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Abstract 

 

Hierarchies occur widely in evolving self-organizing ecological, biological, technological and social 

networks, but detecting and comparing hierarchies is difficult. Here we present a metric and technique to 

quantitatively assess the extent to which self-organizing directed networks exhibit a flow hierarchy. Flow 

hierarchy is a commonly observed but theoretically overlooked form of hierarchy in networks. We show 

that the ecological, neurobiological, economic and information processing networks are generally more 

hierarchical than their comparable random networks. We further discovered that hierarchy degree has 

increased over the course of the evolution of Linux kernels, confirming an early hypothesis by Herbert 

Simon on the emergence of hierarchy in evolutionary processes. Taken together, our results suggest that 

hierarchy is a central organizing feature of real-world evolving networks, and the measurement of 

hierarchy opens the way to understand the structural regimes and evolutionary patterns of self-organizing 

networks. Our measurement technique makes it possible to objectively compare hierarchies of different 

networks and of different evolutionary stages of a single network, and compare evolving patterns of 

different networks. It can be applied to various complex systems, which can be represented as directed 

networks. 

 

Keywords: self-organizing networks | evolution pattern | flow hierarchy 
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Introduction 

 

Complex systems of various kinds (social, biological, physical, technological, etc) frequently 

take the form of hierarchy [1,2]. On one hand, hierarchy is one of the central structural schemes 

that an architect may use to manage complexities. Products, organizations and other artifacts are 

often designed and managed hierarchically. On the other hand, hierarchies emerge and occur 

widely in self-organizing and evolutionary systems, such as food webs (ecological), neural 

networks (biological), open-source software (technological), and industrial production network 

(economic), etc., which have no architect. In such cases, hierarchy is viewed as a natural 

emergent phenomenon and the consequence of evolutionary processes [2,3]. 

 

In complex self-organizing networks, hierarchy, like the well-studied “small world” phenomenon 

[4] and the power law of degree sequence [5,6], is a global feature shared by various kinds of 

network systems (e.g. ecological, biological, social and technological) [7,8,9]. It is important to 

understand the hierarchy in self-organizing networks, because as emergence it may reflect 

important information on the functional needs of or constraints on the entities and their 

relationships which collectively form the network. However, detecting and comparing 

hierarchies is difficult in real-world networks, largely because first there are many types of 

hierarchy, and secondly hierarchy usually appears in impure forms in them [10,11]. 

 

Hierarchy is a generic structure, in which levels are asymmetrically ranked according to a 

specific type of relation. The ordering of levels, i.e. the rule of asymmetry, determines a 
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hierarchy. Scholars interested in complex systems [1,2,3,10] have paid attention to various types 

of relations existing between the elements that may determine a hierarchy and have described as 

many as four types of hierarchy in general [12]. By the logic construct for why an upper level is 

above a lower one, two types of hierarchies are useful for understanding the more specific case 

of network architectures: containment hierarchy and flow hierarchy. 

 

A containment hierarchy is similar to the concepts of “nested hierarchy” [1,10,13] or “inclusion 

hierarchy” [12,14], in which nodes are divided into groups that are further divided into 

subgroups of groups and so on over multiple levels. Containment hierarchy can be represented as 

a pure tree or dendrogram [11,15], in which nodes that are closely connected [9,11,15,16,17], or 

have close equivalence measures [15,18,19], share lower common ancestors than more distantly 

connected or distinctly positioned nodes. A containment hierarchy can be found for both directed 

and undirected complex real-world networks. 

 

Flow hierarchy is only associated with directed networks but is observed in many evolving self-

organizing networks such as food webs, neural networks, information processing networks and 

industrial production networks. In many of these cases, the containment ordering criterion does 

not apply and the order of levels is essentially determined by the direction of the flows of 

resources essential to the network. Such flows are crucial because they provide necessary 

resources, for the entities to produce, reproduce, sustain (or remain in useful or necessary 

existence) and prosper. Via being connected by flows, the entities in such self-organizing 

systems co-evolve and may self-organize into a flow hierarchy. For example, in food webs, it is 

energy that flows. In software networks, it is information that flows as subroutines feed parent 
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routines. In the production network of firms, flow hierarchy arises when there is “persistent 

directionality in continuing flows of intermediate goods” [20] and flows of payments in a reverse 

direction. In production economy, firms co-evolve in networks of flows.  

 

Imperfect Flow Hierarchy in Networks 

 

Much of the recent interesting work [11,15,16,21] on hierarchy in complex networks has been 

devoted to containment hierarchies. Although flow hierarchy also frequently occurs in various 

kinds of systems, it has been largely ignored. This paper aims to promote awareness of flow 

hierarchy as an emergent property of complex self-organizing networks and as a lens to study 

and deepen our understanding on such networks. 

 

The value of interpreting systems as flow hierarchies has not been fully exploited, partly because 

flow hierarchies usually do not appear in a pure form in complex self-organizing networks, such 

as food webs, neural networks, etc. Ideally, given a criterion used to link levels above and below, 

the links from a predefined lower level to its adjacent higher level are regarded as hierarchical. 

But we often observe links that skip levels, that connect between nodes on the same level, and 

that go in the backward direction. With all these irregularities aggregated in large complex 

networks, as well as the arbitrary nature of link type identification based on level assignment, 

flow hierarchies may become ambiguous and intractable. Figure 1 demonstrates several simple 

example networks which embed and exhibit flow hierarchy to varied degrees.  
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Figure 1A is a pure tree. Each node is assigned not only a rank, but a single link to a higher up 

node. In Figure 1B, some nodes have multiple inbound and outbound links. We call it a “mixed 

tree hierarchy”. Both the pure tree and the mixed tree are strictly hierarchical because all the 

links regularly connect from a lower level to an adjacent higher level. In the network C in Figure 

1, levels can no longer be uniquely defined. If node 2 and 5 are defined to be in the same layer, 

the link from node 5 to 2 can be viewed as an “in-layer link” and the link from 5 to 1 is a 

“regular link”. However, if node 2 is pre-defined to one level higher than node 5, then the link 

from 5 to 1 is a “level-skipping link”. Identification of level-skipping links and in-layer links 

relies on the pre-identification of levels. In this case, the levels are not uniquely defined [22]. But 

at least all the links in Figure 1C follow a general asymmetrical direction, so this network can be 

regarded as hierarchical. In cases A, B, and C, there is strict asymmetric ordering of 

relationships.  
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Figure 1 Example networks. The dashed links are involved in cycles. 

 

Networks often exhibit layered structures [23], i.e. level hierarchy [12], as shown in Figure 1D. 

In this example, the links in cycles are symmetrical to each other and lose their global direction 

to some extent. However, if the nodes in the same directed cycle are presumed to be in a layer 

(then the links are “in-layer links”), the other links proceed in one direction from layer to layer. 

Thus, the network D in Figure 1 is not purely hierarchical but still has certain degree of hierarchy. 
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The example in Figure 1E simply shows how the emergence of a cycle may destroy the overall 

direction or asymmetry of a network. The examples in Figure 1 together indicate that cycles 

violate the directionality of a network, i.e. the asymmetry in flows, which is the fundamental 

principle of flow hierarchy (i.e. things move in one general direction). 

 

The networks in Figure 1 are simple, so we can intuitively observe and sense the different 

degrees of hierarchy embedded in them. When given more complex and larger networks, the 

identification of flow hierarchy can be difficult. Figure 2 visualizes two random networks with 

the same numbers of nodes (100) and links (400), but vastly different degrees of hierarchy 

embedded. It is not surprising but important that such visualization while useful does not allow 

one to objectively see significant differences in hierarchy between different networks. Our 

technique introduced in next paragraph will reveal the large difference in hierarchy between the 

two networks in Figure 2.  

      

                                                   A       B 

Figure 2 Random networks with the same size (N=100, L=400) but different hierarchy degrees. N is the number of nodes, L is 

the number of links. 

 

The Measurement of Flow Hierarchy 
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Centered on the concept of flow hierarchy and its core principle – network directionality, we 

present a hierarchy metric that detects and measures the extent to which all the local flows follow 

a holistic overall “underlying direction”. The hierarchy metric is calculated as the percentage of 

links that retain their overall direction in the network, i.e., the percentage of links that are not 

included in any cycle,  

1

L

i

i

e

h
L

=
=

∑
      [1] 

where L is the number of links in the network and ei=0 if link i is in a cycle (1 otherwise). In 

weighted networks, the metric can be calculated as the ratio of the weights of the links which are 

not included in any cycles over the total weight of all links,  
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where wi is the weight of link i. In the present paper, we will focus on unweighted networks. 

 

We applied the flow hierarchy metric to the simple networks shown in Figure 1 and the larger 

examples shown in Figure 2. The calculated hierarchy degrees (see Table 1) capture the same 

understanding based upon direct observations. In particular, the metric performs well in 

assessing layered hierarchy but other potential metrics do not. For the example of network D in 

Figure 1, if we alternatively count the portion of nodes rather than links, all the nodes are 

involved in cycles so the alternative hierarchy metric will be zero and fail to capture the sense of 

layered hierarchy of this network. In general this metric is unambiguous in differentiating the 
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hierarchical components and non-hierarchical components [23]. It is also advantageous in its 

clarity and ease of computation, in comparison to other potential metrics (An assessment of 

alternative metrics is provided in the Supplementary Material [24]). 

Table 1 Hierarchy degrees of the example networks in Figure 1 and 2 

Figure 1 Figure 2 
Networks 

A B C D E A B 

Hierarchy Degree 1 1 1 0.40 0.57 0.33 1 

 

This metric of flow hierarchy potentially provides a way to characterize and detect different 

structural regimes of discrete systems with a potential direction, analogously to the different 

regimes of the continuous fluid flows. For example, the networks A and B in Figure 3 are strictly 

hierarchical (uni-directional) and similar to the “laminar flow” regime of fluid flows. In network 

C of Figure 3, some of the local flows (i.e. links) are involved in cycles (similar to eddies or 

vortexes of fluid flows). The system is no longer purely hierarchical and is in a “transitional 

flow” regime. In network D, all the flows are involved in cycles, so this case is analogous to the 

“turbulent” regime of fluid flows. Thus, as the Reynolds Number [25] characterizes different 

flow regimes, such as laminar, turbulent or transitional flow, the flow hierarchy metric also 

potentially characterizes the structural regimes of discrete network systems, such as production 

markets, food webs, and software. 
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A) h = 1 

C) h = 0.716

B) h = 1 

D) h = 0
 

Figure 3 A network with 72 nodes and 176 directed links, oriented toward different directions in four scenarios. The links in 

blue color in B) and C) either skip levels or connect between nodes in the same level. Such links add complexity and difficulty in 

determining the levels and ranks, but do not destroy the overall network directionality, i.e. flow hierarchy. The nodes and links 

colored in red are involved in cycles.  

 

To compute the flow hierarchy metric for large-scale complex networks, we use the following 

algorithm: First, we construct the link adjacency network and matrix for the original node 

adjacency network. For example, Figure 4 shows the link adjacency network transformed from 

and equivalent to the original node adjacency network. The 7 squares in Figure 4B correspond to 

the 7 links of the network of Figure 4A respectively. 
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                         A                                                    B 

Figure 4 The link network equivalent to the original node network 
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We name the cell (i,j) in the link adjacency matrix xij. xij = 1 if and only if the end of link i is 

directly connected to the start of link j by a node. Otherwise, xij = 0. Second, we raise the link 

adjacency matrix’s power p to find the link distance matrix Md. We name the cell (i,j) in the link 

distance matrix dij. dij is the distance from link i to j, defined as the minimum number of unique 

nodes which a uni-directed flow has to travel through from the end of link i to the start of link j. 

dij is found as the value of the power, at which cell (i,j) of the power matrix M
p
 has a non-zero 

value for the first time. When p=1, the power matrix M
1 is the same as the link adjacency matrix, 

so that if xij=1, the distance from i to j is 1. If xij =0, and x
[2]

ij>0, then the distance is found as 2. 

And so forth. Consequently, the first power p for which the x
[p]

ij element is non-zero gives the 

distance from i to j, i.e. the value of dij in the link distance matrix Md. Mathematically, dij = 

minpx
[p]

ij >0, for p from 1 to L, the total number of links (equal to the length of the longest 

possible cycle of links). We leave dij empty if the end of link i is neither directly nor indirectly 

connected to the start of link j. Note that alternative algorithms, such as depth-first search, can 

also be applied to find the link distance matrix. 

 

Figure 5 illustrates the process to derive the link distance matrix for the example network in 

Figure 4. Given the final link distance matrix (at the bottom right corner of Figure 5), we are able 

to judge if a link is on any directed cycle by examining its main diagonal. If dii is empty, then 

link i is not involved in any cycle (i.e. ei=1, 0 otherwise). In this case, only ddd is empty, and this 

agrees with our direct observation on Figure 4 – only link d is not included in any cycle. Thus, 

the hierarchy degree is 1/7.  

 



 11 

g

f

e

d

c

b

a

gfedcba

0010000

0

1

0

0

0

0

100000

000000

010000

000010

000001

100 0 01

g

f

e

d

c

b

a

gfedcba

0010000

0

1

0

0

0

0

100000

000000

010000

000010

000001

100 0 01

1000000g

1

0

0

0

0

1

f

000000f

010000e

100000d

001100c

010010b

0

c

0

b

1

a

a 0

e

00

gd

1000000g

1

0

0

0

0

1

f

000000f

010000e

100000d

001100c

010010b

0

c

0

b

1

a

a 0

e

00

gd

0100000g

0

0

1

0

0

0

f

010000f

100000e

000000d

000001c

001100b

0

c

1

b

0

a

a 1

e

00

gd

0100000g

0

0

1

0

0

0

f

010000f

100000e

000000d

000001c

001100b

0

c

1

b

0

a

a 1

e

00

gd

0010000g

0

1

0

0

1

0

f

100000f

000000e

010000d

010010c

000001b

1

c

0

b

0

a

a 0

e

11

gd

0010000g

0

1

0

0

1

0

f

100000f

000000e

010000d

010010c

000001b

1

c

0

b

0

a

a 0

e

11

gd

0100000g

0

0

1

1

0

0

f

010000f

100000e

000000d

000001c

101100b

0

c

1

b

0

a

a 2

e

00

gd

0100000g

0

0

1

1

0

0

f

010000f

100000e

000000d

000001c

101100b

0

c

1

b

0

a

a 2

e

00

gd

1000000g

1

0

0

0

0

2

f

000000f

010000e

100000d

101100c

020010b

0

c

0

b

1

a

a 0

e

00

gd

1000000g

1

0

0

0

0

2

f

000000f

010000e

100000d

101100c

020010b

0

c

0

b

1

a

a 0

e

00

gd

M1 M2 M3 M4 M5 M6

g

f

e

d

c

b

a

gfedcba

1

1

1

1

1

1

1 1

g

f

e

d

c

b

a

gfedcba

1

1

1

1

1

1

1 1

321g

3

1

2

3

f

12f

23e

31d

3312c

32231b

1

c

2

b

3

a

a 2

e

1

gd

321g

3

1

2

3

f

12f

23e

31d

3312c

32231b

1

c

2

b

3

a

a 2

e

1

gd

21g

1

2

f

12f

2e

1d

12c

221b

1

c

2

ba

a 2

E

1

gd

21g

1

2

f

12f

2e

1d

12c

221b

1

c

2

ba

a 2

E

1

gd

321g

3

1

2

4

3

f

12f

23e

31d

43312c

32231b

1

c

2

b

3

a

a 2

e

41

gd

321g

3

1

2

4

3

f

12f

23e

31d

43312c

32231b

1

c

2

b

3

a

a 2

e

41

gd

321g

3

1

2

5

4

3

f

12f

23e

31d

43312c

532231b

1

c

2

b

3

a

a 2

e

41

gd

321g

3

1

2

5

4

3

f

12f

23e

31d

43312c

532231b

1

c

2

b

3

a

a 2

e

41

gd

321g

3

1

2

5

4

3

f

12f

23e

31d

643312c

532231b

1

c

2

b

3

a

a 2

e

41

gd

321g

3

1

2

5

4

3

f

12f

23e

31d

643312c

532231b

1

c

2

b

3

a

a 2

e

41

gd

Md Md
Md Md Md Md

 
 

Figure 5 Deriving link distance matrix by raising power of link adjacency matrix. We pair Mp and the Md with the state of 

knowledge after p steps. M1 is the link adjacency matrix for the link network in Figure 4B and the original network in Figure 4A. 

The distance identified at each intermediate step is bold and its cell is shadowed. In particular, the values on the diagonal of the 

final Md (after 6 steps in this case) give the length of the shortest link cycles in which each link is included. 

 

Results and Discussions 

 

By definition, a pure random directed network embeds no hierarchy. However, the hierarchy 

degree is not necessarily zero for the networks created by existing random network models. We 

have examined hierarchy degrees of networks generated by a simple model similar to the 

“Poisson random network” [9]. Networks are constructed by assigning L directed links to 

randomly chosen pairs from N nodes. No multiple uni-directed links between a chosen pair and 

no self-links are allowed.  

 

The directed Poisson random networks alone also exhibit important properties regarding 

hierarchy. Figure 6A shows that network size (N) has little influence on hierarchy degree (h), 

especially when N is sufficiently large. This agrees with our intuition that hierarchy is an 



 12 

architectural property independent of scale, and allows one to use random networks with a 

relatively small N to estimate h of those with large N but the same k (=L/N). Figure 6B shows the 

increase of average degree (k) significantly decreases h. When k is at its minimum 1/N, h will be 

exactly 1, because only one pair of nodes will be connected and one node is unambiguously 

above the other in this dyad flow hierarchy. When k is sufficiently high, h tends to zero because 

there are many cyclic pathways through which flow can travel back to its origin. A holistic 

direction does not exist among links in densely connected random networks. These results are of 

use when comparing h found from empirical networks. 
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Figure 6 Hierarchy degrees of randomly-generated directed networks. The value at each data point is the average of hierarchy 

degrees of 1,000 randomly-generated networks given the same N and k. Data points are connected by straight lines. 

 

We calculated the hierarchy metrics of a diverse set of empirical evolving self-organizing 

networks: the Bridge Brook Lake food web [26,27] and the Northeastern US Shelf food web 

[28,29], Japanese supplier-producer networks in automotive and electronics production sectors 

[30, 31, 32], two biological information-processing networks including the synaptic connections 

between neurons in the nematode worm Caenorhabditis elegans [33] and developmental 

transcription network of Drosophila Melanogaster [33], the call networks of the kernels of two 
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operation system software, Linux [34] and Apple computer’s Mac OS X (Darwin) [35]. We used 

the algorithm detailed above to compute the hierarchy degrees of these large-scale empirical 

networks. 

 

Hierarchy degrees of these empirical networks are compared to those of comparable Poisson 

random networks with the same numbers of nodes (N) and links (L), with a focus on z-score,  

ˆ
real rand

rand

h h
z

σ

−
=                                                                    [3] 

where hreal is the hierarchy degree of the empirical network, and ˆ
randh  and randσ  are the average 

and standard deviation of the hierarchy degrees of an ensemble of randomly-generated networks 

with the same N and L (or k) of the empirical network. The larger the value of the z-score, the 

more the structure of the network deviates from randomness
1
. 

Table 2.  Hierarchy degrees of empirical networks and comparable random networks 

Network Type N L k hreal hrand randσ  z-score 

Bridge Brook Lake Food Web 25 104 4.160 0.9809 0.0213 0.0338 28.39 

NE US Shelf Food Web 79 1378 17.443 0.8273 0 0 infinite 

Japanese Automobile Sector Production 679 2437 3.589 0.9988 0.0601 0.0114 82.34 

Japanese Electronics Sector Production 227 648 2.855 0.5957 0.1338 0.0310 14.90 

C. elegans Biological 280 2170 7.750 0.1171 0.0009 0.0018 64.56 

D. melanogaster Biological 107 301 2.813 0.3289 0.1308 0.0444 4.46 

Darwin XNU-123.5 Software 646 4351 6.735 0.4872 0.0024 0.0021 230.86 

Linux Kernel 1.1.70 Software 287 1385 4.826 0.8065 0.0159 0.0082 96.41 

Each empirical network is compared to an ensemble of 1,000 randomly-generated networks with the same N and L (or k). We 

extracted the software call networks using the architecture analysis software Understand C++. In the call networks, a link from 

                                                 
1
 The results in Figure 6B shows that the hierarchy degree is not necessarily zero for random networks. This 

indicates a potential kind of “noise” hidden in hierarchy degree interfering with indication of hierarchy due real-

world patterns. The z-score metric aids in assuring that the observed hierarchy goes beyond such “noise”. 
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source code B to source code A exists if any function in A calls and relies on any function located in B. In the industrial 

production networks, a link from firm B to firm A exists if firm A procures any products from firm B. 

 

Domain-specific knowledge is needed to understand the detected difference in hierarchy degree 

of empirical networks of the same type. For the specific example of the two production networks, 

the automotive sector is significantly more hierarchical than the electronics sector (Table 2). This 

difference in hierarchy degree may imply and result from some important differences in the 

strategies and behaviors of individual firms and differences in the technological environments in 

the two production sectors
2
.  

 

However, in the results (Table 2), there is no clear evidence to show that system types (e.g. 

biological vs. production) differentiate networks in terms of flow hierarchy. In general, from a 

network science perspective, the results show all of these typical empirical networks exhibit 

stronger hierarchical architectures than comparable random networks with the same sizes and 

average degrees, indicating the emergence of hierarchy as a significant feature of real-world 

evolving self-organizing networks. 

 

This indicates that evolution (e.g. the extent to which the system has evolved) might be one 

fundamental determinant of the hierarchical degrees of self-organizing networks. Simon [1] first 

hypothesized that hierarchy emerges inevitably through a wide variety of evolutionary processes 

because hierarchical structures are stable [1,36]. However, quantitative evidence on hierarchy, 

either containment or flow hierarchy, over the course of system evolution has not been reported 

                                                 
2
 Reference [31] attempts to explain why different industrial sectors may exhibit different degrees of hierarchy in the 

specific industrial and economic context. 
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previously, largely due to the lack of an appropriate measure. The hierarchy metric and technique 

in the present paper allows the exploration of this fundamental question linking hierarchy and 

system evolution. 

 

We calculated the hierarchy metrics of the call networks of various historical versions of the 

Linux kernel from its origin, version 0.01 to 2.3.0. The Linux kernel is an open source system 

developed by self-organized contributors around the world. As indicated in Figure 7A, the 

hierarchy degree and corresponding z-score (Figure 7B) of the Linux kernel have been generally 

increasing over its life cycle. The first version (0.01) was built and released by a single person. 

After that, many people contributed subroutines to the project, and thus hierarchy degree 

declined for a little while. During the most of its life as an open-source system, the hierarchy 

degree has increased as the self-organizing system grows, stabilizes, and matures, as Simon [1] 

argued. The observation of a general increase of k as the system evolves (Figure 7C) affirms the 

hierarchical tendency of this system since increases in k alone would work to decrease the 

hierarchical metric. 

 

Network decompositions may reveal certain underlying architectures and interesting methods to 

detect modularity have been developed recently [11,16,19,21,37-39]. We also calculated the 

optimal modularity of the Linux kernel networks, using Newman’s eigenvector-based algorithms 

for both undirected [38] and directed networks [39], and found unclear trends during the same 

period of time, if not slightly decreasing. No theoretical or observational indication has been 

found about how modularity of self-organizing networks should change in evolutionary 
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processes. Compared to the flow hierarchy metric, the usefulness of modularity in terms of 

tracking the evolving patterns of self-organizing networks may be limited. 
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Figure 7 Longitudinal evolution of Linux kernel. (A) hierarchy degree and modularity. (B) z-score. (C) average degree. At least 

one data point is included for each month when there are multiple releases in a month. For some months, no data point is 

included because there were no versions either released or available in the online archive. See Supplementary Material for more 

details of the data and results. 

 

Conclusion 

 

In general, this paper explores a commonly observed but theoretically overlooked form of 

hierarchy in networks -- flow hierarchy. Our measurement technique makes it possible to 

objectively compare hierarchies of different networks, detect the structural regime or 

evolutionary stages of a single network, and compare the evolving patterns of different networks. 

Our analysis shows that the ecological, neurobiological, economic and information processing 

networks are generally more hierarchical than their comparable random networks. We further 

discovered that hierarchy degree has increased over the course of the evolution of Linux kernels, 

confirming an early hypothesis by Herbert Simon on the emergence of hierarchy in evolutionary 

processes. Taken together, the results may suggest that flow hierarchy is a central organizing 

feature of real-world evolving networks. 
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Our major purpose of this article is not to argue flow hierarchy must increase or decrease in the 

evolutionary course of a complex system, but to stimulate more research to explore the value of 

flow hierarchy as lens to understand the architecture and dynamics of complex network systems. 

This paper is not intended as the final word on flow hierarchy, but a beginning of further and 

boarder research on it. Important questions, such as what flow hierarchy means to the functional 

performance of a network and how flow hierarchy emerges from the behaviors and interactions 

of individual network nodes, have not been answered. 

 

We anticipate application of the hierarchy metric and measurement technique to more systems, 

such as ecological, biological, brain and neural, social and technological systems, in order to help 

understand better their domain-specific architectures and evolutionary patterns. Like the 

contribution of Reynolds Number for the development of the overall field of fluid mechanics, the 

flow hierarchy metric may also potentially provide great value for designing and managing 

complex network systems, but further research is needed. 
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Supplementary References 

 

Appendix A: Assessments of alternative hierarchy metrics and algorithms 

 

Besides the hierarchy metric introduced in the main paper, we also explored other possible 

metrics that aim to quantify the degree to which the system architecture follows a flow hierarchy. 

The metrics are compared and it is shown that the one proposed in the paper (main text) has 

advantages over the others in accuracy and ease of use.  

 

A.1 Alternative Metric Base upon Cycle Identification 

 

The first alternative hierarchy algorithm/metric to examine is to count the portion of nodes 

(instead of links) which are not included in any cycle over the total nodes. Proceeding in a way 

similar to the approach in the text of the main paper, we construct the node adjacency matrix 

first, and then raise the power of matrices to derive the node distance matrix. With the node 

distance matrix, we can check whether a node is involved in any cycle. One obvious 

disadvantage, compared to the one proposed in the paper is that, it neglects the layered hierarchy 

in its relative metric system. For example, in the example layered hierarchy network in Figure 2, 

using this algorithm, all the 6 nodes are included in at least one cycle, so the hierarchy degree is 

zero. However, there is obviously an existing layered hierarchy. Instead, the hierarchy metric 
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which we propose in the main text and count links appropriately can identify the hierarchical link 

d in Figure 5 of the main text. 

 

A.2 Alternative Metrics Based upon Level Identification 
 

Both of the two approaches discussed above do not require ranking the nodes, but search for 

cyclic phenomena embedded in directed networks. Now, we examine the feasibility of other 

alternative ways to measure hierarchy, which are based on identifying the nonhierarchical links 

when a specific logic of ordering for the hierarchy is specified. The logic of ordering can be 

based on network structure or domain-specific characteristics.  

 

When nodes are pre-assigned level ranks, the links from a predefined lower level to its adjacent 

higher level are regarded as hierarchical. Moreover, the links that skip levels and the links 

between nodes on the same level can also be accepted as hierarchical. However, when a link 

connects from a pre-indentified higher level backward to a lower one, it violates the fundamental 

assumption that, in a pure flow hierarchy all flows/links follow one general direction, so it is 

non-hierarchical.  

 

Nonetheless, the identification of such link types is somewhat arbitrary because it depends on the 

pre-assigned level ranks to nodes, which are often ambiguous. In many cases, there is no 

objective and definitive criterion according to which a node must be on a specific level, though 

experts with domain knowledge can give a level rank to a node based on their domain knowledge 

and subjective judgment. Such rank-assigning work based on domain knowledge is a usual 
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practice in food web research [S1] and industrial system research [S2]. Measures based upon 

such assignments of ranks thus have a partially arbitrary character. 

 

In order to avoid arbitrary ranking, we explore several practical ways of assigning level ranks to 

each node in a directed network, using differently the information of the network positions of 

nodes in a directed network. Then, we assess their feasibility and accuracy for indentifying flow 

hierarchies. Our ranking algorithms first identify the sinks, which
 
have no outgoing links but 

only incoming links, and then use the path lengths from the other nodes to sinks as the basis of 

assigning a level rank. Here, path length means the number of intermediate links on a path
 
from a 

node to a sink of interest (A path is a walk in which all nodes and all lines are distinct; a walk is 

a sequence of nodes and lines, starting and ending with nodes, in which each node is incident 

with the lines following and preceding it in the sequence [S3]). 

 

In this way the sinks are used as the benchmarking boundary. Alternatively, the sources, which 

have no incoming links but only outgoing links, can also be used as the benchmarking boundary. 

In the following section, we will only show the use of sinks as the benchmarking boundary as the 

analysis of sources is directly analogous. Because there is usually more than one path from nodes 

to a sink, and there are usually more than one sink on the top bound of the industry, five different 

algorithms are discussed. These algorithms are abstracted to different aspects of the relative 

network positions of nodes. 

  

1) Min [Shortest]: A node’s level rank is given as the shortest one among its all shortest paths to 

all the sinks. 
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min (min ( )) [ ], [ ]i ij
j

LR D i nodes j sinks= ∈ ∈                                  [S1] 

i
LR : the level rank of node i; 

ij
D : the set of lengths of the paths from node i to sink j. 

2) Max [Shortest]:  A node’s level rank is given as the longest one among its all shortest paths 

to all the sinks. 

max (min ( )) [ ], [sinks]
i ij

j
LR D i nodes j= ∈ ∈                                  [S2] 

 

3) Min [Longest]: A node’s level rank is given as the shortest one among its all longest paths to 

all the sinks. 

min (max ( )) [ ], [ ]
i ij

j

LR D i nodes j sinks= ∈ ∈                                 [S3] 

4) Max [Longest]: A node’s level rank is given as the longest one among its all longest paths to 

all the sinks. 

max (max ( )) [ ], [ ]
i ij

j

LR D i nodes j sinks= ∈ ∈                                 [S4] 

5) Continuous Level Rank (Average) 

( ) [ ], [sinks]
i ij

j

LR average D i nodes j= ∈ ∈                                    [S5] 

Note: when there is only a single sink in the network, Max [Shortest] and Min [Shortest] become 

the same, and Max [Longest] and Min [Longest] become the same. 

 

The first four algorithms above tend to group the nodes into discrete levels. The fifth algorithm is 

different because it assigns continuous level ranks. Figure S1 shows the example of the network 

of Toyota Motor Company’s suppliers before (left) and after (right) being grouped into levels 

according to the Max [Shortest] algorithm. The nodes (i.e. companies) are arranged in space 



 25 

(using UCINET [S4]) to illustrate the underlying flow hierarchy. This network exhibits strong 

hierarchy, found by the visualization based upon the arbitrary ranking/grouping result. 

        

                       A) Before grouping                                                                B) After grouping 

Figure S1. Networks of Toyota’s suppliers (A) before grouping and (B) after grouping based upon the 

Max [Shortest] algorithm. The network contains the Japanese suppliers either directly or indirectly 

connected to Toyota Motor Company by the flows of transacted components and parts. The network is 

extracted from the data book [S5] used for the calculation of Japanese automotive production network in 

Table 2 of the main text. The network here includes 372 nodes (i.e., manufacturing firms) and 591 links 

(i.e. supplier-customer transactional relationships). For instance, if company A sells a product to company 

B, there is an arrow from A to B in the network. 

 

Regardless of which method is used and whether it is arbitrary, after each node is assigned a 

unique level rank, i.e. grouped into a specific level, we can identify if a local flow/link is from a 

lower level to a higher or the same level (hierarchical) or from a higher level to a lower level 

(non-hierarchical). More specifically, we differentiate all the links of a network into four 

different types (also demonstrated in the examples in Figure S2): 

1) Regular: the link connects from a node on a pre-defined lower level (i) to a node on its 

adjacent higher level (i-1); 
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2) Level-Skipping: the link connects from a node on a pre-defined lower level (i) to a node on a 

level (j) higher than its adjacent higher level (i-1), i.e. j < i-1;  

3) In-Layer: the link connects between nodes on the same level (i); 

4) Backward: the link connects from a node on a predefined high level (i) to a node on a lower 

level (j), i.e. i < j. 

i

i+1

i-1

i-2

2

1 3

4

1) Regular
2) Level-Skipping

3) Same-Layer

4) Backward

Legend

 

Figure S2. Examples for four types of links identified according to levels 

 

As a matter of fact, in discussing the network examples in Figure 2 of the main text, we have 

noted the regular, in-layer, level-skipping, and backward links, with implicitly pre-assumed 

levels. In general, the first three types are accepted as hierarchical links, although intuitively 

there is an order for the hierarchy degree they represent, which is:  

Regular > Level-Skipping > In-Layer 

The fourth type, i.e. backward link, clearly violates the fundamental assumption that, in a pure 

flow hierarchy all flows/links follow one general direction, so it is non-hierarchical. Now we 

may count the ratio of hierarchical types of links over total links as a potential hierarchy metric, 

1

m

i

i

m e

h
m

=

−

=

∑
                         (S6) 

where m is the number of links in the network and ei=1 if link i is a backward link (0 otherwise). 

However, because the “backward” vs. “forward” directions are relative, whether a link is 
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backward or forward depends on the direction assumed. To make it simple, we assume that 

backward links are inconsistent to a system’s dominant orientation, and are minor ones. Thus, at 

maximum only half of the links can be “backward”, and the ratio calculated from formula S6 

will always range between 0 and 0.5. To improve this potential metric to range between 0 and 1, 

we normalize it to the range of [0, 1] by multiplying 2 in equation S6 to the term which counts 

the backward links. Furthermore, when the same numbers of forward and backward links exist in 

a network, a reasonable hierarchy metric should be zero. However, in-layer links might exist so 

hierarchy degree is still larger than zero. To correct this and make the hierarchy degree zero 

when the forward and backward links are equal regardless of the in-layer links, I propose an 

improved formula from S7, 

1

2
m

i

i

m e

h
m

=

− ×

=

∑
                                           (S7) 

where m is the total number of links. ei=1 if link i is a backward link, ei=0.5 if link i is a in-layer 

link, and ei=0 if link i is either a regular or level-skipping link. 

 

In the Toyota network shown in Figure S1, grouping by the Max [Short] algorithm determines 

the ratio for each type of links: 425 links are regular links; 159 links are in-layer links; no level-

skipping links; 7 links are backward links. Thus, the hierarchy degree is  

591 2 (159 0.5 7 1)
0.7073

591

       − × × + ×
=  

However, such an approach may over count non-hierarchical links. Here we use a simple 

example network (Figure S3) of five nodes to examine the feasibility for identifying non-

hierarchical links (vs. hierarchical links) based on the level ranks obtained from the five extreme 
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algorithms introduced above. Nodes are placed on their corresponding levels given by different 

algorithms. 
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Figure S3. Identifying nonhierarchical links based on five different level ranking algorithms. Non-

hierarchical backward links are dashed. 

 

In this network, there is one source node, 5, and two sink nodes, 1 and 2. Obviously, we can 

observe directly that all the links in this small network do follow a holistic direction from bottom 

to top, so are hierarchical (h =1 using the method in our paper). However, according to the Min 

[Shortest] and Max [Shortest] ranking algorithms based on counting the shortest paths, node 5 

belongs to level 1, and node 4 belongs to level 2, then the link from node 5 to node 4 is a 

backward and nonhierarchical link. According to Min [Longest] algorithm that counts longest 

paths, because node 5 has its longest path to node 2 in the length of 1, it is still placed on level 1, 

and its link to node 4 is still a nonhierarchical one. The fifth algorithm uses the average path 

length to sinks as a node’s level rank, then node 5 has three paths to the sinks and the average 

path length is 1.66. Node 4 has one path of length 2 to the sinks, so its level rank is 2. So, the link 

from node 5 to node 4 is again identified as a nonhierarchical one.  

 

Only the Max [Longest] algorithm does not over count non-hierarchical links. As a matter of 

fact, this algorithm theoretically equates finding the layout of the dependency matrix of the 
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directed network which minimizes the number of links above the diagonal, if we place the sinks 

at the left upper corner of the adjacency matrix. The other algorithms more or less ignore part of 

the global path information while Max [Longest] considers all the path information when it 

operates. In contrast, the Max [Longest] algorithm works appropriately because it has traced 

complete path information from the nodes to the sinks in the effort of assigning level ranks.  

 

A.3 Hierarchy Metric based upon Max [Longest] Level Identification Algorithm 

 

Therefore, we propose a second hierarchy metric based on counting the non-hierarchical links 

identified by the Max [Longest] level-ranking algorithm. Calculating this hierarchy metric 

consists of the following steps:  

Step 1) Identify the sinks of the network as the benchmark. Alternatively, we can also use 

sources of the network as the benchmark. 

Step 2) Calculate the lengths of the longest paths from each node to all the sinks, and use the 

longest one of these lengths as the node’s level rank.  

Step 3) Count the total number of the backward links. Any link, which goes from a node with 

higher level rank to a node with a lower level rank, is identified as a nonhierarchical 

link. The rest of the links are hierarchical. 

Step 4) With the known information on the levels and link types, compute the hierarchical 

degree using formula S7. 

 

Figure S4 lists the hierarchy degrees of several example networks based on this approach. A pure 

hierarchical structure, such as a tree (e.g. Figure S4A), has a hierarchy degree 1. For a pure 
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directed cycle (e.g. Figure S4E), this approach does not give an answer because there is neither a 

sink nor a source node to be used as a benchmark. 
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Figure S4. Hierarchy degrees of example networks based on the Max [Longest] ranking algorithm. Non-

hierarchical backward links are dashed. 

 

Similar to the hierarchy metric proposed in the paper that counts links on cycles, this alternative 

hierarchy metric also examines how much the intermediate or local links coherently follow a 

holistic direction in the directed network. However, compared with the hierarchical metric in the 

paper, the second metric has two disadvantages in practice. First, it requires extra steps to 

identify the sources or sinks. In some systems where neither sources nor sinks exist 

mathematically, the algorithm does not apply without arbitrarily picking the benchmark nodes. 

The second disadvantage is that, it is computationally hard to find the longest paths between 

nodes in a large network. Such calculation requires exhaustive search of paths of all possible 

lengths. It is doable if the network size is small enough. However, when the system size becomes 

big, it may take “forever” to calculate the level ranks. 
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Therefore, among these two hierarchy metrics and algorithms, we prefer the first hierarchy 

metric simply because of its ease of computation, although the second metric is also meaningful 

in computable cases.  

 

Appendix B: Descriptive statistics and hierarchy degrees of historical Linux kernels 

 

Linux kernel source codes are obtained from the official online archive of Linux Kernel 

Organization, Inc http://www.kernel.org/.  

Table S1. Descriptive statistics and calculated results for the used data points 

Version 
Release 

Date 
N L K hreal hrand rand

σ  z-score 
Modularity 
(directed) 

Modularity 
(undirected) 

0.01 17-Sep-91 35 97 2.771 0.7010 0.1332 0.0768 7.391 0.1795 0.2876 

0.11  8-Dec-91 41 128 3.122 0.5547 0.0871 0.0563 8.300 0.1432 0.2779 

0.12  16-Jan-92 51 168 3.294 0.4524 0.0753 0.0459 8.208 0.2036 0.2781 

0.95  8-Mar-92 50 176 3.520 0.5057 0.0581 0.0403 11.113 0.1345 0.2503 

0.96a 22-May-92 60 218 3.633 0.5596 0.0528 0.0360 14.079 0.1598 0.2773 

0.96b 22-Jun-92 62 227 3.661 0.5551 0.0472 0.0315 16.125 0.0644 0.2778 

0.96c 5-Jul-92 69 258 3.739 0.5891 0.0457 0.0299 18.169 0.1138 0.2966 

0.97 1-Aug-92 77 299 3.883 0.5886 0.0388 0.0259 21.186 0.0931 0.2879 

0.99.2 1-Jan-93 150 575 3.833 0.7200 0.0423 0.0243 27.893 0.1258 0.3071 

0.99.5 9-Feb-93 149 573 3.846 0.726 0.0422 0.0236 28.962 0.1135 0.3103 

0.99.7 13-Mar-93 170 699 4.112 0.7668 0.0322 0.0215 34.199 0.1207 0.3130 

0.99.9 24-Apr-93 171 702 4.105 0.7764 0.0316 0.0200 37.243 0.1002 0.3254 

0.99.10 7-Jun-93 196 850 4.337 0.7553 0.0247 0.0185 39.413 0.1289 0.3184 

0.99.11 18-Jul-93 196 859 4.383 0.7579 0.0243 0.0173 42.422 0.1223 0.3258 

0.99.12 15-Aug-93 201 888 4.418 0.7635 0.0218 0.0167 44.524 0.1212 0.3324 

0.99.13 20-Sep-93 203 904 4.453 0.7788 0.0216 0.0172 43.941 0.1254 0.3084 

0.99.15 3-Feb-94 234 1084 4.632 0.8044 0.0174 0.0146 53.773 0.1274 0.328 

1.0 13-Mar-94 235 1100 4.681 0.7673 0.0162 0.0139 53.913 0.1232 0.3662 

1.1.0 6-Apr-94 234 1084 4.632 0.7703 0.0171 0.0142 53.006 0.1256 0.3209 

1.1.13 23-May-94 242 1092 4.512 0.7711 0.0205 0.0163 45.992 0.1022 0.3003 

1.1.23 27-Jun-94 252 1189 4.718 0.7771 0.0165 0.0144 52.638 0.1154 0.3531 

1.1.29 14-Jul-94 254 1214 4.780 0.7727 0.0151 0.0134 56.689 0.0949 0.312 

1.1.45 15-Aug-94 275 1293 4.702 0.7873 0.0162 0.0134 57.440 0.0864 0.3309 

1.1.52 6-Oct-94 277 1315 4.747 0.7916 0.0163 0.0142 54.439 0.0967 0.3527 

1.1.63 14-Nov-94 275 1293 4.702 0.7873 0.0157 0.0139 55.672 0.0864 0.3309 

1.1.70 2-Dec-94 287 1385 4.826 0.8065 0.0141 0.0133 59.396 0.0549 0.3838 

1.1.76 2-Jan-95 296 1546 5.223 0.8273 0.0096 0.0104 78.481 0.0326 0.321 
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1.1.89 5-Feb-95 333 1709 5.132 0.8660 0.0106 0.0114 74.773 0.0298 0.3576 

1.2.0 7-Mar-95 334 1738 5.204 0.8452 0.0101 0.0110 76.072 0.047 0.3576 

1.2.3 2-Apr-95 334 1739 5.207 0.8436 0.0101 0.0110 75.942 0.0465 0.3571 

1.2.8 3-May-95 334 1740 5.210 0.8437 0.0094 0.0108 77.329 0.043 0.3559 

1.3.0 12-Jun-95 344 1898 5.517 0.8583 0.0073 0.0094 90.217 0.0376 0.3401 

1.3.7 6-Jul-95 382 2108 5.518 0.8667 0.0074 0.0091 94.892 0.0496 0.3276 

1.3.15 2-Aug-95 384 2140 5.573 0.8673 0.0063 0.0086 100.121 0.046 0.3288 

1.3.22 1-Sep-95 384 2170 5.651 0.8659 0.0056 0.0081 106.810 0.0443 0.3279 

1.3.31 4-Oct-95 390 2248 5.764 0.8674 0.0050 0.0075 114.472 0.0477 0.3295 

1.3.38 7-Nov-95 406 2301 5.667 0.8609 0.0057 0.0085 100.725 0.0526 0.3242 

1.3.46 11-Dec-95 438 2585 5.902 0.8286 0.0045 0.0070 117.154 0.0449 0.3324 

1.3.53 2-Jan-96 457 2647 5.792 0.8342 0.0048 0.0073 113.011 0.0202 0.3031 

1.3.60 7-Feb-96 482 2776 5.759 0.835 0.0054 0.0079 104.383 0.049 0.3289 

1.3.70 1-Mar-96 514 3010 5.856 0.8432 0.0048 0.0075 111.167 0.0216 0.319 

1.3.82 2-Apr-96 554 3355 6.056 0.8393 0.0040 0.0066 126.854 0.0261 0.319 

1.3.98 4-May-96 646 3952 6.118 0.8335 0.0034 0.0063 132.816 0.0289 0.3145 

2.0 9-Jun-96 661 4055 6.135 0.8486 0.0037 0.0067 125.871 0.0269 0.3259 

2.0.5 10-Jul-96 661 4070 6.157 0.8511 0.0036 0.0067 126.504 0.0261 0.3172 

2.0.13 16-Aug-96 663 4084 6.160 0.8511 0.0032 0.0058 146.264 0.0253 0.3157 

2.1 30-Sep-96 668 4100 6.138 0.8515 0.0036 0.0066 128.125 0.0261 0.3088 

2.1.6 29-Oct-96 663 3955 5.965 0.8516 0.0043 0.0072 117.095 0.038 0.3033 

2.1.13 23-Nov-96 704 4258 6.048 0.8422 0.0039 0.0065 128.103 0.0368 0.3389 

2.1.16 18-Dec-96 743 4579 6.163 0.8574 0.0033 0.0063 136.632 0.0204 0.2939 

2.1.20 2-Jan-97 757 4709 6.221 0.8609 0.0031 0.0060 142.333 0.0166 0.2835 

2.1.25 2-Feb-97 775 4893 6.314 0.8580 0.0030 0.0057 151.306 0.019 0.2918 

2.1.30 26-Mar-97 823 5444 6.615 0.8720 0.0023 0.0052 166.595 0.0252 0.2815 

2.1.36 23-Apr-97 880 5833 6.628 0.8838 0.0019 0.0047 188.563 0.0268 0.2588 

2.1.40 22-May-97 871 5776 6.631 0.8776 0.0021 0.0051 173.238 0.0276 0.2456 

2.1.43 16-Jun-97 883 5807 6.576 0.8776 0.0024 0.0054 160.998 0.0279 0.2644 

2.1.45 17-Jul-97 945 6177 6.537 0.8844 0.0024 0.0053 166.812 0.0321 0.2604 

2.1.50 14-Aug-97 972 6376 6.560 0.8912 0.0022 0.0049 182.892 0.0318 0.2648 

2.1.56 20-Sep-97 1014 6615 6.524 0.8698 0.0021 0.0049 175.799 0.0334 0.2656 

2.1.60 25-Oct-97 1044 6672 6.391 0.8698 0.0029 0.0061 142.437 0.0304 0.269 

2.1.65 18-Nov-97 1053 6776 6.435 0.8669 0.0025 0.0054 161.265 0.0304 0.2587 

2.1.75 22-Dec-97 1152 7343 6.374 0.8501 0.0025 0.0053 160.780 0.0366 0.2915 

2.1.80 21-Jan-98 1279 7990 6.247 0.8831 0.0034 0.0062 141.106 0.0491 0.2933 

2.1.88 21-Feb-98 1316 8205 6.235 0.8851 0.0031 0.0060 145.903 0.0458 0.2413 

2.1.90 18-Mar-98 1321 8227 6.228 0.8922 0.0036 0.0066 134.715 0.0468 0.2441 

2.1.97 18-Apr-98 1389 8725 6.281 0.8889 0.0029 0.0058 153.434 0.0783 0.2535 

2.1.103 21-May-98 1441 9131 6.337 0.8938 0.0029 0.0059 151.729 0.0743 0.2841 

2.1.105 7-Jun-98 1470 9323 6.342 0.8985 0.0028 0.0055 162.692 0.0705 0.2114 

2.1.109 17-Jul-98 1476 9383 6.357 0.8995 0.0029 0.0058 154.547 0.0738 0.1974 

2.1.116 19-Aug-98 1502 9528 6.344 0.8969 0.0029 0.0058 154.768 0.0732 0.2873 

2.1.122 16-Sep-98 1516 9661 6.373 0.8970 0.0028 0.0059 151.750 0.0718 0.1937 

2.1.126 23-Oct-98 1550 9905 6.390 0.8900 0.0026 0.0057 156.533 0.0832 0.2796 

2.1.129 19-Nov-98 1559 9978 6.400 0.8931 0.0026 0.0055 162.222 0.0837 0.2833 
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2.1.132 22-Dec-98 1615 10413 6.448 0.8939 0.0024 0.0053 167.164 0.0655 0.282 

2.2 26-Jan-99 1663 10811 6.501 0.9053 0.0023 0.0052 173.143 0.057 0.2635 

2.2.2 22-Feb-99 1663 10826 6.510 0.9049 0.0021 0.0050 181.488 0.0562 0.2841 

2.2.4 23-Mar-99 1661 11040 6.647 0.9027 0.0022 0.0053 170.552 0.0591 0.2248 

2.2.6 16-Apr-99 1663 11091 6.669 0.9042 0.0021 0.0051 178.270 0.0589 0.2108 

2.3 11-May-99 1695 11315 6.676 0.9088 0.0019 0.0050 182.177 0.0581 0.2333 

 

1,000 randomly-generated comparable networks are used to calculate hrand and z-score for each 

data point. Because hierarchy degrees of random networks do not vary significantly with the 

increases of N when k>2 and N>80 (see Fig.3 in the main text), to reduce computation efforts we 

use randomly-generated networks with a constant N (=100) and corresponding k to predict hrand 

and z-scores for most of the data points with large N, except the earliest 8 ones with less than 100 

nodes. For the earliest 8 data points, the random networks have the same N and L of their 

corresponding actual networks. 
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