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ABSTRACT 

Focusing on pandemic influenza, this chapter approaches the planning for and 
response to such a major worldwide health event as a complex engineering systems 
problem.  Action-oriented analysis of pandemics requires a broad inclusion of 
academic disciplines since no one domain can cover a significant fraction of the 
problem.  Numerous research papers and action plans have treated pandemics as 
purely medical happenings, focusing on hospitals, health care professionals, creation 
and distribution of vaccines and anti-virals, etc.  But human behavior with regard to 
hygiene and social distancing constitutes a first-order partial brake or control of the 
spread and intensity of infection.  Such behavioral options are “non-pharmaceutical 
interventions.”  (NPIs)  The chapter employs simple mathematical models to study 
alternative controls of infection, addressing a well-known parameter in 
epidemiology, R0, the “reproductive number,” defined as the mean number of new 
infections generated by an index case.  Values of R0 greater than 1.0 usually indicate 
that the infection begins with exponential growth, the generation-to-generation 
growth rate being R0.  R0 is broken down into constituent parts related to the 
frequency and intensity of human contacts, both partially under our control.  It is 
suggested that any numerical value for R0 has little meaning outside the social 
context to which it pertains.  Difference equation models are then employed to study 
the effects of heterogeneity of population social contact rates, the analysis showing 
that the disease tends to be driven by high frequency individuals. Related analyses 
show the futility of trying geographically to isolate the disease.  Finally, the models 
are operated under a variety of assumptions related to social distancing and changes 
in hygienic behavior.  The results are promising in terms of potentially reducing the 
total impact of the pandemic. 
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1. Introduction 
 An outbreak of pandemic influenza has the potential to be more disastrous than a 
nuclear exchange between two warring nations.  Historical examples, such as the 1918-19 
“Spanish Flu” that killed over 40 million people, have demonstrated how catastrophic the 
flu can be. Influenza pandemics have occurred intermittently over centuries, and experts 
agree that the next pandemic is only a matter of time. At the writing of this chapter there 
is a novel flu strain – A(H1N1), commonly referred to as the “Swine flu” – circulating 
through the globe and sparking fears that it may mutate and become a deadly killer.  
While medical advances over the past century have been significant, we still don’t have a 
simple cure for the flu, and when a severe flu virus emerges, it can spread quickly 
throughout the world causing a pandemic.  Such a disaster would not only place 
extraordinary and sustained demands on the public health and medical care systems, but 
would also burden the providers of essential services and strain the operations of all 
businesses.  The U.S. federal government projects that up to 40% of the US population 
may be absent from their daily routines for extended periods as a result of illness or care-
giving responsibilities.  High rates of worker absenteeism could in turn affect critical 
infrastructure, including the operations of water treatment facilities and power plants, 
while efforts to slow the spread of disease could limit the availability of food.  A 
pandemic could impact all sectors of society. The US National Intelligence Council’s 
2020 Project ‘‘Mapping the Global Future” identified a flu pandemic as the single most 
important threat to the global economy (Karesh, 2005).  It is for these reasons, and more 
– discussed below -- that we select influenza pandemics as our focus in a chapter 
entitled, Engineering Responses to Pandemics. 

 A common definition of “engineering’ is as follows: “The application of scientific 
and mathematical principles to practical ends such as the design, manufacture, and 
operation of efficient and economical structures, machines, processes, and systems.”1  In 
engineering the response to a pandemic, we need to use “scientific and mathematical 
principles” to design processes and systems to mitigate the seriousness and consequences 
of the flu and to create a total system response to it.  

 A standard engineering approach towards pandemic flu has been to tackle obvious 
more traditional engineering problems.  These problems range from “optimizing” vaccine 
and anti-viral distribution and stockpiling strategies, to hospital surge capacity analysis, 
to developing solutions to supply chain disruptions that are almost guaranteed in a 
pandemic. See, for example work by Chick et al., 2006 or Ekici et al., 2008 or Itzwerth et 
al., 2006.  However, a broad engineering mindset allows going beyond the study of 
isolated subsystems and well-defined operational problems to develop models of disease 
spread and – to some extent -- control. Understanding disease dynamics to help anticipate 
the impact of the infection would in turn help develop more applicable preparedness and 
response plans.  The key here:  The disease dynamics are partly under our individual and 
collective control.  Any engineered system in anticipation of the flu must take this into 
account. 

                                                
1 http://www.answers.com/topic/engineering Cited July 9, 2009. 
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 Pervasive pandemic preparedness at all levels will be essential in mitigating the 
flu, but many current plans – especially at the state level in the U.S. -- lack details and 
implementation logistics, often skirting the complex issues.  Some unknowns including 
the virulence, morbidity and speed of transmission of the viral strain hamper precise 
planning.  Since there is no way to test run a pandemic, policy makers must often rely on 
mathematical models to guide their decision making and evaluate “what-if” scenarios. 
These models can help systematically to gauge the effectiveness of medical and 
government imposed interventions, medical measures as well as social distancing and 
hygiene behavioral changes. Understandably, the epidemiology community has done the 
majority of the work in the area of pandemic transmission modeling. 

The “Engineering” for systems problems as complex as pandemic influenza needs 
to encompass many aspects of the problem, drawing on ideas and methods not only from 
traditional engineering, but also from the management sciences and – especially – the 
social sciences.  Human behavioral response to pandemic flu is a first-order characteristic 
of any realistic model of flu progression.   Highly stylized mechanistic problem 
formulations, sometimes derisively labeled ‘toy problems,’ are not applicable in these 
settings.  But that is not to say that simplicity is bad per se.   Albert Einstein said, “Keep 
it simple but not too simple!”  The idea is to simplify the analysis but only to the point 
that needed insights from the analysis are retained.   

With pandemic influenza, we are dealing with a worldwide problem involving 
decisions by literally billions of people.  Initially the physics of flu transmission is 
governed by the inherent purely scientific properties of the novel flu virus.  These 
properties relate to aerosol flu in-air latency time in rooms and other closed places, half-
life of flu virus particles on various surfaces, efficiency of infectivity (i.e., ease of passing 
the virus from person to person and creating a newly infected person), levels of morbidity 
and mortality by age and other population descriptors, etc.  But once the flu has emerged 
and is recognized as the danger that it is, myriad decision makers come into play.  These 
include governments at all levels – local, regional and federal --- that initiate steps in 
response to the flu.  These steps can be medical, such as supporting research leading to a 
new vaccine, or managerial, such as convening various stakeholders and starting to 
execute a flu response plan.  These plans contain many elements, including steps to limit 
human-to-human interactions that may otherwise accelerate the propagation of the virus. 
Examples of governmental steps to reduce virus transmission include the prohibition of 
certain public events, the closing of schools, quarantining and forced self-isolation.  
Simultaneously with government-mandated steps, individuals within the population begin 
to change their behavior, perhaps seeing fewer people on a day-to-day basis, washing 
hands more frequently, coughing into their elbows, not shaking hands or kissing upon 
greetings, wearing face masks, etc. 

Both governmental ‘top-down’ and individual ‘bottom up’ behavioral changes 
can affect dramatically the propagation properties of the flu, and ultimately the total 
number of people who will become infected.  Beforehand, no one knows exactly how 
these steps will play out.  Added to this complexity is the fact that flu viruses mutate 
continuously.  A mild virus in June may become a lethal virulent virus in October.  No 
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one knows how these mutations will evolve.  Thus, we have a complex stochastic global 
system with unknown emergent properties, yet demanding timely informed decisions by 
decision makers at all levels (Lipsitch, et al., 2009).  Risks are high.  Do nothing and the 
flu may infect over 40 percent of the population and kill tens of millions.  Or, take steps 
believed to reduce levels of infection, and one disrupts daily lives, the economy, 
children’s education, etc., but likely reduces the severity of the flu pandemic. 

We believe that mathematical models that are simple, but not too simple, can add 
significant insight into what to do in the case of a pandemic flu.  This is the classic 
paradigm in engineering science, the use of mathematical models for circuit design, for 
bridge building, for creating mechanical devises, etc.  But we are humble in face of the 
flu, as the dynamics are always changing, and no model will be anywhere near perfect.  
For pandemic flu, there are no known equivalents to Newton’s laws of physics or 
Kirchoff’s circuit laws.  All current models are flawed.  But we can rely on data from 
past pandemics and axiomatic reasoning to develop models to obtain decision insights.  
That is our goal.  We recommend that the word “optimal” be avoided when analyzing 
pandemic flu since (1) the disease dynamics are a priori unknown and emergent; (2) the 
existence of numerous stakeholders precludes the existence of an uncontested single 
objective function; and (3) there exists no uncontested set of constraints.  

This chapter will describe models that provide insight into disease transmission 
dynamics.  Several important epidemiological concepts including the basic reproductive 
number – R0 will be discussed.  A basic understanding of transmission dynamics makes 
very clear the impact that human behavior has on the spread of infection.  A public well 
educated about the infection and regularly updated on the extent of infection spread will 
react and alter their daily behavior in attempts to protect themselves from becoming ill. 
The resulting behavioral changes have the potential to ‘mitigate’ the outbreak. This 
chapter will show that peoples’ behavior is a first-order effect and must be included in 
any engineered design for a flu preparedness and response system. 

We recognize that, in writing this chapter, we are addressing at least two different 
audiences with two distinctly different cultures.  The two professional groups -- 
engineering and medicine -- are quite different culturally and in other ways.   We see this 
chapter as primarily engineering-oriented with considerable input from the medical 
research community, especially epidemiology.  The engineering approach gives rise to 
the references to Kirchoff's Laws, Newtonian physics, etc.  The idea is that there are a 
few fundamental laws of nature in the domain you are studying, and – as any engineer 
would attempt to do - you try to design a good system utilizing these laws.  Much of the 
medical community focuses on 'evidence-based medicine,' often with the bar set very 
high in terms of randomized controlled experimentation.  But this research paradigm is 
very difficult with pandemic influenza, a world-wide occurrence only a few times per 
century.  We will attempt to address these cultural differences and explain how our 
modest contribution fits into the bigger picture. 
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2. Background: What is a pandemic? 
Influenza pandemics are usually associated with high morbidity, excess mortality as 

well as economic and social disruptions. As defined by the World Health Organization 
(WHO), influenza pandemics arise when:  

1. A “novel” influenza virus subtype, to which the general population has no pre-
existing immunological protection, emerges. 2 

2. The virus infects humans and causes serious illness. 
3. It spreads efficiently amongst people with sustained chains of transmission. 

Once such an event starts and reaches a certain level of local or regional spread, 
continued worldwide spread of the virus is considered inevitable especially given the 
highly interconnected nature of today’s world.  

From the year 2000 until early 2009, the most discussed strain of flu with 
pandemic potential was H5N1, also referred to as the “Avian Flu”. This virus has infected 
birds in over 35 countries becoming endemic in Southeast Asia and has resulted in the 
deaths, through illness and culling, of over 200 million birds across Asia. The H5N1 
virus has been reported to have infected 436 people in 15 countries, resulting in 262 
deaths (WHO, 2009). This subtype has not yet shown an ability to transmit efficiently 
between humans, but many caution that it is important to maintain a high level of 
vigilance because another strain may cause the next pandemic. 

In late April 2009 in Mexico these warnings became reality.  H1N1, a viral strain 
referred to as the “swine flu” was identified and began to spread to other countries.  
While the estimated death toll at time of writing (July 2009) has been more consistent 
with expectations for seasonal flu, the socio-economic losses are significant (Lipsitch, et 
al., 2009).  The WHO has already declared the H1N1 strain as a full-fledged pandemic 
even though the death toll has remained at seasonal flu levels.  Since viral mutations are 
almost impossible to predict, at the writing of this chapter, it is too early to tell what total 
costs the world will incur as a result of this virus, but already this strain has highlighted 
the importance of pandemic preparedness at all levels.  At this point, antiviral 
medications such as Tamiflu are effective for the H1N1 strain, but it is very unclear 
whether the virus will develop resistance to the drugs or if our infrastructure will be 
sufficient to administer the limited antiviral stockpiles rapidly enough.  Sufficient vaccine 
doses require 6-9 months of production time, as a result even with a virus that emerged in 
the spring we are naked against a fall wave of the flu.  

The lack of vaccines does not need to spell out a doomsday scenario because even 
without medical interventions regular people have the ability to decrease the cumulative 
amount of flu transmission through behavioral change.  Often this point is overlooked by 
models that inherently assume that individuals maintain their behavior throughout the 
entire outbreak regardless of its severity.  Furthermore, some epidemiologists argue that 
while behavioral changes do indeed decrease the burden of infection at the peak of the 
                                                
2 This also implies that no vaccine is available at the onset of the outbreak. 
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pandemic, they don’t change the cumulative number of people who become ill over the 
entire outbreak (Oshitani 2006). Using mathematical models we argue the overall 
effectiveness of non-pharmaceutical interventions (NPIs) and demonstrate the potential 
control the population can have over disease dynamics.   

 

3. Modeling Approaches 
The types of models that have been used to describe the spread of infection range 

from basic deterministic differential equations to detailed stochastic agent-based models. 
The basic compartmental models are contained within a series of three 1930’s papers by 
W.O. Kermack and A.G. McKendrick (Kermack & McKendrick, 1927, 1932, 1933).  
This most prominent epidemiology modeling approach is based on dividing the host 
population into several compartments based on their status with respect to the disease.  A 
set of partial differential equations then describes the transfer rate of individuals from one 
compartment to the next.  For more on compartmental models refer to Mathematical 
Epidemiology, Allen L.J.S., Springer, 2008. 

Many recent models incorporate information about social network structures in 
order to understand the impact of social mixing patterns.  Network models can range 
from simple lattice and random mixing networks, to small-world graphs or incredibly 
detailed social networks where nodes represent people, and edges represent specified 
relationships or interactions.  These networks provide a backbone for stochastic Monte 
Carlo models that simulate how an infection could spread from one source node to the 
rest of the population.  These studies have shown that the degree, ‘betweenness’ and 
farness of nodes alter disease dynamics (Christley, 2005).  The most computationally 
intensive agent-based stochastic simulation models have been used to “play out” more 
specific scenarios (Ferguson, 2005; German, 2006; Longini, 2005).  

The simulation models include an incredibly detailed level of granularity, while 
many compartmental models assume inter-connected sets of homogeneous groups within 
the population.  Any one model may be most applicable in a given setting, depending on 
the question that is being addressed.  In general, an insightful model should provide a 
balance of the extreme of simplified abstraction that makes the model virtually useless in 
practice and the other extreme of meticulous detailed complexity that is time consuming, 
difficult to verify while giving the appearance of accuracy and completeness, but 
providing little intuition.  The models presented later in this chapter attempt to achieve 
this sort of balance. 

 

4. R0, the Basic Reproductive Number 
In virtually all epidemiological models one of the most commonly referred to 

parameters is R0.  The basic reproductive number – R0, is defined to be the expected 
number of secondary infections produced by a typical index case in a completely 
susceptible population (van den Driessche, 2008).  As the population of susceptibles is 
depleted, the generation-specific reproductive number, R(t), is called the effective 
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reproductive number. R(t) is the mean number of secondary infections that will result 
from each newly infected individual in generation t. 
 

Policy makers often refer to the reproductive number to guide their decision 
making process. It appears that one of the reasons for the popularity of R0 is that it is 
somewhat intuitive.  An infection can grow in a fully susceptible population if and only if 
R0 > 1 (Hethcote, 2000).  This well-established statement can be somewhat misleading 
because an R0 > 1 does not guarantee that a disease will take off.  Usually, a value of 2 for 
R0 is thought to result in a doubling of the number newly infected with each generation of 
the flu.  But consider a population where half of the population – group 1 – because of 
behavioral and immunological reasons, will spread the virus to 4 people if infected, while 
the other half – group 2 – never spreads the virus.  By some definitions of the 
reproductive number, we have an R0 of 2.  If the first person to get infected is a member 
of group 2 the virus dies out right away. This is an example of a case where R0>1, but the 
disease dies out after the index case more than half of the time. We can write an equation 
from which we can compute the exact value for the self-extinction probability, which we 
will call PE.  For our simple example, we can write 
 

 
 

The logic is this: PE is equal to 1/2, due to the 50% chance that patient zero will infect no 
others, plus (1/2) times the probability that each of the four people infected under the 
second possibility for patient zero will themselves spawn an infection process that dies 
out – each independently and each with probability PE.  The numerical solution to this 
equation is PE = 0.543.  So, we have a feasible situation in which R0 is 2.0 and yet 54.3% 
of the ‘epidemics’’ die out very quickly on their own.  There is no exponential growth, 
obviously, for such cases. 
 

As described by Heesterbeek (Heesterbeek, 2002), R0 was conceived in Germany 
by demographers in the 1880’s and formalized in 1925 to model the progression of a 
country’s population.  The original R0 was defined to be the average number of female 
offspring born to one female over her entire life.  For the year 1879, this number for 
Germany was estimated by Richard Bockh to be 1.06.  The time scale was decades and 
the system was in approximate equilibrium.  With an influenza epidemic, the time scale is 
in days and weeks and nothing approximating equilibrium exists.  To the contrary, the 
system is characterized by markedly changing parameter values as society copes daily 
with the influenza’s evolution.  Over the last three decades, epidemiologists have adopted 
the R0 concept and applied it to a variety of diseases, some of which (e.g., malaria) exist 
in a type of quasi-equilibrium similar to that of population demographics.  But the 
original demographic motivation and near steady state environment supporting R0 simply 
do not exist in a dynamic influenza epidemic situation.  In summary, R0 and its successor 
R(t) as fixed-trajectory concepts in rapidly evolving infectious disease epidemics are of 
limited value at best.   
 

 We often hear epidemiologists attach to an infectious disease a given 
number for R0, as if that number characterizes some constant of nature, independent of 
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anything else.  One might hear, “Consider an infectious disease with R0 equal to 3.14159, 
etc., etc.”  One mathematical researcher even calls R0 the “…one parameter that (almost) 
does it all”  (Keeling, 2001). For the H1N1 swine flu in circulation as of this writing, the 
WHO (World Health Organization) has estimated R0 for H1N1 to be between 1.4 and 1.6.  
The very form of the statement implies that R0 exists as a defined constant of the H1N1 
flu, independent of the contextual social and physical environments in which the disease 
is developing.  But disease environments play a significant role in determining the 
numerical value for R0 and for subsequent values of R(t).  Our own research into tracking 
of H1N1 has shown that fitting exponential growth curves to the daily numbers of 
confirmed cases of H1N1 demonstrates that statistical estimates of R0 vary widely among 
states and among countries (Hashmi et al 2009).   Yet, many authors discussing R0 
describe it as if there is one correct numerical value, worldwide, and discrepancies in 
estimated values are usually attributed to statistical noise and reporting errors.  Even in 
demography, where quasi steady-state operation supports use of the R0 concept, human 
behavior demonstrates that the birth rate defined R0 is far from an immutable constant.  In 
Germany today, more than a century after the first estimate of Germany’s R0, the current 
R0 is estimated to be about 0.70, a 33 percent drop from Bockh’s 1879 estimate of 1.06.  
Worldwide, the demography interpretation of R0 today varies by a factor of seven, from 
over 3.5 daughters per female (Mali and Niger) to under 0.5 (Hong Kong).  In 
demography, we see that the numerical value of R0 depends strongly on social and 
environmental context.  It is not a constant of nature.  So too in infectious disease 
applications we should expect R0 to depend on context.  In influenza, as in demography, 
the numerical value of R0 depends strongly on the societal situation in which it is 
embedded. In some existential sense then, R0 does not exist as a number independent of 
context. 
 

The consensus definition of R0 states that it is the mean value of a random 
variable.  As in all probabilistic situations, the mean of a random variable conveys some 
useful information.  But expressing the mean in terms of other more fundamental 
quantities can yield additional insights.  Suppose I come face to face with λ people on a 
day that I am infectious but asymptomatic.  We select the Greek letter lambda (λ) since in 
modeling analyses it often refers to frequency of occurrence, such as the daily frequency 
of interacting with other people.  Many people who become infected with the flu have 
one such day before they feel and appear sick, and not being able to identify these people 
is what makes eradication of the flu so difficult.  Define an ‘indicator variable’ as 
follows: 
 

€ 

Xi =
1 if person i becomes sick as a result of exposure to me              
0 if person i does not become sick as a result of exposure to me 
 
 
 

 

 
Now, we let NI be defined to be the number of people I will infect on this day.  NI can be 
written as simply counting the indicator variables, 
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Suppose for example λ = 50 and that all Xi’s are 0 except for X9, X18 and X45, each being 
equal to one.  In that case, I have infected 3 of the 50 individuals that I have come face to 
face with on this day.  Now, at any given level of intensity of face-to-face contact, there 
is a probability p that I will pass the infection on to the person I am facing.  Sometimes p 
is called the “transmission probability.”  We can now write an expression for the mean 
number of people I will infect on this day.  It is simply the mean of 

, which equals λp.  We thus have a simple expression for 

R0, and that is  
 

     R0 = λp.        (1) 
 
Flu is an infectious respiratory disease, spread by human contacts.  Reduce human 
contacts, and reduce prevalence of the flu.  By writing R0 = λp, we have expressed R0 in 
terms of two other parameters, each of which we can control to some extent.  We have a 
fighting chance of reducing R0, perhaps a little, perhaps even to below 1.0, the critical 
value to assure that the disease dies away rather than grows exponentially.  In the sense 
of this discussion, R0 indeed does not exist as a separate quantity.  It is a function of both 
the inherent properties of the given virus and the population’s behavioral responses to it. 
 

How do we control λ and p?  One reduces λ simply by reducing the number of 
face-to-face contacts we have each day.  If a parent is shopping for groceries, rather than 
following the European tradition of daily shopping, perhaps one switches to weekly 
shopping, or, better yet, to groceries delivered to one’s door.  If you manage a team of 
employees, rather than have face-to-face meetings during a flu emergency, have 
conference calls instead, with many workers telecommuting.  Many companies have 
already created comprehensive pandemic flu plans that include telecommuting, reduced 
face-to-face encounters and even minimum desk spacing between workers.  The desk 
spacing idea relates more to the parameter p, the probability that any given face-to-face 
contact will result in a new infection.  How else can we reduce p?  Wash hands with hot 
water and soap several times daily.  Do not shake hands during greetings with colleagues.  
Cough or sneeze into your elbow, not into the open air or your bare hand.  Be careful not 
to touch surfaces that might have recently been contaminated with flu virus.  Encourage 
your city’s large employers to stagger work hours, so that public transportation subways 
and busses are less crowded during now-stretched-out rush hours.  Even run the subways 
and busses with windows opened.  The key here is that R0 is a direct function of social 
context and human behavior, behavior that can be altered to reduce the numerical value 
of R0. 

 
Reducing the number and intensity of human-to-human contacts has been called 

“social distancing.”  It is a key control parameter in any engineered response to the flu.  
Social distancing has roots over centuries, often as a type of group evolutionary survival 
mechanism.  In rural India in the 19th and early 20th Centuries, subsistence farm families 
who lived closely together in villages but who worked separate land plots outside of the 
villages, left the villages and lived separately on their land whenever they heard from a 
trusted messenger that ‘a plague’ was ‘in the vicinity.’  They returned to their village 
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homes once the signal was given that the risk of plague had subsided, the duration of the 
distancing typically being about two weeks3.  While this policy seemed to work well for 
rural subsistence farmers, we may well ask, “What is the analogue to the movement to 
the land in our highly-networked interconnected Western style of life?”  We are not self 
sufficient and we rely on others to provide virtually all essential services and products for 
living.  Given all the interconnected networks upon which we rely, is social distancing 
itself, in the simple ways in which we can do it, sufficient to control the evolution and 
penetration of a flu pandemic?  This question is a major challenge when addressing 
response to pandemic flu. 
 

Of course there are limitations to our analysis.  The causal model creating 
infection is more complex than just counting the numbers of face-to-face contacts.  One 
can touch surfaces contaminated minutes or perhaps even hours before by individuals 
who we do not see face to face.  If contaminated hands then touch one’s mouth or eyes, 
infection can result.  With SARS (Severe Acute Respiratory Syndrome), residents of a 
Hong Kong high-rise apartment complex became infected by a faulty sewage system, 
again not ‘seeing’ the infected person responsible for spreading the infection.  But we 
believe that a model that counts the number of face-to-face contacts and includes the 
intensity of these contacts represents a valid primary mechanism for depicting how the 
disease propagates through the population.  Adding complexities such as the two just 
cited does not alter the main conclusions of our arguments.  Our approach is buttressed 
by findings of others.  For instance, Riley et al. (Riley, et al., 2003) credits reduction in 
the number of face-to-face contacts in Hong Kong as the primary cause for reduction in 
spread of SARS. 

To see more about the complexities of using R0 as an input value to guide policy, 
refer to a study by Meyers et al. They focus their study on SARS and illustrate that for a 
single value of R0, any two outbreaks, even in the same setting, may have very different 
epidemiological outcomes (Meyers, et al., 2005). While using R(t) or R0 provides a 
computationally intuitive basis for describing disease dynamics, this approach neglects 
important complexities related to heterogeneities and uncertainties (Eubank, 2004; 
Larson, 2007).  

From an engineering point of view that is taken in this paper, expressing R0 as the 
product of λ and p is good news.  Both λ and p are controllable to some extent, so R0 is 
controllable to some extent.  Behavioral changes can reduce R0 and as a result, reduce the 
chance that you or a loved one becomes infected with the flu. 
 
 
                                                
3. This policy of Indian farm families was presented to the author by Dr. Nitin Patel whose father reported 
that tradition to him.  Dr. Patel’s father was born in 1909 and lived in the rural village of Karamsad, state of 
Gujarat, India.  Once as a boy he had to leave the village with his family to avoid ‘the plague.’  Our 
hypothesis is that the terminology ‘the plague’ related to several different serious and sometimes fatal 
diseases and did not precisely refer to any specific plague such as the bubonic plague. (Paragraph and 
footnote taken from Larson [2007].) 
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5. Basic Model 

In this model one community is divided into several groups based on their daily 
social activity levels.4  Since influenza spreads from one person to the next through social 
interaction it is important to know how much people interact amongst each other. We 
assume, as most other models, that face-to-face contact is the major method of influenza 
transmission. 5 We will presume that face-to-face social contacts within each community 
occur as a homogeneous Poisson process with rate parameters dependent on the level of 
social activity of the individual. Furthermore, the interaction between people in different 
groups is random and proportional to their activity levels. For the rest of the numerical 
calculations and simulations, unless otherwise noted, we will split the population of each 
community into three groups: high, medium and low activity persons. We will define: 

 - Average number of social contacts of a High activity person/day 

 - Average number of social contacts of a Medium activity person/day 

 - Average number of social contact of Low activity person/day 

 - Initial total populations of High, Medium and Low activity 
persons, respectively 

 - Population of High activity persons active on day t 

 - Number of High activity susceptible persons on day t 

 - Number of High activity infective & asymptomatic persons on day t 

 - Number of High activity recovered & immune persons on day t. 

This notation continues in the same manner for the other populations, M and L. 
Let us clarify that throughout the remainder of this chapter we define one day as one 
generation of the infectious period of the virus. One day in the context of our model is 
closer to 2 to 3 actual 24-hour days. 

                                                
4 The model presented is described by R.C. Larson in the paper titled “Simple Models of Influenza 
Progression Within a Heterogeneous Population” (Larson, 2007) and further elaborated on by K.R. 
Nigmatulina and R.C. Larson in a paper titled “Living with Influenza: Impacts of government imposed and 
voluntarily selected interventions” (Nigmatulina & Larson 2009). 
5 Transmission of influenza occurs through respiratory emissions from sick individuals when talking, 
sneezing or coughing. These emissions enter the environment and can either come in direct contact with a 
well individual or are transmitted indirectly through an inanimate object. Within the context of our model 
we assume that the majority of transmission occurs during direct interaction. 
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 The outbreak is initiated by one infectious individual who interacts normally with 
people on day 0. By the end of this day the initial seeder self-isolates, recovers or dies, 
and no longer infects any other individuals. Evidence of self-isolating behavior has been 
observed in practice (Zeng, 2002) and reflects peoples’ departure from the infectious 
category. On day one, the individuals recently infected from the index case interact 
normally and transmit the virus until they leave the infective group on day two. A 
recovered individual never reenters the susceptible population since people gain 
immunity if they survive the disease. This pattern continues for the rest of the outbreak.  

 From Larson’s paper (Larson, 2007) we know that for a random person on day t the 
probability that the next interaction will be with an infected individual is:  

 

β(t) is the fraction of all interactions of infected people over the total number of 
interactions in the entire active population on day t. The number of people circulating on 
day t is all those who have not gotten sick as well as those who have gotten sick, but also 
recovered and reentered the population. Assume that d is the duration of the sickness 
from the beginning of infection until the individual can reenter the population and that h 
is the fraction of people who survive the virus and can reenter the population. Then, 

6 

Assuming homogeneous susceptibility let: 

p = probability that a susceptible person becomes infected, given contact with an 
infectious individual. 

Using the knowledge that the number of interactions is Poisson distributed, we know that 
the probability that a random susceptible High activity person gets infected on day t is: 
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which as shown in Larson can be simplified to (Larson, 2007): 

 

In Table 1, we present the base case parameter values that we continue to use 
throughout this paper to present the results of our modeling analysis based on the above 
formulations.   

                                                
6 Note, for t-d<0, Ij(t-d)=0 for all j. 
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Parameter Name Variable Community A 

Initial size of High activity group NH 
 100,000 ppl 

Initial size of Medium activity group NM  100,000 ppl 

Initial size of Low activity group NL 100,000 ppl 

Rate of contact of High activity persons λH 
 50 ppl/day 

Rate of contact of Medium activity persons λM  10 ppl/day 

Rate of contact of Low activity persons λL  2 ppl/day 

Conditional probability of successful transmission p .10 

Duration of sickness from day of infection d 9 days 

Percent of people who recover & reenter population h 98% 

Table 1 
 Parameters used as the base case for the research.  

The average rates of contact, λH, λM, λL, in the different groups are based on the research 
done by Yang-chih Fu. Some of the best data on the frequency distribution of daily 
human contacts is a result of the survey conducted by Fu. He asked people in nine 
countries and 46 different settings: on average, about how many people do you have 
contact with in a typical day, including all those who you say hello, chat, talk or discuss 
matters with, whether you do it face-to-face, by telephone, by mail or on the Internet, and 
whether you personally know the person or not (Fu, 2005, 2007)? The results of the 
survey are shown in Table 2. 

 

Number of 
daily contacts 

Number of 
respondents 

Percent of 
respondents 

Cumulative 
Percentage 

0-4 410 13.67 13.67 

5-9 426 14.20 27.87 
10-19 685 22.83 50.70 

20-49 792 26.40 77.10 
50-99 349 11.63 88.73 

100+ 338 11.27 100 

Total 3,000 100.00  

Table 2 
The results of Yang-chih Fu’s research on the distribution of the 

 frequency of daily human contacts. 

 The results of this study are not perfectly suited for calibrating the activity level of 
people in our model because it includes human contacts that are not face-to-face such as 
the telephone and the Internet. While it is unclear exactly how many relevant contacts 
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people have on a daily basis we can use the results of Fu’s other study, which indicates 
that in Taiwan 83% of all daily contacts are face-to-face (Fu, 2005). While it is unclear if 
these values are best suited to describe the United States, this data is very instructive and 
confirms that there is a significant amount of heterogeneity in the population. 

 Returning to the model, the proposed approach assumes that the contact rates per 
day remain constant even as members of the susceptible population become sick and 
leave the circulating population. In the context of standard compartmental models this is 
known as standard incidence. Let us also consider the mass action incidence model where 
as the number of active people decreases, we anticipate a reduced amount of overall 
social activity. In this alternative approach λ, the average number of daily contacts per 
person, is proportional to the size of the remaining population in circulation. As shown by 
Larson in this case all λ’s become time dependent. For example, (t) – daily rate of 
social contact of a High activity person on day t. Let , and 
then 

. 

Thus we have,  

 

The cumulative number of infected individuals, as well as the infection peak, is higher for 
the standard incidence model.7  

 Let us focus on the mass action incidence model and the input values in Table 1. 
The expected infection transmission for the hypothetical heterogeneous community is 
compared to the disease dynamics in a similar homogeneous community in Graph 1. 
Notice that the virus spreads faster through a population with several activity levels when 
compared to a homogeneous community with an equivalent average activity level. 
Furthermore, the high activity individuals are the first to get infected. Practically all of the 
high activity people, 99.9% get infected while less than 25% of the low activity individuals 
get sick. As the number of high activity people is depleted by day 9, the total number of 
people getting sick also starts to diminish around the same time. Because of their 
behavioral characteristics8, the high activity people are the drivers of influenza 
transmission. 9  

                                                
7 For more on the comparison of the Standard Incidence and Mass Action models refer to thesis by 
Nigmatulina, 2009.  
8 The behavioral traits and not the biological propensity to shed the virus cause these individuals to be the 
drivers of infection. 
9 These qualitative results are supported by the findings of the real-time surveillance system at Boston’s 
Children’s Hospital. Children, compared to adults, have more contacts and increased vulnerability to be 
drivers of seasonal flu; particularly, preschoolers are seen as “hotbeds of infection” (Neergaard 2005). 
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 The imprecise, but widely accepted, definition of R0 is the average number of people 
infected by the initial seeder in a fully susceptible population. For the heterogeneous and 
uniform communities, the expected number of daily contacts of a randomly selected person 
from either population will be the same. Thus using one interpretation, without more 
knowledge of the activity groups’ dynamics, R0 is identical in both instances. Relying singly 
on R0 would not have captured the possibility of these significantly different outcomes.  R0 is 
meaningless and often misleading without knowledge of the societal structure of the 
underlying population. Graph 1 illustrates a fundamental flaw in the usage one averaging 
parameter such as R0 (or R(t)) as the sole modeling factor. 

 

Graph 1 
Comparing spread of infection between heterogeneously and uniformly active 

communities of 300,000 individuals. 
 

 Other types of heterogeneities also exist and can be similarly modeled.  Diverse 
susceptibility levels and varying infectivity levels are just two more examples of 
heterogeneities present in the population.10  In reality our population can be described by 
a complex combination of many different types of heterogeneities. When compared to 
heterogeneity in susceptibility and infectivity levels, diversity of activity levels is the 
most influential and easily observable type of heterogeneity. It is also a behavior that 
people have the ability to alter in the case of a pandemic. 

 
6. Multi-Community Model 
  The basic model assumes that there is random mixing within the community, so 
that a randomly selected individual has a chance of encountering any other individual. 
While this isn’t precisely true because often people interact within smaller social 
                                                
10 For details on modeling these types of heterogeneities refer to Thesis by Nigmatulina, 2009. 

~199,000 

~244,000 
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networks such as family, friends or colleagues, but it is still possible that an individual 
would have an unplanned encounter with a stranger at a grocery store, bus, movie theater 
etc. Yet this complete mixing assumption doesn’t hold when describing people in two 
different cities. Thus the next step is to expand our one-community model to a multi-
community structure and determine whether travel restrictions between communities 
have the potential to stop its spread. 

 Spatial complexity can be modeled through a loosely connected multi-community 
structure based on Monte Carlo simulation to model disease spread between cities. 
Consider a two community model – Community A and Community B – each has its own 
demographic and epidemiological composition. A and B are two communities – each 
with 300,000 people --- with identical compositions: 100,000 people, respectively, in 
each activity level, high, medium and low.  These populations are loosely connected by 
very few random daily travelers. A certain number of randomly selected people from 
each activity level j, TAB

j, travel overnight from A to stay exactly one day in B before 
returning home the next night. In the base case TAB

j = TBA
j =2, giving us a total of 12 

travelers going back and forth between two communities. During a visitor’s one-day stay 
in the adjacent community his interaction level is unchanged from what it was within 
his/her home community.  

 The outbreak is initiated with an infectious seed in Community A, and the disease 
propagates to other individuals within this community. Since travelers continue their 
movement between communities, eventually it is likely that one of the travelers becomes 
infected, thus he becomes the passageway for the transition of the infection from one 
community to another. There are 2 ways that Community B can get the infection: 

1. An infected individual residing in A travels from A to B and infects people in 
Community B which instigates the outbreak in B (even though the traveler returns 
to A at the end of the day) 

2. A susceptible individual residing in B travels from B to A and gets infected while 
visiting Community A. The newly infected individual returns home to 
Community B and becomes the initial spreader within his community. 

The two processes compete to bring the pandemic to Community B. After the pandemic 
is in both populations, assume that the few individuals traveling back and forth, with or 
without the infection, will not change the disease dynamics in either of the communities.  

 This structure allows us to apply large population-based averaging techniques to 
model the infection spread within the community. At the same time, we use Monte Carlo 
simulation to model the stochastic person-to-person transmission of infection to reflect 
the intra community spread of infection. One question is: if the initial case occurs on day 
0 within Community A, on average how quickly will it spread to an adjacent community? 

 The probability of the virus spreading to a new community changes with every 
generation of the flu. Recall that whenever we refer to a ‘day’ we imply one generation of 
the flu which is equivalent to approximately 2-3 actual 24-hour days. In order to find the 
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probability that on day t at least one infectious individual from activity level j visits 
Community B, we can “identify” this random individual and find the probability that this 
traveler gets infected during day t-1. The probability that exactly k infected individuals of 
activity level j travel from A to B and bring in the virus on day t is: 

 

Thus the probability that none of day t travelers from A to B are infectious is: 

 

Symmetrically, as long as TAB
j = TBA

j for all j, the probability that a traveler from 
Community B gets infected and brings back home the infection on day t is the same. So 

= . Lastly the probability of having the infection enter for the first time 
on day i is:  

 

 Notice that the probability of never infecting a neighboring community is greater 
than 0, thus the expected time until the next community gets contaminated is infinity. 
Instead one can determine the probability that day t is the first day of infection entering 
into the neighboring community. These calculations show that the probability of infection 
spread is almost certain if the twelve travelers maintain their trips and if the virus is 
relatively transmissible amongst individuals. Furthermore, the high activity travelers are 
very likely to be infected during the peak times of the community outbreak. 

 These calculations are supported by historical examples demonstrating that one 
infected traveler is enough to infect a whole population. During the 1918-1919 flu, many 
Alaskan villages were completely devastated by influenza because the man who brought 
the villagers their mail also brought the flu (Underwood, 2005).  In China’s remote 
Shanxi province, the spread of the 1918 pandemic was traced to a single woodcutter, 
tramping from village to village (Greger, 2006). In Canada, the virus wore the uniform of 
a stubborn Canadian Pacific Railways official who flouted quarantine, dropping off 
infected repatriate soldiers from Quebec all the way west to Vancouver (Greger, 2006). 
Some of the only places to escape unscathed during the 1918 pandemic were 3 small 
islands completely shut off from the outside world; they even refused mail delivery 
(Herda, 1995). On the mainland one successful case was a resort town in New Zealand, 
which went to the extreme of cutting itself off from the world by using a “rotating roster 
of shotgun-wielding vigilantes” (Greger, 2006).  
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7. Travel Restrictions 
 During SARS, some governments enforced travel restrictions.  Even simple travel 
advisories decreased the number of voluntary travelers to SARS-infected communities 
(Bell, 2004). This suggests that travel patterns will change in the case of flu, so it is 
interesting to further consider the potential effect of travel restrictions. To model this, one 
can vary the number of travelers between the cities. For numerical calculations, change 
the number of travelers from the baseline number of 12 daily11 travelers to between 1 and 
120 daily travelers. In the case of one daily traveler, the person is a highly active 
individual. Realistically, highly active individuals are more likely to travel outside of 
their community than recluses. Notice that the direction of the traveler, whether it’s A to 
B, or B to A, is not important. 

 Our results for a varied number of travelers are summarized in Graph 2. As the 
number of travelers increases, the infection becomes more likely to reach the adjacent 
community earlier. This suggests that Japan’s plan to fly home all of its citizens in the 
event of a pandemic (Shimbun, 2009) may cause it to be one of the earlier countries to 
become infected. The startling finding is that even with one daily highly-active traveler 
between the two communities, the disease still spreads to the adjacent community with an 
incredibly high probability.  This indicates that travel restrictions, unless 100% effective, 
will fail to stop geographical infection spread. During the outbreak, the number of sick 
grows exponentially while the restriction only decreases travel by a fixed factor. As a 
result, incomplete travel controls only delay the spread by one or two days, until the 
exponentially growing number of sick becomes high enough and any traveler is highly 
likely to become sick. 

 
Graph 2. 

A histogram of the first day of infection spread in Community B that is adjacent to the 
source community. Even if the number of travelers is decreased from 120 to 1 person a 

day, influenza is still highly likely to spread.  
                                                
11 Recall, “day” refers to one generation of the flu, equivalent to approximately 2-3 24-hour days. 
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 In order to stop the disease from moving into a neighboring city, all travel must be 
stopped and the intervention must be initiated early and sustained beyond the peak until 
the threat of the transition is small. Travel restrictions would be more burdensome when 
used in combination with other interventions and behavior changes that spread out the 
virus over a longer period. Lastly, once a travel restriction fails and an infected individual 
enters a fully susceptible town, the travel restriction becomes totally useless because it 
does not change the dynamics of the disease within the newly infected town.  

It is almost impossible to completely stop the movement of people across borders. 
In the case of SARS, studies indicate that thermal screening and health declarations of 
travelers did not significantly stop the flow of determined travelers or the spread of SARS 
(Bell, 2004). Within a matter of weeks in early 2003, SARS spread from the Guangdong 
province of China to rapidly infect individuals in some 37 countries around the world 
(Smith, 2006). Overall, travel restrictions are expensive, almost impossible to implement 
and are often ineffective. 

Taking the model a step further highlights that in today’s very interconnected 
world the virus will spread very quickly to many geographical areas. Consider a fully 
interconnected three community model with one initially infected community and two 
neighboring susceptible communities. In this case the disease spreads almost 
concurrently to both of its adjacent communities. In the scenario where susceptible cities 
are connected to multiple sources of infection, the community experiencing a more 
severe outbreak will dominate infecting new cities.  The number of commuters between 
nearby cities is high.   Management consultants are examples of people who are likely to 
crisscross the world in the course of a week. This type of global connectedness could be 
catastrophic for emergency systems that, in a pandemic, would face the equivalent to 50 
Hurricane Katrina’s hitting the United States all at once. This scenario would leave no 
one immune and capable of helping out others; communities will have to fend for 
themselves. Current events support this finding; the rapid geographical spread of the 
swine flu in 2009 is an example. This suggests that, instead of controlling transmission 
between communities, managing the infection’s spread within communities is likely to be 
the more effective strategy.   

In summary, geographical isolation of the flu is almost impossible; reducing the 
prevalence – the number infected -- within a given geographical region is possible.    

 
8. Behavioral Changes 

When studying and modeling sexually transmitted diseases, especially 
HIV/AIDS, behavioral changes are often cited as the main factors determining 
transmission dynamics, but when it comes to modeling flu, behavior is almost always 
ignored.  Few would argue that: 
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1) People will alter their behavior in a pandemic by becoming more aware of 
hygiene and decreasing their human contacts.12 

2) Limiting the number of daily interactions and improving hygiene decrease 
transmission. 

It is unlikely that society will implement severe measures as they did in 1918-
1919 making it “unlawful to cough and sneeze” punishing violators with up to a year in 
jail (Hudson, 1999).  However, even without forceful implementation people are likely to 
try to decrease their likelihoods of getting ill by improving hygiene related behaviors. 
Most people will not maintain their daily routines if they discover that there is a deadly 
disease attacking within their city, state, country or the world. Based on the information 
portrayed in the media, individuals will probably both limit their daily contacts and 
decrease the closeness of the remaining contacts. History has provided us with multiple 
examples of people responding to news of a disease by altering their daily behavior.  

 Recent statistical studies of the 1918 influenza pandemic in US cities have 
supported the hypothesis that early implementation of multiple non-pharmaceutical 
interventions could reduce transmission rates by 30-50% and lower the peak death rates 
by about 50% (Bootsma, 2007; Hatchett, 2007). The timing and force of these 
interventions have been attributed as some of the main reasons for the variation of 
different cities’ experiences (Bootsma, 2007). The array of outcomes ranges from the 
Philadelphia one hump epidemic curve lasting a month and a half with a peak excess 
death rate of over 250/100,000 population, to the St. Louis two-wave four-month 
experience with a peak excess death rate of less than 75/100,000 population (Hatchett, 
2007). The findings of these studies suggest that these interventions within cities helped 
save lives during the 1918-1919 pandemic, and may help save future lives. 

 Those who still doubt the relevance of behavioral changes, should consider the 
recent example of the social behavior changes that occurred during SARS. One survey 
indicates that during the SARS outbreak in Hong Kong 78% of the population covered 
their mouths while sneezing or coughing, 76% of individuals wore masks, 65% washed 
their hands after contact with possibly contaminated objects (Lo, 2005). Economic factor 
studies in Hong Kong, Beijing, Singapore and Toronto indicate that there was a sharp 
drop in interactive social activities as restaurants and entertainment centers suffered sharp 
drops in clientele (Fan, 2003). Specifically in Hong Kong, tourism was crippled in March 
when the WHO issued a rare warning for travelers to avoid Hong Kong and the 
Guangdong Province. As a result of weakening demand, airlines slashed more than a 
third of flights and hotels in Hong Kong reportedly were up to 90% empty (Wiseman, 
2003). In Singapore sales were down about 30% as people avoided stores and malls, 
some stores suffered up to 75% declines in sales (Wiseman, 2003). It is clear that 
voluntary activities like tourism were strongly affected by fear of the disease. The 
resulting adverse economic impact in parts of East Asia was comparable with the 1998 
financial market crisis (Schoen, 2003; MSNBC News Service, 2003 a,b). It is apparent 

                                                
12 There are also potential negative behavior changes. An example is the “worried well” phenomenon 
where healthy people seek medical assistance because of their concerns about possibly being ill. 
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that many people took precautionary measures as a result, and the outcome in Hong Kong 
was the 90% decrease in the reported spread of other respiratory diseases (Lo, 2005)! 

 Similarly, in a more Western city of Toronto, during the SARS outbreak there 
was a reported drop of up to 71.5% in revenue per available hotel room for downtown 
Toronto. This translates into hotel occupancy rates in the range of 30% to 40%, instead of 
the seasonal 70% average (Rosszell, 2003). At least five major citywide conventions 
were called off, contributing a loss of over 20,000 attendees, and this does not include the 
vast amount of individual-hotel convention businesses that were also cancelled (Rosszell, 
2003). The long list of voluntary behavior changes in Toronto due to SARS includes over 
800 bus tours, music concerts, corporate travel, and school field trips (Rosszell, 2003).  
All these examples are strong evidence that people will not maintain their daily actions. 
We know that the effect of these “soft” and self-imposed interventions was significant 
(Tang, 2003). There are significant gaps in our knowledge of these behavior changes, but 
overlooking these behavior changes is indefensible. 

Various interventions, both behavioral and technological, have been shown to 
decrease transmission of the flu. Improved hygiene, including hand washing and using 
alcohol-based hand sanitizer, has been shown to decrease the spread of influenza in 
controlled environments such as day cares, schools and nursing homes (Roberts, 2000; 
Luby, 2005; WHO, 2006; Falsey, 1999).  While there is no conclusive data regarding the 
effectiveness of surgical masks, there is some evidence indicating that wearing a mask 
will help prevent the infected from spreading it to the well by containing and slowing the 
speed of droplets (Inouye, 2006).  There is evidence that shows that specialized air 
handling, which includes ventilation, HEPA filtering and exhaust fans, are effective in 
reducing potential aerosol transmission of influenza (Li, 2007). In addition, ultra-violet 
light, specifically UV-C, has the potential to disinfect air by inactivating virus-containing 
aerosols (Weiss, 2007).  

 
9. Data on Behavior Changes 

The most relevant data for creating mathematical models on reactive behavior 
comes from SARS. SARS was first identified in China’s southern province of 
Guangdong in November 2002. By February 26, 2003 Hong Kong officials reported their 
first case of SARS and no later than March 14, 2003 the virus reached Canada. Overall 
the virus spread to some 37 countries, with 8,096 known infection cases and 774 deaths.  

 Some of the best data on SARS comes from studies and surveys of Hong Kong. A 
large number of SARS cases in Hong Kong were first reported on March 10th in the 
Prince of Wales Hospital and continued until June 2nd (Lau, 2004). On March 26th a 
second large scale outbreak occurred in Amoy Gardens (Lau, 2004). As a reaction, on 
March 29th all classes were suspended (Lau, 2003). On March 31st a large number of 
Amoy Gardens’ residents were quarantined. On April 2nd the WHO issued a travel 
advisory warning for Hong Kong. Afterwards, the situation started to improve. Classes 
resumed in universities on April 14th and while secondary schools reopened in later April, 
primary schools stayed closed till May 12th or 19th. At the end of the outbreak a total of 
1,755 SARS cases were recorded. 
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 During that time phone surveys were conducted by several different research 
groups and all groups found that public health measures, such as wearing masks, frequent 
hand washing, avoidance of crowded places, disinfection of the living quarters, etc had 
been practiced by most of the Hong Kong population (Lo, 2005; Lau, 2003; Lau 2004). 
In one of these studies, the progressions of the voluntary interventions throughout the 
outbreak were recorded. Through ten sequential telephone surveys 1397 adult Hong 
Kong residents were asked about their knowledge and perceptions of the disease, its risks 
and fatality as well as their susceptibility and practice of various interventions. In Table 3 
one can find the results of this survey that are relevant to this research.  

 
 Initial phase Second phase 

Date of interview 3/21 3/22 3/23 3/24 3/28 4/1 4/8 4/11 4/24 5/12 All 

New SARS cases on 
previous day 

20 32 20 25 51 80 41 28 24 4 - 

Perceived chance of 
infection (% very 
large/large) 

3.9 9.2 8.8 11.1 14.3 12.4 7.0 7.1 7.3 4.7 8.7 

Improved Hygiene  

Wearing a mask 11.5 16.7 7.7 16.7 66.9 84.3 87.3 87.7 93.9 85.4 64.3 

Hand hygiene 61.5 66.7 63.7 80.3 94.1 95.1 93.7 94.2 94.5 95.9 86.9 

Disinfecting home - - - 36.4 56.8 69.4 72.2 80.0 83.5 73.1 70.1 

Behavior  

Avoid going outside 28.2 28.2 31.9 36.4 50.0 57.1 62.4 58.7 47.3 36.3 45.8 

Avoid crowded 
places 

59.0 67.7 54.9 68.2 76.3 85.4 81.0 89.0 81.2 69.6 75.5 

Avoid visiting 
hospitals 

59.7 63.5 52.7 62.1 73.4 75.0 76.4 86.5 79.9 68.6 71.8 

Avoid using public 
transportation 

14.1 15.4 16.5 24.2 26.6 36.2 27.8 31.0 25.0 17.1 24.4 

Avoid going to work - 2.6 2.2 4.5 6.1 8.1 7.7 7.3 5.5 1.2 4.9 

Not allow kids to go 
to school 

- - - 12.5 35.7 38.1 31.0 36.7 39.6 16.3 31.6 

Table 3 
Results of a telephone survey monitoring community knowledge, perceptions and 

practices during the SARS outbreak in Hong Kong in 2003. (Lau, 2003). 

 It is clear that the perceived chance of infection fluctuated with the number of 
people that became infected on the previous day. Furthermore, the various hygiene and 
behavioral measures implemented by the population are correlated to the number of new 
cases. In this study, the researchers found that the correlation between the number of 
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cases and the fraction of the population participating in the intervention was high13 for the 
initial, escalating phase of the outbreak that lasted through April 1st (Lau, 2003). As the 
perceived chance of infection increased, more people started altering their behavior to 
reduce the likelihood of illness. From the experience of Hong Kong that is captured in 
this study, it is clear that people not only alter their behavior in the case of a disease 
outbreak, but the worse the outbreak, the more the population will react. The importance 
of timely, accurate, comprehensive information about the disease becomes vital in this 
scenario. The researchers conclude that “perceptions are important in determining 
preventative behaviors,” and that policy makers should be aware of the importance of the 
public’ reactions. Later in this chapter we will propose several approaches to including 
these human behaviors into our model. 

 

10.  Herd Immunity:  What It Means in Terms of Total Number Infected 
As mentioned before, there are many who agree that implementation of NPI’s 

indeed does reduce the peak severity of the pandemic, in terms of maximum number 
infected at any time, and this is good for managing hospital surge capacity.  But some 
also suggest that use of NPI’s may only prolong the pandemic period, ultimately infecting 
as many people as would have been infected without use of NPI’s (Cauchemez, et al 
2009).  Our modeling analysis and recent work of others (Germann et al 2006; Kelso et al 
2009; Jefferson et al 2008; Caley et al 2008) have shown that this need not be true.  
Given our model assumptions, with NPI’s the total number infected is almost always less, 
sometimes significantly so. 
 

We can demonstrate this property with a simple back-of-the-envelope analysis, 
invoking the concept of herd immunity.  All else being equal, herd immunity occurs in a 
population when the infectious disease no longer grows exponentially, and starts to die 
out geometrically from generation to generation.  Herd immunity occurs when the 
effective reproductive number drops to R(t) = 1, signifying that each newly infected 
person infects – on average -- only one additional person.  At this point in the evolution 
of the pandemic, no further exponential increase occurs.  Usually herd immunity is 
achieved because a significant fraction of the population has become immune to the 
disease, either by vaccination or by having had the disease and being recovered and 
immune to further infection.  Let us call .  Recall from Eq. (1) that , 
where λ is the pre-intervention mean number of daily face-to-face contacts by a random 
member of the population, and p is the initial conditional probability of passing on the 
infection to the person in a random face-to-face contact.  Define the “critical time”  
such that .  The critical time is the time at which herd immunity is achieved.   

                                                
13 r* is in the range of.85- .97 for the different interventions. 
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Let’s first do this without NPI’s.  At 

€ 

R(tc ) =1= λtc ptc , we assume that the 
frequency of day-to-day contacts 

€ 

λtc = λ  is unchanged during the pandemic14.  Thus, for 
this equation to work, we need a reduction in p so that 

€ 

ptc < p .  We get this because some 
face-to-face contacts are recovered or vaccinated and now immune to further infection.  
Suppose at time tc, the time of herd immunity, we have a fraction f of the population in 
state R, immune to re-infection, and the residual (1-f) still susceptible.  For those who are 
still susceptible, the conditional probability of infection given exposure from a face-to-
face contact remains unchanged at p.  Thus 

€ 

ptc = p(1− f ). Then we must have 

€ 

λptc = λp(1− f ) =1 or 

€ 

f = (λp −1) /λp =1−1/R0 > 0 .   To see if this makes sense, we try 
 and obtain 

€ 

f =1−1/2 =1/2.  This makes sense:  with R0 = 2, one half of the 
population needs to be immune for herd immunity to occur.  Other numerical examples 
are similarly intuitively appealing.  (For additional discussion of herd immunity, consult 
any textbook on mathematical epidemiology such as Nelson and Williams, 2006, p. 627.) 
 

Now, let’s redo this exercise having , but with NPI’s.  Suppose we 
alter daily behavior to reduce λ by a factor of , that is we have a new λ, call it λ’, 
such that , roughly a 30% reduction in daily contacts.  Suppose by social 
distancing and hygienic steps we also reduce p by a factor of , defining a new p, call 
it p’, such that , which is roughly a 30% reduction in infection probability, 
given face to face contact.  If we can all do that by invoking NPI’s, then the new R0, call 
it 

€ 

R0
' , becomes 

€ 

R0
' = λ' p'= (λ / 2)(p / 2) = λp /2 = 2 /2 =1.  That is, we can start the 

pandemic at herd immunity level by invoking NPI’s at the beginning.  If we could do 
that, the pandemic would never grow exponentially and would die off geometrically 
instead.  This is most likely impossible in practice, since time is required for officials to 
observe and recognize a new and novel flu virus, one that could grow to epidemic and 
then pandemic levels.  But the point remains:  We individually and collectively have the 
power through self-selected behavioral changes to alter dramatically the course of the flu.  
To avoid a dangerous re-emergence, perhaps a ‘second wave’ after NPI’s have squelched 
the first wave, these behavioral changes must be held in place until the threat of the flu is 
passed. 

 
11. Modeling Behavior Changes 

There has been very little progress in the field of quantitative health behavior 
modeling (Weinstein, 2005). One of the main deterrents for quantitative modeling of 
human reactionary behavior is that it is difficult and there is no obvious solution or 
approach. This does not justify avoiding these models; behavior is a first order affect and 
has a strong impact on transmission dynamics. We have proposed several different 
methods for modeling human behavior changes. While it is almost impossible to verify 

                                                
14 This may be corrected in a more sophisticated analysis, as we adjust for the reduced population because 
some are either sick in bed or may have died.  With a reduced population, we may wish to model the 
number of face-to-face daily contacts as reduced in accordance with the reduced circulating population. 
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their quantitative accuracy the principles are intuitive and qualitative results are 
insightful. In this section we will present one of our approaches to modeling behavior and 
its impact on transmission, for more of these models refer to Nigmatulina & Larson, 2009 
or Nigmatulina, 2009.  

 There are several qualitative social behavior models that predict people altering 
their behavior given knowledge of a deadly infection. Coping responses affect human 
functions to moderate and decrease the negative impacts and stressors in life’s 
circumstances (Pearlin, 1981). Protection motivation theory, the transactional model of 
stress and coping, the health belief model (HBM) and behavior intention model (BIM) all 
indicate that individuals will attempt to assess their perceived risk or attitude towards the 
threat based on factors like threat severity and their vulnerability (TCW, 2004). 
Combining threat assessment with perceived response efficacy and level of confidence in 
one’s ability to react appropriately, individuals determine their intended and actual 
behavior (TCW, 2004). This type of reactionary coping behavior was observed when 
HIV became more prevalent; people’s sexual behavior became much more cautious. 
Similarly, with genetic diseases such as diabetes or heart disease, individuals with 
heightened risks alter their behavior. 

 For the development of the model, it is difficult to predict which kind of 
information people will use to assess their “perceived threat”. Logical choices for 
evaluating susceptibility will be the virus’ proximity to home and its virulence, while 
mortality and morbidity rates are likely to determine perceived severity. In the case of 
SARS in Hong Kong, it was clear that people reacted to the news of infection spread by 
altering their daily routines depending on the severity of the news as well as the number 
of earlier deaths and infections.  Furthermore, the survey study of Singapore found that 
people who were more anxious about becoming sick, practiced more precautionary 
measures (Quah, 2004). Within the context of the model presented in Section 5 the death 
rate for the disease is not specified, thus the number of infected individuals is the best 
gauge reflecting the community members’ vulnerability and severity of the threat.  

In order to incorporate behavior change into our model we use πX(t) as a feedback 
parameter that indicates the “concern level” within Community X on day t. If πX(t)=1 
then there is no anxiety or behavior change within the community, for πX(t)=0 the 
community practically shuts down. Here are a few examples of what the population could 
use to gauge their risk levels, to define their πX(t) and consequently alter their behavior. 15 

1. Initially, the only information available to people will be the experience of their 
own community. People may use the number of yesterday’s new infections ignoring 
everything that happened before yesterday as a measure of their risk. We quantify this 
“memoryless” approach of evaluating the risk factor as: 

                                                
15 There is no evidence suggesting one level of time granularity for tracking behavior over another, we use 
the most analytically logical time step: one generation of the flu. Throughout this section when we use the 
term “day”, we are referring to one generation of the flu, which corresponds to 2-3 actual days.  
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π1
X(t, C1)=  

C1 is an input representing the importance of yesterday’s information. For C1 =1 the 
number of infected individuals is linearly correlated to the risk level. As C1 grows, the 
relevance and impact of yesterday’s news grows exponentially.16 

2. The news media are likely to present the cumulative number of infections within 
the community, this is another possible data set that people may use to estimate their risk 
levels.  The related concern parameter is π2

X(t): 

π2
X(t, C2)=  

C2 is another input which represents the strength of impact of this cumulative 
information. Note that C1 will have a smaller impact than C2. 17

 

3. It is also clear that if a city’s adjacent communities all get infected the level of 
concern within the city will be heightened to reflect the suffering of neighboring cities. 
We will not include this in the following model, but refer the reader to the previously 
mentioned works for incorporating this factor. 

 In reality each individual is likely to change his or her behavior using a 
combination of all three described approaches. Yesterday’s information is likely to be the 
most prevalent in the mind of the community, but community resients are also likely to 
remember the events of the past several weeks and be aware of the experiences of their 
neighbors. In our model we can uniformly alter the actions of people within each group 
using  

πX(t, C1, C2)= π1
X(t, C1)* π2

X(t, C2) 

as the overall feedback parameter for behavior change. The parameters that will reflect 
this concern level through altered behavior are λ and p.  

 Let us focus on λ. People in all activity levels are likely to decrease the number of 
contacts that they have on a daily level. It is likely that children will be kept at home, 
public transportation will be avoided, entertainment activities such as shopping or going 
to the movies will be temporarily suspended, even the number of contacts within the 
                                                
16 The authors have not been able to find the application of the behavior forecasting models to predict 
general behavior changes in the case of pandemic flu, but we have found numerous examples of HBM used 
to estimate altered human interactions to reduce their risk for HIV infection. Studies in this area indicate 
that there may be non-linear relationships between the factors and the dependent variable, thus we allowed 
for this variability through the addition of the C parameters (Stiles, 2004). 
17 Studies in this area indicate that there may be non-linear relationships between the factors and the 
dependent variable, thus we allowed for this variability through the addition of the C parameters. 



 28 

office may decrease as conference calls replace face-to-face contacts (Sadique, 2007). All 
these behavior changes were observed during the SARS outbreak (Wiseman, 2003). To 
model this decrease in contact rate over time we propose multiplying , the contact rate 
for a group of activity level j by, πX(t, C1, C2, C3), the perceived level of concern. So, 

 

The results seen in Graph 3, compare two identical populations except that one 
solely relies on yesterday’s information and the other uses cumulative information up to 
and including yesterday to assess their risk. For the “memoryless” group represented by 
the gray curve the peak of the epidemic is lowered compared to a ‘do nothing’ or ‘stay 
the course’ policy. Also, the cumulative number of infections is decreased compared to 
‘do nothing,’ but the virus maintains its presence within the community for a long period 
requiring sustained vigilance. Realistically, people will use more than just yesterday’s 
information to access their risk. By “remembering” the number of people who were 
infected prior to yesterday, the group represented by the black curve diminishes the 
prevalence of the virus much faster. This shows the potential effectiveness of social 
distancing in reducing the cumulative burden of the infection. The main difference in the 
two group behaviors is the intensity of the interventions in the declining half of the 
outbreak. In the black curve interventions are maintained at a high level until the 
infection is completely depleted. For the gray curve the intensity of the interventions 
decreases in the later half of the outbreak.  The moral of this story: Stay vigilant 
throughout the risk period. 

 

Graph 3 
The impact of different types of behavior changes on the epidemic curve. 

 

Now let’s consider the human contact frequencies, the ’s, by different groups.  
The average number of interactions is likely to decrease, but it is unlikely that the ’s are 
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going to change to the same degree for each activity level.  Highly active people will be 
able to decrease their number of interactions dramatically, but less active people may be 
unable to sever their few, but vital ties to the community. For example, a politician may 
decide to cancel his/her campaign rally, stay at home and contact his office through 
telecommunication. On the other extreme, a retired handicapped grandmother whose only 
daily contact is with her grandson who brings her daily groceries, is not likely to change 
her pattern at all. This leads us to consider the scenario where only the highly active 
individuals, with many voluntary contacts, limit their daily contacts. The results are 
presented in Graph 4.  Just changing the behavior of the highly active individuals has a 
similar impact as decreasing the behavior of the entire community. If highly active 
individuals decrease their number of daily contacts by about 90% during the riskiest time, 
then a massive communitywide outbreak could be prevented. This result has multiple 
policy implications.  It underlines the importance of closing schools since children have a 
high number of non-vital daily contacts within a school setting.  All individuals who act 
as social focal points should decrease their average number of contacts, especially if this 
can be done without disrupting the community. 

Overall, these models show the importance of including behavioral changes and 
their potential impact on disease transmission dynamics. From these models it becomes 
clear that the timing of behavioral changes and the behavior of the highly active people 
are some of the most important factors for transmission. Yet, the most important point is 
that behavioral changes such as limited social contact and improved hygiene must be 
included in future pandemic flu models, because they are first-order effects. 

 

 
Graph 4. 

Infection spread within a community that reacts by social distancing only in the highly 
active group, to news over all previous days. 

 

  ~39,000 
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12. Tipping Point Boundary 
 In the case of an influenza pandemic, it is highly unlikely that any single 
intervention will be sufficient to stop the outbreak, but a combination of several measures 
may have the chance of halting the spread of infection. We demonstrated this above, 
reducing both λ and p by 30%, thereby reducing R0 from 2.0 to 1.0.    Hand hygiene 
measures are effective at slowing down transmission, but if the virus is highly virulent 
and has a reproductive number, R0≈ 2 or higher, hygiene improvements may be 
insufficient unless people also socially distance themselves. Many interventions that can 
be implemented within a community are not mutually exclusive, and need to be assessed 
and implemented together. In fact, the CDC has put out a document titled “Interim Pre-
pandemic Planning Guidance: Community Strategy for Pandemic Influenza Mitigation in 
the United States. Early, Targeted, Layered Use of Nonpharmaceutical Interventions” 
discussing the importance of implementing multiple NPI’s early on in the outbreak. We 
believe that this can be taken a step further; NPI’s, as well as pre-pandemic low efficacy 
vaccines, antivirals, and other measures should all be considered and evaluated by 
modelers as bundles of interventions.  

 While we do not evaluate the interplay of these different interventions in this 
chapter, we do look at many of the interventions separately, and suggest an approach to 
presenting their combined efficacy. It is important to note that the effectiveness of the 
interventions will not be additive. For example, using alcohol based hand sanitizer is not 
going to be as incrementally beneficial to someone who already washes his or her hands, 
but is still likely to be somewhat useful. Each additional measure will decrease the 
reproductive number until eventually R0 may be below the pandemic causing threshold of 
1.  We propose creating a multidimensional “tipping point boundary” that illustrates 
what bundles of interventions are sufficient to lower the reproductive number to below 1. 
The effectiveness of various interventions will be on the different axes. All the points 
below the boundary will be combinations of interventions that will lead to disease 
extinction, and the points above are all the bundles of measures that will lead to 
exponential growth in the disease.  All points precisely on the boundary have R0 = 1, the 
herd immunity value. 

 Let us generalize the simple numerical example we did above, a simple two-
dimensional illustration of the boundary concept.  Recall we know that the reproductive 
number, R0 = λp, where λ is the average rate of contact and p is the conditional 
probability of infection. Both of these parameters are not disease-specific constants and 
can be altered through various hygienic, social distancing or even medical measures. In 
order to avoid an outbreak, the reproductive number needs to become less than 1, so the 
objective is to get to a scenario where as a result of all interventions λp<1. In Figure 1 
one can see the two-dimensional tipping point boundary. It is the thick red line where 
R0=1, and any points in the gray area under that boundary would cause a disease to die 
out in the population. Consider a flu strain that is comparable in virulence to the 1918-
1919 pandemic18 and, without any interventions, has an R0 = 2.0. Thus without any 
interventions, the scenario can be described by a point on the green dashed line in Figure 
                                                
18 The reproductive number for the 1918-1919 pandemic was estimated to be somewhere in the range of 1.8 
to 3 (Mills, 2004). 
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1. In order to stop the transmission, the combination of NPI’s and medical interventions 
needs to decrease either λ or p or both to the gray area, where R0 < 1 and the virus will 
die out.  

Figure 1. 
The two dimensional tipping point boundary where R0 <1. To stop a pandemic, the set of 
interventions must decrease either λ or p or both to the gray area under the boundary. 

Our simple example can be extended to multiple dimensions, where each 
dimension represents a specific type of intervention rather than the aggregate. If 
developed, this type of tool would be tremendously helpful for decision makers who 
could test out their multiple intervention policies.  We encourage future research in this 
area.  Additionally, this illustration makes obvious that people, through NPI’s, have the 
power to mitigate the outcome of the outbreak. 

 

13. Conclusions 
Infectious diseases remain a leading cause of morbidity and mortality worldwide, 

with HIV, tuberculosis and malaria estimated to cause 10% of all deaths each year.  Even 
the normal annual ‘seasonal flu” in the USA kills an average of 36,000 people each year, 
comparable to the number lost in auto accidents.  New pathogens continue to emerge in 
animal and human populations. Therefore, it is sensible to study the general implications 
of an infection propagation model in order to adopt broader, far reaching measures to 
strengthen the institutional, regulatory and technical capacity of the human health sector. 

 
Even without a Kirchoff’s Laws or a Newtonian physics of the flu, we hope that 

we have shown that simple models, some axiomatically derived and some based on 
empirical studies, can help us engineer a system for preparing for and responding to 
pandemic influenza.  Much is now known, especially when we compare to our almost 
total lack of scientific knowledge in 1918, facing the infamous “Spanish Flu.”  We have 
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emphasized human behavior as a key ingredient in mitigating the spread and effects of 
the flu.  We took this track because the flu preparedness plans of many states treat 
pandemic flu as purely a medical issue.  Their focus is on distribution of medicines such 
as anti-virals and vaccines, hospital surge capacity, coordinating a central command in 
emergency situations, and maintaining the health of health-care workers.  While each of 
these is important, they are all responsive measures, all assuming that the physics of the 
spread of the disease is pre-ordained.  We could not disagree more.  We believe and hope 
that this chapter has shown that non-pharmaceutical interventions (NPI’s), both 
government mandated and individually selected, may dramatically alter the course of the 
disease.  This ‘partial control’ must be included, must be emphasized in any state or 
federal plan.  This control is no less important than the flight controls that a pilot has for 
her aircraft or the dosage controls that an anesthesiologist has for his patient.  All 
engineers understand the importance of controls, even partial ones, as NPI’s are.  But any 
engineered flu preparedness and response system must include them.  

Catastrophes, natural disasters and terrorist attacks have all tested people’s ability 
to cope with and adapt to extremely grim, demanding and dangerous circumstances. 
Whether through social distancing, cooperating and working together or relying on the 
help of others, people have demonstrated that they can adjust to various difficulties. An 
avian, swine or any other flu pandemic is not going to demolish our world. However, 
there is evidence that during SARS the losses that resulted initially were fueled and 
magnified by panic due to lack of public information and lack of guidance. Thus in order 
to minimize disruption, suffering and losses, the government must know how to win the 
trust and confidence of the population, calm the people, and organize and rally the public 
as a strategic partner in battling the disease.  
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