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ABSTRACT 

Recent network research has sought to characterize complex systems with a number of 

statistical metrics, such as power law exponent (if any), clustering coefficient, community 

behavior, and degree correlation.  A larger goal of such research is to obtain insight into 

the systems’ functions by means of these and similar analyses. In this paper we examine 

network models of mechanical assemblies.  Such systems are well understood 

functionally.  We show that they have both rich and varied community structure as well 

as negative degree correlations (disassortative mixing), and show that this can be 

explained by additional powerful constraints that arise from identifiable first principles.  

In addition, we note that their main “motif” is closed loops (as it is for electric and 

electronic circuits), a pattern that conventional network analysis does not detect but which 

is used by software designed to aid in the design of such systems.  The implication is that 

functional understanding of complex systems requires considerable domain knowledge 

beyond what typical network analysis tools employ. 

PACS Numbers: 89.75.Fb, 89.75.Hc, 89.20.Kk, 84.30.Bv, 45.40.-f, 02.10.Ox 
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I. Motivation 

Recent network research has sought to characterize complex systems with a number of 

statistical metrics, such as power law exponent (if any), clustering coefficient, community 

behavior, and degree correlation.  Use of such metrics represents a choice of level of 

abstraction, a balance of generality and detailed accuracy.  It has been noted that “social 

networks” consistently display clustering coefficients that are higher than those of random 

or generalized random networks, that they have small world properties such as short path 

lengths, and that they have positive degree correlations (assortative mixing).  

“Technological” or “non-social” networks display many of these characteristics except 

that they generally have negative degree correlations (disassortative mixing).  [Newman 

2003i] It has been shown that positive degree correlation and high clustering in social 

networks can be explained by the fact that they have no more than one edge between any 

pair of nodes (typical) and they display community structure with some variety in 

community size.  [Newman and Parkii] On this basis it is said that “social” networks are 

the exception in having positive degree correlation, and that others must of necessity 

display low clustering and negative degree correlations because they do not display 

community structure.   

In this paper we examine a kind of technological network about which the author has 

considerable domain knowledge, namely mechanical assemblies.  We have several 

objectives: 

o To see whether these networks conform to other technological networks in their 

typical statistical properties, compared to those in [i]  
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o To see what particular properties they have because they are mechanical 

assemblies  

o To explain why they display negative degree correlation even though they have 

rich community structure and high clustering coefficients 

o To see what can be learned about their underlying function by examining them 

using the network analysis methods used by network researchers and to indicate 

what other tools are important in understanding them 

II. Literature 

Recent network analysis research has evolved from studying scale-free behavior [Albert 

and Barabásiiii] to a search for understanding the functional behavior of systems. Newman 

[1] states that the search for functional understanding is in its infancy and is the ultimate 

goal of the research.  Various authors have studied software [Myersiv], the Internet [Li et 

alv], biological systems [Milo et alvi], [Ravasz et alvii], and electronic circuits [Ferrer I 

Cancho et alviii], among others. Each of these authors sought to find, with varying degrees 

of success, relationships between network statistics or structure, usually in the form of 

clusters (sometimes called modules) or internal patterns, and function. Deeper study has 

indicated that complex networks can be classified by domain, such as social, 

informational, biological, and technological, and their statistical properties compared [i 

Table II].  Both [vi] and [Itzkovitz et alix] found repeating internal structures in various 

systems and had some success in linking them to functions.  Others have sought to find 

clusters (highly linked sets of nodes that do not necessarily form repeating patterns), 

among them [Newman 2004x], and formulated a method for finding them [Girvan and 

Newmanxi].  [ix] found that the repeating patterns in electronic circuits and biological 
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networks formed layers of similar structures but a different structural pattern in each 

layer, which they called “scale rich” and “self-dissimilar.”  [v] showed that the structure 

of the Internet depends at least in part on technological constraints imposed by the design 

of the routers.  [Whitney 1996xii] argued that technological systems that process large 

amounts of power are less likely to display strong modular structure than those which 

process information at essentially negligible power levels.  [ii] offered an explanation for 

positive Pearson degree correlation in social networks and negative degree correlation for 

other types.  Each of these papers indicates that some domain knowledge is necessary in 

order to understand the relationships between network structure and statistics on the one 

hand and function on the other. 

This paper focuses on mechanical assemblies and network methods for understanding 

them.  [Bourjaultxiii] introduced the “liaison” graph model of assemblies in which a part is 

represented by a node and a joint between parts by an edge and used network and circuit 

theory to find all possible assembly sequences.  [Björkexiv] is one of many authors who 

use network methods to analyze tolerances and predict propagation of part size and shape 

variation in assemblies.  Assemblies are equivalent to kinematic mechanisms, whose 

motion and constraint properties  have been analyzed by network methods for decades 

[Phillipsxv], [Whiteheadxvi], [Blandingxvii], [Konkar and Cutkoskyxviii], [Shukla and 

Whitneyxix], [Whitney2004xx]. 

The paper is organized as follows: Section 0 describes assemblies generically and 

illustrates how their clustering and community structure arise.  Section 0 provides basic 

statistics on a number of assemblies as an addition to Table 2 in [i].  Section 0 derives a 

powerful internal constraint on assemblies from first principles.  Section 0 shows that this 
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constraint and important engineering design principles can explain why assemblies can 

simultaneously display rich community structure and negative degree correlation.  Section 

0 shows that the main functional motifs of assemblies and other technological systems are 

closed loops, which typical network analyses do not look for, and that clusters and 

communities do not account for function as well as loops do.  Section 0 concludes the 

paper with discussion and conclusions. 

III. Some Properties of Assemblies 

Mechanical assemblies are definitely technological networks.  Compared to the Internet, 

mechanical assembly networks are small, but they can be comparable in size to food webs 

and other recently studied networks, often having in the low to mid hundreds of nodes 

and edges.1  Assemblies are typically designed to have a hierarchical structure, with 

subunits called subassemblies, which can be nested to a few levels (perhaps three to five, 

sometimes more).  A hierarchical decomposition of an automobile might have top level 

assemblies {body, chassis, power train, interior} with respective main subassemblies 

{roof, car body side, car frame, doors, hood, trunk lid}, {springs, shock absorbers, 

steering gear}, {engine, transmission, drive axles, brakes}, and {seats, dashboard, 

steering wheel, shifter console, interior trim}, and so on. Figure 1 shows some of these 

subassemblies and the main liaisons between them.  Similarly, aircraft have top-level 

assemblies {fuselage, engines, landing gear, control systems, interior} with corresponding 

subsystems.2 

                                                 

1 Assemblies are always modeled as undirected networks. 

2 Assemblies can be classified as structures, mechanisms, and distributive systems. [xx]  Structures and 

distributive systems can have strong self-similarity, but mechanisms usually have strong self-dissimilarity. 
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Figure 1 Notional Network Diagram of a Car. A car is made of a large number of 

complex subassemblies containing from dozens to hundreds of parts.  They join to 

each other at relatively few places.  Except for the liaison called “many welds,” the 

liaisons in the figure are shown in their correct cardinality.  Thus, the door joins the 

body side via the two hinges shown.  The engine joins the transmission via the 

crankshaft and a bolted joint.  Not shown are other complex subassemblies with the 

same properties, such as seats and instrument panel.  Within each complex 

subassembly are other complex sub-subassemblies that in turn join to their parents 

via a relatively few liaisons. 

The main subassemblies often have more parts than their parent assemblies, and there is 

typically considerable diversity in size, shape, technological content, operating principles, 

and so on, giving rise to self-dissimilarity, clustering, “community structure,” and 

heterogeneity.  These properties are strongly driven by engineering, performance, 

manufacturing, field repair, and supply chain forces which are too numerous and complex 

to discuss here but are the focus of an enormous literature. 

When assemblies are modeled as networks where parts are nodes and an edge or liaison 

represents the fact that two parts assemble to each other, the resulting networks have a 
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ratio of edges to nodes that almost never exceeds 2.1 and averages around 1.6.  The 

reason for this is a pervasive internal constraint that we show is also the root of their 

negative degree correlation.  Data on assembly networks is discussed next. 

IV. Statistical Properties of Assemblies  

In this Section, we give in Table 1 the usual statistics about some assembly networks and 

compare them to Table 2 in [i].  The subject assemblies are, in increasing order of number 

of nodes, a rifle, an exercise walker, a model airplane engine, a bicycle, and a V-8 

automobile engine. Three of these items are depicted in Figure 2, Figure 3, and Figure 4.  

 

 
Figure 2 Exercise Walker Exploded View 

 

Figure 3 Bicycle Exploded View 
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Figure 4 V-8 Engine Exploded View. This engine is similar to but not exactly the 

same as the one analyzed in Table 1 and later in the paper. 
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Item  n  

(number 
of nodes) 

m  
(number 
of arcs or 
edges) 

Ratio of 
m to n   
and 
[mean 
degree] 

Clustering 
coefficient* 

Average 
path 
length 

Random path 
length 
ln(n) /ln(< k >)

Random 
clustering 
coeff 
< k > /n  

Generalized random 
clustering coeff 

< k >
n

< k 2 > − < k >
< k >2

 

 
 

 

 
 

2

Degree 
correlation 
(Pearson) 

1885 
Winchester 
Single Shot 
Rifle 

35 54 1.54 
[3.09] 

0.309 3.121 3.16 0.088 0.099 -0.177 

Hyper 21 
Model 
Airplane 
Engine 

45 65 1.444 
[2.889] 

0.388 3.579 3.588 0.064 0.10 -0.235 

Walker ** 
Figure 2 

75 124 1.6 [3.2] 0.623 2.812 3.17 0.08 0.179 -0.213 

Bicycle*** 
Figure 3 

235 364 1.59 
[3.175] 

0.415 4.051 4.22 0.024 0.082 -0.202 

V8 Engine**** 
Figure 4 

462 684 
 

1.512 
[3.024] 

0.225 4.345 4.964 0.0124 0.192 -0.2695 

Table 1. Properties of Some Mechanical Assembly Networks.  *Clustering Coefficient calculated ignoring nodes whose nodal 

clustering coefficient = 0.  **The walker assembly is symmetric and only half of it was analyzed.  The version analyzed has 40 

nodes and 64 edges.  ***The bicycle was analyzed using only 10 identical spoke sets on each wheel, whereas the front has 32 

and the rear has 40.  Thus the version analyzed has 131 nodes and 208 edges.  ***The engine network contains only 8 of the 

engine’s 32 identical valve trains.  Thus the version analyzed has 246 nodes and 372 edges.  Many other small parts are also 
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omitted. Clustering coefficient and path length calculated using UCINET v 6.9 [Borgatti et alxxi].  Pearson correlation 

calculated using software provided by Mark Newman. 
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As can be seen by comparing to Table 2 in [i], these networks conform to the 

expectations and existing data for “technological” networks.  They also display typical 

small world properties (larger clustering coefficient than random or generalized random 

networks with the same n  and m , and short path length).  Their path lengths are 

indistinguishable from those of random graphs with the same number of nodes and edges.  

While they are generally too small to be examined for power law behavior, their highest 

degree nodes obey kmax > n , providing sufficient range in k  to permit comparison with 

the conditions for positive degree correlation used by [ii]. 

V. Mean Degree of Assemblies  

It was stated above that the limit on mean degree in assemblies arises from a powerful 

internal constraint.  This constraint is discussed here, first empirically and then 

theoretically.   

Figure 5 shows the distribution of average network connectivities (number of edges or 

liaisons divided by number of nodes or parts; equivalently half the average nodal degree 

< k >) for several commercial products such as mechanical toys, cordless screwdrivers, 

staple guns, and car and truck transmissions.  Also shown are the theoretical maximum 

and minimum values for this metric for each product.  It is notable that, with one 

exception discussed below, the products shown do not have nearly the connectivity that 

they theoretically could, based on how many nodes they have, if they were either random 

graphs or Albert-Barabási [iii] growth-preferential attachment scale free networks.  In 

fact, the metric rarely takes on a value above 2.  The reason for this is based on 

fundamentals of kinematics. 
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Figure 5 Network Connectivity Metric for Several Assemblies.  [xx] The products in 

this chart have n  = 10 to 30 parts or more, and the potential range of network 

connectivities is large: min : (n −1) /n; max : (n −1) /2. But the maximum connectivity 

potential is not realized by any product surveyed with the exception of the “Chinese 

puzzle.”  Instead, actual connnectivities hover near the minimum, and the maximum 

does not exceed about 2.1. 

Figure 6 shows data from [Greerxxii] on the network connectivity of a number of 

household products over several redesign generations.  Each generation represents 

application of Design for Assembly principles [Boothroyd, Dewhurst, and Knightxxiii], 

primarily simplification and part-count reduction, as well as aggressive cost reduction 

implemented by materials and process substitutions.  Metals were replaced by polymers, 

discrete fasteners were replaced by flex hinges or adhesives, metal forming was replaced 

by injection molding, for example.  While Greer [xxii] was interested in the number of 

distinct parts needed to implement specific functions in these products (which falls 

steadily with each evolutionary stage), he also gathered information on the number of 
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parts and interfaces.  Not only is the ratio of connections to parts similar to our data in 

Figure 5, but remarkably it is roughly constant over the generations for each product. 

Thus Greer’s [xxii] data are consistent with our own and demonstrate that this property 

extends across several design methodologies, materials choices, and manufacturing 

methods. 

 

Table 2 shows data on the network connectivity of 14 products gathered by [Van Wie et 

al. xxiv] These are household products similar to those surveyed by [xxii] and have a 

similar average nodal degree.  The range of connectivity in these datasets is narrower than 

that in Figure 5 but is consistent overall. 

 
PRODUCT # Parts #Joints #Joints/#Parts 

Mini stapler 8 10 1.25 

Pentel Forte 13 19 1.46 

Side pencil 15 21 1.4 

Swingline small 17 21 1.24 

Swingline large 18 22 1.22 

Kodak  47 53 1.13 

Driving Force 56 60 1.07 

DeWalt Drill 56 64 1.14 

Skill Twist 57 67 1.18 

Fuji  58 68 1.17 

Conair Supermax 58 70 1.21 

Remington Vortex 61 72 1.18 

B&D Drill 68 87 1.28 



          8/30/2005 Draft for discussion 14  

© Daniel Whitney, 2005 

Conair Quiettone 69 84 1.22 

Average    1.225

Table 2 Network Connectivity Data for 14 Products Surveyed by Van Wie et al. 
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Figure 6 Data from [xxii] Showing Network Connectivity for Several Generations of 

the Same Product.  Each later generation exhibits fewer parts and fewer parts per 

implemented function but roughly the same network connectivity.  The average 

network connectivity for this data set is 1.24. 

Figure 7 shows that the network connectivity of parts in assemblies having from 6 to 245 

parts does not increase with the number of parts.  In both real world scale free and 

random networks, it is predicted that connectivity should grow with the number of nodes. 

[iii]  For the data available, mechanical assemblies do not behave this way.  Assemblies 

with more than 100 or 200 parts are rare, for reasons cited above. Figure 7 also shows 

visually the fact that, except for the Chinese Puzzle, network connectivities for these 

assemblies do not exceed ~2.1. 
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Figure 7 Liaisons Per Part vs Number of Parts for 35 Mechanical Products.  There 

is no correlation between the network connectivity of these assemblies and the 

number of parts in them.  The Chinese Puzzle is an outlier for reasons discussed in 

the text.  The average connectivity for this dataset is 1.55, close to the value for the 

V-8 Engine (1.51).  Data in this figure are a combination of those gathered by the 

author and those in [Van Wie, et al xxiv]. 

Figure 5, Figure 6, and Figure 7 show that typical assemblies do not have anywhere near 

the connectivity that they might.3 To see a physical reason why, we begin by making the 

analogy between mechanical assemblies and kinematic mechanisms.  All mechanisms are 

                                                 

3 Recall that large products are made of subassemblies having comparatively few parts, so those in Figure 5, 

Figure 6, and Figure 7 are representative of subassemblies found in cars and airplanes, too. 
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assemblies.  While not all assemblies move in the sense that typical mechanisms do, 

assemblies nevertheless obey the same fundamental principles of statics.  Among the 

issues of concern in kinematics is the state of constraint of the assembly:  is it under-

constrained and thus capable of movement; is it “exactly” constrained, having just enough 

links to prevent motion; or is it over-constrained, having more than enough links to 

prevent motion?  The last case is considered undesirable [xvii], [xvi] because it could 

result in locked-in stress in the assembly, leading to assembly difficulties or field failure.  

The implication is that constraint plays the role of a limit or cost related to adding arcs to 

a node, as suggested by [Amaral, et alxxv] for other kinds of networks. 

 

The Grübler criterion [xv] is typically used to determine the numerical value of the 

number of degrees of freedom M in a planar mechanism:   

 

Equation 1  

  

M = 3 n − g −1( )+ joint freedoms fi∑
where
n = number of parts
g = number of joints
fi = degrees of freedom of joint i

 

 

If M > 0, the mechanism has M  under-constrained degrees of freedom.  If M < 0, the 

mechanism has M  more links than necessary to prevent motion and is over-constrained.  

If M = 0, the mechanism is exactly constrained.  If we define α  to be the number of 

joints (liaisons) divided by the number of parts (equivalent to the average network 
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connectivity) and define the average number of degrees of freedom allowed per joint as 

β , then we have 

 

Equation 2  

  

g = αn

fi = gβ = αβn∑
and
M = 3 n −αn −1( ) +αβn

 

M =αn β − 3( )+ 3 n −1( ) 

Note that unless β > 3, increasing α  will drive M  negative and generate over-constraint.  

Furthermore, larger α  and β  mean more complex parts and a more complex product. If 

the mechanism is to be exactly constrained, then M = 0 and Equation 2 can be solved for 

α  to yield 

Equation 3  
  
α =

3 − 3n
n β − 3( ) →

3
3− β  as n gets large  

This expression is based on assuming that the mechanism is planar.  If it is spatial, like all 

those in Table 1, then “3” is replaced by “6” and Equation 1 is called the Kutzbach 

criterion, but everything else stays the same.  Table 3 evaluates Equation 3 for both planar 

and spatial mechanisms.   

 

β     α              planar α              spatial 

0 1 1 

1 1.5 1.2 

2 3 1.5 
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Table 3. Relationship Between Number of Liaisons Per Part and Number of Joint 

Freedoms for Exactly Constrained Mechanisms (M=0).  

 

Table 3 shows that α  cannot be very large or else the mechanism will be over-

constrained.  If a planar mechanism has several two degree-of-freedom joints (pin-slot, 

for example) then a relatively large number of liaisons per part can be tolerated.  But this 

is rare in typical assemblies.  Otherwise, the numbers in this table confirm the data in 

Figure 5, Figure 6, and Figure 7. Most assemblies are exactly constrained or have one 

operating degree of freedom.  Thus  β = 0 or β = 1, yielding small values for α , consistent 

with our data.  The products in Figure 6 and Table 2 are simpler in most cases than those 

in Figure 5 so it is not surprising that the former have smaller average network 

connectivity than the latter. 

The Chinese Puzzle is an outlier because it is highly over-constrained according to the 

Kutzbach criterion.  It is possible to assemble only because its joints are deliberately 

made loose.  Nonetheless, the overabundance of constraints is the reason why it has only 

one assembly sequence, that is, why it is a puzzle. 

VI. Degree Correlation of Assemblies 

The Pearson degree correlations ( r ) of a number of networks have been calculated and it 

has been noted that “social” networks tend to have positive values of r  while 

“technological” and other “non-social” networks tend to have negative values.  [i] While, 

as Newman says, there is unlikely to be a single explanation for this for all types of 

networks, [ii] have shown that networks with rich community structure and a maximum 

of one edge between any pair of nodes will have positive r .   
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The mechanical assemblies in Table 1 all have negative values of r .  Here we show that 

they also have rich community structure as calculated by the Girvan-Newman algorithm 

(as implemented in NETDRAW [xxi]).  We show the network diagrams of the walker, 

the bicycle, and the V-8 engine respectively in Figure 8, Figure 10, and Figure 10.  The 

communities identified make good sense.  They are relatively numerous and have a 

dispersion of sizes.  Thus the networks fit the requirements in Newman and Park as being 

candidates for positive r , but display firmly negative r .  On this basis we conclude that 

the Newman-Park criterion may explain social networks but that these technological 

networks have other properties not accounted for by the Newman-Park model.   

In spite of making good sense, the identified communities do not tell a lot about how the 

products work.  Instead, we need to understand the assemblies functionally more deeply. 
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Figure 8. Network Diagram of the Walker, Showing Community Structure.  The 

most highly connected and functionally important nodes in each community are named. 

(Color Online) 
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Figure 9. Network Diagram of a Bicycle. The most highly connected and 

functionally important nodes in each community are named.  Only 10 of 32 front (40 

rear) spokes and nipples are shown and used in the analysis in Table 1. (Color 

Online) 
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Figure 10. Network Diagram of V-8 Engine Showing Community Structure. The 

most highly connected and functionally important nodes in each community are 

named.  Other nodes are named to help readers understand and navigate the 

network, and for use in Figure 11.  (Color Online) 

Why do these (and, most likely, many other) mechanical assemblies have negative r?  

First, from a numerical standpoint, negative r  goes with the tendency for highly 

connected (high < k >) nodes (sometimes called hubs) to link to weakly connected ones, 
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and vice versa.  From a functional point of view, highly connected nodes in a mechanical 

assembly typically play either high load-carrying or load-distributing roles, or provide 

common alignment foundations for multiple parts, or both.  The frames, pivot pins, and 

pedal arms of the walker, the frame and front fork of the bicycle, and the cylinder block, 

cylinder head, and crankshaft of the engine perform important load-carrying functions in 

their respective assemblies.  In a clock or watch, two parallel plates align a number of 

gear wheels that in turn mate to each other in an open chain.  The two plates, high degree 

nodes, mate only to the low degree gear wheels, plus to posts that mutually align the 

plates.  The more gear wheels there are, the more negative the degree correlation will be, 

in spite of the fact that all the low degree nodes mate typically to two others. 

It is worth noting that almost without exception these highly connected nodes do not 

connect directly to each other.  In high power assemblies like engines, there are always 

interface parts, such as bearings, shims, seals, and gaskets, between these parts to provide 

load-sharing, smoothing of surfaces, or other services.  Such interface parts are necessary 

and not gratuitous. 

In addition, because they are often big, so as to be able to withstand large loads, these 

parts have extensive surfaces and can act as foundations for other parts that would 

otherwise have no place to hang on.  On the engine, such parts include pipes, hoses, 

wires, pumps and other accessories, and so on.  Several of these must be located 

accurately on the block with respect to the crank but many do not. 

Recalling the discussion of constraint above, it is noted that some of the highly connected 

nodes, most importantly the block and crankshaft, are over-constrained when considered 

together with the parts they mate to, such as camshafts and connecting rods.  This is 
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unavoidable, and gives rise to the need for considerable precision in their manufacture 

and assembly. But if these already highly constrained and high-degree nodes mated 

directly to each other, the ensemble would be hopelessly over-constrained and essentially 

impossible to manufacture efficiently.  However, the parts that merely “hang on” to the 

block do not impose additional constraint.  Additionally, these “hanger-oners” usually do 

not carry large loads and tend therefore to be weakly connected, reinforcing the negative 

value of r . 

Finally, most assemblies have only a few high- k  foundational, load bearing, or common 

locating parts, and many other parts mate to them while mating with low probability to 

each other.  Thus even if the high k parts mated to each other, the assortativity calculation 

would be overwhelmed by many (high k  – low k ) pairs, again yielding negative values 

for r . 

Thus negative degree correlation in assemblies can be seen as a consequence of the need 

to avoid over-constraint.  Yet these same assemblies display rich community structure, as 

described in Section 0.  Thus the need to avoid over-constraint apparently overpowers the 

conditions favoring positive degree correlation in social networks.  Similar internal 

constraints may act in other technological networks. 

Social networks apparently do not have to support such powerful internal constraints or 

costs of multiple connections, and thus can display positive r .  Indeed, the edges in an 

assembly, and most technological networks, are “always on” and have the same high 

strength.  In social networks like co-authorships, authors need not communicate 

simultaneously with all their present and past co-authors.  Actors need not deal in one 

film with all their past co-actors.  Thus a huge number of links between highly connected 
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nodes can “exist” without affecting each other.  Equivalently, many links can be very 

weak at times, whereas the links in an assembly or electric/electronic circuit are at full 

strength all the time. 

VII. Functional Motifs of Assemblies  

The heritage of social network analysis has bequeathed to us a number of analysis tools 

that seek in networks the kinds of features that are important for social science, such as 

path length, clustering coefficient, community structure, and power laws.  However, in 

many technological networks, the motifs that generate function are closed loops.  This is 

certainly true for both mechanical assemblies and electric/electronic circuits, whether they 

operate at high or low power.  Methods for designing and analyzing mechanisms and 

circuits via loop methods have been in use for over a century.4  High k  nodes are 

certainly important for the reasons mentioned above, but the loads or mutual locations in 

question operate in support of higher-level functions that are implemented by loops. 

In the Walker, the loops cannot be seen until a person is added.  This person exerts 

vertical loads on the pedals via gravity and horizontal back and forth loads on the handles 

and pedals while exercising.  The horizontal load loops pass from the person’s arms and 

hands to the walker’s handles, then to the frame, then to the pedals, then into the person 

again via the feet and legs.  The vertical load loops do much the same except that they 

contain an invisible gravity segment that exits the person’s body, enters the earth, and 

                                                 

4 In electric circuits, one simply finds any spanning tree and systematically closes the open ends.  If the 

circuit is linear, the superposition principle applies, and the circuit’s behavior can be analyzed using any set 

of independent loops identified by this method.  Assemblies are in general linear only instantaneously, so 

care must be exercised in identifying the loops. 
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returns to the walker via the feet on the frame.  Similar loop logic can be applied to the 

bicycle. 

In the Winchester rifle, the mechanism has four states (empty, loaded, cocked, and fired).  

Transitions between these states open or close edges in the graph and consequently create 

or destroy different loops.  Only one of these states was analyzed for inclusion in Table 1. 

The V-8 engine’s main loops are shown in Figure 11.  Some loops are contained entirely 

within the engine while others (air, output power) close only when other parts of the car 

or its environment are included. Note that some of them stay within the identified 

communities while others extend beyond or link and coordinate different communities.  

These loops cannot be drawn by inspecting the graph but require domain knowledge.   

The clustering coefficient of a network is obtained by counting triangles, that is, by 

enumerating the shortest possible loops (length = 3).  In general, the operative loops of an 

assembly are longer than three (typically 6 or 8) [xx] and thus do not contribute to the 

clustering coefficient.  In fact, the conventionally defined clustering coefficient reveals 

nothing about the presence, number, or length of loops longer than three.  Software for 

finding motifs5 would be helpful here, but only some of the motifs thus found would be 

functionally significant, and domain knowledge would be needed to identify them. 

Since positive degree correlation is related to more kinematic constraint while negative 

degree correlation is related to less kinematic constraint, the degree correlation 

calculation can be thought of as a simplified cousin of the Grübler-Kutzbach criterion, 

because the former simply counts links and considers them of equal strength, whereas the 

                                                 

5 http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html 



          8/30/2005 Draft for discussion 26  

© Daniel Whitney, 2005 

latter uses more information about both links and nodes and can draw a more nuanced 

conclusion.  The most general method of characterizing mobility and constraint, which 

removes a limitation in the [xix] network method, is that of Davies [Davies 1981xxvi] 

[Davies 1983xxvii].  This method is based on identifying closed loops and comprises a 

generalization to 6 dimensions of the familiar Kirchoff loop and node laws from electric 

circuit analysis.  This fact reinforces the dominance of closed loops as necessary for 

understanding the behavior of these systems. 

Most generally, an engine is an air pump.  Its design is driven by the amount of desired 

power, which determines the required flow rate of air and fuel, which in turn determines 

the number and diameter of the cylinders and the piston stroke.  These in turn drive the 

design of the main hubs plus essential cooling and lubrication systems (which are fluid 

flow loops).  Various scaling laws drive larger engines to have more cylinders rather than 

one larger one.  None of this is visible in the network diagram.   
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Figure 11. V-8 Engine with Five Main Functional Loops Indicated and Named.  The 

main power loop shown is simplified, omitting parallel segments for the piston rings 

and an additional main bearing.  It traces one of the 8 identical crank-piston-

cylinder-head loops in the engine.  The valve train loop is also greatly simplified, 

omitting parallel segments that include springs and slack adjusters.   It traces one of 

the 8 identical valve trains in the network as illustrated here.  The edge in the main 

power loop shown in dashes represents burning gas pressure and is not strictly 

speaking a mechanical link between two parts.  But it is functionally indispensable. 

(Color Online) 

VIII. Conclusions and Discussion 

At the beginning of this paper, we asked what can be learned about a complex system or 

family of systems by using widely applied network analysis methods.  Here we have seen 

the power and limits of doing so on some systems whose functions are well-understood.  
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One conclusion we can draw is that different kinds of systems have different operating 

motifs, and to understand a system is in some sense to know what those motifs are and 

how to find them.  Tools for finding the independent loops in circuits and mechanisms 

have been used in commercial software since about 1970.  The main task of designers of 

such systems consists of specifying and parameterizing the loops.  Loops appear to be 

important in ecological, atmospheric, oceanographic, and climate systems as well. 

All of the assemblies analyzed here have a number of hubs.  These are obviously 

important parts but they do not perform functions by themselves.  Instead, the identified 

functional loops seem to run from hub to hub.  In systems where large amounts of power 

are involved, hubs often act as absorbers or distributors of that power or of static or 

dynamic mechanical loads.  In other systems, the hubs can act as concentrators or 

distributors of material flow or information flow.  Generally, material, mechanical loads, 

and power/energy/information flow in closed loops in technological or energetic systems. 

All of the systems analyzed here display rich community structure with considerable 

variation in community size.  All display negative degree correlation.   The negative 

degree correlation can be readily explained via physical principles or engineering design 

reasoning.  The communities identified by the Girvan-Newman algorithm make 

functional sense in many cases but not others, and generally do not group items that form 

the functional loops. 

Another, perhaps more tentative, conclusion is that functional knowledge is useful, 

perhaps necessary, in order to understand why a class of networks displays this or that 

characteristic, such as power law degree statistics, community structure, or positive 

(negative) degree correlation.  The characteristics themselves, however, have limited 
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ability to provide insight into the “why” of a system’s network as compared to the 

“what.”  A fundamental reason for this, illustrated by results quoted from [Greer], but 

well-known, is that there are many ways to implement the same function in a 

technological system. 

In some cases, such as judging the state of constraint of an assembly, the metrics alone 

can have important prescriptive value: over-constraint may be detrimental (though not 

always).  A high-k node will be complex, costly to manufacture, and possibly at increased 

risk for failure (again not always, possibly unavoidable, and possibly the best way to 

design it after all). 

For assemblies, the minimum domain knowledge required to learn much about the system 

is the connection graph plus information on the constraints applied on nodes by edges.  

Higher-level functional knowledge requires at a minimum knowing shape and mass 

properties of nodes.  In electric circuits, one knows little without the connection graph 

and impedance information about the circuit elements themselves.  With this information, 

almost everything about the circuit’s behavior can be explained. 

Perhaps a useful way to characterize and group networks and systems is by the kind of 

information needed to determine their function at various levels of abstraction. 
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