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Bits and Bucks:
Modeling complex systems by information flow

Seth Lloyd, MIT 3-160, slloyd@mit.edu
Thomas Lloyd, McKinsey Los Angeles

Abstract: This paper presents a general method for modeling and characterizing complex
systems in terms of flows of information together with flows of conserved or quasi-conserved
quantities such as energy or money. Using mathematical techniques borrowed from statis-
tical mechanics and from physics of computation, a framework is constructed that allows
general systems to be modeled in terms of how information, energy, money, etc. flow
between subsystems. Physical, chemical, biological, engineering, and commercial systems
can all be analyzed within this framework.

By their very nature, complex systems resist analysis. Intricate, consisting of many
parts, complex systems often behave in unpredictable and unforeseen ways. For the en-
gineers who design and build complex engineered systems, this inscrutable character of
complex systems is a considerable challenge: how does one engineer a system that is
sufficiently complex to meet an equally complex set of operational requirements, while
maintaining its stability and robustness? A wide variety of techniques have been devel-
oped over the years to cope with the problem of engineering complexity, but there is no
universal method for solving the problems posed by complex engineered systems other
than hard work, attention to detail, and lots of computation and simulation.

This paper presents a formal theory of the behavior of complex systems. This theory
is universal in that it can in principle be used to describe and characterize the behavior
of any complex physical system. Of course, by its very generality, it is far from providing
solutions to the problems of engineering complex systems. Rather, the theory presented
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here is a ‘hopeful’ one: the goal is to present a mathematically well-defined framework that
applies in a straightforward fashion to the analysis of well-known complex systems such
as statistical mechanical systems in physics or game-theoretic models of financial markets,
in the hope that some of the results derived may eventually throw light on some of the
mysterious and inscrutable behavior of complex systems in general. No claims are made
for solving the ‘problem of complexity’ in general.

The basic idea explored here is the trade off between conserved or approximately
conserved quantities such as energy, money, commodoties, etc., and statistically defined
quantitites such as information. First, a framework is developed to describe the causal
structure and probabilistic dynamics of complex physical systems. The framework models
complex systems as information networks in which information and energy/money flow
between subsystems over time. The framework is constructed so as to allow the easy
definition of quantities and flows of information using conventional Shannon information
theory. The information-related part of the framework is closely related to the theory of
Bayesian networks. But unlike Bayesian networks, the framework also allows the quan-
tification of flows of conserved quantities such as energy and money between the parts of
the complex system. Finally, the trade offs between information and money/energy are
investigated in detail, allowing the definition of quasi-thermodynamic quantities analogous
to temperature and measured in dollars or joules per bit.

Take, for example, trading over the internet. Each flow of information (measured
in bits per second) is associated with a flow of energy (measured in watts). The energy
per bit – effectively, a form of temperature – is a crucial quantity in characterizing the
communications performance of the network in the presence of noise and loss. But each bit
can also be associated with a monetary value (bucks), as when the title to some commodity
is transferred electronically to a buyer and an electronic draft to pay for the commodity is
transferred to the seller. The bucks per bit – again, a form of temperature – is a crucial
quantity in deciding whether to buy or sell. Clearly, some bits are worth more than others!

This paper shows that in complex systems that can be accurately described by such a
modeling framework, different structures for interconnects and protocols for exchange can
lead to qualitative and quantitative differences in behavior. In some cases, such as ther-
modynamic systems, stable behavioral equilibria exist and exhibit gaussian fluctuations.
In other cases, such as phase transitions and systems of economic exchange, quasi-stable
or unstable equilibria exist and exhibit power-law fluctuations. Finally, some types of
flows yield no equilibrium at all. The framework makes quantitative predictions for the
efficacy, flexibility, stability, and robustness of complex systems characterized by flows of
information together with energy, money, etc.

The paper proceeds as follows. First, the bits/bucks framework is defined mathemat-
ically: formal definitions are given, theorems are stated, and the analogy to statistical
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mechanics is defined in a relatively precise fashion. The formal treatment is followed by a
series of examples, in which applications for the framework are suggested. The reader who
is not interested in the formal details may wish to skip directly to the examples, with the
usual caveat that fully understanding the results and their implications requires delving
into the mathematics.

1. Information networks
To quantify and relate flows of information and energy/money, it is useful to construct

a ‘space-time’ representation of the behavior of a complex system. In this space-time
picture the behavior of a complex system over time is modeled in the form of a causal
structure represented by a directed graph in which each vertex represents the state of a
subsystem at a given point in time (figures 1 and 2). When the vertices of the graph are
associated with quantities of information and energy/money, and the edges are associated
with flows of these quantities, the graph will be called an information network. The
vertices in the graph represent the states of the various subsystems of the complex system
at different points in time. The information network then represents a ‘space-time’ picture
of the history of a complex system, in analogy in Einstein’s theory of general relativity,
where the behavior of complex gravitational systems is modeled in terms of a directed
graph representing the way in which particle trajectories and interactions are embedded
in space and time.

The space-time picture of a complex system in terms of information networks should
be contrasted with the usual block diagram picture of a complex system. A block diagram
models a complex system as a directed graph in which vertices represent subsystems, and
directed edges represent input/output relationships. The space-time picture of the same
complex system ‘unpacks’ the block diagram over time: a single subsystem is represented
by different vertices, each one representing the state of that subsystem at a different point
in time (figure 3). At each point in time, a cross-section of the space-time graph for the
complex system looks like the original block diagram, with the directed arrows of the
block diagram going from one time step to the next. Clearly, the block-diagram picture of
a complex system is more compact. The information network picture of a complex system
is more flexible: any system that can be described by a block diagram can be described by
an information network, but the converse is not true. In particular, unlike block diagrams,
information networks readily handle complex systems where the dynamics of subsystems,
the input/output relationships between them, and the very decomposition into subsystems
changes over time (figure 4).

2. Mathematical framework
Let us now make this information network framework mathematically precise. We

will use methods of probability and information theory as applied to coupled dynamical

3



systems as developed in (1-2). Model the behavior of a complex system over time as a
directed graph, G = (Vi, Eij). Each vertex Vi of the graph corresponds to a subsystem
at a particular point in time ti. Each directed edge Eij from the i-th vertex to the j-
th vertex represents a path along which information and energy/money can flow (figure
1). To preserve our ordinary notions of causality, flows are directed from past to future.
The graphs are acyclic (no time travel). Let vi label the state of the i’th subsystem at
time ti. Let eij label the state of the edge Eij . Let x(vi) be the quantity of the conserved
quantity x (energy/money) in the i’th subsystem at time ti. (There can be many conserved
quantities, x�, but for the moment just deal with one.) Similarly, let x(eij) be the amount
of the conserved quantity associated with the edge Eij . The vi, eij , and x can be either
continuous or discrete. Conservation of the overall quantity x over time implies that

∑

i

x(eij) = x(vj) =
∑

k

x(ejk), (1)

where the first sum is over inputs i to the vertex j, and the last sum is over outputs k from
the vertex j. (In the interests of compactness, we will always use a discrete notation: if the
variables are continuous, the sums should be replaced by integrals.) That is, conservation
of x leads to a constraint over the possible states of the inputs and outputs to a vertex.

Flows are inherently dynamical. To specify the dynamics of the model in the most
general way possible that respects the causal structure, consider a Markovian dynamics
in which the probabilities that a system is in a particular state at a particular time are
functions of the states of its inputs. That is, p(vj |ei1j ...eimj) is the probability that the
j’th subsystem is in state vj given that its m inputs are in states ei1j ...eimj . Note that the
conservation restrictions imply that

p(vj |ei1j ...eimj) ∝ δ(
∑

i

x(eij) − x(vj)). (2)

Equation (2) shows how the probabilities for a node are to be set as a function of its
inputs. Similarly, let

p(ejk1 ...ejkn
|vj) ∝ δ(x(vj) −

∑

k

x(ejk)) (3)

be the probability that the n outputs of the j’th vertex are in the the states ejk1 ...ejkn given
that the vertex is in the state vj . Equations (2-3) give a Markovian probabilistic dynamics
that respects the conservation constraint (1). Given a set of probabilities for the states of
the initial vertices of the directed graph, equations (2-3) completely determine the joint
probability distribution for the states of all vertices at all times in a way that is familiar from
the theory of Bayesian networks (3). Indeed, an information network can be thought of as
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a Bayesian network in which vertices and edges are associated with conserved quantitites
such as energy and money. A convenient way to visualize the construction of this joint
probability distribution is to imagine events unfolding in time: first, the edges leading from
the initial vertices are assigned probabilities based on the probabilities of the initial vertices
together with the conditional probabilities of equation (3). Then the vertices to which these
edges lead are assigned probabilities for their states according to the joint probabilities of
the edges leading into them together with the conditional probabilities of equation (2). As
time progresses, each vertex and edge is eventually assigned its probabilities in their proper
order within the directed, acyclic graph. The result is a joint probability distribution
p(v1v2 . . . vMej1k1 . . . ejN kN

) for the M vertices and N edges of the graph. This joint
probability distribution contains all dynamic information about the complex system as
modeled in this probabilistic fashion. It contains all correlation functions, information
about flows of information and energy/money, probabilities for future events, etc. This
completes the formal dynamic description.

The simplest example (after the trivial case of a graph with one vertex) is that in which
V1 represents a system at time t1 and V2 represents a system at a later time t2 (figure 2a).
Here the flow along E12 is from a single system at one point in time to the same system at
a later point in time. Similarly, a chain of vertices V1E12V2E23...E(n−1)nVn can represent
the same system at n successive points in time (figure 2b). A graph containing cycles that
represents the flows between subsystems averaged over time can always be expanded into
the correponsing acyclic graph representing flows over time (figure 3).

This framework is potentially very powerful: it can represent the probabilistic dy-
namics of essentially any physical system (discretized in space and time). For example,
the action of a digital computer can readily be mapped onto this framework, where the
vertices represent logic gates, the edges represent wires, and the graph as a whole repre-
sents the wiring diagram for the computation. So this framework can clearly represent
any process that can be simulated on a digital computer. Indeed, if the nodes represent
quantum logic gates, and conditional probabilities are replaced by conditional probability
amplitudes, the framework can be used to represent any computable quantum system, in-
cluding a quantum computer. Since quantum computers can simulate all known quantum
systems to an arbitrary degree of accuracy, this framework is capable of representing an
arbitrary physical dynamics.

The power of the framework renders it necessarily abstract. The usefulness of the
framework for any given system will depend on the ease with which the system’s operation
can be mapped onto the framework, and on the complexity of computing the dynamics
of the resulting model. Below, several examples of this framework will be presented.
First, however, investigate how the framework allows one to measure the tradeoffs between
information and energy/money.
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The probabilistic directed graph allows one to assign a joint probability distribu-
tion p(v1, . . . , vn, e12, . . . e(n−1)n) to the states of all vertices and edges. As a result,
each vertex and edge has a corresponding information, I(Vi) = −∑

vi
p(vi) log2 p(vi),

I(Ejk) = −∑
ejk

p(ejk) log2 p(ejk). Conditional and mutual informations can be defined
similarly. The amount of information flowing onto edge Ejk from vertex Vj is the mutual
information I(Vj : Ejk) = I(Vj)+I(Ejk)−I(Vj , Ejk). Similarly, the amount of information
flowing onto vertex Vk from edge Ejk is the mutual information I(Ejk : Vk). Note that a
vertex can receive the same information from more than one edge. Accordingly, the total
amount of information I(Vk : Ej1k . . . Ejmk) flowing into vertex Vk from its inputs is less
than or equal to the sum of the amounts flowing in from the input edges individually.

The average amount of conserved quantity x each vertex and edge is similarly well
defined, as is the amount flowing into a vertex from an edge and vice versa. The average
amount of conserved quantity x on vertex Vj is 〈xj〉 =

∑
vj

p(vj)x(vj), and the amount on
edge Ejk is 〈xjk〉 =

∑
ejk

p(ejk)x(ejk). The x in a vertex is the sum of the x flowing in.
It is also equal to the sum of the x flowing out. In other words, x is conserved: for any
closed surface surrounding any subset of vertices, the amount of x flowing in is equal to
the amount of x flowing out.

Since the amounts of information and energy/money on each vertex and on each edge
are well-defined, one can define effective temperatures Tj = 〈xj〉/I(Vj), Tjk = 〈xjk〉/I(Ejk)
for each vertex Vj and edge Ejk. In keeping with the notation of statistical mechanics,
define the inverse temperatures βj = 1/Tj , βjk = 1/Tjk. Tj is the average number of bucks
or joules per bit on the j’th vertex, and Tjk is the number of bucks or joules per bit flowing
from j to k. Note that while the usual quantity of temperature in statistical mechanics
is only well-defined for quasi-equilibrium situations, here the temperature is well-defined
everywhere even in situations that are far from equilibrium. Effective temperatures will
prove useful in determining the average direction and quantity of flows of information
between subsystems.

3. Relation to statistical mechanics
To make the connection with statistical mechanics, fluid mechanics, etc., it is helpful

to distinguish between several different types of dynamics. First, deterministic dynamics
make up a useful subset of probabilistic dynamics. In deterministic dynamics, all condi-
tional probabilities are either 1 or 0. Second, a useful subset of deterministic dynamics
includes one-to-one dynamics: in one-to-one dynamics the conditional probability of an
output given an input is 1 for exactly one input, and 0 for the remainder of the inputs.
That is, each state of a vertex has probability 1 for one and only one of the joint states
of its input edges. And each joint state for the set of edges emanating from a vertex
has probability 1 for exactly one state of the vertex. In the case of continuous variables,
one-to-one dynamics should be volume-preserving on the underlying state space, in analog

6



with Liouvillian dynamics in classical mechanics. A third type of useful dynamics con-
sists of probabilistic mixtures of one-to-one dynamics: these are analogs of the familiar
double-stochastic dynamics for Markovian systems.

In fact, only one-to-one dynamics are required to describe all probabilistic systems.
Any probabilistic dynamics can be embedded in a one-to-one dynamics by adjoining a
suitable ‘environment’ and by inducing a one-to-one dynamics for system and environment
(2). The uncertain state of the environment then supplies the fluctuations that drive the
stochastic dynamics, and the environment can absorb information to give a deterministic,
many-to-one dynamics. This situation is familiar from classical statistical mechanics, in
which the underlying dynamics are one-to-one and volume-preserving in phase space. This
fact will be used extensively below.

Now examine the behavior of information and energy/money under these different
types of dynamics. Define V < V ′ if there is a directed path going from the vertex V to
the vertex V ′. The past of V ′ is the set P (V ′) = {V : V < V ′}. Similarly, the future of V

is the set F (V ) = {V ′ : V ′ > V }. A Cauchy surface for the directed, acyclic graph is a set
of vertices C such that no vertex in the set lies in the past or future of another vertex in
the set (in space-time terms, the vertices are ‘spacelike’) and such that all paths from the
past of the vertices in the set to the future of vertices in the set pass through one vertex in
the set (figure 5). A Cauchy surface for the graph is just the analog for a Cauchy surface
in space time. Define C ′ > C if all the vertices in C ′ lie in the future of all the vertices in
C.

Let I(C) be the joint information for all vertices on the Cauchy surface, and X(C)
be the average quantity of energy/money on the surface. Then the following results can
easily be shown. First, X(C ′) = X(C) for all Cauchy surfaces. Second, if the dynamics
are deterministic, C ′ > C → I(C ′) ≤ I(C), with equality if and only if the dynamics are
one-to-one. Third, if the dynamics are double-stochastic (a probilistic mix of one-to-one
dynamics), then C ′ > C → I(C ′) ≥ I(C). This third result corresponds to the increase of
entropy in statistical mechanical systems (figure 6).

The previous results hold only for Cauchy surfaces as a whole — they are global
results. But similar results hold locally. In particular, consider a set of vertices Z, and let
P (Z), (F (Z) ), be the set consisting of the union of the pasts (futures) of all vertices in Z.
It is straightforward to see that X(C ∩ P (Z)) ≥ X(Z) for any Cauchy surface in the past
of Z, and X(C ∩ F (Z)) ≥ X(Z) for any Cauchy surface in the future of Z. Similarly, for
deterministic dynamics, I(C ∩P (Z)) ≥ I(Z) for any Cauchy surface in the past of Z. And
for double-stochastic dynamics, I(C∩F (Z)) ≥ I(Z) for any Cauchy surface in the future of
Z. These relationships merely reflect the conservation of X, the non-increasing nature of I

in deterministic settings, and the non-decreasing nature of I in double-stochastic settings.

From the results of the previous paragraphs, it immediately follows that under de-

7



terministic dynamics, the average information per unit energy/money (bits per buck) de-
creases or remains constant, while under double-stochastic dynamics, the bits per buck
increases or remains constant. Under one-to-one dynamics, the average number of bits per
buck remains constant, though it may go up and down in different parts of the system.

Even though the total information in a system remains constant under one-to-one
dynamics, the sum of the amount of information in different parts of the system is not in
general conserved: I(V1) + I(V2) �= I(V1V2). In fact, I(V1) + I(V2) − I(V1V2) = I(V1 :
V2) ≥ 0 is just the mutual information between the two vertices V1 and V2. In the language
of statistical mechanics, information is a nonextensive quantity. Entropy, by contrast, is
normally taken to be an extensive quantity due to the typically small amounts of mutual
information in statistical mechanical systems. However, as the example of Maxwell’s demon
shows, the non-extensive character of information must be recognized if one is to preserve
the second law of thermodynamics for correlated systems (1,4,5).

Examples

Example 1: statistical mechanics
Now turn to examples. The first example is that of statistical mechanics. Here the

underlying dynamics is one-to-one, in analog with the Hamiltonian dynamics of classical
mechanical systems. Figure 7 applies the information network framework to a heat engine
undergoing a Carnot cycle.

The heat engine consists of two parts, a ‘working fluid’ such as gas in a cylinder, and
an energy storage device such as a flywheel. There are two reservoirs, a hot reservoir at
temperature TH and a cold reservoir at temperature TL. Initially, the working fluid is in
contact with the high-temperature reservoir. In the first step, energy E = kBTHS and
entropy S flow from the high-temperature reservoir to the working fluid, while the working
fluid does work on the energy storage device, for example by expanding to move a piston
that does work on the energy storage device (kB is Boltzmann’s constant). Entropy-laden
energy is heat, and entropy is a form of information — information that we do not possess.
The information inherent in entropy S is I = S/kB ln 2. For the purposes of heat engines,
entropy can be thought of as ‘junk’ information.

In the second step, the working fluid is removed from contact with the high-temperature
reservoir, and more work is extracted from it (e.g., by further expansion, now adiabatic),
cooling it to temperature TL. The working fluid is now put in contact with the low-
temperature reservoir and compressed using energy stored in the energy storage device.
During the compression process, the fluid transfers entropy S (information I = S/kB ln 2)
and energy E = kBTLS (heat) to the low-temperature reservoir. Finally, the fluid is
removed from contact with the low-temperature reservoir and adiabatically compressed
using energy from the energy storage device to restore it to the original temperature TH .
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The Carnot cycle is now complete: heat kBTHS is extracted from the high-temperature
reservoir, energy kB(TH −TL)S is converted to work, waste heat kBTLS is deposited in the
low-temperature reservoir, and entropy S is pumped from the high-temperature reservoir
to the low-temperature reservoir.

The information network picture of the Carnot cycle clearly reveals the flows of energy
and information/entropy in the course of the engine’s operation. In the idealized Carnot
cycle, entropy is conserved. In any real Carnot cycle entropy will in fact increase: typically
this happens because some of the underlying dynamic processes are double stochastic. The
information network framework can readily be applied to arbitrary statistical mechanical
systems. It is particularly useful for dealing with tradeoffs between information and en-
tropy, as in the case of Maxwell’s demon. In such cases, information networks provides the
proper accounting of the trade off between information and entropy required to preserve
the second law of thermodynamics. If the reader desires excercise in the use of infor-
mation networks to characterize statistical mechanical systems, he or she may construct
an information network to characterize flows of information, energy, and entropy in the
quantum-mechanical Maxwell’s demon of reference (5), and verify that the second law of
thermodynamics is indeed preserved in this case.

It is not surprising that the information network framework reproduces conventional
statistical mechanics, as it was developed specifically to construct a fully-information the-
oretic picture of nonequilibrium statistical mechanics. (The application of information
networks to nonequilibrium statistical mechanics will be explored elsewhere.) Information
networks are also useful in describing trade offs between information, controllability and
observability in feedback control (2). Now we apply information networks to game theory
and economic models — to the trade off between bits and bucks.

Most games and economic systems can be modeled as interactions between agents
(individuals, corporations, etc.) that are the subsystems of the overall complex economic
system. Agents exchange information and money, as well as additional commodities. First
look at the case of games where only information and money change hands. Set up an
information network representing the different players and their interactions with eachother
and with the overall game. Then analyze the flows of information and rewards (money)
over the course of the game.

Example 2: a simple game
As an example, consider the following simple game. Two players bet on the outcome

of a coin. Before each coin flip, each player bets part of their money on heads and the
remainder on tails. If heads comes up, the total money is redistributed between the
players in proportion to the amount that they bet. The coin may be fair or weighted. An
information net describing this game is shown in figure 8. This game has been studied in
detail (6). If the coin is weighted so that the probability of heads is p and the probability
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of tails is 1−p, then the long-range optimum strategy is to bet a fraction p of one’s money
on heads and the remainder on tails. Interestingly, the long-term optimal strategy is not
the one that maximizes one’s average return: the maximum average return strategy is to
bet all one’s money on the most likely outcome. But unless p = 1 or 0, betting all one’s
money on one outcome will leave one broke very rapidly in all cases except the one in
which one has luckily guessed right every time. The strategy of betting a fraction p of
one’s money on heads maximizes one’s profit on the sequences of coin flips with measure
one, in which heads occur with frequency p and tails occur with frequency 1 − p.

The coin-flip game has a simple information-theoretic description in the long term (6).
If player one bets a fraction q1 of her money on heads at each flip and player two bets a
fraction q2 of his on heads, then after n flips the expected amounts of money m1, m2 of
the two players obeys the following formula:

〈log m1/m2〉 = n
(
p log q1/q2+(1−p) log(1−q1)/(1−q2)

)
= −n(∆(q1 : p)−∆(q2 : p)), (1)

where ∆(q : p) = −p log q/p − (1 − p) log(1 − q)/(1 − p) is the Kullbach-Liebler distance
between the probability distributions with p for heads and q for heads. The Kullbach-
Liebler distance is an entropy-like quantity that is minimized for q = p. In other words:
the player who wins in the long run is the one whose bets match most closely the actual
probabilities of the weighted coin. The rate at which she profits over her less knowledgeable
opponents is governed directly by an information-like quantity.

The coin-flip game is the basis for the theory of axiomatic gambling (6) and can
be made very general: the probabilities for outcomes of coin flips can depend on the
outcomes of previous flips, or the coin can have a predetermined but difficult to analyze
sequence of outcomes. No matter how complicated the sequence becomes, the relative
degree of profit of the individual players is still governed by the information theoretic
formulae of equation (1). This result is confirmed by the information network picture.
Here the probabilistic dynamics of the information network can be solved exactly as a
Markov process. A decomposition of the probabilities for the different outcomes in terms
of the eigenvectors and eigenvalues of this Markov process confirm (as they must) the
results of the previous paragraph. The coin flip game is an example of a game where the
interaction of the players with an underlying probabilistic process (coin flipping) results in
an allocation of money that is directly dependent on information theoretic quantities.

Because of the relative simplicity and closed form solution of the coin-flipping game,
the analysis in terms of information networks adds little to the existing treatment. But it
is useful to try out the framework on existing systems for which closed form solutions exist,
simply to verify that the framework functions properly, as it does here. The usefulness of
information networks arises when the game is more complicated, and one wishes to extract
general features of the behavior of the players. The situation is very much like that of
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non-equilibrium statistical mechanics, in which one wishes to extract general features such
as energy flows and entropy production from the complicated behavior of the individual
degrees of freedom of the system.

A natural domain where information networks may be able to contribute is the case
of complicated, multi-player games that offer the opportunity for exchanges of information
and cooperation between players. In such a game, the average profit of a group of players
is typically increased by cooperation and exchange of information (it cannot be decreased
by cooperation for the simple reason that one possible group strategy is not to cooperate
or exchange information!). Take for example the case of two players: if they have a jointly
more profitable strategy, then one can assign a value to the bits of information exchanged
in the course of collaboration. This value, measured in bucks per bit, is once again a
temperature-like quantity. If the game has a Nash equilibrium, in which neither player
has an incentive to break their cooperative agreement, the information network picture of
the game possesses a stable dynamics: the Nash equilibrium corresponds to an eigenvector
of the Markovian dynamics of the information net with non-degenerate eigenvalue one.
But if the game has no Nash equilibrium, as the case for the well-known game Prisoner’s
Dilemma, then the information net picture will not in general possess a stable dynamics for
strategies that have no memory of past behavior. But such games can possess stable time-
dependent strategies, as in the ‘Tit for Tat’ strategy in Prisoner’s Dilemma. Information
networks provide a natural framework for examining such strategies, as they allow for
arbitrarily complicated time-dependent probilistic strategies. For example, in the context
of information networks, it may be possible to prove the stability of Tit for Tat as a strategy
for time-dependent Prisoner’s Dilemma.

To prove the existence of a time-dependent Nash equilibrium for a game such as Pris-
oner’s Dilemma in the context of information networks requires the investigation of the
Markovian dynamics corresponding to the game for n time steps to look at the properties
of eigenvalues and eigenvectors of this dynamics. In a Markovian system, the dominant
eigenvalue has value 1. For the system to be stable under perturbations to the equilibrium
behavior (for example, a change in strategy by one of the players), the equilibrium prob-
ability distribution for the system must correspond to the dominant eigenvector and the
dominant eigenvalue must be nondegenerate.

To summarize, information nets provide a natural way to map games to probabilistic
dynamical systems. Accordingly, one can investigate the possibility of stable strategies in
games by analyzing the stability of the fixed points of the information net dynamics.

Example 3: a complex game
Now turn to a more entertaining game, for which closed form optimal solutions are

not known to exist. Consider n interacting agents. The k’th agent begins with money $k

and with a quantity xk of the commodity x. Both the amounts of money and the amounts
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of the commodity are conserved over all agents. Agents can exchange money, information,
and quantities of x between eachother. For example, an agent can offer to pay a certain
amount of money in a return for a certain amount of the commodity. Or an agent can
sell information to another agent in the form of an option to purchase a certain amount
of the commodity at a certain price at some point in the future. The goal of the agents is
to assemble the maximum amount of money and the maximum amount of the commodity
possible, though different agents may have different goals for the proportions of money
and commodity that they seek. Call this game the market game (figure 9).

For the purposes of the market game, it is useful to think of information in terms not
only of Shannon information, but also in terms of actual messages that can be sent from
one agent to another. The information content of a message can be measured in terms
of algorithmic information content (7) — the length of the shortest program in a suitable
computer language that specifies the content of the message. Algorithmic information
content is a useful surrogate for Shannon information in cases where the probabilities for
different messages are not easily obtainable.

For the market game, the flexibility of information networks is allows one to capture
fluid relationships between different agents, the addition and departure of agents from the
game, and varying strategies for different agents at different times. The market game
is a complex game in which the optimum strategy is not known. Note that the game
is complicated by the possibility of credit: one agent may loan money or commodity to
another player in return for a promise to pay back more at a later date. Accordingly, an
agent can end up with a negative balance sheet, with more obligations than assets. Many
common strategies for profiting from actual markets can be mapped with little change to
the market game.

If the agents in the market game all adopt simple strategies then market equilibria
may exist, as in the case where each agent desires a ratio of money to commodity equal to
the total amount of money divided by the total amount of commodity. (This ratio is the
‘natural price’ of the commodity.) Each agent will buy at the natural price if they have too
little of the commodity and sell at the natural price if they have too much. Here the price
remains constant and equilibrium is attained after a period of buying and selling. The
information network picture of this process is straightforward: agents interact in randomly
selected pairs and exchange a few bits of information (‘buy an amount up to x’ or ‘sell an
amount up to y’). If one wishes to buy and the other wishes to sell, then they exchange
the maximum desired amount. The process continues until no more transactions can take
place. The Markovian dynamics of this information net is simple and stable, and converges
to a distribution in which each agent has the same ratio of money to commodity.

Similarly, if each agent has a different desired ratio of money to commodity and is
willing to buy or sell at a price that sends their actual ratio of money to commodity
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closer to their desired ratio, then a stable market equilibrium will also be established. The
information network now possesses a more complicated Markovian dynamics, though the
dominant eigenvalue is still nondegenerate, indicating the stability of the dynamics. But
if agents have more complicated goals and strategies, then simulations of artificial stock
markets suggest that the market game will in general exhibit complex behavior, including
booms, busts, and bubbles.

How can we analyze the market game using information networks? First, construct
an information network representing the individual agents and their interactions with
eachother. It may be useful, for instance, to imagine a special agent such as a market
maker who collects bids and and offers and who matches up buyers and sellers. The actual
dynamics of a particular game will depend sensitively on the set of strategies allowed.
For the simple cases above in which each agent buys at a price below what that agent
considers to be the natural price, and sells above that price, then the dynamics are simple
and stable. But if agents adopt more complicated strategies of betting on trends of prices,
then the artificial stock market results show that the system exhibits complex behavior.
If the agents are allowed to exchange information in the form of contracts (loans, options,
etc.), then the behavior is more complex still. The hope of introducing an information
network analysis is to see if one can characterize a variety of these complex behaviors in
terms of flows of information, money, and commodities.

For example, one might attempt to reproduce the spectrum of price fluctuations in
artificial stock markets by analyzing the stability of Markovian dynamics of the market
game’s information network. There is evidence that real and artificial stock markets ex-
hibit a scale-free (power-law) spectrum of fluctuations. Such spectra arise in statistical
mechanics at critical points such as phase transitions. An information network can exhibit
such behavior if the dominant eigenvalue of the Markovian dynamics is non-degenerate, so
that perturbations of the system can cause it to move among the various behaviors cor-
responding to the different eigenvectors of the dominant eigenvalue. We are investigating
the stability of information networks for the market game under a variety of strategies for
the individual agents.

Like statistical mechanics, the market game admits natural notions of temperature.
When two agents get together, they communicate to determine if they are willing to
exchange commodity, information, and money. For example, if agent one is willing to pay
an amount of money up to $1(x) for an amount of commodity x, and agent two is willing
to sell an amount x at a price $2(x) then the two agents have a deal for exchanging the
amount x such that $1(x) = $2(x). The price, $i/x, is a temperature-like quantity, and two
agents who assign different prices to a quantity will in general offer and counter offer until
they attain a common equilibrium price where the two ‘temperatures’ $1/x and $2/x are
the same (as in the normal micro-economic picture of markets). The market game evolves
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by pairs of agents coming to equilibrium with eachother (figure 10). Nontrivial dynamics
arise when the strategies of agents involve predicting the future dynamics of the price as
a function of past and current prices.

Similarly, agents can attach a price to information, so that agent 1 can be willing to
exchange money for information that is possessed by agent 2. This information could be a
promise to repay a higher amount of money at a later time (a loan), a signature on a check,
or insider information about a transaction to occur. The primary difference between the
exchange of a commodity for money and the exchange of information for money is that
agent 2 can sell the information to agent 1 while retaining a copy of the information. This
feature leads to quite different dynamics for the sale of information than for a commodity
(although some pieces of information, like dollar bills, can have a relatively constant value).
We are also investigating the price of information in the market game.

Discussion
This paper presented a basic formalism for information networks. Information net-

works are a formalism for analyzing systems that evolve by exchanges of information and
conserved quantities such as energy and money. Information networks are a very general
formalism that can be applied to virtually any physical system. A number of examples were
suggested in which information networks might be able to elucidate a variety of apparently
complex behaviors. Whether or not they will prove effective in capturing complex behavior
remains to be seen, but information networks potentially allow one to extend techniques
that have been successful in statistical mechanics and information processing to problems
of complexity in general.
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Figures

(1) An information network. Vertices represent states of subystems at different points in
time. Edges represent flows of information and conserved quantities such as energy and
money between subsystems.

(2) Information networks for single (non-complex) systems. (2a) represents a single system
at two points in time. (2b) represents a system at multiple points in time.

(3) A block diagram (bottom) and the corresponding information network. The informa-
tion network ‘unpacks’ the block diagram at successive instants in time The feedback loop
in the block diagram becomes a closed loop in the information network.

(4) An information network for a complex system whose subsystems together with the
relationships between them change over time. Initially, the system is composed of two
interacting subsystems, A and B. Then A and B cease to interact, A ceases to exist, and
a new subsystem C appears and sporadically interacts with B.

(5) A ‘Cauchy surface’ for an information network divides the past from the future and
contains all information about the entire system at one point in time. A Cauchy surface
can be thought of as a ‘spacelike slice’ of a complex system.

(6) The intersection of a Cauchy surface (dashes) with the set of points in the future of V1

and V2 (dots). The amount of energy/money on the intersection is greater than or equal
to the amount of energy/money on V1 and V2. If the system has a one-to-one dynamics,
then the points on the intersection contain all information about V1 and V2.

(7) An information network picture of a Carnot cycle. The working fluid absorbs heat
THS from a reservoir at high temperature TH , doing work on an energy storage device in
the process. Then the fluid is removed from contact with the high-temperature reservoir
and expanded further, doing more work and having its temperature reduced to TL. Now
the energy storage device does work on the working fluid, compressing it to drive heat TLS

to the low-temperature reservoir. Finally the working fluid is removed from contact with
the reservoir and compressed further until it reaches temperature TH . The Carnot cycle
is complete, and energy (TH − TL)S has been stored in the energy storage device, while
pumping entropy S from the high-temperature reservoir to the low-temperature reservoir.

(8) An information network for the coin-tossing game. Players A and B each bet part
of their money on heads and the remainder on tails. In the network this flow of money
and information is represented by the edges between A and B and the coin tosser. The
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coin is tossed, and the money distributed to A and B in proportion to the amount that
they bet on the winning outcome. This information net shows each of the flows of money
and information, including the information about past successes and failures that A and
B retain.

(9) The market game. In the market game, agents can exchange information, money, and a
commodity x. This piece of an information network shows two transactions in the market
game. In the first, agents B and C exchange information (e.g., prices), and on the basis of
that information decline to make a transaction. In the second, agents A and B exchange
information, and on the basis of that information A sells B a quantity of commodity x for
an amount of money $.
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