0 1 0 0 0 
6 0 0 0 1 1 0 0 0 0 
7 1 0 0 0 0 0 0 1 1 
8 0 0 0 0 0 0 1 0 1 
9 0 0 0 1 0 0 1 1 0 

 

Figure 2.  Network 1, 2, and 3 and their adjacency matrixes. 
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Note that the only difference between Network 1 and Network 2 is the directed link from 

node 7 to node 1.  Network 3 differs from Network 2 by its additional links from node 2 to 

node 7 and from node 4 to node 8.  The result of applying our class finding algorithm to 

Network 1 and Network 2 shows that the two networks are divided into the same three 

clusters (i.e. node 1, 2, and 3, node 4, 5, and 6, and node 7, 8, and 9).  Moreover, we 

obtain Dk = D3 = 8.71 for Network 1 and D3 = 11.2 for Network 2.  Therefore, the 

decomposability for Network 1 is  

 81.08.46/71.811
)3,9max(

3
1 =−=−=

D
DQ  

and the decomposability for Network 2 is 

 76.08.46/2.1111
)3,9max(

3
2 =−=−=

D
DQ . 

Similarly, our class finding algorithm tells us that Network 3 should be divided into still the 

same three clusters.  With its sum of intra-cluster distance, D3, equals to 16.2, we obtain 

its decomposability as 

65.08.46/2.1611
)3,9max(

3
3 =−=−=

D
DQ . 

With Network 1 having the highest decomposability and Network 3 having the lowest, the 

decomposability metric confirms what visual inspection tells us; Network 2 is closer to the 

ideal network than is Network 3 but is further from ideal than is Network 1. 

 Since the decomposability can be viewed as a measure of deviation of real networks 

from ideal networks that contain only equivalent classes, we explored the relationship 

between a network’s decomposability and its deviation from an ideal network.  To do this, 

we examine the decomposability of 10,000 pseudo real networks generated from 
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randomly perturbing1 all possible linkages of ideal networks (i.e. adding or removing 

links) with six different percentages.  Ideal networks with sizes between 30 and 60 were 

sampled.  Furthermore, we sample ideal networks with the assumption that the number 

of classes for each network is normally distributed and the size of each class within a 

network is also normally distributed.  Since real networks typically have very low density, 

we only sample ideal networks with density lower than 0.2.   

Figure 3 shows the average decomposability of the pseudo real networks (with one 

standard deviation also plotted) versus their percentage of linkage perturbation from ideal 

networks.  As shown in the figure, the linear relationship between the two has an 

R-square value of 0.99.  In other words, the more a network deviates from any ideal 

network (i.e. with higher percentage of linkage perturbation), the lower its 

decomposability is.   

With this result, we can calculate the deviation of our previous three networks.  

Referring to Figure 3, the decomposability of Network 1, 2, and 3 (calculated above) are 

equivalent to 4.8%, 6.1%, and 8.9% linkage perturbation of their underlying ideal network.  

It should be noted that real networks are less likely to preserve their underlying structure 

with increasing percentage of linkage perturbation.  Indeed, by extrapolating the linear 

relationship shown in Figure 3, the upper limit of linkage perturbation for a real network to 

preserve any vestige of its original structure is about 25%.  In this case, the 

corresponding decomposability is zero.  However, even for non-zero decomposability, 

we should proceed with some extra caution in trusting the decomposition as 

decomposability falls. 

                                                 
1 The perturbation can be viewed as arising from an error in observation or arising because real social relationships 
are more complex than the ideal. 
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Figure 3.  Decomposability versus linkage perturbation of ideal network 

4. Application of the Method 

 In the previous sections, we propose a method for clustering nodes of networks into 

meaningful equivalent classes and a decomposability metric to quantify a network’s level 

of linkage perturbation from its underlying ideal network.  Because our method can 

identify the number of classes for any ideal network having only structurally equivalent 

classes, in this section we test our method and the decomposability metric with three 

examples of real networks.  

 The multiplex ties among workers in an office reported by Thurman (1979) is used as 

the first example to evaluate our method.  The dataset is comprised of the social 

relationship and the authoritative relationship among the 15 workers.  The social 

network is shown in Figure 4(a), and the organizational chart is shown in Figure 4(b).   
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(a) 

 
 
 
 

President 

Pete 

Minna Katy Bill Ann Andy Emma 

Peg Rose Tina Mike Marry Amy Lisa 
 

 
 
 

(b) 

Figure 4.  (a) The social network and (b) the organizational chart of Thurman office data. 

 By applying our method to first partition the authoritative network into k=2 to k=15 

subgroups, the sum of intra-cluster point-to-centroid distances as a function of k is 

obtained and is shown in Figure 5(a) as dark gray bars.  To obtain the fitness index, we 

need the comparable sum of any sampled random network that has the same size and 

density as the authoritative network.  This sum of intra-cluster point-to-centroid 

distances as a function of k is shown in Figure 5(a) as light gray bars.  The fitness index 

generated by subtracting the one of the authoritative network from that of the random 

network is shown in Figure 5(b).   
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(b) 

Figure 5. (a) The sum of intra-cluster point-to-centroid distances of Thurman’s office authoritative network 

(dark gray bars) and that of the random network with the same size and density (light gray bars).  (b) The 
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fitness index of Thurman’s office authoritative network. 

As shown in Figure 5(b), the fitness index has its maximum at k=5, which by our 

method indicates that the best decomposition of the network is into five equivalent 

classes.  These equivalent classes are: (1) the President and Pete, (2) Katy, Bill, Ann, 

and Andy, (3) Minna, Amy, and Lisa, (4) Peg, Rose, Tina, Mike, and Marry, and (5) Emma 

herself. This partition corresponds well with the organizational chart shown in Figure 4(b).  

 With the same procedure, we partition the social network into k=2 to k=15 subgroups, 

we first obtain the sum of intra-cluster point-to-centroid distances of the social network 

and the random network as shown in Figure 6(a).  The fitness index thus obtained is 

shown in Figure 6(b).  
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(b) 

Figure 6. (a) The sum of intra-cluster point-to-centroid distances of Thurman’s office social network (dark 

gray bars) and that of the random network with the same size and density (light gray bars).  (b) The fitness 

index of Thurman’s office social network. 

 The fitness index shown in Figure 6(b) has the maximum at k=6, indicating that the 

best decomposition is into six equivalent classes.  Figure 7 shows these six classes and 

the block model as revealed by using our method. 
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Figure 7.  Class members, block density, and image graph of the Thurman social network 

As shown in Figure 7, the first class includes Amy, Katy, and Tina, and the second class 

includes Ann, Pete, and Lisa.  There is strong interaction within and between the two 

classes.  What differentiates them is that the second class has strong interaction with 

the President.  According to Thurman (1979), Pete is characterized as the center of a 

social circle that included Lisa, Katy and Amy.  Ann arrived under the sponsorship of 

Pete, and Lisa has the ear of the President (Thurman 1979).  It is worth noticing that the 

fourth class comprises only Emma, who has strong interaction with the President, the 

members of the second class, and the members of the fifth class.  According to 

Thurman (1979), she plays a special role in the social network.   

 With the network size equals to 15 and the number of subgroups equals to five for 

the authoritative network and six for the social network, we have the upper bound of the 

sum of intra-cluster distance, Dmax(15,5) =130.71 and Dmax(15,6) =113.07.  By using 

Equation (5), the decomposability for the authoritative network and the social network are 
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0.95 and 0.65 respectively.  While both of these decomposabilities are reasonably high, 

the authoritative network is much more similar to an ideal network in terms of its 

equivalence structures and thus is more reliably discussed in terms of this structure.   

By using the relationship between the decomposability and the linkage perturbation 

of the ideal network shown in Figure 3, we can infer that the authoritative network is 

about 1.2% linkage perturbation from the ideal network and the social network is about 

8.9% linkage perturbation from the ideal network.  This strongly indicates that the 

authoritative network is more solidly linked to the data but the inferred equivalence 

structure of the social network might be substituted for easily with more observation or 

slight changes in interaction patterns.  

The inter-organizational Search and Rescue (SAR) network created after a disaster 

in Kansas (Drabek 1981) is used as the second example to demonstrate the use of the 

new method.  The SAR network has 20 organizations.  The dichotomized 

communication data among these organizations are shown in Table 2. 

   A B C D E F G H I J K L M N O P Q R S T 
Osage County Sheriff's Department A 0 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0 0 1 
Osage County Civil Defense Office B 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 
Osage County Coroner's Office C 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 
Osage County Attorney's Office D 1 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 
Kansas State Highway Patrol E 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 
Kansas State Parks and Resources Authority F 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 
Kansas State Game and Fish Commission G 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 
Kansas State Department of Transportation H 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
U.S. Army Corps of Engineers I 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 
U.S. Army Reserve J 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Crable Ambulance K 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
Franklin County Ambulance L 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
Lee's Summit Underwater Rescue Team M 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Shawney County Underwater Rescue Team N 1 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 
Burlingame Police Department O 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 
Lyndon Police Department P 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 
American Red Cross Q 1 1 1 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 
Topeka Fire Department Rescue #1 R 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 
Carbondale Fire Department S 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 
Topeka Radiator and Body Works T 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 

Table 2. Kansas SAR Inter-organizational Network 

To present the basic structure of the network, Drabek used CONCOR to partition the 
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network into five clusters as: 

1. Authority position: {A, E}. 
2. Primary support: {C, F, G, I, K}. 
3. Critical resources: {D, L, N}. 
4. Secondary support, 1: {M, O, P, Q, R, T}. 
5. Secondary support, 2: {B, H, J, S}. 

 While these five subgroups are potentially useful in understanding this network, 

Doreian et al. (2005) showed that this partition has 79 inconsistencies when examined 

with their GBM criterion function for structural equivalence.  They found a five-cluster 

alternative that has only 57 inconsistencies (indicating the weakness of CONCOR 

discussed in the Introduction to this paper): 

1. Authority: {A, E}. 
2. Bodies and Survivors: {C, F, G, I}. 
3. Infrastructure: {B, D, K, N, P, Q}. 
4. Primary Rescue Operators: {H, J, L, M, R, S, T}. 
5. Secondary Rescue Operators: {O}. 

 Applying the method presented in this paper to find the structural equivalence 

classes of the SAR network, we again partition the network into k=2 to k=20 subgroups.  

The sum of intra-cluster point-to-centroid distances of the SAR network and that of the 

random network with the same size and density is shown in Figure 8(a).  The fitness 

index is shown in Figure 8(b). 
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Figure 8. (a) The sum of intra-cluster point-to-centroid distances of the SAR network and random network 

with the same size and density.  (b) The fitness index of the SAR network. 

 The fitness index shown in Figure 8(b) has its maximum at k=4, indicating that the 

best decomposition is into four equivalent classes.  Figure 9 shows these four classes 

and the block model as revealed by using our method. 

 

Figure 9.  Class members, block density, and image graph of the SAR network 

As shown in figure 9, our partition differs from that of Doreian et al. (2005) only in 

that ours combines their two classes, {B, D, K, N, P, Q} and {O}, into one class.  By 

using the criterion function for structural equivalence proposed by Doreian et al., our 

partition has 64 inconsistencies, which is considerably better than the 79 for the five 
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subgroups suggested by CONCOR but seven more than the five subgroup partition 

proposed by Doreian et al using their direct method.  Since more subgroups will 

decrease the inconsistencies, we examine the five-class decomposition of our method: 

1. {A, E}, 
2. {C, F, G, I}, 
3. {B, N, O}, 
4. {D, K, P, Q}, 
5. {H, J, L, M, R, S, T}. 

This partition breaks the third class of our four-class partition into two classes as {B, 

N, O} and {D, K, P, Q}.  This decomposition has the same 57 inconsistencies as that of 

the different partition of Doreian et al. when examined with their criterion function.  Thus, 

our method appears more effective than CONCOR and relative to GBM is capable of 

finding interesting decompositions that are worthy of consideration along with various 

hypotheses arrived at by other information. 

With the network size equal to 20 and the number of subgroups equals to four for 

our first partition and five for the other partitions., we have the upper bound of the sum of 

intra-cluster distance, Dmax(20,4) =298.51 and Dmax(20,5) =271.56.  With these upper 

bounds, our first partition has decomposability of 0.42, which is greater than the five 

subgroup partition of Drabek et al (i.e. 0.41) and slightly lower than that of the partition of 

Doreian et al (i.e. 0.44) and that of our five subgroup partition (i.e. 0.45).  We feel it is 

more important to notice that the decomposability of 0.42 is about 15% perturbation from 

the ideal network.  With this high percentage of linkage perturbation, we should be 

cautious when using any of the inferred equivalence structures of the SAR network.  

Conversely, we can use the low decomposability of the SAR network data and the lack of 

clarity about structure derived from that data to support the contention that 
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communication structures were weak in this instance (Drabek 1981).   

Our third example is the political actor network reported by Doreian and Albert 

(1989).  In this network, the nodes are the prominent political actors in a local 

community and the links represent “strong political ally” among the actors.  Figure 10 

shows the three-class partition obtained by using CONCOR in the original analysis. 

 

Figure 10.  Political actor network with 32 inconsistencies and the decomposability of 0.42. 

According to Doreian et al. (2005), this partition has 32 inconsistencies when 

examined with the GBM criterion function for structural equivalence.  They proposed a 

three-cluster alternative shown in Figure 11 that has only 26 inconsistencies. 
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Figure 11.  Political actor network with 26 inconsistencies and the decomposability of 0.37. 

By applying our method to find the structural equivalence classes of the network, 

maximization of the fitness index indicates that the network is best decomposed into four 

equivalent classes.  The four-class partition is shown in Figure 12.  When examined 

with the criterion function proposed by Doreian et al. (2005), it has 25 inconsistencies, 

which is one less than that of the partition shown in Figure 11.   

  
Figure 12.  Political actor network with 25 inconsistencies and the decomposability of 0.49. 
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Since reduced inconsistency is expected with more subgroups, we also explore the 

3 subgroup solution from the inductive method.  In this case, our method suggests the 

same partition as that shown in Figure 10.  Though it has more inconsistencies than 

that of the partition shown in Figure 11, the former has decomposability of 0.42 that is 

higher than 0.37 of the latter.  This result clearly shows that our four-class partition, with 

25 inconsistencies and decomposability of 0.49, has the best quality in terms of both the 

criterion function and the decomposability.  However, the relatively low decomposability 

of this network indicates that any of these interpretations is open to change if more or 

slightly modified data was obtained about these networks.  Alternatively, the relatively 

low decomposability indicates that the structure is significantly deviated from any ideal 

model and thus the political actor network is relatively weakly structured.  

5. Conclusion and Discussion 

The algorithm described in this paper appears to bring additional theoretical utility to 

existing methodology for decomposing networks into structurally equivalent subgroups. 

The theoretical advantage is its ability to find all ideal structurally equivalent subgroups 

but yet has an objective stopping criterion for continuing decomposition of non-ideal 

networks.  The algorithm also appears to bring additional practical utility to existing tools 

such as the Generalized Blockmodeling by suggesting different decompositions of clear 

comparative merit to even well-studied examples as shown in Section 4.   

When the algorithm is used in combination with Generalized Blockmodeling, one 

might obtain the advantages of combining inductive and deductive approaches.  For 

example, with new data sets, one could start with finding the decompositions inductively 

(best and near best) and by in-context study of these possibly arrive at a new hypothesis 
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to test by various criteria.  In general, applying both methods seems to be appropriate in 

all cases because the results in Section 4 indicate they can deliver slightly different and 

yet interesting decompositions.  In addition, the examples show the potential merit of 

using our metric for decomposability. The metric provides an objective assessment of the 

normalized decomposability of various networks (and for various decompositions). 

The algorithm can be used in combination with the widely applied hierarchical 

clustering.  For structural equivalence or for any other similarity measures, the method 

described here can quickly suggest a best decomposition into a specific set of block 

models and roles.  This can be compared with the suggested hierarchy and provide 

additional structural information of interest.  Interesting future research could include: (1) 

application of the algorithm in biological, economic and engineering system classification 

problems and (2) comparison of the results of this algorithm with the one developed by 

Newman and Girvan based upon cohesive subgroups in a wide variety of network types. 
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