
MMaassssaacchhuusseettttss IInnssttiittuuttee ooff TTeecchhnnoollooggyy
EEnnggiinneeeerriinngg SSyysstteemmss DDiivviissiioonn

Working Paper Series

ESD-WP-2004-08

MODEL-BASED ANALYSIS OF

SOCIO-TECHNICAL RISK1

Nancy G. Leveson
Engineering Systems Division

MIT

December 2004

1

Model-Based Analysis of Socio-Technical Risk1

Nancy G. Leveson

Abstract

Traditional approaches to hazard analysis and safety-related risk management are based on an
accident model that focuses on failure events in static engineering designs and linear notions of
causality. They are therefore limited in their ability to include complex human decision-making,
software errors, system accidents (versus component failure accidents), and organizational risk
factors in the analysis. These traditional accident models do not adequately capture the dynamic
complexity and non-linear interactions that characterize accidents in complex systems, i.e., what
Perrow called system accidents. System accidents often result from adaptation and degradation
of safety over time: The move to a high-risk state occurs without any particular decision to do so
but simply as a series of decisions or adaptations (asynchronous evolution) that move the system
into a high-risk state where almost any slight error or deviation can lead to a major loss.

To handle this more comprehensive view of accidents, risk management tools and models need
to treat systems as dynamic processes that are continually adapting to achieve their ends and to
react to changes in themselves and their environment. Leveson’s new accident model, STAMP
(Systems-Theoretic Accident Modeling and Processes), provides the foundation for such a risk
management approach by describing the process leading up to an accident as an adaptive
feedback function that fails to maintain safety constraints as performance changes over time to
meet a complex set of goals and values.

In this report, a new type of hazard analysis based on this new model of accident causation is
described called STPA (STAMP-based Analysis). STPA is illustrated by applying it to TCAS II,
a complex aircraft collision avoidance system, and to a public water safety system in Canada. In
the first example (TCAS II), STPA is used to analyze an existing system design. A formal and
executable modeling/specification language called SpecTRM-RL is used to model and simulate
the technical and human components in the system and to provide the support required for the
STPA analysis. The results are compared with traditional hazard analysis techniques, including a
high-quality TCAS II fault tree analysis created by MITRE for the FAA. The STPA analysis was
found to be more comprehensive and complete than the fault tree analysis.

The second example of STPA (the public water system) illustrates its application to the
organizational and social components of open systems as well as the technical. In this example,
STPA is used to drive the design process rather than to evaluate an existing design. Again,
SpecTRM-RL models are used to support the analysis, but this time we added system dynamics
models. SpecTRM-RL allows us to capture the system’s static structure (hardware, software,
operational procedures, and management controls) and is useful in performing hazard analyses

1 This research was partially supported by NASA grants NAG2-1843 and NAS2-03117 and NSF ITR grant
CCR-0085829.
© Copyright by Nancy Leveson, July 2003. All rights reserved.

2

that examine complex socio-technical safety control structures. The addition of system dynamics
models allows simulation and modeling of the system’s behavioral dynamics and the effects of
changes over time.

STPA allowed us to examine the impact of organizational decision-making and technical design
decisions on system risk and resiliency. The integration of STPA, SpecTRM-RL, and system
dynamics creates the potential for a simulation and analysis environment to support and guide
the initial technical and operational system design as well as organizational and management
policy design. The results of STPA analysis can also be used to support organizational learning
and performance monitoring throughout the system’s life cycle so that degradation of safety and
increases in risk can be detected before a catastrophe results.

3

Table of Contents

Abstract ... 1

Table of Contents... 3

Table of Figures... 4

Introduction ... 5

Chap 1: The STAMP Model of Accidents .. 6

Chap 2: The SpecTRM-RL Modeling Language .. 20

Chap 3: Hazard Analysis Using STAMP.. 22

Chap 4: Comparison of STPA to Traditional Hazard Analysis Approaches 35

Chap 5: Applying STPA to the Entire Socio-Technical System.. 39

Conclusions and Future Directions... 62

References ... 63

Appendix: An Introduction to SpecTRM-RL ... 66

4

Table of Figures

Figure 1: Johnson’s Three Level Model of Accidents.. 7

Figure 2: The Rasmussen/Svedung Model... 9

Figure 3: Mental Models ... 12

Figure 4: General Hierarchical Safety Control Structure.. 16

Figure 5: Controller Process Models ... 18

Figure 6: General TCAS Control Structure.. 23

Figure 7: Process Model for the TCAS Component... 27

Figure 8: A Classification of Control Flaws Leading to Accidents................................... 28

Figure 9: Two Types of Designs with Potential for Coordination Problems..................... 32

Figure 10: The Three Basic Components of System Dynamics Models 41

Figure 11: The Public Water Safety Control Structure for Ontario.................................... 42

Figure 12: A Water System Safety Control Structure Resulting from STPA Analysis 47

Figure 13: A System Dynamics Model of Water System Safety 49

Figure 14: The Public Awareness Balancing Loop ... 50

Figure 15: The Basic Water Safety Control Structure at the Time of the Accident............ 58

Figure 16: The Parts of a SpecTRM-RL Graphical Model... 66

Figure 17: Example of a Graphical Model... 68

Figure 18: Example of an Output Specification ... 72

Figure 19: Example of an Input Specification.. 74

Figure 20: Example of an Inferred State Variable Specification....................................... 75

Figure 21: Example of a Macro Specification.. 76

5

Introduction

As system complexity is increasing and new types of technology, particularly digital systems and
software, are being introduced, hazard analysis and risk management techniques are lagging
behind engineering practice. Our long-term research goal is to create commercial model-based
simulation and analysis tools for risk management throughout the system life cycle, including
design, manufacturing, operations, and maintenance. This report describes a new model-based
hazard analysis technique built on a new model of accident causation called STAMP (Systems-
Theoretic Accident Modeling and Processes) [Leveson 2003].

Traditional approaches to risk management focus on failure events in static engineering designs.
Our approach, in contrast, treats a system as a dynamic process that is continually adapting to
achieve its ends and to react to changes in itself and its environment. The original design must
not only enforce appropriate constraints on behavior to ensure safe operation, but the system
must continue to operate safely as changes occur. To achieve this goal, the process leading up to
an accident (loss event) can be described in terms of an adaptive feedback function that fails to
maintain safety constraints as performance changes over time to meet a complex set of goals and
values.

STPA (STAMP-based Analysis) is a new approach to hazard analysis that enables model-based
simulation and analysis of risk throughout the system life cycle, including complex human
decision-making, software errors, system accidents (versus component failure accidents), and
organizational risk factors.

This report describes STPA. Chapters 1 and 2 provide background on the STAMP model of
accidents and the SpecTRM-RL modeling language used in the analysis. They can be skipped
by those already familiar with these topics. Chapter 3 shows how STPA can be used to perform
hazard analysis on an existing design. TCAS II, a complex aircraft collision avoidance system, is
used as the example. TCAS II was chosen because it includes both humans and automation and
because a first-rate fault tree analysis already exists for it (created by MITRE for the FAA) that
can be used in evaluating STPA. Chapter 4 compares STPA with traditional hazard analysis
techniques and evaluates the results of our TCAS II hazard analysis with the information
provided in the MITRE fault tree.

Chapter 5 applies STPA to a system with technical, operational, managerial, and government
regulatory aspects, i.e. the public water system in Ontario Canada. In this case, rather than
performing a post-facto analysis, STPA was used to assist in the design of the public water
system, including the safety control structure, and to provide information that would be useful in
managing the system and detecting migration toward states of elevated risk during operations.
System dynamics models and simulation were added to the basic SpecTRM-RL models to
provide a more comprehensive ability to perform dynamic modeling. Finally, conclusions and
future research directions are described in Chapter 6.

6

Chapter 1: The STAMP Model of Accidents

Accident models underlie all efforts to engineer for safety: they form the basis for (1)
investigating and analyzing accidents; (2) designing to prevent future losses; and (3) determining
whether systems are suitable for use by assessing the risk associated with an activity, the use of a
product, or the operation of a system. While most people are not consciously aware that they are
using a model when engaged in these activities, some (perhaps subconscious) model of the
phenomenon is always part of the process.

Accident models are used to explain how accidents occur. An underlying assumption of all
accident models is that there are common patterns in accidents and that they are not simply
random events. Accident models impose these patterns on accidents and influence the factors
considered in any safety or hazard analysis. Therefore, the model may either act as a filter and
bias toward considering only certain events and conditions or it may expand activities by forcing
consideration of factors that are often omitted.

The most common accident models used today have their roots in industrial safety and view
accidents as resulting from multiple events sequenced as a forward chain over time. The events
considered as critical in these models almost always involve some type of component failure or
human error, or they are energy related. The chains may be branching (as in fault trees) or may
be visualized as holes in Swiss cheese slices [Reason 1990], but all are simply variants on the
basic event-chain concept. There may also be multiple chains synchronized by time or common
events [Benner 1975].

The causal relationship represented by the chaining is almost always a direct, linear one
representing the notion that the preceding event or condition must have been present for the
subsequent event to occur, i.e., if event X had not occurred, then the following event Y would
not have occurred. As such, event-chain models encourage limited notions of linear causality,
and it is difficult or impossible to incorporate non-linear relationships, such as feedback.

In event-based models, the causal factors identified depend on the events that are considered and
the selection of the conditions related to these events, i.e., the conditions that link the events.
However, other than the physical events immediately preceding or directly involved in the loss,
the choice of events to include is subjective and the conditions selected to explain the events is
even more so. Event chain models also limit the countermeasures chosen to prevent losses and
the quantification of the risk associated with the operation of the system.

Event-based models work best for accidents where one or several physical components fail,
leading to a system failure or hazard. However, such models and the hazard analyses based on
them can easily miss subtle and complex couplings and interactions among failure events and
omit entirely accidents involving no component failure at all. New models that are more
effective for managing risks in complex systems will need to account for social and
organizational factors, system accidents and dysfunctional interactions, software errors, human
errors involving complex decision-making and supervisory control, and system evolution and
adaptation over time. Our long-term goal is to create commercially viable, model-based

7

simulation and analysis tools for risk management that include all these factors and their
interactions.

Social and Organizational Factors in Accidents: Event-based accident models are poor at
representing systemic accident factors such as structural deficiencies in the organization,
management deficiencies, and flaws in the safety culture of the company or industry. The
accident model used should encourage a broad view of accident mechanisms that expands hazard
analysis beyond the proximate events: A narrow focus on technological components and pure
engineering activities may lead to ignoring some of the most important factors in preventing
future accidents.

 Large-scale engineered systems are more than just a collection of technological artifacts: They
are a reflection of the structure, management, procedures, and culture of the engineering
organization that created them, and they are also usually a reflection of the society in which they
were created. Overlying every technical system is a social system that provides purpose, goals,
and decision criteria [Miles 1973]. Effectively preventing accidents in complex systems requires
using accident models that include that social system as well as the technology. Risk
management needs to take a broad view of accident mechanisms that expands the scope beyond
the events that directly precede the physical losses and also includes the purpose, goals, and
decision criteria used to construct and operate systems and the organizational, managerial, and
regulatory systems that implement these goals and decision criteria.

Several attempts have been made to graft factors other than simple failure events and conditions
onto event models, but all have been unsatisfactory, including our own early attempts. The most
common approach has been to add hierarchical levels above the event chain. In the seventies,
Johnson proposed a model and sequencing method that described accidents as chains of direct
events and causal factors arising from contributory factors, which in turn arise from systemic
factors (Figure 1) [Johnson 1980].

Figure 1 – Johnson’s Three Level Model of Accidents

Johnson also tried to add management factors to fault trees in a technique he called MORT
(Management Oversight and Risk Tree), but ended up simply providing a general checklist for
examining management practices during an accident investigation. While such a checklist can

8

be very useful, it assumes that every error can be predefined and put into a checklist format. The
checklist is comprised of a set of questions that should be asked during an accident investigation.
Examples of the questions from a DOE MORT User’s Manual include: Was there sufficient
training to update and improve needed supervisory skills? Did the supervisors have their own
technical staff or access to such individuals? Was the technical support of the right discipline(s)
sufficient for the needs of supervisory programs and review functions? Were there established
methods for measuring performance that permitted the effectiveness of supervisory programs to
be evaluated? Was a maintenance plan provided before startup? Was all relevant information
provided to planners and managers? Was it used? Was concern for safety displayed by
vigorous, visible personal action by top executives? etc. Johnson originally provided hundreds
of such questions, and additions have been made to his checklist since Johnson created it in the
1970s so it is now even larger. The use of the MORT checklist is feasible because the items are
so general, but that generality also limits its usefulness, particularly for hazard analysis.

In 1995, Leveson proposed a three-level model (based on an earlier conceptual model by
Lewycky) with slightly different types of information [Leveson 1995]. The lowest level
describes the accident mechanism in terms of an event chain. For example, an object appeared in
front of the car, the driver hit the brakes, the car skidded and hit the tree, the driver was thrown
from the car and injured. The second level is a model of the accident in terms of the conditions
or lack of conditions that allowed the events at the first level to occur, e.g., the driver does not
know how to prevent or stop the skid, the car is not equipped with anti-lock brakes, the driver
was driving too fast, the street was wet from rain and thus friction was reduced, visibility was
poor, the driver was not wearing a seat belt, the seat belt was defective. Systemic factors make
up the third level, i.e., weaknesses of a technical, human, organizational, managerial, or societal
nature that contributed to the accident, usually by allowing or causing the conditions to arise that
led to the events.

The latest and most sophisticated of these types of hierarchical add-ons to event chains is
Rasmussen and Svedung’s model of the socio-technical system involved in risk management
[Rasmussen 1997, Svedung and Rasmussen 2002]. As shown in Figure 2, at the social and
organizational levels they use a hierarchical control structure, with levels for government,
regulators and associations, company, management, and staff. At all levels they map
information flow. But at each level, they map the factors involved in terms of event chains, with
links to the event chains at the level below. In addition they focus on the downstream part of the
event chain following the occurrence of the hazard. This downstream approach is common in
the process industry, where Rasmussen has done most of his work. In such a downstream focus,
emphasis is placed on protection or “safety systems” that identify a hazardous state after it
occurs and then attempt to move the plant back into a safe state, often by means of a partial or
total shutdown. While this type of shutdown design can work for process plants, it is not
appropriate for all types of systems and suffers from a lack of emphasis on designing for safety
and eliminating or controlling hazards in the basic system design.

One drawback to all these proposals is that the factors selected to be included are still arbitrary or
so general and all-inclusive (such as MORT) as to not be very useful in focusing the analysis on
the factors important to the particular system being considered. For a NASA Ames grant,
Leveson performed the only experimental evaluation of hierarchical add-ons to event-chain

9

models of which we are aware. She applied her hierarchical model to eight aerospace accidents
and concluded that it was an improvement over a basic chain of events model in terms of
accident analysis. Separation of the basic events at Level 1 from all the various types of
explanations that could be given for these events at Levels 2 and 3 allowed evaluation of the
explanation in a more objective fashion and easier detection of omissions and biases. It also
helped to identify conditions indirectly related to events or those related to all or a subset of the
events. However, she also found that her model (and the other add-on models that have been
proposed) provide little help in selecting the events to include and, more important, in the
selection of conditions and systemic factors. She concluded that a different type of model was
needed, perhaps one based on system theory.

Figure 2 – The Rasmussen/Svedung Model

10

System Accidents and Software Errors: Since World War II, we have been increasingly
experiencing a new type of accident, which Perrow [1984] called a system accident, that arises in
the interactions among system components (electromechanical, digital, and human) rather than in
the failure of individual components. In contrast, accidents arising from component failures,
including the possibilities of multiple and cascading failures, might be termed component failure
accidents. Many of NASA’s losses in the past few years, such as Mars Polar Lander, were
system accidents where all the components operated as specified (i.e., without failure), but there
were unplanned interactions among them that led to the loss.

In the simpler systems of the past, analysis and testing allowed exercising the system to detect all
potential undesired interactions and changing the system design to eliminate them. Increasing
complexity and the introduction of software control is reducing this ability and increasing the
incidence of system accidents. System accidents can be explained in terms of inadequate control
over component interactions. Prevention requires reducing or eliminating dysfunctional
interactions, i.e., interactions that can lead to hazardous states in the controlled process. A
taxonomy and classification of the types of dysfunctional interactions leading to accidents based
on STAMP is used in the new hazard analysis procedure described in Chapter 3.

While better engineering techniques aimed at increasing component integrity or reducing the
effects of component failure on the system are reducing component failure accidents, system
accidents are increasing in importance and will require new prevention approaches. In fact,
some of the approaches typically used to reduce component failure accidents, such as
redundancy, may actually increase the likelihood of system accidents by increasing one of the
basic causal factorsæinteractive complexity. The extraordinary interactive complexity of the
systems we are trying to build along with increased coupling between heterogeneous components
(which may not be obvious or known) are two of the reasons behind the increase in system
accidents. Both are related to the introduction of new technology, particularly software and
digital technology.

While system design errors in pure physical systems can usually be detected during system
testing and fixed before use, software is allowing us to build systems with such a high level of
interactive complexity that potential interactions among components cannot be thoroughly
planned, anticipated, tested, or guarded against. We are building systems that are intellectually
unmanageable using currently available tools. In the long run, the solution is to extend our
ability to manage complexity, but in the present we must deal with the tools we have and
catching up (in terms of tool development) to the continually increasing complexity of the
systems we would like to build may be difficult.

A second factor implicated in system accidents is tight coupling. Loosely coupled or decoupled
components and subsystems allow for intervention when problems arise or they limit the ability
of a disturbance in one part of a system to affect other parts. The drive toward tightly coupled
systems is fueled by a desire for higher levels of efficiency and functionality. The use of
software allows us now to achieve levels of coupling and interaction that were previously
impossible with pure electromechanical devices.

11

Most software-related accidents have been system accidents—they stem from the operation of
the software, not from its lack of operation and usually that operation is exactly what the
software engineers intended. Thus risk management techniques focusing on classic types of
failure events will have limited applicability to software.

A more appropriate way to understand the role of software in accidents is to use systems theory.
In systems theory terminology, safety is an emergent property that arises when the system
components interact within an environment. Emergent properties are controlled or enforced by a
set of constraints on the system states that result from component interactions; for example,
valve A must always be open whenever valve B is closed. Accidents result when safety
constraints are violated. When software acts as a controller in such systems, it embodies or
enforces the constraints by controlling components and their interactions (e.g., opening and
closing the valves). Software, then, can contribute to an accident by not enforcing the
appropriate constraints on behavior or by commanding behavior that violates the constraints.

The approach to preventing accidents implied by a systems-based accident model, namely,
enforcing constraints on component behavior and interactions, is different than that of
approaches that focus on eliminating component failures. Note that accidents caused by basic
component failures are also included in the systems accident model. Component failures may
result from inadequate constraints on the manufacturing process; inadequate engineering design
such as missing or incorrectly implemented fault tolerance; lack of correspondence between
individual component capacity (including humans) and the task requirements; inadequate
maintenance, including preventive maintenance; etc. A model based on systems theory goes
beyond simply blaming component failure for accidents and requires that the reasons be
identified for why those failures occurred, why they led to an accident, and what system-level
constraints must be imposed to prevent them or prevent hazardous system states if they do occur,
potentially leading to more varied and effective measures than simply attempting to handle
failures through redundancy.

Human Error: Human tasks and procedures are usually defined using a task analysis in which a
task is broken down into a sequence of discrete actions. A human error is then defined as any
deviation from the performance of the specified or prescribed sequence. However, human
behavior is continually adapting to pressures toward efficiency and other goals. As a result,
instructions and written procedures are almost never followed exactly. In fact, a common way
for workers to apply pressure to management without actually going out on strike is to work to
rule, which can lead to a breakdown in productivity and even chaos.

In studies of operators, even in such highly constrained and high-risk environments as nuclear
power plants, modification of instructions is repeatedly found and the violation of rules appears
to be quite rational, given the actual workload and timing constraints [Fujita 1991, Vicente 1995,
Woods 1984]. In these situations, a basic conflict exists between error as seen as a deviation
from the normative procedure and error as seen as a deviation from the rational and normally
used effective procedure (Rasmussen 1997).

One implication is that following an accident, it will be easy to find someone involved in the
dynamic flow of events that has violated a formal rule by following established practice rather

12

than specified practice. Given the frequent deviation of established practice from normative
work instructions and rules, it is not surprising that operator “error” is found to be the cause of
70–80% of accidents.

Figure 3 – Mental Models

The updating of human mental models plays a significant role here (Figure 3) and in the hazard
analysis approach used in the research supported by this SBIR grant. Both the designer and the
operator will have their own mental models of the plant. It is quite natural for the designer’s and
operator’s models to differ and even for both to have significant differences from the actual plant
as it exists. During development, the designer evolves a model of the plant to the point where it
can be built. The designer’s model is an idealization formed before the plant is constructed.
Significant differences may exist between this ideal model and the actual constructed system.
Besides construction problems, the designer always deals with ideals or averages, not with the
actual components themselves. Thus, a designer may have a model of a valve with an average
closure time, while real valves have closure times that fall somewhere along a continuum of
behavior that reflects manufacturing and material differences. The designer’s model will be the
basis for developing operator work instructions and training.

The operator’s model will be based partly on formal training and partly on experience with the
system. The operator must cope with the system as it is constructed and not as it may have been
envisioned. In addition, physical systems will change over time and the operator’s model must
change accordingly. The only way for the operator to determine that the system has changed and
that his or her mental model must be updated is through experimentation: To learn where the
boundaries of safe behavior currently are, occasionally they must be crossed. The role of such
experimentation in accidents cannot be understood by treating human errors as events in a causal
chain separate from the feedback loops in which they operate. Actions that are quite rational and
important during the search for information and test of hypotheses may appear to be

13

unacceptable mistakes in hindsight, without access to the many details of a “turbulent” situation
[Rasmussen, Pejtersen and Goodstein 1994].

Traditional decision theory research perceives decisions as discrete processes that can be
separated from the context and studied as an isolated phenomenon. More recent research has
taken a very different approach: Instead of thinking of operations as predefined sequences of
actions, human interaction with a system is increasingly being considered to be a continuous
control task in which separate decisions or errors are difficult to identify. Edwards, back in
1962, was one of the first to argue that decisions can only be understood as part of an ongoing
process. The state of the system is perceived in terms of possible actions, one of these actions is
chosen, and the resulting response from the controlled system acts as a background for the next
action. Errors then are difficult to localize in the stream of behavior; the effects of less successful
actions are a natural part of the search on the part of the operator for optimal performance.

Not only are separate decisions difficult to identify in this model of human control, but the study
of decision making then cannot be separated from a simultaneous study of the social context, the
value system in which it takes place, and the dynamic work process it is intended to control
[Rasmussen 1990]. This view is the foundation of dynamic decision making [Brehmer 1992] and
the new field of naturalistic decision making [Klein et.al 1993, Zsambok and Klein 1997].

Using this view of human error leads to a new approach to control of human performance and to
risk management: Rather than trying to control behavior by fighting deviations from a particular
path, focus should be on control of behavior by identifying the boundaries of safe performance,
by making boundaries explicit and known, by giving opportunities to develop coping skills at the
boundaries, by designing systems to support safe optimization and adaptation of performance in
response to contextual influences and pressures, by designing for error tolerance [Rasmussen
1990], by making errors observable and reversible before safety constraints are violated, and by
counteracting the pressures that drive operators and decision makers to violate safety constraints.
A goal of our research is to provide automated tools to assist with this approach to dealing with
human error in risk management.

Accidents can also result from dysfunctional interactions among decision makers. The safety of
individual decisions may depend on the activities of decision makers in other parts of the
organization. Accidents then can result from the interaction of the potential side effects of the
performance of individual decision makers during their normal work. Most decisions are sound
given local judgment criteria and the time and budget pressures and short-term incentives that
shape behavior. Experts do their best to meet local conditions and in the busy daily flow of
activities are unaware of any potentially dangerous side affects. Each individual decision may
appear safe and rational within the context of individual work environments and local pressures,
but may be unsafe when considered as a whole: It is difficult if not impossible for any individual
to judge the safety of their decisions when that safety is dependent on the decisions made by
other people in other departments and organizations. The modeling and simulation tools we plan
to create will allow decision makers to evaluate the safety of their decisions within the larger
context of the system as a whole.

14

Adaptation: Any accident model that includes social and organizational factors and human
error must account for adaptation. To paraphrase a familiar saying, the only constant is that
nothing ever remains constant. Systems and organizations continually experience change as
adaptations are made in response to local pressures and short-term productivity and cost goals.
People adapt to their environment or they change their environment to better suit their purposes.
A corollary of this propensity for systems and people to adapt over time is that safety defenses
are likely to degenerate systematically through time, particularly when pressure toward cost-
effectiveness and increased productivity is the dominant element in decision making. For
example, the redundancy and other precautions added to protect against human error often
degenerate over time as work practices adapt to increase efficiency and productivity. The critical
factor here is that such adaptation is not a random process—it is an optimization process
depending on search strategies—and thus should be predictable and potentially controllable
[Rasmussen 1997].

Woods has also stressed the importance of adaptation in accidents. He describes organizational
and human failures as breakdowns in adaptations directed at coping with complexity and
accidents as a “drift toward failure as planned defenses erode in the face of production pressures
and change” [Woods, 2000]. Similarly, Rasmussen has argued that major accidents are often
caused not by a coincidence of independent failures but instead reflect a systematic migration of
organizational behavior to the boundaries of safe behavior under pressure toward cost
effectiveness in an aggressive, competitive environment [Rasmussen 1997].

Humans and organizations can adapt and still maintain safety as long as their behavior conforms
to constraints on safe behavior. But in the search for optimal operations, humans and
organizations will usually close in on and explore the boundaries of established practice, and
such exploration implies the risk of occasionally violating system safety constraints unless those
constraints are enforced.

A risk management toolset that handles system adaptation over time must consider the processes
involved in accidents and not simply events and conditions: Processes control a sequence of
events and describe system and human behavior over time rather than considering events and
human actions individually. As Rasmussen argues, deterministic, causal models are inadequate
to explain the organizational and social factors in highly adaptive socio-technical systems.
Instead, accident causation must be viewed as a complex process involving the entire socio-
technical system including legislators, government agencies, industry associations and insurance
companies, company management, technical and engineering personnel, operations, etc. Tools
for hazard analysis and system simulation must include such processes.

STAMP: An Accident Model Based on Systems Theory: A new model of accidents, called
STAMP (Systems-Theoretic Accident Model and Processes), has been created upon which the
new tools will rest. In STAMP, safety is viewed as a dynamic control problem. The goal is to
identify and enforce constraints on system development and operations that result in safe
behavior. In this framework, understanding why an accident occurred requires determining why
the control structure was ineffective. Preventing future accidents requires designing a control
structure that will enforce the necessary constraints.

15

The most basic concept in the new model is not an event, but a constraint. In systems theory
terminology, safety is an emergent property that arises when the system components interact
within an environment. Emergent properties are controlled or enforced by a set of constraints on
the system states that result from component interactions; for example, a constraint might be that
the descent engines must remain on until the lander reaches the planet’s surface. In STAMP, the
cause of an accident, instead of being understood in terms of a series of failure events, is viewed
as the result of an ineffective enforcement of constraints on the system design and operations.
This definition of accidents fits both classic component failure accidents and system accidents. It
allows effectively incorporating software, human decision-making, adaptation, and social and
managerial factors into the analysis. The goal of risk management using this accident model is
not to eliminate component failures but to identify the design constraints necessary to maintain
safety and to ensure that the system design, including the social and organizational aspects and
not just the physical ones, enforces them.

STAMP goes beyond simply blaming component failure for accidents and requires that the
reasons be identified for why those failures might occur, how they could lead to an accident, and
what system-level constraints must be imposed to prevent them or to prevent hazardous system
states if they do occur. In addition, STAMP includes the prevention of accidents that are not a
result of component failure but result from dysfunctional interactions among components, e.g.,
the spacecraft landing control software interprets noise from a landing leg sensor as an indication
the leg has impacted the surface of the planet and turns off the descent engines too early. The
STAMP approach to risk management potentially leads to more varied and effective measures
than simply attempting to prevent accidents by preventing component failures.

The basis of risk management in STAMP lies in two concepts: (1) hierarchical safety control
structures and (2) process models.

Hierarchical Control Structures: In systems theory, systems are viewed as hierarchical
structures where each level imposes constraints on the activity of the level beneath it—that is,
constraints or lack of constraints at a higher level allow or control lower-level behavior
[Checkland 1981]. Safety-related constraints specify those relationships between system
variables that constitute the non-hazardous system states; for example, the power must never be
on when the access door is open. Control processes that effectively enforce these constraints will
limit system behavior to safe changes and adaptations.

Modeling complex organizations or industries in STAMP involves dividing them into
hierarchical levels with control processes operating at the interfaces between levels. Figure 4
shows a generic socio-technical control model. Each system, of course, must be modeled to
reflect its specific features. The model in Figure 4 has two basic control structures—one for
system development (on the left) and one for system operation (on the right)—with interactions
between them.

16

Figure 4 – General Hierarchical Safety Control Structure

At each level of the control structure, inadequate control may result from missing constraints,
inadequately communicated constraints, or from constraints that are not enforced correctly at a
lower level. Communication is a critical factor here as well as monitoring for changes that may
occur and feedback of this information to the higher-level control. For example, the safety
analysis process that generates constraints always involves some basic assumptions about the
operating environment of the process. When the environment changes such that those
assumptions are no longer true (i.e., system adaptation occurs), the controls in place may become
inadequate. Embedded pacemakers, for example, were originally assumed to be used only in
adults, who would lie quietly in the doctor's office while the pacemaker was being

17

“programmed.” Later they began to be used in children, and the assumptions under which the
hazard analysis was conducted and the controls were designed no longer held and needed to be
revisited.

In the development control structure (shown on the left in Figure 4), the constraints imposed on
behavior by government and other entities must be reflected in the design of company safety
policy, standards, and allocation of resources. The company policies and standards are, in turn,
usually tailored and augmented by each engineering project to fit the needs of the particular
project. New objectives may be added at each level. As an example, while government and/or
company standards may require a hazard analysis be performed, the system designers and
documenters (including those designing the operational procedures and writing user manuals)
may have control over the actual hazard analysis process used to identify specific safety
constraints on the design and operation of the system.

The design constraints identified as necessary to control system hazards are passed to the
implementers and assurers of the individual system components along with standards and other
requirements. Success is determined through test reports, reviews, and various additional hazard
analyses. At the end of the development process, the results of the hazard analyses as well as
documentation of the safety-related design features and design rationale should be passed on to
the maintenance group to be used in the change process.

A similar process involving layers of control is found in the system operation control structure
(the right half of Figure 4). In addition, there will be (or at least should be) interactions between
the two structures. For example, the safety design constraints used during development form the
basis for operating procedures and for performance and process auditing.

The safety control structure often changes over time, which accounts for the observation noted
above that accidents in complex systems frequently involve a migration of the system toward a
state where a small deviation (in the physical system or in human operator behavior) can lead to
a catastrophe. The foundation for an accident is often laid years before. One event may trigger
the loss, but if that event had not happened, another would have. Union Carbide and the Indian
government blamed the Bhopal methyl isocyanate (MIC) release (among the worst industrial
accidents in history) on human erroræthe improper cleaning of a pipe at the chemical plant.
However, the maintenance worker was, in fact, only a minor and somewhat irrelevant player in
the loss [Leveson 1995]. Instead, degradation in the safety control structure occurred over time
and without any particular single decision to do so, but simply as a series of decisions that moved
the plant slowly toward a situation where any slight error would lead to a major accident.

Degradation of the safety control structure over time may be related to asynchronous evolution
[Leplat 1987], where one part of a system changes without the related necessary changes in other
parts. Changes to subsystems may be carefully designed, but consideration of their effects on
other parts of the system, including the control aspects, may be neglected or inadequate.
Asynchronous evolution may also occur when one part of a properly designed system
deteriorates. In both these cases, the erroneous expectations of users or system components
about the behavior of the changed or degraded subsystem may lead to accidents. The Ariane 5
trajectory changed from that of the Ariane 4, but the inertial reference software did not. One

18

factor in the loss of contact with the SOHO (SOlar Heliospheric Observatory) spacecraft in 1998
was the failure to communicate to operators that a functional change had been made in a
procedure to perform gyro spin-down.

Process Models: A second concept basic to STAMP is that of process models. A control
process operates between each level of the hierarchy described above. Figure 5 shows two
typical process-control loops, with automation directly issuing control commands in Figure 5a
and automation assisting only in human decision making in Figure 5b. To simplify the figures,
only one supervisor is shown, but multiple human and automated controllers may be involved.

Figure 5: Controller Process Models. Each controller contains a model of
the process it is controlling.

A basic theorem of systems theory says that any controller must contain a model of the process
being controlled to effectively control it [Conant and Ashby 1970]. At one extreme, this process
model may contain only one or two variables, such as the model required for a simple
thermostat. At the other extreme, effective control may require a complex model with a large

19

number of state variables and transitions, such as the model needed to control air traffic.
SpecTRM-RL (see Chapter 2 and the Appendix) includes this model as a basic part of the
process description and therefore provides a basis for analyzing the safety implications of these
process models.

Whether the model is embedded in the control logic of an automated controller or in the mental
model maintained by a human, it must contain the same type of information: (a) the required
relationship among the system variables (the control laws), (b) the current state (the current
values of the state variables), and (c) the ways the process can change state.

Human controllers that interact with automated controllers must, in addition to a process model,
have a model of the automated device’s behavior in order to monitor or supervise it. This lack
of understanding of how the automation works is widespread among human controllers and has
been implicated in many major accidents [Bureau of Air Safety Investigation 1996]. Later in this
report, we show how such models can be used to determine what information is required by
operators and managers to allow them to safely operate or manage complex systems.

The process model is used by the human or automation to determine what control actions are
needed, and it is updated through various forms of feedback. The same is true for the automation
model used by human operators of systems containing automated controllers. Note that a model
of the controlled process is required at all levels of the hierarchical control structure, not simply
the lowest technical level. Accidents may result from inconsistencies between the process
models of the controllers (both human and automated) and the actual process and with each
other. The new hazard analysis method described in Chapter 3 directly incorporates this type of
inconsistency in the analysis method.

20

Chapter 2: The SpecTRM-RL Modeling Language

STPA, a new type of hazard analysis based on STAMP, is applied to a control model of the
system. While this model may simply be a paper model, the potential exists to create an
executable specification/model that forms the basis for a simulation and analysis support
environment for the hazard analysis itself and for more general risk management activities.
SpecTRM and SpecTRM-RL can be used for this purpose.

SpecTRM (Specification Tools and Requirements Methodology) is a system engineering toolset
that focuses on the early stages of system development, where the foundation is set for later
implementation, operations, and maintenance activities. The SpecTRM toolset includes support
for requirements development and management, hazard analysis, requirements tracing, recording
of design rationale, and modeling and analysis of blackbox logic requirements. The formal
modeling language, SpecTRM-RL (SpecTRM Requirements Language), is executable and
therefore can be used in a simulation environment. In addition, the models are analyzable and
tools have been developed to check for completeness, consistency, and robustness. The
Appendix contains a description of the SpecTRM-RL language.

 SpecTRM has been in development for over 10 years, first only in a university research
environment and then, for the past four years, also by Safeware Engineering Corporation. The
methodology and tools are currently being used on real industrial projects through Safeware
Engineering Corporation contracts with client companies. Because many of the clients were
interested in using the tools themselves, a commercial version of the toolset was developed and
released for public use on June 15, 2003.

The design of SpecTRM-RL is greatly influenced by the desire to provide a combined
specification and modeling language. System specifications (particularly requirements
specifications) need to be reviewed and used by people with a large variety of backgrounds and
expertise, most of whom are not computer scientists or trained in formal logic or discrete math
and may not even be engineers. Therefore, it is not practical to use most formal modeling
languages as specification languages. On the other hand, industrial projects rarely have the
resources to provide a separate modeling effort for the specification, and the continual changes
common to most software development projects will require frequent updates to ensure that the
formal model is consistent with the current requirements and system design.

SpecTRM-RL was designed to satisfy both objectives: to be easily readable enough to serve as
part of the official specification of the blackbox behavioral requirements and, at the same time,
to have an underlying formal model that can be executed and subjected to mathematical analysis.

This underlying formal model based on a Mealy automaton, which we call the requirements state
machine (RSM), is very low-level and not appropriate as a specification language for complex
systems. Instead, SpecTRM-RL acts as the specification language (or visualization of the
underlying model) that overlays the low-level model. As long as the mapping from SpecTRM-
RL to the RSM is unambiguous and rigorously defined, formal analysis is possible on both the
underlying RSM formal model as well as the higher-level SpecTRM-RL specification itself. We

21

have been experimenting with additional types of visualization to augment the current
SpecTRM-RL features [Dulac et.al. 2002].

To assist in readability, we use graphical, tabular, symbolic, and structural notations where we
have found each most appropriate for the type of information being specified. Decisions about
how things are specified were based on the research literature on visualization, feedback from
users of RSML (a previous version of the language) and SpecTRM-RL, our own attempts to
build specifications for real systems using the language, observation of the notations engineers
use for specifying these properties, and formal experiments on readability of particular types of
language features [Zimmerman, Leveson, and Lundqvist 2002].

The SpecTRM-RL notation is driven by the intended use of the language to define a blackbox
function from outputs to inputs. Some features are also the result of wanting to remain as close
as possible to the way engineers draw and define control loops in order to enhance usability of
the language. Other goals for the language design were to eliminate error-prone features, to
make the language easy to learn and easy to read and review, and to encourage completeness in
specifications.

One goal of the research described in this report was to examine how the SpecTRM-RL language
could be extended to model the entire socio-technical system and not just the technical
components. Most existing formal specification languages include only the system’s technical
components, and therefore exclude some of the most important aspects of system design and
operations, particularly those related to risk management. A few try to model the human or
organizational aspects, but omit the technical. Our goal was to investigate the integration of all
these aspects into one modeling and simulation environment to allow integrated system design
and risk management. This preliminary research considered only the extensions to SpecTRM-RL
necessary to model human and organizational system components. Follow-on research will
consider the most appropriate form these extensions might take.

More information on SpecTRM-RL, including some examples, can be found in the Appendix.

22

Chapter 3: Hazard Analysis using STAMP

A STAMP hazard analysis, or STPA for short, has the same general goals as any hazard analysis:
(1) identification of the system hazards and the safety constraints necessary to ensure acceptable
risk and (2) accumulation of information about how those constraints could be violated so it can
be used in eliminating, reducing, and controlling hazards in the system design and operations.

There are five steps to STPA. The first two are identical to those performed in any system safety
analysis. The others either deviate from what is currently done or provide a process for doing
what is currently done in an ad hoc manner.

Step 1: Identify the system hazards.

The first step is to identify the system hazards. TCAS II has several hazards, including:
1. TCAS causes or contributes to a near midair collision (NMAC), defined as a pair of

controlled aircraft violating minimum separation standards.
2. TCAS causes or contributes to a controlled maneuver into the ground.
3. TCAS causes or contributes to the pilot losing control of the aircraft.
4. TCAS interferes with other safety-related aircraft systems.
5. TCAS interferes with the ground-based Air Traffic Control system (e.g., transponder

transmissions to the ground or radar or radio services).
6. TCAS interferes with an ATC advisory that is safety-related, (e.g., avoiding a restricted

area or adverse weather conditions) or causes the aircraft to enter an unsafe or restricted
part of the airspace.

To limit the size of the example included in this report, only the first hazard is considered. The
official MITRE TCAS II fault tree analysis (to which the STAMP-based analysis is compared in
the next chapter) included only this NMAC hazard. Four of our six TCAS II system hazards
were identified by MITRE as system hazards in the hazard analysis report submitted to the FAA
for their risk assessment of TCAS II, but only the NMAC hazard was analyzed.

Step 2: Identify system-level safety-related requirements and constraints.

Once the system hazards are identified, as in any system safety process, the system-level safety-
related requirements and constraints must be identified, e.g., “TCAS must not disrupt the pilot or
ATC operations during critical phases of flight nor disrupt routine aircraft operations” and
“Aircraft trajectory crossing maneuvers must be avoided if possible.” As in any system hazard
analysis, these requirements and constraints are derived from examining the potential failures,
dysfunctional interactions, or unhandled environmental conditions in the controlled system (the
airspace in this case) that could cause the hazard.

STPA starts from these initial system-level requirements and constraints and the set of control
actions needed to implement them. As the analysis progresses, new more detailed requirements
and constraints will be identified and traced to individual system components

23

Step 3: Define the basic system control structure.

The next step in the analysis is to define the basic system control structure. Only the operations
control structure is considered here (not system development). The operations control structure
for TCAS is shown in Figure 6. For this example, it is assumed that the basic system design
concept is complete, i.e., each of the system components has high-level functional requirements
assigned to it. In fact, STPA can be performed as the system is being defined, and this parallel
refinement of the system design and hazard analysis is clearly the best approach. An example is
provided in Chapter 5 of this report. Tradeoff decisions and design decisions can then be
evaluated for safety as they are being made.

Figure 6 – General TCAS Control Structure

24

Because our goal was to compare the results of an STPA of TCAS II with the official
FAA/MITRE hazard analysis, the current TCAS control structure shown in Figure 6 is assumed.
In addition, the management parts of the control structure are not considered in the MITRE
hazard analysis, and therefore they are not included in our analysis although they could be (see
Chapter 5 for an example). Clearly such an analysis is important for TCAS; for example, there
will be constraints that must be enforced by the local air traffic control operations management
and airline management such as training pilots and controllers and auditing system performance.
The FAA also needs to oversee the entire air traffic control system, including the components
involving TCAS and to enforce constraints on how TCAS is developed. The process for
generating these management-related constraints is described in Chapter 5.

In the control structure shown in Figure 6, TCAS receives information about its own and other
aircraft, analyzes it, and provides the pilot with (1) information about where other aircraft in the
vicinity are located and (2) an escape maneuver to avoid potential NMAC threats. The pilot is
responsible for implementing the TCAS escape maneuvers and avoiding other aircraft. The
ground-based air traffic controller is responsible for maintaining separation between aircraft in
the controlled airspace and providing advisories (control actions) for the pilot to follow.

Step 4: Identify inadequate control actions that could lead to a hazardous system state.

After the general control structure has been defined (or a candidate structure has been identified),
the next step is to determine how the controlled system (the two aircraft) can get into a hazardous
state. STAMP assumes that hazardous states (states that violate the safety constraints) are the
result of ineffective control. Therefore, STPA starts by identifying these potentially inadequate
control actions. A controller can provide four general types of inadequate control:

1. A required control action is not provided.
2. An incorrect or unsafe control action is provided.
3. A potentially correct or adequate control action is provided too late (at the wrong time).
4. A correct control action is stopped too soon.

Control actions may be required to handle component failures, environmental disturbances, or
dysfunctional interactions among the components. Incorrect or unsafe control actions may also
cause dysfunctional behavior or interactions among components.

Control actions in TCAS are called resolution advisories or RAs. An RA is an aircraft escape
maneuver created by TCAS for the pilots to follow. Example resolution advisories are
DESCEND, INCREASE RATE OF CLIMB TO 2500 FPM, and DON'T DESCEND. For the
TCAS component of the control structure in Figure 3 and the NMAC hazard, the four types of
control flaws translate into:

1. The aircraft are on a near collision course and TCAS does not provide an RA that avoids
it.

2. The aircraft are in close proximity and TCAS provides an RA that degrades vertical
separation.

3. The aircraft are on a near collision course and TCAS provides a maneuver too late to
avoid an NMAC.

4. TCAS removes an RA too soon.

25

These inadequate control actions can be restated as constraints on the behavior of TCAS:
1. TCAS must provide resolution advisories that avoid near mid-air collisions.
2. TCAS must not provide resolution advisories that degrade vertical separation between

two aircraft.
3. TCAS must provide the resolution advisory while enough time remains for the pilot

avoid an NMAC. (A human factors analysis should be performed at this point to
determine exactly how much time that implies.)

4. TCAS must not remove the resolution advisory before the NMAC is resolved.

For the pilot, the inadequate control actions are:
1. The pilot does not provide a control action to avoid a near mid-air collision.
2. The pilot provides a control action that does not avoid the NMAC.
3. The pilot provides a control action that causes an NMAC that would not otherwise have

occurred.
4. The pilot provides a control action that could have avoided the NMAC but was too late.
5. The pilot starts a control action to avoid an NMAC but stops it too soon.

Again, these inadequate control actions can be restated as safety constraints. Similar hazardous
control actions are identified for each of the other system components.

Step 5: Determine how these constraints could be violated and attempt to eliminate them, or if
that is not possible, to prevent or control them in the system or component design.

At this point, we can start using SpecTRM-RL to provide models for the analysis. A continuous
simulation environment can be maintained as the system design progresses and the effects of
design decisions can be evaluated (both through simulation and analysis) as they are proposed.

Human modeling with SpecTRM-RL adds complications over the use of the language to model
the blackbox input-output behavior of hardware or software. Clearly, humans do not necessarily
follow the normative procedures assumed by the system designers. STPA starts with the
normative procedures (to ensure that they are at least safe) but then human factors experts and
system dynamics models (see Chapter 5), can be used to evaluate what types of deviations are
likely and their impact on the hazard. Alternatively, the analysis can start from the hazard and
determine what types of deviations would lead to it and attempt either to change the design to
eliminate the problem or design the system to prevent or reduce the likelihood of the deviation.
For humans, the mitigation strategies may include training, auditing procedures to detect when
the deviations occur during operations, etc. This process is no different than that used for
hardware or software except that the “failure” mechanism is different, i.e., the hardware may not
perform the required function due to physical degradation and the software may not correctly
implement its requirements.

For hardware, software, and human components of the system, the information provided by the
hazard analysis can be used (1) to guide the test and verification procedures (or training for
humans), (2) to change the overall system design to provide protection against the error, or (3) to
add fault tolerant features to the component itself to protect against the identified hazardous

26

behavior. The hazard analysis process, particularly the next steps, not only provides the safety
requirements and constraints for the system component, but it provides guidance for this fault
tolerant design process.

In this step of the hazard analysis, the analyst determines how the potentially hazardous control
actions can occur (the safety constraints can be violated) and either eliminates them through
system or component design or controls or mitigates them in the design or in operations. As the
system design progresses, more ways to get into the hazardous state will be identified. The
analysis can start early (and should in order to have a chance to eliminate hazards), but it will
need to be continued and augmented throughout the system design and development process.

At this point, enough information is available to eliminate through overall system redesign or
controls some of the inadequate control actions that have been identified. For example, consider
the constraint that the pilot must not stop the RA maneuver too soon (before the encounter is
resolved). One alternative for the system designer to consider is to take the responsibility for
implementing the RA away from the pilot and automating it. While this approach does prevent
the inadequate control action on the part of the pilot, it complicates the software and simply
substitutes a new potentially inadequate control action on the part of the software. These
decisions about allocation of functionality (and in this case, redesign of the TCAS control
structure shown in Figure 6) need to be considered as the hazard analysis (and system design)
continues. Because this example analysis takes TCAS as it exists today, we pursue this line of
reasoning and analysis no further here. The process for an integrated system design/hazard
analysis is described in Chapter 5.

Step 5a: Create the process models for the system components.

The basic control structure in Figure 6 is first augmented with the process (plant) model required
for each of the control components in the control structure. Additions may be needed as hazards
are identified and analyzed and mitigations proposed. An important aspect of STPA is that the
use of formal models allows the mitigation features and the impact of various types of faults in
other components of the control structure to be evaluated during the hazard analysis process. If
the hazard analysis is performed before the system is constructed (as it should be), at the end of
the STPA all the safety-related system and component requirements and constraints will have
been identified.

As an example, Figure 7 shows the information TCAS needs to know to create RAs. This
process model contains information about the controlled aircraft (altitude, speed, bearing, etc.),
information about other aircraft that are potential threats (ranges, bearings, altitudes, etc.), and
models of the current state of the pilot displays and controls. Some of the information contained
in the process model will be obtained through direct inputs from sensors while other information
will be derived from processing those inputs (e.g., the threat status of the other aircraft).
SpecTRM-RL AND/OR tables describe the logic for updating and using the process variable
values.

The process (internal models) of each of the other parts of the TCAS control structure must also
be modeled. For example, the pilots must have a model of their own aircraft state, information

27

about other aircraft that are threats or potential threats, and a model of the operational state of
their TCAS systems and any current resolution and traffic advisories The ATC controller must
have a model of the critical airspace features (e.g., the location of aircraft and predicted
trajectories and conflicts).

Figure 7 – Process Model for the TCAS Component

28

Step 5b: For each of the inadequate control actions identified, the parts of the control loop
within which the controller is embedded are examined to determine if they could cause or
contribute to the inadequate control action (or lack of a necessary control action).

STPA uses the formal SpecTRM-RL model of the system and a set of generic control loop flaws.
If we conceive of accidents as resulting from inadequate control and enforcement of safety
constraints, then the process that leads to accidents can be understood in terms of flaws in the
system development and system operations control structures in place during design,
implementation, manufacturing, and operation. These flaws can be classified and used during
accident analysis to assist in identifying all the factors involved in the accident or during hazard
analysis and other accident prevention activities to identify required constraints. Figure 8 shows
the general classification.

Figure 8 - A Classification of Control Flaws Leading to Hazards

In each control loop at each level of the socio-technical control structure, unsafe behavior results
from either a missing or inadequate constraint on the process at the lower level or inadequate
enforcement of the constraint leading to its violation. Because each component of the control
loop may contribute to inadequate control, classification starts by examining each of the general
control loop components and evaluating their potential contribution: (1) the controller may issue
inadequate or inappropriate control actions, including inadequate handling of failures or

29

disturbances in the physical process; (2) control actions may be inadequately executed, or (3)
there may be missing or inadequate feedback. These same general factors apply at each level of
the socio-technical safety control structure, but the interpretations (applications) of the factor at
each level may differ. For all of the factors, at any point in the control loop where a human or
organization is involved, it will be necessary to evaluate the context in which decisions are made
and the behavior-shaping mechanisms (influences) at play in order to understand the types and
reasons for potentially unsafe decisions to be made and to design controls or mitigation measures
for them.

Inadequate Enforcement of Safety Constraints: The first factor, inadequate control over
(enforcement of) safety constraints, can occur either because hazards (and therefore constraints)
were not identified (1.1 in Figure 8) or because the control actions do not adequately enforce the
constraints (1.2). The latter may, in turn, result from flawed control algorithms (1.2.1),
inconsistent or incorrect process models used by the control algorithms (1.2.2), or by inadequate
coordination among multiple controllers and decision makers (1.2.3).

Inadequate Control Algorithms: Control algorithms may not enforce safety constraints (1.2.1)
because they are inadequately designed originally, the process may change and thus they become
inadequate, or they may be inadequately modified by maintainers (if they are automated) or
through various types of natural adaptation if humans implement them.

The simulation and analysis tools for SpecTRM-RL models can be used to check whether control
algorithms enforce the safety constraints. The readability of the models also allows for human
review. In addition, the algorithms can easily be changed in the AND/OR tables to evaluate the
impact on the system and to evaluate alternative algorithms. Consider the unsafe behavior of
TCAS not providing an RA when required to avoid an NMAC. Examination of the logic
(AND/OR table) for determining when an RA is produced would find the condition that neither
aircraft must be on the ground. That would lead to an examination of the logic for determining
when an aircraft is on the ground, and so on. Having a readable model should greatly assist the
analyst in performing the hazard analysis.

Once an effective and safe control structure has been designed, the analysis must also consider
how the designed controls could degrade in effectiveness over time. Many accidents relate to
asynchronous evolution where one part of a system (in our case the hierarchical control
structure) changes or deteriorates without the related necessary changes in other parts. Changes
to subsystems may be carefully designed, but consideration of their effects on other parts of the
system, including the control aspects, may be neglected or inadequate. The erroneous
expectations of users or system components about the behavior of the changed or degraded
subsystem may lead to accidents.

Hazard analysis must consider such asynchronous evolution of the safety control structure over
time. STAMP analyses use systems dynamics models (see Chapter 5) to model dynamic
behavior. These dynamic models can be used to identify likely changes over time that are
detrimental to safety. This information can be used to design protection into the system design
including operational procedures, to establish controls over changes and maintenance activities,
and to design auditing procedures and performance measures (metrics) and management

30

feedback channels to detect unsafe changes that occur during operations. Note the usefulness of
this information in the design of automated information collection during operations and the
design of system health management systems. In addition, the information is important in
guiding maintenance and upgrade activities and analyzing potential changes to the system or the
impact of changes in the environment. The FAA for the past 10 years has been using the
executable RSML (our predecessor language to SpecTRM-RL) model of TCAS II created by
Professor Leveson and her students to evaluate all changes and upgrades to TCAS II before they
are implemented.

Inconsistent Process Models: Accidents, particularly system accidents, often result from
inconsistencies between the model of the process used by the controllers (both human and
automated) and the actual process state (1.2.2): for example, TCAS may think the aircraft is on
the ground and not provide a resolution advisory for a potential threat aircraft or TCAS may have
an incorrect model of where the other aircraft is located and its bearing and heading. The
situation becomes more even complicated when there are multiple controllers (both human and
automated) because each of their process models must also be kept consistent.

How do the models become inconsistent? First, they may be wrong from the beginning (e.g.,
incorrect software requirements). In this case, the design of the controller itself is flawed: there
may be uncontrolled disturbances, unhandled process states, inadvertent commands of the
system into a hazardous state, unhandled or incorrectly handled system component failures, etc.

In addition to not starting with an accurate model, models may become incorrect due to lack of
feedback, inaccurate feedback, or inadequate processing of the feedback. A contributing factor
cited in the Cali B-757 accident report was the omission of the waypoints behind the aircraft
from cockpit displays, which contributed to the crew not realizing that the waypoint for which
they were searching was behind them (missing feedback to the pilot). The model of the Ariane
501 attitude used by the attitude control software became inconsistent with the launcher attitude
when an error message sent by the inertial reference system was interpreted by the attitude
control system as data (incorrect processing of feedback), leading to the issuance of an incorrect
and unsafe control command.

Consider again the possibility of TCAS not providing an RA when one is required to avoid an
NMAC. One way this omission might occur is if the model of the other aircraft is not consistent
with the other aircraft’s actual state, i.e., the model does not classify the other aircraft as a
potential threat. How could this occur? Process models, as stated above, have three parts: initial
values for the process variables, a current state, and an algorithm for updating the current state
over time based on inputs from sensors and other sources. Each of these must be examined for
their potential to cause the hazardous control action. Critical information can be identified in this
way, for example, the information used to determine whether an aircraft is on the ground (and
thus an RA will not be generated). This information can be used in the design of exception-
handling and fault tolerance.

Accidents often occur during initial system startup and at restart after a temporary shutdown, and
particular attention needs to be paid to the consistency of the controller’s inferred process model
and the state of the controlled process at these times. For example, the TCAS logic assumes the

31

system will be powered up while the aircraft is on the ground. This assumption is important
because no RAs are provided when the aircraft is below 500 feet above ground level in order to
avoid interfering with landing operations. If TCAS is powered up in the air (perhaps when the
pilot discovers a possible problem and reboots the system) and the initial default value for
altitude is zero, no RAs will be provided until TCAS gets a reading from its own altimeter even
though the pilot may think that TCAS is fully operational. Because this type of initialization
problem upon startup is so commonplace, SpecTRM-RL includes (and encourages the use of) an
“unknown” value for every state variable in the process models. Unknown is used as the default
value at startup or after loss of critical input sensors until synchronization of the system and its
environment is reestablished.

Another reason for not issuing an RA when required (and for the other types of inadequate
control actions) might be related to times lags in the control loop or to inaccuracies in the
measurements used to derive the current values of state variables in the process model. For
example, in TCAS II, relative range positions of other aircraft are computed based on round-trip
message propagation time. Measurement inaccuracies and time lags can affect that computation
and must be considered in the hazard analysis.

Information about the process state has to be inferred from measurements. The theoretical
control function (control law) uses the true values of the controlled variables or component states
(e.g., true aircraft positions). The controller, however, must use measured values to infer the true
conditions in the process and, if necessary, to derive corrective actions to maintain the required
process state. In TCAS, sensors include devices such as altimeters that provide measured
altitude, but not necessarily true altitude. The mapping between measured or assumed values
may be flawed or time lags that are not accounted for may cause the process model to be
incorrect.

Control actions will, in general, lag in their effects on the process because of delays in signal
propagation around the control loop: an actuator may not respond immediately to an external
command signal (called dead time), the process may have delays in responding to manipulated
variables (time constants), and the sensors may obtain values only at certain sampling intervals
(feedback delays).

Time lags restrict the speed and extent with which the effects of disturbances, both within the
process itself and externally derived, can be reduced. Time lags may also occur between issuing
a command and the actual process state change, such as pilot response delays and aircraft
performance limitations (which will affect the aircraft trajectory). Finally, time lags may impose
extra requirements on the controller, for example, the need to infer delays that are not directly
observable. Depending on where in the feedback loop the delay occurs, different process models
and controls may be required to cope with the delays: dead time and time constants require a
model that makes it possible to predict when an action is needed before the need arises while
feedback delays require a model that allows prediction of when a given action has taken effect
and when resources will be available again.

Inadequate Coordination Among Controllers or Decision Makers: System accidents often
result from inadequate coordination among multiple controllers (human and/or automated) and

32

other decision makers (1.2.3), including unexpected side effects of decisions or actions or
conflicting control actions. Communication flaws play an important role here. Accidents are
most likely in boundary areas or in overlap areas where two or more controllers (human and/or
automated) control the same process [Leplat 1987]. In both boundary and overlap areas, the
potential for ambiguity and for conflicts among independently made decisions exists (Figure 9).

Figure 9 – Two Types of Designs with Potential for Coordination Problems

When controlling boundary areas, there can be confusion over who is actually in control (which
control loop is currently exercising control over the process), leading to missing control actions.
The functions in the boundary areas are often poorly defined. This type of dysfunction can be
related to the number of management levels separating the workers in the departments from a
common manager: The greater the distance, the more difficult the communication, and thus the
greater the uncertainty and risk.

Examples of accidents involving coordination problems in the control over boundary areas are
rife. A Milstar satellite was lost due to inadequate attitude control of the Titan/Centaur launch
vehicle, which used an incorrect process model based on erroneous inputs in a software load
tape. After the accident, it was discovered that nobody had tested the software using the actual
load tape—everyone assumed someone else was doing so. In this case, system engineering and
mission assurance activities were missing or ineffective, and a common control or management
function was quite distant from the individual development and assurance groups. A factor in
the loss of the Black Hawk helicopters to friendly fire over northern Iraq was that the helicopters
usually flew in the boundary areas of the No-Fly-Zone, and procedures for handling aircraft in
those areas were ill defined. Another factor was that an Army base controlled the flights of the
Black Hawks while an Air Force base controlled all the other components of the airspace: A
common control point again was high above where the accident occurred in the control structure,
and communication problems between the Army and Air Force exacerbated the problems.

Overlap areas exist when a function is achieved by the cooperation of two controllers or when
two controllers exert influence on the same object. Such overlap creates the potential for
conflicting control actions (dysfunctional interactions among control actions). In an A320
accident in Bangalore, India, for example, the pilot had disconnected his flight director during
approach and assumed that the co-pilot would do the same. The result would have been a mode
configuration in which airspeed is automatically controlled by the autothrottle (the speed mode),
which is the recommended procedure for the approach phase. However, the co-pilot had not

33

turned off his flight director, which meant that open descent mode became active when a lower
altitude was selected instead of speed mode, eventually contributing to the crash of the aircraft
short of the runway.

In both boundary and overlap areas, the potential for ambiguity and for conflicts among
independently made decisions exists, and the implications of having multiple controllers or
multiple sources of control actions must be examined. In the TCAS control structure shown in
Figure 3, we see that both the ground air traffic controller and TCAS provide advisories to the
pilot. If these advisories conflict (e.g., the ground ATC provides an advisory that conflicts with
the advisory provided by TCAS), an NMAC could occur. We see from the control structure that
the ground controller has no information about what advisory TCAS has given to the pilot. The
system designers must resolve this potential conflict in some way, perhaps requiring the pilot to
always follow the TCAS advisory. Adding that requirement, however, also adds to the list of
inadequate pilot control actions that must be examined, i.e., the pilot does not follow the TCAS
advisory when a conflict occurs, that is, the pilot does not follow the normative procedures
provided by the system designers and assumed in the analysis.

Inadequate Execution of Control Actions: A second way for constraints to be violated in the
controlled process is if there is a failure or inadequacy in the transmission of control commands
or in their execution (actuator fault or failure). A common flaw in the development safety control
structure is that the safety information gathered or created by the system safety engineers (the
hazards and the necessary design constraints to control them) is inadequately communicated to
the system designers and testers.

The actuator for TCAS RAs (and ground controller advisories) is the pilot and the actuators for
the pilot commands are the aircraft control systems. Clearly the aircraft control systems may
fail, but a more subtle reason for the RA not to be executed is that it exceeds the aircraft
performance limits. The performance limits of TCAS’s own aircraft as well as the other aircraft
must therefore be known to TCAS in order to provide executable resolution advisories.

Inadequate or Missing Feedback: The third flaw leading to system hazards involves
inadequate feedback. No control system will perform better than its measuring channel.
Important questions therefore arise about whether the controllers or decision makers (either
automated or human) have the necessary information about the actual state of the controlled
process to satisfy their objectives. This information is contained in their process models and
updating these models correctly is crucial to avoiding accidents (1.2.2). Feedback may be
missing or inadequate because such feedback is not included in the system design (3.1), flaws
exist in the communication channel (3.2), the feedback is not timely (3.3), or the measuring
instrument operates inadequately (3.4).

As an example, the sensors that provide critical information to TCAS about the other aircraft’s
state may not work correctly. Alternatively, they may be working, but the information received
may be incorrect, either being garbled enroute or being incorrectly sent by the other aircraft. In
addition, the transmission may be lost and no information may be received. Each of these cases
will need to be accounted for in the design in some way.

34

SpecTRM-RL Completeness Criteria: Many of the completeness criteria previously identified
by Jaffe and Leveson [1991] and incorporated into the SpecTRM-RL language design apply to
the accident factors identified for an STPA (see Figure 8). Therefore, the SpecTRM-RL language
already includes most of the facilities to model the critical factors, for example, feedback
information. This fact is not surprising because the completeness criteria were originally derived,
at least partially, from common causal factors in system accidents and basic system engineering
principles. STAMP comes from systems theory, which is the foundation for system engineering
principles.

Most of the completeness criteria use information that is included in a SpecTRM-RL
specification and can be directly used in the hazard analysis, such as the properties of feedback
loops and control command reversals. The completeness criteria that are not built into the
SpecTRM-RL language were defined in terms of the formal state-machine model that underlies
the language (the RSM), which should simplify the construction of tools to detect these forms of
incompleteness. For example, the loss of a critical input sensor is a factor considered in STPA
analysis. In the completeness criteria, we defined path robustness in terms of soft and hard
failure modes [Jaffe et.al. 1991, Leveson 1995]. A soft failure mode is one in which the loss of
the ability to receive a particular input I could inhibit the software from providing an output with
a particular value while a hard failure mode involves the loss of the ability to receive an input I
that will prevent the software from producing that output value. One of our completeness criteria
related to safety is that: Soft and hard failure modes should be eliminated for all hazard-reducing
outputs. Hazard-increasing outputs should have both soft and hard failure modes.

Soft and hard failure modes can be identified from the SpecTRM-RL model itself; the process
does not require searching the entire reachable state space. Properties analyzable directly on the
metalanguage for describing the state space (such as SpecTRM-RL) will usually involve simpler
tools than those involved in searching reachability graphs. The design of the specification
language obviously can affect how easy to use and efficient these analysis tools can be and how
easily and efficiently the modeling language can be used in model-based hazard analysis.

35

Chapter 4: Comparison of STPA to Traditional
 Hazard Analysis Approaches

In this section we compare STPA to the most popular current approaches to hazard analysis and
evaluate the results of STPA by comparing them to a high-quality fault tree analysis of the same
system.

Comparison: Computational organizational models of risk management that apply to complex
systems and throughout the life cycle of design, manufacturing, operations, and maintenance
must be able to handle system accidents, organizational factors in accidents, software, human
error and complex decision making, and adaptation. The standard techniques used in safety
engineering, such as fault tree analysis, event tree analysis, HAZOP, and various types of failure
analysis (e.g., Failure Modes and Effects Criticality Analysis), do not effectively handle these
factors in accidents. STPA was designed to include such factors in the analysis. It can do this
because while almost all current hazard analysis techniques are based on an event-chain model of
accidents, STPA instead uses a model of accidents (STAMP) that is based on systems theory.
Event chain models consider only direct relationships between events, whereas systems theory
allows considering more complex feedback relationships and hierarchy theory. In fact, systems
theory was developed in order to allow engineers to deal with complex systems and provides the
theoretical foundation for system engineering.

Some widely used hazard analysis techniques, like FMECA (Failure Modes and Effects
Criticality Analysis) were derived from bottom-up component reliability models of accidents and
are not effective in dealing with system accidents. FMECA is used widely in NASA (but often
incorrectly labeled as FMEA). For example, FMECA was used to identify the approximately
5000 criticality 1 and 1R2 items in the Space Shuttle. Because these bottom-up techniques
concentrate on component failure, they miss important risks associated with individual
components operating without failure (according to specification) but interacting dysfunctionally
with other components and interactions among multiple failures. Top-down techniques are
needed to handle dysfunctional interactions and system accidents. They also are needed to
handle the types of human “error” that does not involve simple slips.

Unlike the other analysis methods, MORT does incorporate management factors into the
analysis. While MORT has primarily been used in accident investigation, it could potentially be
used for hazard analysis. The checklist questions are so general, however, it is not clear how
useful it would be. STPA starts from the specific system hazards and assigned responsibilities
(see Chapter 5) and seems like it would be more useful.

Most hazard analyses (with the exception of HAZOP) are performed on system models
contained only in the minds of the analysts. For complex systems, these mental representations
become difficult to create and to use for analysis. They are also difficult to maintain as changes

2 Criticality 1 items are defined as those items whose failure can cause the loss of the Shuttle and its crew.
Criticality 1R items have redundancy and thus their failure alone cannot cause the loss. Criticality 2, 2R,
3, 3R etc. refer to components whose failure can only lead to less catastrophic losses.

36

are made, and they create problems in communication due to the lack of any concrete basis for
ensuring that a common model is being used. In contrast, STPA and HAZOP use concrete
models of the process. The HAZOP process has some similarities with STPA, but HAZOP
employs physical piping and wiring diagrams (the physical structure) whereas STPA uses
functional control models.

Most important, HAZOP is based on a model of accidents that views the causes as deviations in
system variables whereas STPA uses a more general model of inadequate control. The
deviation-based keywords used in HAZOP (more of, less than, etc.) are appropriate for certain
types of hazards in the chemical process industry (where the technique originated), but not
appropriate for other types of systems. These limitations of HAZOP make it difficult to extend
to complex systems including software, etc. All attempts to do so have been unsuccessful and
have simply reduced to a FMEA on the software components of the system.

In essence, HAZOP is an event-based model where the events of concern are deviations of
process variables. STPA, in contrast, defines accident causation as a lack of enforcement of
safety-related constraints on system behavior. These constraints might involve limitations on
deviations in process variables and equipment behavior, making the results of HAZOP a subset
of STPA. But STPA also includes constraints on the potential interactions among components
(emergent properties of systems) and focuses on the control over the process variables rather
than simply the effects of the lack of control, i.e., the deviations themselves. Therefore, STPA
better handles the control functions in a system, such as software, operators, and management,
and the accident factors (see Figure 8) used in STPA apply to more general types of systems than
the HAZOP checklist. Another way of thinking about this is that HAZOP is still event-based,
but limits the events to deviations in process variables whereas STPA (like STAMP) focuses on
the control over these events or deviations and how that control could be flawed and lead to
accidents.

A final difference is that while HAZOP uses models, they are not formal (analyzable) or
executable. Because SpecTRM-RL is a formal modeling language, the potential exists for
providing automated tools to assist the analyst through simulation (execution of the models) and
various types of formal analysis. Simulation of the SpecTRM-RL models provides a means for
examining the relationship between organizational decisions and system design (hardware,
software, and operational procedures) that can be used in the analysis of system risk and
resiliency. Although there are other modeling languages for hardware, software, human operator
procedures, and organizational behavior, we know of no other modeling language that includes
all of these factors and thus allows modeling the entire socio-technical system. Because the
SpecTRM-RL language is designed to allow easy integration with other tools (through an API),
the factors that it does not model (such as human fatigue, stress, workload, etc.) can be provided
through integration with other modeling tools. The result would be a comprehensive system
modeling of a type that is far beyond the current state-of-the-art.

Evaluation: Few evaluations of hazard analysis techniques have ever been done. Given their
widespread use, the small amount of careful evaluation is surprising, but the difficulty of doing
such evaluations is an important factor. One way to evaluate techniques is to compare the results

37

of the analysis with the actual events occurring during commissioning and operations. A second
approach that has been used is to collect incident and accident information in real systems and
evaluate which factors are found (or potentially could be found) by different analysis techniques.
A third approach that has been used is to perform different types of analyses on the same system
and compare the causal factors identified.

Because we had no access to the information required for the first two approaches, we chose the
third approach and selected fault trees as the technique to evaluate our STAMP-based hazard
analysis against. Fault trees are the most powerful of the event-chain analysis methods and also
the most widely used. In order to prevent bias in the way the hazard analysis was performed on
the system, we selected a fault tree that had been created by experts for a complex system, i.e.,
the MITRE fault tree for TCAS II created under contract to the FAA. This fault tree is the best
we have ever seen for a complex software-intensive system—it is significantly better than other
standard industrial fault trees and therefore provided a high-quality yardstick. We hypothesized
that the STAMP-based hazard analysis would encompass everything covered by the MITRE
TCAS II fault tree and hopefully more.

The MITRE TCAS fault tree examined only one hazard, a near midair collision (NMAC), but for
that hazard alone has nearly 300 boxes. The fault tree considers TCAS, the pilot, and the ground
controller. One thing to note is that despite the large number of factors considered, including
both pilot and controller errors, the factors involved in the worst TCAS-related accident (the
midair collision over Lake Constance) did not appear in the MITRE fault tree. In the accident,
one of the pilots received different advisories from TCAS and the ground-based air traffic
controller. The pilot selected the ground controller’s incorrect maneuver over that of TCAS.
This problem is what STAMP and STPA labels as a coordination problem, and it is included in
an STPA hazard analysis of TCAS II. It is not fair to make too much of this difference between
STPA and FTA due to the fact that we had the advantage of knowing about the accident and
hindsight bias might be involved. However, it is also true that STPA includes this type of
coordination problem specifically in the analysis process whereas it is somewhat awkward and
difficult to include it in a fault tree because of the nature of the linear chains of events that fault
trees use to specify accident scenarios.

An important part of the explanation for the Lake Constance accident is that the ground
controller has no direct information about the TCAS advisories provided to the pilots (in STAMP
terminology, the ground controller process model does not include this controlled process
variable). The designers of TCAS knew that this omission might lead to problems, but they
made the decision not to provide the ground controller with the aircraft’s TCAS resolution
advisory for technical reasons. STPA would have allowed them to investigate the safety of this
design decision through simulation and analysis.

Unlike most industrial uses of fault tree analysis, the MITRE team used the same starting point
as used in STPA, i.e. identifying the incorrect control actions of each system component.
Therefore the TCAS FTA is similar to the TCAS STPA except that the FTA is less
comprehensive. That is, STPA included more inadequate control actions and provided much
more complete information about why that action might occur. The FTA stopped investigating
the cause of a potential inadequate behavior before STPA did. Sometimes the fault tree branch

38

was ended with the explanation: “Not developed further because perceived to be a human
factors-dependent fault.” STPA considers such human factors issues. For example, the MITRE
fault tree stops with “Pilot takes an action that does not avoid the NMAC because of information
provided by the cockpit traffic advisory display” and labels this fault as a human-factors
problem. STPA would continue with this scenario by examining what types of information
might be missing or incorrect or misleading and why the information might be missing,
incorrect, or misleading.

The less complete analysis did not just concern human factors. As another example of the FTA
stopping before STPA did, a leaf node in the MITRE fault tree is labeled “TCAS does not issue
an Advisory Not OK”. First note that this feature is no longer in TCAS (and was not at the time
the system was certified); reversals were substituted for Advisory Not OK messages several
years before certification. The integration of the SpecTRM-RL model and the hazard analysis
into the system specification in the SpecTRM toolset (which uses intent specifications [Leveson
2000]) provides the traceability to detect when changes have been made and analyses must be
updated.

More important is the lack of investigation of why the reversal (or Advisory Not OK message)
might not occur. Reversals are critical and were added to TCAS when a serious safety problem
was considered surprisingly late in the system development. A reversal is issued when the other
aircraft does not follow its TCAS resolution advisory and it is necessary to change TCAS’s own
aircraft advisory to avoid a collision. The seriousness of this problem is evidenced by the fact
that the Lake Constance collision resulted from exactly this scenario, although the press accounts
never mentioned the reversal possibility or why the DHL plane did not reverse (e.g., did TCAS
not issue such a reversal or did the DHL pilot not follow it?) when the Tupelov pilot did not
follow his TCAS advisory. The STPA hazard analysis investigated this problem in more depth
than the MITRE fault tree.

We believe the differences in completeness arose because STPA has a set of criteria to follow to
identify the problems whereas FTA is dependent on the imagination of the analysts. In fact,
much of the STPA analysis could be displayed in a fault tree format and the STPA process could
be used to generate fault trees. However, because almost none of the boxes that are generated
for software intensive systems of this type are quantifiable (although the MITRE reports claims
to have quantified the fault tree), there does not seem to be any reason to format the analysis
results as a tree. We believe much more readable and usable formats are possible, perhaps based
on standard notations used in control theory. A goal of our future research is to design such a
format for recording and presenting the results of STPA. In addition, the fault tree format would
not be suitable for some of the more complex, non-linear relationships between fault conditions
included in STPA.

39

Chapter 5: Applying STPA to the Entire Socio-Technical System

Chapter 3 described and illustrated the use of a STAMP-based hazard analysis technique, STPA,
on the technical and human operator parts of the system. Chapter 4 compared it to standard
hazard analysis techniques and demonstrated its superior completeness versus fault tree analysis,
the most commonly used hazard analysis technique. But it still remains to be shown that STPA
can be applied to the entire socio-technical system, including the managerial and regulatory
aspects. In this chapter we illustrate this capability using a Canadian public water system in the
province of Ontario. This particular system was chosen because it contains computers,
hardware, human operators, management decision-making, and government regulatory
components. We also knew a lot about the safety control structure from a very comprehensive
accident report that provided information about safety of public water systems. Using a real
example makes the results more realistic than would result from a totally fabricated example.

In contrast to the TCAS analysis in Chapter 3, we performed the hazard analysis from scratch
and designed an effective safety control structure rather than analyzing the risk inherent in an
existing design. At the end, we compare our designed safety control structure with the actual one
that existed at the time of a serious water contamination accident.

SpecTRM-RL, like most models, describes the static structure of systems. In order to handle the
organizational components of open systems and the adaptation and changes that occur over time
for such human-centered systems, we needed to be able to model dynamic system aspects. For
this we used system dynamics models [Sterman 2000].

System Dynamics Models: By focusing on the events immediately preceding accidents, event
chains treat a system as a static, unchanging structure. But systems and organizations
continually experience change and adaptation to existing conditions. Systems dynamics models
are one way to describe dynamic change in systems. They have been used to examine the
potential undesired consequences of organizational decision-making.

As noted in the description of the STAMP model of accidents, a system's defenses or safety
controls may degrade over time due to changes in the behavior of the components of the safety
control loop. The reasons for the migration of the system toward a state of higher risk will be
system specific and can be quite complex. In contrast to the usually simple and direct
relationships represented in event-chain accident models, most accidents in complex socio-
technical systems involve relationships between events and human actions that are highly non-
linear and contain multiple feedback loops. The prevention of accidents in these systems
therefore requires an understanding not only of the static structure of the system (the structural
complexity) and of the changes to this structure over time (the structural dynamics), but also the
dynamics behind these changes (the behavioral dynamics).

SpecTRM-RL models capture the static control structure and are useful in performing a hazard
analysis that examines complex control structures and the dynamics or structural changes
(failures and dysfunctional interactions) that occur over time in these structures, but not the
behavioral dynamics, i.e., the dynamic processes behind these structural changes. We are

40

adapting system dynamics techniques to model and understand the behavioral dynamics, i.e., the
dynamic processes behind the changes to the static safety control structure: how and why the
safety control structure might change over time, potentially leading to ineffective controls and
unsafe or hazardous states.

The field of system dynamics, created at MIT in the 1950's by Jay Forrester, is designed to help
decision makers learn about the structure and dynamics of complex systems, to design high
leverage policies for sustained improvement, and to catalyze successful implementation and
change. System dynamics provides a framework for dealing with dynamic complexity, where
cause and effect are not obviously related. It is grounded in the theory of non-linear dynamics
and feedback control, but also draws on cognitive and social psychology, organization theory,
economics, and other social sciences [Sterman 2000]. System dynamics models, like SpecTRM-
RL are formal and can be executed. The models and simulators help to capture complex
dynamics and to create an environment for organizational learning and policy design. The
combination of STPA, SpecTRM-RL and systems dynamics models could provide an extremely
powerful integrated risk management approach that goes far beyond what is possible using
current techniques.

System dynamics is particularly relevant when analyzing system accidents. The world is
dynamic, evolving, and interconnected, but we tend to make decisions using mental models that
are static, narrow, and reductionist. Thus decisions that might appear to have no effect on
safety—or even appear to be beneficial—may in fact degrade safety and increase risk. System
dynamics makes it possible, for example, to understand and predict instances of policy resistance
or the tendency for well-intentioned interventions to be defeated by the response of the system to
the intervention itself. In related but separate research, Marais and Leveson are working on
defining archetypical system dynamic models often associated with accidents [Marais and
Leveson, 2003].

System behavior in system dynamics is modeled by using feedback (causal) loops, stock and
flows (levels and rates), and the non-linearities created by interactions between system
components. In this view of the world, behavior over time (the dynamics of the system) can be
explained by the interaction of positive and negative feedback loops [Senge 1990]. The models
are constructed from three basic building blocks: positive feedback or reinforcing loops, negative
feedback or balancing loops, and delays. Positive loops (called reinforcing loops) are self-
reinforcing while negative loops tend to counteract change. Delays introduce potential instability
into the system.

Figure 10a shows a reinforcing loop, which is a structure that feeds on itself to produce growth
or decline. Reinforcing loops correspond to positive feedback loops in control theory. An
increase in variable 1 leads to an increase in variable 2 (as indicated by the “+” sign), which
leads to an increase in variable 1, and so on. The “+” does not mean that the values necessarily
increase, only that variable 1 and variable 2 will change in the same direction. If variable 1
decreases, then variable 2 will decrease. A “–” indicates that the values change in opposite
directions. In the absence of external influences, both variable 1 and variable 2 will clearly grow
or decline exponentially. Reinforcing loops generate growth, amplify deviations, and reinforce
change [Sterman 2000].

41

Figure 10 – The Three Basic Components of System Dynamics Models

A balancing loop (Figure 10b) is a structure that changes the current value of a system variable
or a desired or reference variable through some action. It corresponds to a negative feedback
loop in control theory. The difference between the current value and the desired value is
perceived as an error. An action proportional to the error is taken to decrease the error so that,
over time, the current value approaches the desired value.

The third basic element is a delay, which is used to model the time that elapses between cause
and effect. A delay is indicated by a double line as shown in Figure 10c. Delays make it difficult
to link cause and effect (dynamic complexity) and may result in unstable system behavior. For
example, in steering a ship there is a delay between a change in the rudder position and a
corresponding course change, often leading to over-correction and instability.

The STPA of socio-technical systems starts with a static SpecTRM-RL model of the safety
control structure and then uses system dynamics modeling to predict and explain changes in that
structure over time.

A Hazard Analysis of the Ontario (Canada) Public Water System: The system hazard to be
examined is public exposure to health-related contaminants, such as E. coli, Campylobacter, and
Cryptosporidium through the public drinking water system. The goal of the public water safety
structure then is to prevent the exposure of the public to water with levels of contaminants that
can affect health.

42

 Public Water System Safety Constraints:
1. Water quality must not be compromised at levels that can negatively impact public

health.
2. Public health measures must reduce the risk of exposure if water quality is compromised

(for example, the public must be informed about the need to boil water coming from the
public water supply).

The basic organizational structure of the public water system is shown in Figure 11. The
physical processes being controlled are public health, the public water system, and the wells
from which the water is obtained. The hazard analysis will show that controls over the
environment, i.e., the water resources, are also necessary to reduce risk to an acceptable level.
Public health is controlled by the Ministry of Health through the local Department of Health.
The water system and the wells themselves are controlled by the local Public Utilities
Commission (PUC) through an operations manager and human operators. The PUC is controlled
in turn by the PUC commissioners. Government oversight and control of local water systems is
the responsibility of the Ministry of the Environment. Control over water resources spans the
Ministry of the Environment and the Ministry of Agriculture, Food, and Rural Affairs. The three
ministries are controlled by the Provincial Government through budgets, laws, and the political
appointments of the heads of each ministry.

Figure 11 – The Public Water Safety Control Structure in Ontario. Lines going into the left of
a box are control lines. Lines from or to the top or bottom of a box represent information,
feedback, or a physical flow. Rectangles with sharp corners are controllers while rectangles
with rounded corners represent physical plants.

Figure 11 shows the operations control structure (see Figure 4). The development control
structure is not shown but would eliminate some of these boxes (e.g., those related to the Health
Ministry) and would add design engineers and a construction company. More components may

43

be added to the operations control structure (than are shown in Figure 11) as the hazard analysis
progresses and their need is determined.

The analysis starts with the physical process being controlled. Wells are used to obtain drinking
water. Contaminants may infiltrate the water sources for the wells, and these contaminants can
be transported into a well if the location of the well does not provide an adequate natural barrier
or filtration in the overburden between the ground surface and the aquifer.

In general, there are four ways to manage the risk associated with a hazard:
1. Eliminate the hazard from the system design,
2. Reduce its likelihood of occurring,
3. Control it once it occurs, and
4. Minimize damage if it cannot be controlled.

System safety engineering tries first to eliminate and if that is not possible to mitigate the hazard
by reducing the likelihood of it occurring and by controlling it if it does. There must also be
contingency plans provided in case the attempts to control the hazard are ineffective. In this
example, an obvious constraint on the water system design engineering process is that it must
eliminate or reduce the potential for contamination. Elimination is clearly the preferred strategy,
but is not always possible due to physical limitations or the need for unacceptable tradeoffs with
other goals. For our water system example, placing the wells in locations where contamination
cannot occur can potentially eliminate the threat of contamination from ground surface sources,
but this approach may not be feasible. The likelihood of the hazard can be reduced through
construction techniques, the installation of chlorination and other purification facilities, and land
use policies enforced on the area potentially affecting the aquifer. If contamination does occur, it
can be controlled through monitoring and sampling (to detect the contamination) and remedial
measures (e.g., super-chlorinating the water to reduce the contamination). Finally, if the
contamination does get into the water supply, the public must be warned (e.g., issuing a boil
water advisory).

A risk-driven design process would consider these options starting from the earliest design
phases. The choices will have important implications for the physical design and operation of
the municipal water systems. Consider the physical design first. It must eliminate or reduce the
potential for contamination. If the potential cannot be eliminated, then the design must allow for
practical surveillance procedures to detect contamination (design for operability) and for
chlorination. To exercise adequate control over public water safety, the design features chosen
to mitigate the hazard should require approval by the regulatory agency (in this case, the
Ministry of the Environment) and/or the imposition of design standards. For example, the
regulatory authorities may require the installation of automated monitors of chlorine residuals
and turbidity.3 Special oversight of the construction process and testing of the safety-critical
components should be the responsibility of either the Ministry of the Environment or the local
PUC or both, perhaps through the hiring by the PUC of expert consultants on water safety.
Information accumulated about the safety-related features of the design during development

3 A decrease in the chlorine residuals is an indication that contaminants are overwhelming the chlorine
levels and contingency measures are required.

44

must be archived by the regulators and operators and used during operations for monitoring,
maintenance, and modification activities.

Operability is an important consideration in the physical design. During the design process, the
safety constraints related to the identified system hazards and safety constraints that must be
maintained during PUC operations are identified. For the first system safety constraint above,
the corresponding local operations (PUC) constraint is that a level of chlorine must be
maintained such that any contaminants in the raw water are inactivated. In addition, the chlorine
residual after 15 minutes of contact time must be no more than 0.5 mg/L of water.

Responsibility for maintaining the second constraint, i.e., reducing the risk of exposure to water
that has been contaminated, is assigned in this design to the Ministry of Health and its local
Medical Departments of Health. This responsibility for identifying the contamination and
initiating public safety measures could be assigned elsewhere—the allocation of functionality
and responsibility to system components is an important part of early system design decisions
and is no different for organizational components than for physical components. In each case,
risk-driven design uses the information obtained from the hazard identification and hazard
analysis process to provide input into these early design decisions so that risk can be minimized.
If the use of safety-related information does not start early in the design process, then the choices
for eliminating or minimizing risk in the design will most likely be reduced and a higher risk
may have to be accepted than would have been necessary if the safety-related information had
been considered in the early design choices and tradeoffs.

Once the assignments of responsibility for each of the system safety constraints are made to each
of the system components, the next steps are (1) to identify required control actions for each of
the system control components, (2) to build SpecTRM-RL models for these components, and
then (3) to perform STPA using the models, as described in Chapter 3. The hazard analysis
being performed in parallel with the system design will provide inputs to the design decision and
tradeoff process. The on-going hazard analysis may result in safety-critical control actions being
added to the emerging design and additional control components may be added. Note that the
exact same process is used whether the components are technical or managerial.

To use SpecTRM-RL in this process, the control action (outputs) are identified first and then the
conditions for issuing the action are defined using AND/OR tables and the other SpecTRM-RL
features. The information required to perform these control actions will be identified in the
definition of the control logic, and this information is then added to the emerging SpecTRM-RL
plant (process) model. The process model in turn defines the type of feedback information that
is required to make the safety-related decisions and thus assists in the design of feedback loops.
For example, the water system operators are responsible for checking the level of residuals and
turbidity in the chlorinated water. To carry out this task, the operators will need to obtain water
samples, and those samples must be tested. Only large municipalities will be able to afford to
maintain their own testing laboratories, so another component will need to be added to the
control structure, i.e., water testing laboratories. The MOE will also need access to these
laboratory results in order to execute their responsibility for oversight of water quality and to
make sure the water quality standards are being adequately maintained and are not degrading.

45

Therefore, feedback loops from the water-testing laboratory to the MOE (and perhaps other
places) must also be added to the design.

Two different designs are possible: (1) the testing lab may report to the local PUC, which then
reports the results to the MOE or (2) the testing lab may report the results to both the local PUC
and the MOE and perhaps to other control components, such as the MDH, as determined
necessary in the STPA of the other system components. Here is where STPA can be helpful in
making decisions. The control loop that implements the feedback about the local municipality’s
water testing results is critical. STPA is used to identify how flaws in the parts of the control
loop could lead to ineffective control action being taken by the MOE. As described in Chapter 3,
the use of SpecTRM-RL models for walkthroughs, simulation, and formal analysis assist in
performing the hazard analysis. Design features might be added to mitigate any potential flaws
found by STPA, and alternative designs can be evaluated for their comparative robustness and
resiliency. For example, having the water testing labs provide their results directly to the MOE
rather than through the local PUC eliminates the potential for incorrect reporting by the PUC
(this could happen for a variety of reasons, including deliberate falsification of the reports due to
various pressures on the PUC). Another decision is whether to establish government water
testing laboratories or to use private labs. Clearly, other factors other than simply risk are
involved in most of these decisions, such as political and budgetary considerations. In our
example, either private or government labs could be used to test the water, but in either design
the feedback to the MOE (and other parts of the control structure) must be ensured in the design
of the processes and feedback loops.

Again, it is important to note that although organizational design is being stressed in this
example, the same applies to the technical and automated components of the system. While the
hazard analysis of TCAS II described in Chapter 3 was performed on the existing design of the
system, clearly a risk-driven design process could have been applied during TCAS II
development with clear advantages in terms of optimizing the design and finding weak points
when they could be changed. After-the-fact hazard analysis limits the possibilities for
controlling risk.

We now have the basic physical design and both development and operations control structures
for the first of the system safety constraints, i.e., water quality must not be compromised at levels
that can negatively impact public health. The second constraint must also be enforced, i.e.,
public health measures must reduce the risk of exposure if water quality is compromised.
Responsibility for this constraint lies with the other branch of the control structure, namely, the
Ministry of Health and its local Medical Department of Health (MDH). The local MDH must
determine when contamination has occurred at a level that requires public notification, ensure
that the public is made aware of the hazard, and ensure they have the appropriate knowledge
about how to protect themselves, e.g., to boil all drinking water from the public water system
before using it. For this, the MDH has various defined control actions.

Clearly, the state of the water system (in terms of contamination) is a critical part of the process
model of the responsible individuals in the MDH. How is the value of that state variable (to use
SpecTRM-RL terminology) determined? Information could come from the water testing
laboratory, the managers of the PUC, hospitals, local medical doctors, and complaints by the

46

public. Feedback loops need to be established for these various sources of information. Issuing
boil water advisories that are false alarms can have negative long-term consequences, so multiple
sources of information should be used and an algorithm determined for how the information will
be used to make a decision, particularly when the input is conflicting or unclear. The means for
disseminating the health advisories must also be included. STPA can be used to identify ways in
which the parts of the control loop could delay or corrupt the feedback information or hinder the
dissemination of the boil water advisories. STPA also requires that the control algorithms
themselves be analyzed for flaws. The Ministry of Health is responsible for making sure the
local offices have adequate staffing, training, information, etc. to perform their responsibilities
(provide adequate control actions). And so on.

As noted in Chapter 1 as one of the reasons for a new approach to hazard analysis, humans do
not necessarily follow the specified procedures. Ensuring that an effective procedure exists is
important as well as ensuring that the information required to make safe decisions and control
actions is available to the operator and decision makers. But that is only the first part of
STAMP-based hazard analysis. The analysis must also consider (probably using human factors
experts) likely deviations from the specified procedures. The use of system dynamics models
will help here, as described in the next section. STPA can also be used to identify the unsafe
decisions and control actions. That information can be used in training, in performing
monitoring, and in designing protection into the system design against such unsafe action
(although there are drawbacks to trying to limit the authority and potential control actions of
human operators as has been found in the attempts to build aircraft automation that overrules
pilot commands). Finally, the system models built in SpecTRM-RL can assist in determining the
safety-related side effects of decisions on other components of the system and the safety of the
system as a whole. Thus it can be used to analyze the impact of specific control actions or of
potential changes to the system before they are implemented.

The experienced engineer will at this point (or earlier) note that engineers use the type of
thinking being described when designing any system. The difference simply is that risk is made
a “first-class” part of the early design process. While sometimes this early emphasis occurs,
often the early design analysis concentrates on what the system is required to do, rather than
what it is required not to do. The former is particularly common for systems where the required
functions (the basic mission) do not involve safety, i.e., the system itself is not being build to
maintain safety, and safety is simply a constraint on the way the required functions can be
achieved. Even when safety is an early consideration in conceptual design, the process used is
primarily ad hoc and can therefore easily be flawed. For complex systems, doing all this analysis
in one’s head is difficult and error prone. The process described in this report can be
implemented using tools that help the design engineer manage the complexity involved and
assist with the analysis and system engineering process.

Figure 12 shows an overall control system structure that can be derived from the application of
STPA while designing the public water system. Of course, different design decisions could be
made and alternative designs result. The process described in this chapter, however, allows
making risk-informed decisions when design alternatives and tradeoffs are being considered.
The complete model would include for each control component a description of the safety
constraints that must be maintained by the controller in the behavior of the system components it

47

controls, the information in the control component’s process model (models of the current state
of the controlled components) and how that information will be updated, and the control actions
and the logic used to determine when the control action should be taken.

Figure 12 – An Ontario Water System Safety Control Structure
Resulting from STPA Analysis

We are not yet finished, however. Even if the system starts out with an effective safety control
structure, adaptation, asynchronous evolution, and degradation can occur over time. The hazard
analysis needs to identify unsafe changes and to design in operational controls to prevent or
mitigate them and/or to design and implement performance measures to detect them. For that we
use system dynamics models.

48

System Dynamics Model for Safety of the Ontario Public Water System: Figure 13 shows a
system dynamics model for the Ontario public water system. The model focuses on the
organizational factors and omits the physical process, although it could be included. Pressure to
cut budgets and reduce government (exogenous variables external to the model) can lead to
decreased oversight. The level of oversight affects training and certification as well as inspection
and monitoring, both of which impact risk. The loop on the left says that as oversight decreases,
the incident and accident rate will increase, which should decrease public pressure to reduce
government regulation and red tape, thus leading to increased oversight and thence to decreases
in the accident rate. The delay between changes in oversight and changes in the accident rate,
however, introduces instabilities in the system (as is true in any control system). The lack of
immediate feedback from incidents and accidents after oversight is reduced contributes to
increased pressures to reduce oversight until the stage for a major tragedy is set.

Modeling the entire system dynamics is usually impractical. The challenge is to choose relevant
subsystems and model them appropriately for the intended purpose. STAMP provides the
guidance for determining what to model when the goal is risk management.

In complex systems, all dynamics, despite their complexity, arise from the two types of feedback
loops described earlier in this chapter. In system dynamics terms, degradation over time of the
safety control structure, as represented by reinforcing loops, would lead inevitably to an accident,
but there are balancing loops, such as regulation and oversight that control those changes. One
of the factors in our model is political pressure to reduce regulation and government red tape. As
feedback and monitoring controls are reduced, the mental model of the central government
leaders and the ministries about the current state of the water system can become increasingly
divorced from reality. A belief that the water quality controls are in better shape than they
actually are can lead to disregarding warnings and continued reduction in what is regarded as
unnecessary regulation and red tape.

Accidents occur when the balancing loops do not adequately overcome the influences degrading
the safety controls. Understanding how and why this degradation can occur (why risk may
increase over time) is an important part of designing to prevent accidents, i.e., establishing
effective safety control structures that include controls over evolution toward higher risk over
time. These controls may simply involve monitoring and alerts to identify when the socio-
technical system is moving toward a state of unacceptable risk or they may involve concrete
checks and balances that prevent or inhibit potentially dangerous changes from occurring.

49

Figure 13 – A System Dynamics Model of Water System Safety
(Adapted from Leveson, Daouk, Dulac, and Marais, 2003)

50

Reinforcing and balancing loops can be analyzed separately from the rest of the system dynamics
diagram. For example, the Public Awareness balancing loop (shown in Figure 14) provides
insight about the feedback relationship between an increase in ``Risk of bacterial infection" and
an decrease in the ``Rate of increase of infection risk.'' An increase in the risk of infection would
increase the fractional rate of infection. Individuals experiencing intestinal symptoms would
suspect water contamination and the public awareness of the water problem would increase.
Becoming aware of the problem would lead people to stop drinking the water altogether or to
boiling it first. These prevention measures reduce the rate of increase of infection risk and
consequently, the risk of bacterial infection.

Figure 14 – The Public Awareness Balancing Loop

The public water system dynamics model in Figure 13 includes a number of exogenous variables
(pressure to cut budgets, attempts by a conservative governments to reduce business and
government red tape, etc.) that act as levers on the behaviors of the system. When these
variables are changed without any consideration of the dynamics of the system being modeled,
the effectiveness of the safety control structure can deteriorate progressively, with few if any
visible signs. For instance, the attempts to reduce red tape can lead to a decrease in oversight by
the ministries and municipalities. This decrease in oversight in turn can have a negative effect
on the control and communication channels between the government and the laboratories
performing water quality analyses. Lack of or disruptions in the communication of the results of
water quality reports can lead to delays in the mobilization of resources needed to deal with
contamination, diminishing effectiveness of the advisories issued, and thence an increase in risk
of infection in the population.

Accident investigations often end with blame being assigned to particular individuals, often the
system operators. System dynamics models show how the attitude and behavior of individuals is
greatly affected by the rest of the system and how and why such behavior may change over time.
For instance, operator competence depends on the quality of training, which increases with
government oversight but may decrease over time without such oversight due to competing
pressures. An operator's fear of punishment (which in the accident described in the next section
led to the PUC operations manager lying about the existence of adverse water quality test
reports) is balanced by compliance with existing rules and regulations. This compliance, in turn,
is directly influenced by the extent of government oversight and by the government's response to
similar behavior in the past.

51

Tools to simulate system dynamics models exist. They have limitations, however, that would be
lessened by combining them with SpecTRM-RL models. The most serious of these is that the
variables are all treated as continuous and simulations involve evaluating their changes using
continuous equations. Combining systems dynamics models with SpecTRM-RL would allow
much more comprehensive types of system modeling.

The chapter has so far described how STPA, SpecTRM-RL, and system dynamics models can be
used to perform hazard analysis on the design of a public water system, accounting in the process
for adaptation and degradation over time. The specific design decisions made, of course, are up
to the designers and will involve considerations other than simply risk of violating safety goals
and constraints. The next section shows how this process can go wrong.

A Public Water Accident in Ontario: It is instructive in evaluating both STAMP and its
associated hazard analysis technique STPA to examine in detail an accident involving a real
municipal water system in Ontario. In May 2000, some contaminants (largely E. coli and
Campylobacter) entered the public water system of a small town in Ontario called Walkerton.
As a result, 2300 people became ill (in a community of 4600 residents) and seven died.

The water safety control structure started out similar to the one designed above but with some
potential weaknesses that were mitigated by the presence of various controls. As those controls
weakened or disappeared over time, the entire socio-technical system moved to a state where a
small change in the operation of the system or in the environment (in this case, unusually heavy
rain) could lead to a tragedy. We describe the accident scenario in Walkerton, which had such
serious consequences that an official government inquiry was launched. Other municipalities in
Ontario, however, have also had water contamination incidents due to the inadequate risk
management and controls in the current Ontario public water system safety control structure
(Figure 15).

The Walkerton Public Utilities Commission (WPUC) operated the local water system. Stan
Koebel was the WPUC's general manager and his brother Frank its foreman. In May 2000, the
water system was supplied by three groundwater sources: Wells 5, 6, and 7. The water pumped
from each well was treated with chlorine before entering the distribution system.

Walkerton Well 5 was built in 1978 and issued a Certificate of Approval by the MOE in 1979.
At the time, the groundwater supplying the well was recognized as being vulnerable to surface
contamination, but no explicit operating conditions were imposed by the regulatory authorities
(missing MOE control action). Well 5 is a very shallow well: all of its water is drawn from an
area between 5m and 8m below the surface. More significantly, the water is drawn from an area
of bedrock, and the shallowness of the soil overburden above the bedrock along with the
fractured and porous nature of the bedrock itself made it possible for surface bacteria to make its
way to Well 5.

Although the original Certificate of Approval for Well 5 did not include any special operating
conditions, over time MOE practices changed (asynchronous evolution). By 1992, the MOE had
developed a set of model operating conditions for water treatment and monitoring that were

52

routinely attached to new Certificates of Approval for municipal water systems. There was no
effort, however, to determine whether such conditions should be attached to existing certificates,
such as the one for Well 5 (missing MOE control action).

The ODWO was amended in 1994 to require the continuous monitoring of chlorine residuals and
turbidity for wells supplied by a groundwater source that was under the direct influence of
surface water (as was Walkerton's Well 5). Automatic monitoring and shutoff valves would
have mitigated the operational problems at Walkerton and prevented the deaths and illness
associated with the E. coli contamination in May 2000 if the requirement had been enforced in
existing wells. However, at the time, there was no program or policy to review existing wells to
determine whether they met the requirements for continuous monitoring (missing MOE control
action). In addition, MOE inspectors were not directed to notify well operators (like the Koebel
brothers) of the new requirement nor to assess during inspections if a well required continuous
monitoring (MOE control flaw). Stan and Frank Koebel lacked the training and expertise to
identify the vulnerability of Well 5 themselves and to understand the resulting need for
continuous chlorine residual and turbidity monitors.

Operating conditions should theoretically have been imposed by the municipality, the Walkerton
Public Utilities Commissioners, and the manager of the WPUC. The municipality left the
operation of the water system to the WPUC (inadequate control actions). The WPUC
Commissioners, who were elected, became over the years more focused on the finances of the
PUC than the operations (asynchronous evolution). They had little or no training or knowledge
of water system operations or even water quality itself (inadequate mental models). Without
such knowledge and with their focus on financial issues, they gave all responsibility for
operations to the manager of the WPUC (Stan Koebel) and provided no other operational
oversight.

The operators of the Walkerton water system did not intentionally put the public at risk. Stan
Koebel and the other WPUC employees believed the untreated water was safe and often drank it
themselves at the well sites (inadequate mental models). Local residents also pressed the WPUC
to decrease the amount of chlorine used because they objected to the taste of chlorinated water
(hazardous inputs, inadequate control).

Although Mr. Koebel knew how to operate the water system mechanically, he lacked knowledge
about the health risks associated with a failure to properly operate the system and of the
importance of following the MOE requirements for treatment and monitoring. This incorrect
mental model was reinforced when over the years he received mixed messages from the MOE
about the importance of several of its own requirements.

Before 1993, there were no mandatory certification requirements for water system operators or
managers. Stan and Frank Koebel were not qualified to hold their positions within the WPUC,
but they were certified in 1993 through a grandfathering scheme based solely on experience.
They were not required to take a training course or to pass any examinations (missing and
inadequate control actions).

53

After the introduction of mandatory certification in 1993, the MOE required 40 hours of training
a year for each certified operator. Stan and Frank Koebel did not take the required amount of
training, and the training they did take did not adequately address drinking water safety. The
MOE did not focus the training on drinking water safety and did not enforce the training
requirements (missing control actions).

The Koebel brothers and the Walkerton commissioners were not the only ones with inadequate
training and knowledge of drinking water safety. Evidence at the Inquiry showed that several
environmental officers in the MOE's local office were unaware that E. coli was potentially lethal
and their mental models were also incorrect with respect to other matters essential to water
safety.

Without regulations or oversight or enforcement of safe operating conditions, and with
inadequate mental models of the safety requirements, operating practices have a tendency to
change over time in order to optimize a variety of goals that conflict with safety. In the case of
Walkerton, this change began almost immediately. The Inquiry report says that many improper
operating practices had been going on for years before Stan Koebel became manager. He simply
left them in place. These practices, some of which went back 20 years, included misstating the
locations at which samples for microbiological testing were taken, operating wells without
chlorination, making false entries in daily operating sheets, failing to measure chlorine residuals
daily, failing to adequately chlorinate the water, and submitting false annual reports to the MOE
(inadequate “actuator” operation, incorrect feedback).

All of these weaknesses in the control over the Walkerton (and other municipalities) water
quality might have been mitigated if the source of contamination of the water had been
controlled. A weakness in the basic water control structure was the lack of a government
watershed and land use policy for agricultural activities that can impact drinking water sources.
In fact, at a meeting of the Walkerton town council in November 1978 (when Well 5 was
constructed), MOE representatives suggested land use controls for the area around Well 5, but
the municipality did not have the legal means to enforce such land use regulations because the
government of Ontario had not provided the legal basis for such controls.

Walkerton is at the heart of Ontario's Bruce County, a major farming area. Whereas the existing
water quality infrastructure and physical well designs were able to handle the amount of manure
produced when farms typically produced 50 or 60 animals at a time, the increase in factory farms
(each of which might have 1200 hogs) led to runoff of agricultural contaminants and put pressure
on the drinking water quality infrastructure (asynchronous evolution). At the time of the
accident, the county had a population of only 60,000 people, but had 163,000 beef cattle and
100,000 hogs. A single 1200 hog factory farm can produce as much waste as 60,000 people and
the entire animal population in the county at that time produced as much waste as 1.6 million
people. This animal waste was spread on the fields adjacent to the farms, which could not absorb
such massive quantities of manure. As a result, the groundwater and surrounding waterways
were contaminated. At the same time, the spreading of manure had been granted a long-standing
exemption from EPA requirements.

54

Annual reports of the Environment Commissioner of Ontario for the four years before the
Walkerton accident included recommendations that the government create a groundwater
strategy. A Health Canada study stated that the cattle counties of Southwestern Ontario, where
Walkerton is located, are high-risk areas for E. coli infections. The report pointed out the direct
link between cattle density and E. coli infection, and showed that 32 percent of the wells in rural
Ontario showed fecal contamination. Dr. Murray McQuigge, the Medical Officer of Health for
the BGOS Health Unit (and the man who handled the Walkerton E. coli outbreak) warned in a
memo to local authorities that ``poor nutrient management on farms is leading to a degradation
of the quality of ground water, streams, and lakes.'' Nothing was done in response to these
warnings (ignored feedback).

The control structure quickly started to degrade even further in effectiveness with the election of
a conservative provincial government in 1995. A bias against environmental regulation and red
tape led to the elimination of many of the existing government controls over drinking water
quality. A Red Tape Commission was established by the provincial government to minimize
reporting and other requirements on government and private industry. At the same time, the
government disbanded groups like the Advisory Committee on Environmental Standards
(ACES), which reviewed ministry standards including those related to water quality. At the time
of the Walkerton contamination, there was no opportunity for stakeholder or public review of the
Ontario clean water controls (feedback loops eliminated).

Budget and staff reductions by the conservative government took a major toll on environmental
programs and agencies (although budget reductions had started before the election of the new
provincial government). The MOE budget was reduced by 42% and 900 of the 2400 staff
responsible for monitoring, testing, inspection, and enforcement of environmental regulations
were laid off. The official Walkerton Inquiry report concludes that the reductions were not based
on an assessment of the requirements to carry out the MOE's statutory requirements nor on any
risk assessment of the potential impact on the environment or, in particular, on water quality.
After the reductions, the Provincial Ombudsman issued a report saying that cutbacks had been so
damaging that the government was no longer capable of providing the services that it was
mandated to provide. The report was ignored.

In 1996, the Water Sewage Services Improvement Act was passed, which shut down the
government water testing laboratories, downloaded control of provincially owned water and
sewage plants to the municipalities, eliminated funding for municipal water utilities, and ended
the provincial Drinking Water Surveillance Program, under which the MOE had monitored
drinking water across the province (elimination of safety controls and feedback loops).

The ODWO directed testing labs to report any indications of unsafe water quality to the MOE
and to the local Medical Officer Of Health. The latter would then decide whether to issue a boil
water advisory. When government labs conducted all of the routine drinking water tests for
municipal water systems throughout the province, it was acceptable to keep the notification
protocol in the form of a guideline under the ODWO rather than a legally enforceable law or
regulation. However, the privatization of water testing and the exit of government labs from this
duty in 1996 made the use of guidelines ineffective in ensuring necessary reporting would occur.
At the time, private environmental labs were not regulated by the government. No criteria were

55

established to govern the quality of testing or the qualifications or experience of private lab
personnel, and no provisions were made for licensing, inspection, or auditing of private labs by
the government. In addition, the government did not implement any program to monitor the
effect of privatization on the notification procedures followed whenever adverse test results were
found (inadequate control actions and missing feedback loop).

At the time of privatization in 1996, the MOE sent a guidance document to those municipalities
that requested it. The document strongly recommended that a municipality include in any
contract with a private lab a clause specifying that the laboratory directly notify the MOE and the
local Medical Officer of Health about adverse test results. There is no evidence that the
Walkerton PUC either requested or received this document (communication flaw).

After laboratory testing services for municipalities were assumed by the private sector in 1996,
the MOH Medical Department of Health for the Walkerton area sought assurances from the
MOE's local office that the MDH would continue to be notified of all adverse water quality
results relating to community water systems. It received that assurance, both in correspondence
and at a meeting of representatives from the two agencies.

In 1997, the Minister of Health took the unusual step of writing to the Minister of the
Environment requesting that legislation be amended to ensure that the proper authorities would
be notified of adverse water test results. The Minister of the Environment declined to propose
legislation, indicating that the ODWO dealt with the issue. On several occasions, officials in the
MOH and the MOE expressed concerns about failures to report adverse test results to local
Medical Officers of Health in accordance with the ODWO protocol. But the anti-regulatory
culture and the existence of the Red Tape Commission discouraged any proposals to make
notification legally binding on the operators of municipal water systems and private labs.

The testing laboratory used by Walkerton in May 2000, A&L Canada Laboratories East, was not
aware of the notification guideline in the ODWO (communication flaw). In fact, they considered
test results to be confidential and thus improper to send to anyone but the client, in this case, the
WPUC manager Stan Koebel (incorrect process model). The MOE had no mechanism for
informing private laboratories of the existing guidelines for reporting adverse results to the MOE
(missing control channel).

Another important impact of the 1996 law was a reduction in the MOE water system inspection
program. The cutbacks at the MOE negatively impacted the number of inspections, although the
inspection program had other deficiencies as well.

The MOE inspected the Walkerton water system in 1991, 1995, and 1998. At the time of the
inspections, problems existed relating to water safety. Inspectors identified some of them, but
unfortunately two of the most significant problems—the vulnerability of Well 5 to surface
contamination and the improper chlorination and monitoring practices of the PUC—were not
detected (inadequate “actuator” operation). Information about the vulnerability of Well 5 was
available in MOE files, but inspectors were not directed to look at relevant information about the
security of water sources and the archived information was not easy to find (inadequate control
algorithm). Information about the second problem, improper chlorination and monitoring

56

practices of the WPUC, was there to be seen in the operating records maintained by the WPUC.
The Walkerton Inquiry report concludes that a proper examination of the daily operating sheets
would have disclosed the problem. However, the inspectors were not instructed to carry out a
thorough review of operating records (inadequate control algorithm).

The 1998 inspection report did show there had been problems with the water supply for years:
detection of E. coli in treated water with increasing frequency, chlorine residuals in treated water
at less than the required 0.5 mg/L, non-compliance with minimum bacteriological sampling
requirements, and improper maintenance of training records.

The MOE outlined improvements that should be made, but desperately short of inspection staff
and faced with small water systems across the province that were not meeting standards, it never
scheduled a follow-up inspection to see if the improvements were in fact being carried out
(inadequate actuator operation, missing feedback loop). The Inquiry report suggests that the use
of guidelines rather than regulations had an impact here. The report states that had the
Walkerton PUC been found to be in non-compliance with a legally enforceable regulation, as
opposed to a guideline, it is more likely that the MOE would have taken stronger measures to
ensure compliance—such as the use of further inspections, the issuance of a Director's Order
(which would have required the WPUC to comply with the requirements for treatment and
monitoring), or enforcement proceedings. The lack of any follow-up or enforcement efforts may
have led the Koebel brothers to believe the recommendations were not very important, even to
the MOE (flawed mental model).

The WPUC Commissioners received a copy of the 1998 inspection report but did nothing
beyond asking for an explanation from Stan Koebel and accepting his word that he would correct
the deficient practices (inadequate control). They never followed up to make sure he did
(missing feedback).

The mayor of Walkerton and the municipality also received the report but they assumed the
WPUC would take care of the problems. When the local Walkerton public health inspector read
the report, he filed it, assuming that the MOE would ensure that the problems identified were
properly addressed. Note the coordination problems here in an area of overlapping control, a
major component of the accident factors used in STPA as defined in Chapter 3. Both the MOE
and the local public health inspector should have followed up on the 1998 inspection report, but
there was no written protocol instructing the public health inspector on how to respond to
adverse water quality reports or inspection reports. The local Medical Director of Health
assumed the MOE and the WPUC commissioners would do so. Again we see a classic example
of flawed coordination where everyone assumes someone else is taking care of the problem. The
MOE lacked protocols for follow-up, and the WPUC Commissioners by this time lacked
expertise and relied on Stan Koebel to make the necessary changes. The Province's water safety
control structure had clearly become ineffective.

A final important change in the safety control structure involved the drinking water surveillance
program in which the MOE monitored drinking water across the province. In 1996, the
Provincial government dropped E. coli testing from its Drinking Water Surveillance Program.
The next year, the Drinking Water Surveillance Program was shut down entirely (feedback loop

57

eliminated). At the same time, the provincial government directed MOE staff not to enforce
dozens of environmental laws and regulations still on the books (control algorithm eliminated).
Farm operators, in particular, were to be treated with understanding if they were discovered to be
in violation of livestock and waste-water regulations. By June 1998, the Walkerton town council
was concerned enough about the situation to send a letter directly to the Premier (Mike Harris),
appealing for the province to resume testing of municipal water. There was no reply.

MOE officials warned the government that closing the water-testing program would endanger
public health. Their concerns were dismissed. In 1997, senior MOE officials drafted another
memo that the government did heed. This memo warned that cutbacks had impaired the
Ministry's ability to enforce environmental regulations to the point that the Ministry could be
exposed to lawsuits for negligence if and when an environmental accident occurred. In response,
the Provincial government called a meeting of the Ministry staff to discuss how to protect itself
from liability, and it passed a Bill (The Environmental Approvals Improvement Act) which,
among other things, prohibited legal action against the government by anyone adversely affected
by the Environment Minister's failure to apply environmental regulations and guidelines.

Many other groups warned senior government officials, ministers, and the Cabinet of the danger
of what it was doing, such as reducing inspections and not making the notification guidelines
into regulations. The warnings were ignored. Environmental groups prepared briefs. The
Provincial Auditor, in his annual reports, criticized the MOE for deficient monitoring of
groundwater resources and for failing to audit small water plants across the province. The
International Joint Commission expressed its concerns about Ontario's neglect of water quality
issues, and the Environmental Commissioner of Ontario warned that the government was
compromising environmental protection, pointing specifically to the testing of drinking water as
an area of concern.

In January 2000 (three months before the Walkerton accident), staff at the MOE's Water Policy
Branch submitted a report to the Provincial government warning that “Not monitoring drinking
water quality is a serious concern for the Ministry in view of its mandate to protect public
health.” The report stated that a number of smaller municipalities were not up to the job of
monitoring the quality of their drinking water. It further warned that because of the privatization
of the testing labs, there was no longer a mechanism to ensure that the MOE and the local
Medical Officer of Health were informed if problems were detected in local water systems. The
Provincial government ignored this feedback.

The warnings were not limited to groups or individuals. Many adverse water quality reports had
been received from Walkerton between 1995 and 1998. During the mid to late 1990s, there were
clear indications that the water quality was deteriorating. In 1996, for example, hundreds of
people in Collingswood (a town near Walkerton) became ill after cryptosporidium (a parasite
linked to animal feces) contaminated the drinking water. Nobody died, but it should have acted
as a warning that the water safety control structure had degraded. Between January and April of
2000 (the months just prior to the May E. coli outbreak), the lab that tested Walkerton's water
repeatedly detected coliform bacteria—an indication that surface water was getting into the water
supply. The lab notified the MOE on five separate occasions. The MOE in turn phoned the
WPUC, was assured the problems were being fixed, and let it go at that (inadequate control

58

action). The MOE failed to inform the Medical Officer of Health, as by law it was required to
do (communication flaw). One of the reasons for the delay in issuing a boil water advisory when
the symptoms of E. coli contamination started to appear in Walkerton was that the latest report in
the local Medical Department of Health’s files of any problems with the water was over two
years old (incorrect mental model). In May 2000, Walkerton changed its testing lab to A&L
Canada who, as noted earlier, did not know about the reporting guidelines.

The Walkerton Inquiry report found that the decisions to remove the water safety controls in
Ontario or to reduce their enforcement were taken without an assessment of the risks or the
preparation of a risk management plan. The report says there was evidence that those at the most
senior levels of government who were responsible for the decisions considered the risks to be
manageable, but there was no evidence that the specific risks were properly assessed or
addressed. We believe that the use of STPA, system dynamics models, and modeling and
simulation tools like SpecTRM-RL and system dynamics simulation could have provided the
ability to perform such a risk assessment. Of course, management that refuses to perform risk
management activities will obviously sabotage any efforts to manage risk.

All of these changes in the Ontario water safety control structure over time led to the modified
control structure shown in Figure 15. One thing to notice in comparing Figure 15 and Figure 12
is the omission of many of the feedback loops and controls in Figure 15.

59

Figure 15 – The Basic Water Safety Control Structure at the Time of the Accident.
Dotted lines denote communication, control or feedback channels that had become
ineffective.

Proximate Events to the Accident: We now get to the proximate events preceding the
accident—the place where many accident investigations begin and the start of accident models
based on chains of failure events—and can see how they combined with the inadequate control
structure in place at the time (Figure 15) to lead to the losses.

The source of the water contamination was manure that had been spread on a farm near Well 5.
Unusually heavy rains from May 8 to May 12 carried the bacteria to the well. Between May 13
and May 15, Frank Koebel checked Well 5 but did not take measurements of chlorine residuals
(incorrect actuator operation), although daily checks were supposed to be made. Well 5 was
turned off on May 15.

On the morning of May 15, Stan Koebel returned to work after having been away from
Walkerton for more than a week. He turned on Well 7, but shortly after doing so, he learned a
new chlorinator for Well 7 had not been installed and the well was therefore pumping
unchlorinated water directly into the distribution system (incorrect control action). He did not
turn off the well, but instead allowed it to operate without chlorination until noon on Friday May
19, when the new chlorinator was installed (incorrect control action).

On May 15, samples from the Walkerton water distribution system were sent to A&L Labs for
testing according to the normal procedure. On May 17, A&L Labs advised Stan Koebel that
samples from May 15 tested positive for E. coli and total coliforms. The next day (May 18) the
first symptoms of widespread illness appeared in the community. Public inquiries about the
water prompted assurances by Stan Koebel that the water was safe (incorrect feedback). By May
19 the scope of the outbreak had grown, and a pediatrician contacted the local health unit with a
suspicion that she was seeing patients with symptoms of E. coli.

The Bruce-Grey-Owen Sound (BGOS) Medical Department of Health (the government unit
responsible for public health in the area) began an investigation. In two separate calls placed to
Stan Koebel, the health officials were told that the water was “okay” (incorrect feedback). At
that time, Stan Koebel did not disclose the lab results from May 15, but he did start to flush and
superchlorinate the system to try to destroy any contaminants in the water. The chlorine
residuals began to recover. Apparently, Mr. Koebel did not disclose the lab results for a
combination of two reasons: he did not want to reveal the unsafe practices he had engaged in
from May 15–17 (i.e., running Well 7 without chlorination), and he did not understand the
serious and potentially fatal consequences of the presence of E. coli in the water system
(incorrect process model). He continued to flush and superchlorinate the water through the
following weekend, successfully increasing the chlorine residuals. Ironically, it was not the
operation of Well 7 without a chlorinator that caused the contamination; the contamination
instead entered the system through Well 5 from May 12 until it was shut down May 15.

On May 20, the first positive test for E. coli infection was reported and the BGOS Medical
Department of Health called Stan Koebel twice to determine whether the infection might be

60

linked to the water system. Both times, Stan Koebel reported acceptable chlorine residuals and
failed to disclose the adverse test results (incorrect feedback). The MDH assured the public that
the water was safe based on the assurances of Mr. Koebel.

That same day, a WPUC employee placed an anonymous call to the Ministry of the Environment
(MOE) Spills Action Center, which acts as an emergency call center, reporting the adverse test
results from May 15. On contacting Mr. Koebel, the MOE was given an evasive answer and Mr.
Koebel still did not reveal that contaminated samples had been found in the water distribution
system (inaccurate feedback). The Local Medical Officer took over the investigation for the
Medical Department of Health. He took independent water samples and delivered them to the
Ministry of Health laboratory in London (Ontario) for microbiological testing.

When asked by the MOE for documentation, Stan Koebel finally produced the adverse test
results from A&L Laboratory and the daily operating sheets for Wells 5 and 6, but said he could
not produce the sheet for Well 7 until the next day. Later, he instructed his brother Frank to
revise the Well 7 sheet with the intention of concealing the fact that Well 7 had operated without
a chlorinator. On Tuesday May 23, Stan Koebel provided the altered daily operating sheet to the
MOE (inaccurate feedback). That same day, the health unit learned that two of the water
samples it had collected on May 21 had tested positive for E. coli.

Without waiting for its own samples to be returned, the BGOS health unit on May 21 had issued
a boil water advisory on local radio (only partially effective control action). About half of
Walkerton's residents became aware of the advisory on May 21, with some members of the
public still drinking the Walkerton town water as late as May 23. The first person died on May
22, a second on May 23, and two more on May 24. During this time, many children became
seriously ill and some victims will probably experience lasting damage to their kidneys as well
as other long-term health effects and, as stated earlier, seven people died and more than 2300
became ill.

Looking only at these proximate events, this appears to be a clear case of incompetence,
negligence, and dishonesty by WPUC employees. In fact, the government argued at the Inquiry
that Stan Koebel and/or the Walkerton PUC were solely responsible for the outbreak and that
they were the only ones who could have prevented it. The Inquiry board correctly ignored this
argument, but in May 2003 (almost exactly three years after the accident), the Koebel brothers
were arrested for their part in that accident. But a STAMP analysis (and the Inquiry report)
provides a much more informative and useful understanding of the accident and what might be
changed to prevent future repetitions besides simply firing the Koebel brothers or putting them in
jail: The stage for the accident had been set over a large number of years by actions at all levels
of the socio-technical system structure—an example of how complex socio-technical systems
can migrate toward an accident.

If the control structure designed using STPA (or something similar) had been in effect in May
2000, a good argument could be made that the accident would not have occurred. Despite the
government’s argument that the accident was solely due to actions by the Koebels and the
WPUC, the Inquiry report made many recommendations for changes to the public water safety
control structure including establishing regulatory requirements for agricultural activities with

61

potential impacts on drinking water sources, updating of standards and technology, improving
current practices in setting standards, establishing legally enforceable regulations rather than
guidelines, requiring mandatory training for all water system operators and requiring
grandparented operators to pass certification examinations within two years, developing a
curriculum for operator training and mandatory training requirements specifically emphasizing
water quality and safety issues, adopting a province-wide drinking water policy and a Safe
Drinking Water Act, strictly enforcing drinking water regulations, and committing sufficient
resources (financial and otherwise) to enable the MOE to play their role effectively. Most of
these recommendations have not yet been implemented, and water contamination accidents have
continued to occur in Ontario municipal water systems.

62

Conclusions and Future Directions

This report described a new approach to hazard analysis (STPA) based on the STAMP model of
accident causation. STPA was evaluated by applying it to a complex collision avoidance system
and the high-quality fault tree analysis that was performed for that system. The STPA analysis,
while including everything in the fault tree analysis, was more comprehensive and complete.
This report also showed how STPA can be applied to the operational, managerial, and regulatory
components of an open system using a public water system as an example. While the hazard
analysis of the collision avoidance system was performed for an existing system, the public
water system example showed how STPA can be used throughout the system lifecycle to assist
in risk-driven system design and performance monitoring of operations.

Because STPA uses executable and analyzable specifications/models, the potential arises for a
risk-driven, model-based system engineering environment in which safety and other high-
priority goals are designed into the system from the beginning. Much remains to be done,
however, to make this vision into a reality. For example, one of the lessons we learned from
performing the feasibility study in this SBIR research is the need for a format or notation for
recording the information derived from STPA. We also need to determine how to design an
interactive tool bench so the system engineer can perform STPA on the emerging system design.
Such a tool bench might include tools for interactive control of simulation and analysis and for
easily making changes in the models to investigate their implications for safety.

63

References

Bachelder, E. and Leveson, N.G. (2001) Describing and Probing Complex System Behavior: A
Graphical Approach, 2001 SAE Transactions, Vol. 110, Journal of Aerospace, Section 1, pp.
263–273.

Benner, L. (1975) Accident Investigations: Multilinear Events Sequencing Methods, Journal of
Safety Research, Vol. 7, No. 2, June, pp. 67-73.

Bureau of Air Safety Investigation (1996) Advanced Technology Aircraft Safety Survey Report.
Dept. of Transportation and Regional Development, Australia, June.

Brehmer, B. (1992) Dynamic decision-making: Human control of complex systems. Acta
Psychologica, Vol. 81, pp. 211-214.

Carroll, J. S. (1998) Organizational learning activities in high-hazard industries: The logics
underlying self-analysis. Journal of Management Studies, 35, pp. 699-717.

Carroll, J. S., Rudolph, Jenny W., and Hatakenaka, Sachi (2002) Learning from experience in
high-hazard organizations, submitted for publication.

Checkland, P. (1981) Systems Thinking, Systems Practice, John Wiley & Sons, New York.

Conant, R.C. and Ashby, W.R. (1970) Every good regulator of a system must be a model of that
system. International Journal of System Science, 1, pp. 89-97.

Dulac, N., Viguier, T., Leveson, N., and Storey, M-A. (2002) On the Use of Visualization in
Formal Requirements Specification, International Conference on Requirements Engineering,
Essen, Germany, September.

Edwards, W. (1962) Dynamic decision theory and probabilistic information processing, Human
Factors, 4, pp. 59-73.

Fujita, Y. (1991) What shapes operator performance? JAERI Human Factors Meeting, Tokyo,
November.

Jaffe, M.S, Leveson, N.G., Heimdahl, M.P.E., and Melhart, B.E. (1991) Software requirements
analysis for real-time process-control systems, IEEE Transactions on Software Engineering, SE-
17(3):241--258, March.

Johnson, W.G. (1980) MORT Safety Assurance System, Marcel Dekker, New York.

Klein, G.A., Orasano, R., Calderwood, R., and Zsambok, C.E. (eds.) Decision Making in Action:
Models and Methods, Ablex Publishers, 1993.

64

Leplat, J. (1987). Occupational accident research and systems approach. In Jens Rasmussen,
Keith Duncan, and Jacques Leplat (eds.) New Technology and Human Error, pp. 181-191, John
Wiley.

Leveson, N.G. (1995) Safeware: System Safety and Computers. Addison Wesley.

Leveson, N.G., Reese, J.D., Koga, S., Pinnel, L.D., and Sandys, S.D. (1997) Analyzing
Requirements Specifications for Mode Confusion Errors, First International Workshop on
Human Error and System Development, Glasgow.

Leveson, N.G. (2003) A New Accident Model for Engineering Safer Systems, Safety Science, in
press.

Leveson, N.G. (2000) Intent specifications: An approach to building human-centered
specifications, IEEE Trans. on Software Engineering, January.

Leveson, N.G., Daouk, M., Dulac, N., and Marais, K. (2003) Applying STAMP in Accident
Analysis, Workshop on the Investigation and Reporting of Accidents, September.

Marais, K. and Leveson, N.G. (2003) Archetypes for Organizational Safety, Workshop on the
Investigation and Reporting of Accidents, Williamsburg, September.

Miles, R.F. (1973) Systems Concepts: Lectures on Contemporary Approaches to Systems, John
Wiley & Sons, New York.

Perrow, C. (1984) Normal Accidents: Living with High-Risk Technology, Basic Books, New
York.

Rasmussen, J. (1990) Human error and the problem of causality in analysis of accidents. In
D.E. Broadbent, J. Reason, and A. Baddeley (Eds.), Human Factors in Hazardous Situations,
Clarendon Press, Oxford, pp. 1-12.

Rasmussen, J., Pejtersen, A.M., and Goodstein, L.P. (1994) Cognitive System Engineering, John
Wiley & Sons.

Rasmussen, J. (1997) Risk Management in a Dynamic Society: A Modeling Problem. Safety
Science, vol. 27, No. 2/3, Elsevier Science Ltd., pp. 183-213.

Reason, J. (1990) Human Error, Cambridge University Press.

Senge, P.M (1990). The Fifth Discipline: The Art and Practice of the Learning Organization,
Doubleday Currency, New York.

Sterman, J.D. (2000) Business Dynamics: Systems Thinking and Modeling for a Complex World,
Mc-Graw Hill/Irwin.

65

Svedung, I. and Rasmussen, J. (2002) Graphic Representation of Accident Scenarios: Mapping
System Structure and the Causation of Accidents, Safety Science, vol. 40, Elsevier Science Ltd.,
pages 397-417.

Vicente, K.J. (1995) A Field Study of Operator Cognitive Monitoring at Pickering Nuclear
Generating Station, Technical Report CEL 9504, University of Toronto.

Weiss, K.A., Ong, E.C., and Leveson, N.G. (2003) Reusable Software Architectures for
Aerospace Systems, Aircraft Engineering and Aerospace Technology, in press.

Woods, D.D. (1984) Some results on operator performance in emergency events. In D.
Whitfield (ed.), Ergonomic Problems in Process Operations, Inst. Of Chemical Engineering
Symp., 1984.

Woods, D.C. (1984) Some Results on Operator Performance in Emergency Events, Ergonomic
Problems in Process Operations, Institute of Chemical Engineering Symposium.

Woods, D.D. (2000) Lessons from beyond human error: Designing for resilience in the face of
change and surprise. Design for Safety Workshop, NASA Ames Research Center, October.

Zimmerman, M., Leveson, N.G., and Lundqvist, K. (2002) Investigating the Readability of
State-Based Formal Requirements Specification Languages, Int. Conference on Software
Engineering, Orlando, May.

Zsambok, C.E. and Klein, G. (1997) Naturalistic Decision Making, Lawrence Erlbaum
Associates, 1997.

66

Appendix: An Introduction to SpecTRM-RL

The SpecTRM-RL language includes a graphical overview of the system structure along with
specification of output messages, inputs, state variables, macros, and functions. The rest of this
section describes each of these features and can be skipped by readers familiar with the language.

Graphical Specification of the System Model: Figure 16 shows the four main components of a
SpecTRM-RL specification: (1) a specification of the supervisory modes of the controller being
modeled, (2) a specification of its control modes (3) a model of the controlled process (or plant
in control theory terminology) that includes the inferred operating modes and system state (these
are inferred from the measured inputs), and (4) a specification of the inputs and outputs to the
controller. The graphical notation mimics the typical engineering drawing of a control loop.

Every automated controller has at least two interfaces: one with the supervisor(s) that issues
instructions to the automated controller (the supervisory interface) and one with each controlled
system component (controlled system interface). The supervisory interface is shown to the left
of the main controller model while the interface with the controlled component is shown to the
right.

Figure 16 – The Parts of a SpecTRM-RL Graphical Model

The supervisory interface consists of a model of the operator controls and a model of the displays
or other means of communication by which the component relays information to the supervisor.
Note that the interface models are simply the logical view that the controller has of the
interfacesæthe real state of the interface may be inconsistent with the assumed state due to

67

various types of design flaws or failures. By separating the assumed interface from the real
interface, we are able to model and analyze the effects of various types of errors and failures
(e.g., communication errors or display hardware failures). In addition, separating the physical
design of the interface from the logical design (required content) will facilitate changes and
allow parallel development of the software and the interface design. During development,
mockups of the physical screen or interface design can be generated and tested using the output
of the SpecTRM-RL simulator.

The bottom left quadrant of Figure 16 provides information about the control modes of the
controller itself. These are not internal states of the controller (which are not included in our
specifications) but simply represent externally visible behavior about the controller's modes of
operation (described further below).

The right half of the controller model represents inferred information about the operating modes
and states of the controlled system (the plant in control theory terminology). The model for a
simple plant like a thermostat might include only one or two variables while that for a more
complex system, e.g., air traffic control, might contain a large number of variables and include
operational modes and models of multiple subcomponents. In a hierarchical control system, the
controlled process may itself be a controller of another process. For example, the flight
management system may be controlled by a pilot and may issue commands to a flight control
computer, which issues commands to an engine controller. Parts of a SpecTRM-RL model can
be reused or changed to represent different members of a product family [Weiss, Ong, and
Leveson 2003].

Figure 17 shows the graphical part of a SpecTRM-RL specification of a simple altitude switch.
The specification is based on an unpublished specification of an altitude switch by Steve Miller
at Rockwell Collins. This switch turns on a Device of Interest (DOI) when the aircraft descends
through a threshold altitude.

68

Figure 17 – Example of a Graphical Model

In SpecTRM-RL, state values in square boxes in the right side of the diagram represent inferred
values used in the control of the computation of the blackbox I/O function. Such variables are
necessarily discrete in value4, and thus can be represented as a state variable with a finite number
of possible values. In practice, such state variables almost always have only a few relevant
values (e.g., altitude below a threshold, altitude at or above a threshold, cannot-be-determined,
and unknown). Values for state variables in the plant model are required in SpecTRM-RL to
include an unknown value. The meaning and purpose of the unknown state value are described
below.

4 If they are not discrete, then they are not used in the control of the function computation, but in the
computation itself and can simply be represented in the specification by arithmetic expressions involving
input variables.

69

In the altitude switch example, defining the control algorithm requires using information about
the aircraft altitude level with respect to a given threshold, the inferred status of the DOI, and the
validity of the altimeter information being provided as well as the measured variables and
various constants defined elsewhere in the specification.

The possible values for a state variable are shown with a line connecting the boxes. The line
simply denotes that the values are disjoint, that is, the variable may assume only one value at a
time. A small arrow pointing at a box denotes the default (startup) value for the state variable or
mode. For example, the DOI-Status can have the values On, Off, Unknown, and Fault-Detected.
The default value is Unknown.

The altitude switch has two control inputs (shown on arrows to the left of the Component
diagram): a reset signal that has the value true or false and an inhibit button that inhibits
operation of the altitude switch. The inhibit button can either be in the on or off position. The
only display in the altitude switch example is a fault indicator lamp that can also either be on or
off, but its content is controlled through the watchdog timer and not directly by the altitude
switch. There is only one supervisory modeæcockpit controlledæwhich is shown in the upper
left quadrant of the component model.

Inputs representing the state of the plant (monitored or measured variables) are shown with
arrows pointing to the controller. For the altitude switch, these variables provide (1) the current
status (on or off) of the device of interest (DOI) that the altitude switch turns on and (2) inputs
about the status and value of three altimeters on the aircraft (one analog and two digital) that
provide information to the altitude switch about the current measured altitude of the aircraft as
well as the status of that information (i.e., normal operation, test data, no computed data
provided, or failed).

The output commands are denoted by outward pointing arrows. In the example, they include a
signal to power-on the device (DOI) and a strobe to a watchdog timer so that proper action can
be taken (by another system component) if the altitude switch fails. The outputs in this example
are simple “high” signals on a wire or line to the device.

Note that the internal design of the altitude switch is not included in the model. The altitude
switch operating modes are externally visible (and must be known for the pilot to understand its
operation) and the aircraft model is used to describe the externally visible behavior of the altitude
switch in terms of the process being controlled (and not in terms of its own internal data
structures and algorithms). Thus the specification is blackbox.

Because of the simplicity of the altitude switch example, there are a few features of SpecTRM-
RL that are not needed or are not well illustrated. Almost all of the missing features involve the
ability to specify modes. Modes are abstractions on states and are not necessary for defining
blackbox behavior. They are useful, however, in understanding or explaining the behavior of
complex systems. While some formal specification languages use the term “mode” as a synonym
for state (all modes are states and vice versa), SpecTRM-RL uses the more limited definition of
mode common in engineering, i.e., as a state variable that plays a particular role in the state
machine. In this usage, modes partition the state space into disjoint sets of states. For example,

70

the state machine may be in normal operational mode or in a maintenance mode. Our definition
was chosen to assist in reviewability of the specification by domain experts and in formal
analysis of specifications for particular properties commonly involved in operator mode
confusion [Leveson et.al 1997]. SpecTRM-RL allows specifying several types of modes:
supervisory modes, control modes, controlled-system operating modes, and display modes.

Supervisory modes are useful when a component may have multiple supervisors at any time. For
example, a flight control computer in an aircraft may get inputs from the flight management
computer and also directly from the pilot. Required behavior may differ depending on which
supervisory mode is currently in effect. Mode-awareness errors related to confusion in
coordination between multiple supervisors can be defined (and the potential for such errors
theoretically identified from the models) in terms of these supervisory modes.

Control Modes control the behavior of the controller itself. Modern avionics systems may have
dozens of modes. Control modes may be used in the interpretation of the component's interfaces
or to describe the component's required process-control behavior. In the altitude switch, two
types of control modes are useful in specifying the blackbox behavior: (1) whether the switch is
in the startup, operational, and internal-fault-detected mode (the latter will result in the fault
indicator light being lit in the cockpit and cessation of activity until the reset button is pushed)
and (2) whether the operation of the altitude switch is partially inhibited or not. These two sets
of modes cannot be combined in this case, as they are not disjoint. In fact, in our original
specification of the altitude switch, they were combined. We later found that error through the
use of our completeness criteria.

A third type of mode, controlled-system or plant operating modes, can be used to specify sets of
related behaviors of the controlled-system (plant) model. They are used to indicate its
operational status. For example, it may be helpful to define the operational state of an aircraft in
terms of it being in takeoff, climb, cruise, descent, or landing mode. Such operating modes are
not needed to define the behavior of the altitude switch and thus are not included in the example.
In systems with complex displays (such as Air Traffic Control systems), it may also be useful to
define various display modes.

Output Message Specification: Everything starts from outputs in SpecTRM-RL. By starting
from the output specification, the specification reader can determine what inputs trigger that
output and the relationship between the inputs and outputs. This relationship is the most critical
in understanding and reviewing a system requirements specification, and therefore saliency of
this information can assist in these tasks. Other state-machine specification languages, such as
RSML and Statecharts, do not explicitly show this relationship, although it can be determined,
with some effort, by examining the specification.

An example output specification is shown in Figure 18. The information included is influenced
by the completeness criteria we previously defined for safety-critical blackbox specifications
[Jaffe et. al 1991, Leveson 1995]. The completeness criteria also play an important role in the
hazard analysis process described in Chapters 3 and 5.

71

The following information can and should be included in the specification of the output message:
destination of the output; acceptable values; timing behavior including any initiation delay or
completion deadline along with any required exception-handling behavior if the deadlines cannot
be met, output load and capacity limitations, etc.; feedback information about how the
controller will determine that the output command has been successfully implemented; and the
identity of any other output commands that reverse this output.

In many systems, it is important to indicate a maximum time in which the output command
remains effective before it is executed. After this time, the output essentially ``times out'' and
should not be executed. This data age information can either be provided in the output message
(if the timeout is implemented by the output command actuator) or included in the reversal
information if the controller must issue a reversal to undo the command's effect. Reversal
information is also useful in identifying accidentally omitted behavior from the specification, i.e.,
most output actions to provide a change in the controlled plant or supervisory interface have
complementary actions to undo that change. References are pointers to other levels of the intent
specification related to this part of the specification and are used for traceability.

Some of this information may not be applicable or important for a particular system. However,
by including a place for it in the specification language syntax, the specifier must either include
it or indicate that the information is not applicable or important. The implementers and
maintainers need to know that these behaviors are not important and why not and also need to
know that it was considered by the original specifiers and not simply forgotten. Lots of
accidents and incidents result from such a lack of consideration of these factors by designers and
implementers.

The conditions under which an output is triggered (sent) can be specified by a predicate logic
statement over the various states, variables, and modes in the specification. In our experience in
specifying complex systems, however, we found that the triggering conditions required to
accurately capture the requirements are often extremely complex. We also found propositional
logic notation did not scale well to complex expressions in terms of readability and error-
proneness. To overcome this problem, we developed a tabular representation of disjunctive
normal form (DNF) that we call AND/OR tables.

The far-left column of the AND/OR table lists the logical phrases of the predicate. Each of the
other columns is a conjunction of those phrases and contains the logical values of the
expressions. If one of the columns evaluates to true, then the entire table evaluates to true. A
column evaluates to true if all of its elements match the truth values of the associated predicates.
An asterisk denotes “don't care.”

72

Figure 18 – Example of an Output Specification

For SpecTRM-RL, we kept the very successful AND/OR tables, but made one addition based on
human factors considerations. We now recommend that the output condition tables be organized
into two parts: an upper part denoting the relevant control modes for that column and a lower

73

part describing any additional conditions for triggering the output. We have found that this
separation assists in completeness checking, particularly when humans are writing and reviewing
specifications. For completeness reasons, every output command column must include a
reference to the control mode(s) under which the command is sent. It is assumed that if a
particular mode is not specified, then the output cannot occur in that mode.

For the altitude switch DOI-Power-On output in the example shown in Figure 18, the command
is triggered (sent) when all the following conditions are true: the altitude switch is in the
operational and not-inhibited modes, the DOI is not on, the altitude is below the threshold, and
the previous altitude was at or above the threshold (the requirements for the altitude switch say
that if the switch is turned off while the aircraft is below the threshold altitude, the DOI is not
powered on again until the aircraft goes above the threshold altitude and again passes down
through it). The Previous built-in function, which is a feature of the underlying formal RSM
model, allows referring to previous values of modes, state variables, inputs, and outputs.
References to time are also allowed in the specification of trigger conditions. An example is
shown later.

Input Definition: Our desire to enforce completeness in the language itself (to satisfy our
completeness requirements) leads to language features that allow the inclusion of information (if
relevant) about input arrival rates, exceptional-condition handling, data-age requirements, etc.
No input data is good forever; after some point in time it becomes obsolete and should not be
used. We provide a special value, obsolete, that an input variable assumes a specified time after
the last value is received for that variable.

In the example shown in Figure 19, the specification states that the value comes from the altitude
field in the DA1-message and is assigned when a message arrives. If no message has arrived in
the past 2 seconds, the previous value is used. If the last message arrived more than 2 seconds
before, the data is considered obsolete. The input variable also starts with the obsolete
(undefined) value upon startup. Because of the similarity of the form of most input definitions,
we may simplify the notation in the future.

When the controller has multiple supervisory modes, these must be specified to denote which
inputs should be used at any particular time.

State Variable Definition: State variable values are inferred from the values of input variables
or from other state variable values. Figure 20 shows a partial example of a state variable
description for the altitude switch.

74

Figure 19 - Example of an Input Specification

75

Figure 20 - Example of an Inferred State Variable Specification

76

As stated earlier, all state variables that describe the process state should include an unknown
value. Unknown is the default value upon startup or upon specific mode transitions (for
example, after temporary shutdown of the computer). This feature is used to ensure consistency
between the computer model of the process state and the real process state upon startup or after
leaving control modes where processing of inputs has been interrupted. By making unknown the
default state value and by assuming the unknown value upon changing to a control mode where
normal input processing is interrupted (for example, a maintenance mode), the use of an
unknown state value forces resynchronization of the model with the outside world after an
interruption in processing inputs. Many accidents have been caused by the assumption that the
process state does not change while the computer is idle or by incorrect assumptions about the
initial value of state variables on startup or restart.

If a model of a supervisory display is included in the specification, unknown is used for state
variables in the supervisory display model only if the state of the display can change
independently of the software. Otherwise, such variables must specify an initial value (e.g.,
blank, zero, etc.) that should be sent when the computer is restarted.

Macros and Functions: Macros, although not strictly necessary, were added to the language for
human factors considerations. They are simply named pieces of AND/OR tables that can be
referenced from within another table. For example, the macro in Figure 21 is used in the
definition of the state variable altitude in the altitude switch example. Its use simplifies the
specification of altitude and thus makes it easier to understand while also simplifying making
changes and enhancing specification reuse. Macros, for the most part, correspond to typical
abstractions used by application experts in describing the requirements and therefore add to the
understandability of the specification. In addition, we have found this feature convenient for
expressing hierarchical abstraction and enhancing hierarchical review and understanding of the
specification. For very complex models (e.g., a flight management system), we have found that
macros are an important tool for humans to be able to handle the complexity involved in
constructing the specification.

Figure 21 - Example of a Macro Specification

77

Rather than including complex mathematical functions directly in the transition tables, functions
may be specified separately and referenced in the tables. In addition, functions are used in
output specifications to define the value computed for the output (e.g., the differential equation
used to define a control law).

The macros and functions, as well as other features of SpecTRM-RL, not only help structure a
model for readability, they also help organize models to enable specification reuse. Conditions
commonly used in the application domain can be captured in macros and common functions can
be captured in reusable functions. Naturally, to accomplish reuse, care has to be taken when
creating the original model to determine what parts are likely to change and to modularize these
parts so that substitutions can be easily made.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

