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1 Introduction

The use of on-shell helicity amplitudes has proved fruitful for the study of scattering am-

plitudes in gauge theories and gravity (see e.g. [1–4] for pedagogical reviews). By using

external states of definite helicity, gauge redundancies are removed and the underlying

symmetries of the theory are made manifest. Helicity based techniques have also proved

to be a powerful organizing principle for studying operator bases in effective field theories.

Recently this has been demonstrated by the use of helicity arguments [5] to determine the

pattern of non-renormalization for dimension 6 operators in the Standard Model effective

theory [6], as well as for constructing hard scattering operator bases for collider processes [7]

in the Soft Collinear Effective Theory (SCET) [8–11].

Effective field theories provide an important tool for studying gauge theories, where

simplified or universal behavior often appears in specific limits. They allow for a systematic

expansion that enables questions about subleading corrections to be rigorously studied. Of

particular interest, both theoretically and phenomenologically, are the soft and collinear

limits of gauge theories. The behavior of amplitudes [12] and cross sections in the soft and

collinear limits, and the factorization theorems [13–16] describing their behavior in these

limits, have primarily been studied at leading power in the expansion. The leading soft and

collinear limits give rise to the leading singular behavior of collider observables. Examples

include the 1/τ terms for thrust [17, 18], which dominate in the τ → 0 limit, or the

1/(1−z) terms for threshold resummation [19, 20], which dominate in the limit z → 1 (here

z = Q2/ŝ, with Q2 the invariant mass of the final state and ŝ the center-of-mass energy).

An understanding of the subleading soft and collinear limits is also of considerable interest,

both at the amplitude level, for understanding the subleading behavior of gauge theory and

gravity amplitudes [21–36], and at the cross section level [37–50], where they determine the

structure of the O(τ0) corrections for thrust and the O((1−z)0) corrections in the threshold

expansion, and allow questions about the universality of these terms to be addressed. An
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Figure 1. Example of scattering amplitudes with energetic particles in four distinct regions of

phase space, at leading power in a) and b), and subleading power in c) and d). There is an extra

collinear gluon in a) from splitting, and in b) there is an extra gluon from soft emission. In c)

the extra energetic gluon is collinear with the quark, but occurs without a nearly onshell parent

propagator. Likewise in d) the extra soft emission amplitude is subleading.

example of the type of amplitudes that are described at leading and subleading power

are shown in figure 1. For leading power amplitudes with an extra collinear or soft gluon

emission, such as those in figure 1a,b, the extra gluon is accompanied by the enhancement

from an additional nearly onshell propagator. In contrast, in the subleading amplitudes in

figure 1c,d we have an extra gluon emission without this enhancement.

SCET is an effective field theory describing the dynamics of collinear and soft particles

in the presence of a hard scattering interaction with a systematic expansion in a power

counting parameter λ � 1. It can be used to study both the leading and subleading

corrections in soft and collinear limits, and several SCET analyses have been performed at

subleading power [34, 37–40, 46, 47, 51–61]. Collinear modes in the effective field theory

are expanded about the lightlike direction of jets, shown as dashed circles in figure 1, and

the fields describing these modes carry a lightlike reference vector with respect to which

helicities can be naturally defined. Instead of considering operators formed from Lorentz

and Dirac structures, each of which contributes to multiple states with different helicity

combinations, one can use helicity fields associated with external states of definite helicity

with respect to the jet axes [7]. Using helicity based building blocks to construct operators

greatly simplifies finding a minimal operator basis for processes with many active partons,

and facilitates the matching to fixed order calculations which are often performed using

spinor helicity techniques [1–4].

In this paper, we show that helicity operators also greatly facilitate the study of sub-

leading power corrections in SCET. We develop a complete set of collinear and soft gauge

invariant helicity building blocks, valid for constructing operators at any order in the power

expansion. The use of these helicity building blocks greatly simplifies the construction of

a complete subleading power operator basis in the effective theory, and makes various

symmetries manifest. Additionally, it eliminates the need to consider equation of motion

relations to remove redundant operators. The subleading helicity operators obey interest-

ing (and simple) angular momentum selection rules, which we discuss. In a companion

paper [62], we will provide a more detailed discussion of various aspects of these subleading

helicity operators, including the construction of a complete basis of operators for processes

involving two collinear directions to O(λ) and O(λ2) in the power expansion.

– 2 –
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Below in section 2 we review salient features and notation from SCET with and without

helicity operators. In section 3 we derive the complete set of helicity building blocks that are

required for constructing operators at any order in the SCET power expansion. We carefully

treat both collinear and soft degrees of freedom, and describe how the helicity basis is also

convenient for organizing color degrees of freedom, including the soft Wilson lines arising

from eikonalized particles participating in the hard scattering. In section 4 we discuss angu-

lar momentum selection rules which play an important role at subleading power when mul-

tiple collinear fields are present in the same collinear sector. These rules can significantly

reduce the number of operators in the basis for a given process. In section 5 we demon-

strate the utility of the helicity building blocks by constructing an operator basis involving

two collinear quark fields, and two collinear gluon fields with two hard scattering directions

(relevant for applications to Drell-Yan, e+e− → dijets, or DIS). We conclude in section 6.

2 SCET and helicity fields

SCET is an effective field theory describing the dynamics of collinear and soft particles

in the presence of a hard interaction [8–11, 63]. The collinear particles are energetic and

collimated along jet directions, while the soft particles describe low energy radiation emitted

from the jets. We employ two light-like reference vectors for each collinear direction, nµi and

n̄µi such that n2
i = n̄2

i = 0 and ni·̄ni = 2. A typical choice is nµi = (1, ~ni), n̄
µ
i = (1,−~ni) where

~ni is a unit three-vector. Given a nµi and n̄µi , any four-momentum p can be decomposed as

pµ = n̄i ·p
nµi
2

+ ni ·p
n̄µi
2

+ pµni⊥ . (2.1)

An “ni-collinear” quark or gluon has momentum pµ close to the ~ni direction, so that the

components (ni · p, n̄i · p, pni⊥) ∼ Q(λ2, 1, λ), where Q is the scale of the hard scattering.

Here λ� 1 is a small parameter determined by the form of the measurement or kinematic

restrictions under consideration. Soft particles have a homogeneously small scaling for

their momentum components, which is typically given by pµ ∼ λ2 (termed ultrasoft) or

pµ ∼ λ (termed soft), again depending on the type of measurement. For convenience we

will predominantly concern ourselves with SCETI where the dynamics is dominated by

collinear and ultrasoft particles. To ensure that two different directions ni and nj refer to

distinct collinear sectors, they have to be well separated, meaning ni ·nj � λ2 for i 6= j [63].

Two different reference vectors, ni and n′i, with ni · n′i ∼ O(λ2) both describe the same

jet and corresponding collinear physics. Thus, each collinear sector can be labelled by any

member of a set of equivalent vectors, {ni}. This freedom is manifest as a symmetry of

the effective theory known as reparametrization invariance (RPI) [52, 53].

SCET is formulated as an expansion in powers of λ, and has manifest power counting

at all stages of a calculation. A momentum space multipole expansion is used to construct

the effective theory, and is carried out by expanding momenta into label and residual

components with respect to the reference vector

pµ = p̃µ + kµ = n̄i ·p̃
nµi
2

+ p̃µni⊥ + kµ . (2.2)

– 3 –
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Here, n̄i ·p̃ ∼ λ0 and p̃ni⊥ ∼ λ are the large label momentum components, while kµ ∼ λ2 is a

smaller residual momentum. The full theory quark and gluon fields are expanded to obtain

fields with momenta of definite scaling, namely collinear quark and gluon fields for each

collinear direction, as well as ultrasoft quark and gluon fields. Independent ultrasoft and

collinear gauge symmetries are enforced on the theory, and enable the distinction between

collinear and ultrasoft gluon modes [11].

The SCET fields for ni-collinear quarks and gluons, ξni,p̃(x) and Ani,p̃(x), are labeled

by their collinear direction ni and their large momentum p̃. They are typically written

in position space with respect to the residual momentum and in momentum space with

respect to the large momentum components. The large label momentum is obtained from

the label momentum operator Pµni , e.g. Pµni ξni = p̃µ ξni [10]. For later convenience, we

define Pni = n̄i ·Pni , which picks out the large momentum component. Derivatives acting

on the fields pick out the residual momentum dependence, i∂µ ∼ kµ ∼ λ2Q. The ultrasoft

degrees of freedom in the effective theory are described by fields qus(x) and Aus(x) without

label momenta. They are able to exchange residual momenta between the jets in different

collinear sectors.

The SCET Lagrangian is expanded as a power series in λ

LSCET = Ldyn + Lhard = +
∑
i≥0

L(i) +
∑
i≥0

L(i)
hard , (2.3)

where the superscript (i) denotes objects at O(λi) in the power counting. Here the L(i)

describe the interactions of ultrasoft and collinear paraticles within the effective theory,

with the dynamics being dominated by the leading power Lagrangian L(0). Expressions for

the leading power Lagrangian can be found in [11], and expressions for L(1), and L(2) can be

found in [56] (see also [51–55]). Particles that exchange large momentum of O(Q) between

different jets are off-shell by O(ni ·njQ2). These are integrated out by matching QCD onto

SCET to give hard scattering operators O(i) that appear in L(i)
hard. The hard scattering

operators are formed from collinear and ultrasoft gauge invariant products of collinear and

ultrasoft fields, along with derivative operators and Wilson lines. It is convenient to work

with a minimal set of collinear gauge invariant operators, which are referred to as collinear

building blocks. Using the equations of motion and Wilson line identities, it can be shown

that a complete set of collinear and ultrasoft building blocks for the SCETI hard scattering

operators O(i) at any order in the power counting are given by [64]:

Operator Bµni⊥ χni Pµ⊥ qus Dµ
us

Power Counting λ λ λ λ3 λ2
(2.4)

Here the ultrasoft quark field qus and covariant derivative iDµ
us = i∂µ + gAµus are the same

as in a standard gauge theory. The collinear gauge invariant building blocks for collinear

quarks/antiquarks and gluons, each with two spin states, are defined as

χni(x) = W †ni(x) ξni(x) , Bµni⊥(x) =
1

g

[
W †ni(x) iDµ

ni⊥Wni(x)
]
. (2.5)

– 4 –



J
H
E
P
0
5
(
2
0
1
6
)
1
3
9

Here the derivative iDµ
ni⊥ = Pµni⊥+ gAµni⊥ acts only within the square brackets. To ensure

uniform power counting we decompose derivatives acting on an ni-collinear field in terms

of the ni, n̄i basis, so the fact that ⊥ means perpendicular to ni and n̄i is always clear

from the context and we can write Pµni⊥ as Pµ⊥ . The collinear Wilson lines appearing in

eq. (2.5) are defined as

Wni(x) =

[ ∑
perms

exp
(
− g

Pni
n̄·Ani(x)

) ]
. (2.6)

Only the Pµ⊥ derivative is needed in eq. (2.4) since ini · ∂ can be eliminated with the

equations of motion. The power counting given in eq. (2.4) is determined by demanding that

the leading power action for the SCET fields is O(λ0). The power counting for a composite

operator is obtained by adding up the powers for the building blocks it contains. When

building hard scattering operators it is often convenient to specify the O(λ0) momentum

of the collinear building blocks, via a ω momentum label χni,ω =
[
δ(ω − Pni)χni

]
and

Bµni⊥,ω =
[
δ(ω + Pni)B

µ
⊥,ω
]
.

Since the building blocks in eq. (2.4) carry vector or spinor Lorentz indices they must be

contracted to form scalar operators, which involves the use of objects like {nµi , n̄
µ
i , γ

µ, gµν ,

εµνστ}. For operators describing many jet directions or for operators at subleading power,

constructing a minimal basis in this manner becomes difficult. Rather than dealing with

contractions of vector and spinor indices, one can exploit a decomposition into operators

with definite helicity, and work with building blocks that are scalars.1 For SCET operators

this approach was formalized in [7] by defining helicity building block fields for the con-

struction of leading power operators for jet processes. It takes advantage of the fact that

collinear SCET fields are themselves collinear gauge invariant, and are each associated with

a fixed external label direction with respect to which helicities can naturally be defined.

We will follow the notation and conventions of [7]. We first define collinear gluon and quark

fields of definite helicity as

Bai± = −ε∓µ(ni, n̄i)Baµni⊥,ωi , (2.7a)

χαi± =
1 ± γ5

2
χαni,−ωi , χ̄ᾱi± = χ̄ᾱni,−ωi

1 ∓ γ5

2
, (2.7b)

where a, α, and ᾱ are adjoint, 3, and 3̄ color indices respectively, and by convention the

ωi labels on both the gluon and quark building block are taken to be outgoing. Using the

standard spinor helicity notation (see e.g. [1] for an introduction) we have

|p〉 ≡ |p+〉 = PR u(p) , |p] ≡ |p−〉 = PL u(p) , (2.8)

〈p| ≡ 〈p−| = sgn(p0) ū(p)PR , [p| ≡ 〈p+| = sgn(p0) ū(p)PL ,

with p lightlike, PL = (1 − γ5)/2 and PR = (1 + γ5)/2. The polarization vector of an

outgoing gluon with momentum p can be written

εµ+(p, k) =
〈p+|γµ|k+〉√

2〈kp〉
, εµ−(p, k) = −〈p−|γ

µ|k−〉√
2[kp]

, (2.9)

1Generically when we say scalar building blocks, we are not accounting for their transformations under

parity. Constraints from parity transformations are easy to include, see [7].
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where k 6= p is an arbitrary light-like reference vector, chosen to be n̄i in eq. (2.7a). The low-

est order Feynman rules for these fields are simple. For example, for an outgoing gluon with

polarization ±, momentum p (p0 > 0), and color a we have 〈ga±(p)|Bbi±|0〉 = δabδ̃(p̃i − p),
while for an incoming quark (p0 < 0) with helicity ± and color α we have

〈
0
∣∣χβi±∣∣qᾱ±(−p)

〉
=

δβᾱ δ̃(p̃i − p) |(−pi)±〉ni . Here we define the spinors with an SCET projection operator by

|p±〉ni ≡
/ni /̄ni

4 |p±〉 and the δ̃(p̃i−p) indicate that the momentum label in the building block

field matches that of the state. The full set of Feynman rules are given in [7].

To take advantage of the fact that fermions always come in pairs, ref. [7] defined the

currents

J ᾱβij± = ∓

√
2

ωi ωj

εµ∓(ni, nj)

〈nj ∓ |ni±〉
χ̄ᾱi± γµχ

β
j± , (2.10)

J ᾱβij0 =
2√

ωi ωj [ninj ]
χ̄ᾱi+χ

β
j− , (J†)ᾱβij0 =

2√
ωi ωj〈ninj〉

χ̄ᾱi−χ
β
j+.

These currents are manifestly invariant under the RPI-III symmetry of SCET, which takes

nµi → eαnµi and n̄µi → eαn̄µi , since ωi ∼ n̄i and the |ni〉 ∼
√
ni. In general these currents

consist of two spin-1/2 objects whose spin quantum numbers are specified along different

axes, n̂i and n̂j . If we consider back-to-back collinear directions n and n̄, then the two axes

are the same, and these currents have definite helicity, given by

h = ±1 : J ᾱβnn̄± = ∓
√

2

ωn ωn̄

εµ∓(n, n̄)

〈n̄∓ |n±〉
χ̄ᾱn± γµχ

β
n̄± , (2.11)

h = 0 : J ᾱβnn̄0 =
2√

ωn ωn̄ [nn̄]
χ̄ᾱn+χ

β
n̄− , (J†)ᾱβnn̄0 =

2√
ωn ωn̄〈nn̄〉

χ̄ᾱn−χ
β
n̄+.

The currents J ᾱβnn̄± have helicity h = ±1 along n̂ respectively. The current J ᾱβnn̄0 + (J†)ᾱβnn̄0

transforms as a scalar under rotations about the n axis, i.e. has helicity zero (while the

current J ᾱβnn̄0 − (J†)ᾱβnn̄0 transforms as a pseudoscalar). We choose to use the 0 subscript in

both the back-to-back and non-back-to-back cases, to emphasize the helicity for the former

case and conform with our notation for subleading currents below.

Together, the gluon building blocks Bai± and the current building blocks J ᾱβij±, J ᾱβij 0, and

(J†)ᾱβij 0 suffice for the construction of leading power operators for all hard processes. (The

only exceptions are hard processes that start at a power suppressed order.) All these objects

behave like scalars under the Lorentz group, and can trivially be combined to form hard

scattering operators by simple multiplication. The construction of leading power operators

of this type was the focus of [7]. We review below the organization of color structures in the

leading power hard scattering operators and the decoupling of soft and collinear degrees of

freedom using the BPS field redefinition. Then, in the next section we will extend this basis

of building block objects to account for new structures that can appear at subleading power.

The effective Lagrangian for hard scattering operators at any given order in the power

counting, L(j)
hard, can be separated into a convolution between Wilson coefficients ~C encoding

hard physics with p2 ∼ Q2, and on-shell physics encoded in SCET operators ~O. In the

hard scattering Lagrangian, the structure of SCET only allows convolutions between ~C

– 6 –
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and ~O in the collinear gauge invariant O(λ0) momenta ωi,

L(j)
hard =

∑
{ni}

∑
A,{λj}

[ `A∏
i=1

∫
dωi

]
~O

(j)†
A{λj}

(
{ni};ω1, . . . , ω`A

)
~C

(j)
A{λj}

(
{ni};ω1, . . . , ω`A

)
. (2.12)

The operators ~O
(j)
A are traditionally constructed from the SCET building blocks in eq. (2.4),

whereas here we will use helicity building blocks. The hard process being considered

determines the appropriate collinear sectors {ni}, and the relevant helicity combinations

{λj}, which are a series of ±s and 0s, {λj} = +− 0 + 0 + · · · . Different classes of operators

are distinguished by the additional subscript A. which encodes all relevant information

that is not distinguished by the helicity labels, such as particle content. This A is also

used to label the number of convolution variables `A. The number of ωi’s depends on the

specific operator we are considering since at subleading power multiple collinear fields can

appear in the same collinear sector and we must consider the inclusion of ultrasoft building

blocks with no ωi labels. At leading power the operators ~O†A{λj} are given by products

of the gluon and quark helicity building block operators in eqs. (2.7a) and (2.10). The

Wilson coefficients ~C
(j)
A{λj} appearing in eq. (2.12) are O(λ0), and can be determined by

a matching calculation. They are vectors in an appropriate color subspace. Since we will

use building blocks that are simultaneously gauge invariant under collinear and ultrasoft

transformations, the constraints of SCET gauge invariance are reduced to that of global

color, making it simple to construct a color basis for these objects. Decomposing both the

coefficients and operators in terms of color indices following the notation of [7], we have

Ca1···αnA{λj} =
∑
k

CkA{λj}T
a1···αn
k ≡ T̄ a1···αn ~CA{λj} ,

~O†A{λj} = Õa1···αnA{λj} T̄
a1···αn , (2.13)

and the color space contraction in eq. (2.12) becomes explicit, ~O†A{λj}
~CA{λj} =

Õa1···αnA{λj} C
a1···αn
A{λj} . In eq. (2.13) T̄ a1···αn is a row vector of color structures that spans the

color conserving subspace. The ai are adjoint indices and the αi are fundamental indices.

The color structures do not necessarily have to be independent, but must be complete. This

issue is discussed in detail in [7]. Color structures which do not appear in the matching at a

particular order will be generated by renormalization group evolution. (For a pedagogical

review of the color decomposition of QCD amplitudes see [1, 3].)

In SCETI, the leading power interactions between the soft and collinear degrees of

freedom, described by L(0), can be decoupled using the BPS field redefinition [63]

Baµn⊥ → Y
ab
n B

bµ
n⊥, χαn → Y αβ

n χβn, (2.14)

which is performed for fields in each collinear sector. Here Yn, Yn are fundamental and

adjoint ultrasoft Wilson lines, respectively, and we note that YnT
aY †n = T bYban . For a

general representation, r, the ultrasoft Wilson line is defined by

Y (r)
n (x) = P exp

[
ig

0∫
−∞

ds n ·Aaus(x+ sn)T a(r)

]
, (2.15)

– 7 –



J
H
E
P
0
5
(
2
0
1
6
)
1
3
9

where P denotes path ordering. The BPS field redefinition generates ultrasoft interactions

through the Wilson lines Y
(r)
n which appear in the hard scattering operators [63]. When this

is done consistently for S-matrix elements it accounts for the full physical path of ultrasoft

Wilson lines [65, 66], so that some ultrasoft Wilson lines instead run over [0,∞). We can

organize the result of this field redefinition by grouping the Wilson lines Y
(r)
n together with

elements in our color structure basis T̄ a1···αn . We will denote the result of this by T̄ a1···αn
BPS .

As a simple leading power example of this, consider the operators

Oaᾱβ+(±) = Ba1+ J
ᾱβ
23± , Oaᾱβ−(±) = Ba1− J

ᾱβ
23± . (2.16)

In this case there is a unique color structure before the BPS field redefinition, namely

T̄ aαβ̄ = (T a)αβ̄ . (2.17)

After BPS field redefinition, we find the Wilson line structure,

T̄ aαβ̄BPS = Y †αγ̄n2
T bγσ̄Yban1

Y σβ̄
n3

. (2.18)

The non-local structure encoded in these ultrasoft Wilson lines is entirely determined by

the form of the operator in eq. (2.16), and the definition of the BPS field redefinition in

eq. (2.14). After the BPS field redefinition, the building block fields are ultrasoft gauge

invariant, but still carry global color indices. This will play an important role in defining

gauge invariant helicity building blocks at subleading power, when ultrasoft fields appear

in the hard scattering operators. In general we will use the notation

~O†{λj} = Oa1···αn{λj} T̄ a1···αn
BPS , (2.19)

for the operators with definite color indices that are obtained after the BPS field redef-

inition. After BPS field redefinition, T̄BPS contains both color generators and ultrasoft

Wilson lines, as in eq. (2.18). This generalizes the vector of color structures used in the

decomposition of the pre-BPS hard scattering operators in eq. (2.13), where to distinguish

we included an extra tilde on the operators with specified color indices. More examples

will be given in section 4.

3 Complete set of helicity building blocks

We now carry out the main goal of our paper, namely the extension of the scalar building

blocks of eqs. (2.7a) and (2.10) to include all objects that are needed to describe subleading

power interactions in the hard scattering Lagrangian. This will include defining operator

building blocks involving multiple collinear fields in the same collinear sector, P⊥ insertions,

and explicit ultrasoft derivatives and fields. We will continue to exploit the conservation

of fermion number by organizing the fermions into bilinear currents.

A summary of our final results for the complete set of scalar building blocks valid to all

orders in the SCETI power expansion is shown in table 1, along with the power counting

of each building block and the equation number where it is defined. The building blocks

– 8 –
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Field: Bai± J ᾱβij± J ᾱβij0 J ᾱβi± J ᾱβi0 J ᾱβ
i0̄

P⊥± ∂us(i)± ∂us(i)0 ∂us(i)0̄

Power counting: λ λ2 λ2 λ λ2 λ2 λ2 λ2 λ2 λ2

Equation: (2.7a) (2.10) (3.2) (3.3) (3.12)

Field: Baus(i)± Baus(i)0 J ᾱβi(us)± J ᾱβi(us)± J ᾱβi(us)0 J ᾱβi(us)0 J(us)2ij± J(us)2ij0

Power counting: λ2 λ2 λ4 λ4 λ4 λ4 λ6 λ6

Equation: (3.11) (3.13) (3.14)

Table 1. The complete set of helicity building blocks in SCETI, together with their power counting

order in the λ-expansion, and the equation numbers where their definitions may be found. The

building blocks also include the conjugate currents J† in cases where they are distinct from the

ones shown.

that appeared already at leading power [7], were given above in eqs. (2.7a) and (2.10). We

will discuss each of the additional operators in turn.

For collinear gluons, the fields Bai± suffice even at subleading power. An operator with

an arbitrary number of collinear gluons in the same sector with arbitrary helicity and color

indices can be formed by simply multiplying the Bai± building blocks with the same collinear

sector index i, such as Bai+Bbi+. On the other hand, for a quark-antiquark pair in the same

collinear sector, the bilinear current building blocks of eq. (2.10) are not suitable. Indeed,

the SCET projection relations

/ni /̄ni
4
χni = χni , /niχni = 0 , (3.1)

enforce that the scalar current χ̄niχni = 0, vanishes, as do the plus and minus helicity

components of the vector current χ̄niγ
±
⊥χni = 0. In other words, the SCET projection

relations enforce that a quark-antiquark pair in the same sector must have zero helicity if

they are of the same chirality. Similarly, a quark-antiquark pair in the same sector with

opposite chirality must have helicity ±1. We therefore define the helicity currents

h = 0 : J ᾱβi0 =
1

2
√
ωχ̄ ωχ

χ̄ᾱi+ /̄ni χ
β
i+ , J ᾱβ

i0̄
=

1

2
√
ωχ̄ ωχ

χ̄ᾱi− /̄ni χ
β
i− , (3.2)

h = ±1 : J ᾱβi± = ∓

√
2

ωχ̄ ωχ

εµ∓(ni, n̄i)(
〈ni ∓ |n̄i±〉

)2 χ̄ᾱi± γµ /̄ni χβi∓ .
Because of the SCET projection relations of eq. (3.1), this set of currents, when combined

with those of eq. (2.11) provides a complete set of building blocks for constructing hard

scattering operators involving collinear fermions at all powers in the SCET expansion. Hard

scattering operators involving arbitrary numbers of collinear quarks in different sectors,

with arbitrary helicity and color indices, can be formed from products of these building

blocks. The J ᾱβi0 and J ᾱβ
i0̄

transform together as a scalar/pseudoscalar under rotations

about the n̂i axis, i.e. have helicity h = 0. Similarly, the operators J ᾱβi± have helicity

h = ±1. These four currents with quarks in the same collinear direction are shown in
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the second category in table 1. These currents are again RPI-III invariant and our choice

of prefactors is made to simplify their Feynman rules. The Feynman rules are simple to

obtain, but we do not give them explicitly here. The Feynman rules for all currents in

SCETI and SCETII will be given in [62].

Subleading power operators can also involve explicit insertions of the Pµi⊥ operator.

Since the Pµi⊥ operator acts on the perpendicular subspace defined by the vectors ni, n̄i,

which is spanned by the polarization vectors ε±(ni, n̄i), it naturally decomposes as

P⊥i+(ni, n̄i) = −ε−(ni, n̄i) · Pi⊥ , P⊥i−(ni, n̄i) = −ε+(ni, n̄i) · Pi⊥ . (3.3)

This decomposition is performed for the Pi⊥ operator in each sector. As we mentioned

earlier, power counting ensures that the sector on which Pi⊥ acts is unambiguous. Hence

we can simply drop the subscript i and use P⊥± as building blocks, as shown in table 1.

To see how this decomposition applies to operators written in more familiar notation,

we consider the example operator P⊥ · Bi⊥. Using the completeness relation∑
λ=±

ελµ(ni, n̄i)
[
ελν (ni, n̄i)

]∗
= −g⊥µν(ni, n̄i) , (3.4)

the decomposition into our basis is given by

P⊥ · Bi⊥ = −P⊥+Bi− − P⊥−Bi+ . (3.5)

When acting within an operator containing multiple fields, square brackets are used to

denote which fields are acted upon by the P⊥± operator. For example Bi+
[
P⊥+Bi−

]
Bi−,

indicates that the P⊥+ operator acts only on the middle field. Note that P⊥± carry helicity

h = ±1, and that the products in eq. (3.5) behave like scalars.

To denote insertions of the P⊥± operator into the currents of eq. (3.2) we establish a

notation where the P⊥± operator acts on only one of the two quark building block fields, by

writing it either to the left or right of the current, and enclosing it in curly brackets. For

example, {
P⊥λ J

ᾱβ
i0

}
=

1

2
√
ωχ̄ ωχ

[
P⊥λ χ̄ᾱi+

]
/̄niχ

β
i+ , (3.6)

{
J ᾱβi0 (P⊥λ )†

}
=

1

2
√
ωχ̄ ωχ

χ̄ᾱi+ /̄ni

[
χβi+(P⊥λ )†

]
.

If we wish to instead indicate a P⊥± operator that acts on both building blocks in a current

then we use the notation
[
P⊥λ J

ᾱβ
i0

]
. The extension to multiple insertions of the P⊥± operators

should be clear. Since the P⊥± operators commute with ultrasoft Wilson lines, they do not

modify the construction of the color bases either before or after the BPS field redefinition.

The operators defined in eq. (2.10), eq. (3.2), and eq. (3.3) form a complete basis of

building blocks from which to construct hard scattering operators involving only collinear

fields. As with the leading power operators, each of these subleading power operators is

collinear gauge invariant, and therefore the treatment of color degrees of freedom proceeds

as in eq. (2.13). Subleading hard scattering operators appearing in the Lhard part of
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the SCET Lagrangian of eq. (2.3) can be constructed simply by taking products of the

scalar building blocks. Examples demonstrating the ease of this approach will be given in

section 5.

We now consider the remaining building blocks listed in table 1, which all involve

ultrasoft gluon fields, ultrasoft quark fields or the ultrasoft derivative operator ∂us. The

simplicity of the collinear building blocks does not trivially extend to ultrasoft fields, since

prior to the BPS field redefinition all collinear and ultrasoft objects transform under ultra-

soft gauge transformations. This implies that constraints from ultrasoft gauge invariance

must be imposed when forming an operator basis, and that the color organization of sec-

tion 2 cannot be trivially applied to operators involving ultrasoft fields. To overcome this

issue, we can work with the hard scattering operators after performing the BPS field re-

definition of eq. (2.14). The BPS field redefinition introduces ultrasoft Wilson lines, in

different representations r, Y
(r)
n (x), into the hard scattering operators. These Wilson lines

can be arranged with the ultrasoft fields to define ultrasoft gauge invariant building blocks.

The Wilson lines which remain after this procedure can be absorbed into the generalized

color structure, T̄BPS, as was done at leading power in eq. (2.19).

We begin by defining a gauge invariant ultrasoft quark field

ψus(i) = Y †niqus , (3.7)

where the direction of the Wilson line ni is a label for a collinear sector. Since the ultrasoft

quarks themselves are not naturally associated with an external label direction, ni can

be chosen arbitrarily, though there is often a convenient or obvious choice. This choice

does not affect the result, but modifies the structure of the Wilson lines appearing in the

hard scattering operators at intermediate stages of the calculation. We also perform the

following decomposition of the gauge covariant derivative in an arbitrary representation, r,

Y (r) †
ni iD(r)µ

us Y (r)
ni = i∂µus + [Y (r) †

ni iD(r)µ
us Y (r)

ni ] = i∂µus + T a(r)gB
aµ
us(i) , (3.8)

where we have defined the ultrasoft gauge invariant gluon field by

gBaµus(i) =

[
1

ini · ∂us
niνiG

bνµ
us Ybani

]
. (3.9)

In the above equations the derivatives act only within the square brackets. Again, the

choice of collinear sector label ni here is arbitrary. This is the ultrasoft analogue of the

gauge invariant collinear gluon field of eq. (2.5), which can be written in the similar form

gBAµni⊥ =

[
1

P̄
n̄iνiG

Bνµ⊥
ni WBA

ni

]
. (3.10)

From the expression for the gauge invariant ultrasoft quark and gluon fields of eqs. (3.7)

and (3.9) we see that unlike the ultrasoft fields, the operator BAµus(i) is non-local at the scale

λ2, and depends on the choice of a collinear direction ni. However the non-locality in our

construction is entirely determined by the BPS field redefinition, and we can not simply

insert arbitrary powers of dimensionless Wilson line products like (Y †n1Yn2)k into the hard
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scattering operators. In practice this means that we can simply pick some ni for the Wil-

son lines in the building blocks in eqs. (3.7) and (3.9) and then the BPS field redefinition

determines the unique structure of remaining ultrasoft Wilson lines that are grouped with

the color structure into T̄ aαβ̄BPS. Determining a complete basis of color structures is straight-

forward. Detailed examples will be given in [62], where the hard scattering operators for

e+e− → dijets involving ultrasoft fields will be constructed.

With the ultrasoft gauge invariant operators defined, we can now introduce ultrasoft

fields and currents of definite helicity, which follow the structure of their collinear counter-

parts. Note from eq. (3.9), that ni · Baus(i) = 0. For the ultrasoft gluon helicity fields we

define the three building blocks

Baus(i)± = −ε∓µ(ni, n̄i)Baµus(i), Baus(i)0 = n̄µBaµus(i) . (3.11)

This differs from the situation for the collinear gluon building block in eq. (2.7a), where

only two building block fields were required, corresponding to the two physical helicities.

For the ultrasoft gauge invariant gluon field we use three building block fields to describe

the two physical degrees of freedom because the ultrasoft gluons are not fundamentally

associated with any direction. Without making a further gauge choice, their polarization

vectors do not lie in the perpendicular space of any fixed external reference vector. If we

use the ultrasoft gauge freedom to choose Baus(j)0 = 0, then we will still have Baus(i)0 6= 0

and Baus(i)± 6= 0 for i 6= j. We could instead remove Baus(j)0 for every j using the ultrasoft

gluon equation of motion, in a manner analogous to how [W †nj inj ·DnjWnj ] is removed for

the collinear building blocks. However this would come at the expense of allowing inverse

ultrasoft derivatives, 1/(inj · ∂us), to appear explicitly when building operators. While in

the collinear case the analogous 1/P factors are O(λ0) and can be absorbed into the Wilson

coefficients, this absorption would not be not possible for the ultrasoft case. Therefore, for

our SCETI construction we choose to forbid explicit inverse ultrasoft derivatives that can

not be moved into Wilson lines, and allow Baus(i)0 to appear. An example of a case where

the non-locality can be absorbed is given in eq. (3.9), where the 1/(in · ∂us) is absorbed

into ultrasoft Wilson lines according to eq. (3.8). Thus the only ultrasoft non-locality that

appears in the basis is connected to the BPS field redefinition.

We also decompose the ultrasoft partial derivative operator ∂µus into lightcone compo-

nents,

∂us(i)± = −ε∓µ(ni, n̄i) ∂
µ
us, ∂us(i)0 = n̄iµ∂

µ
us, ∂us(i)0̄ = niµ∂

µ
us . (3.12)

In contrast with the collinear case, we cannot always eliminate the ni · ∂us using the equa-

tions of motion without introducing inverse ultrasoft derivatives (e.g. 1/(n̄i · ∂us)) that are

unconnected to ultrasoft Wilson lines. When inserting ultrasoft derivatives into operators

we will use the same curly bracket notation defined for the P⊥ operators in eq. (3.6). In

other words, {i∂us(i)λJ} indicates that the ultrasoft derivative acts from the left on the first

field in J and {J(i∂us(i)λ)†} indicates that it acts from the right on the second field in J .

Gauge invariant ultrasoft quark fields also appear explicitly in the operator basis at sub-

leading powers. Due to fermion number conservation they are conveniently organized into
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scalar currents. From eq. (2.4), we see that ultrasoft quark fields power count like λ3. How-

ever, for factorization theorems involving a single collinear sector, as arise when describing

a variety of inclusive and exclusive B decays (see e.g. [9–11, 67–78]), operators involving ul-

trasoft quarks appear at leading power. The currents involving both collinear and ultrasoft

quarks that are necessary to define subleading power operators at any desired order are

J ᾱβi(us)± = ∓
εµ∓(ni, n̄i)

〈n̄i ∓ |ni±〉
χ̄ᾱi± γµψ

β
us(i)± , (3.13)

J ᾱβi(us)± = ∓
εµ∓(n̄i, ni)

〈ni ∓ |n̄i±〉
ψ̄ᾱus(i)± γµχ

β
i± ,

J ᾱβi(us)0 = χ̄ᾱi+ψ
β
us(i)− , (J†)ᾱβi(us)0 = ψ̄ᾱus(i)−χ

β
i+ ,

J ᾱβi(us)0 = ψ̄ᾱus(i)+χ
β
i− , (J†)ᾱβi(us)0 = χ̄ᾱi−ψ

β
us(i)+ ,

For these mixed collinear-ultrasoft currents we choose to use the collinear sector label i

in order to specify the ultrasoft quark building block field. In addition, we need currents

that are purely built from ultrasoft fields,

J ᾱβ
(us)2ij± = ∓

εµ∓(ni, nj)

〈nj ∓ |ni±〉
ψ̄ᾱus(i)±γµψ

β
us(j)± , (3.14)

J ᾱβ
(us)2ij0

= ψ̄ᾱus(i)+ψ
β
us(j)− , (J†)ᾱβ

(us)2ij0
= ψ̄ᾱus(i)−ψ

β
us(j)+ .

To specify the building blocks in these ultrasoft-ultrasoft currents we use two generic

choices, i and j, with ni 6= nj so as to make the polarization vector well defined. Although

the ultrasoft quark carries these labels, they are only associated with the Wilson line

structure and, for example, the ultrasoft quark building block fields do not satisfy the

projection relations of eq. (3.1).

The ultrasoft currents in eq. (3.13) complete our construction of the complete set of

scalar building blocks given in table 1. The objects in this table can be used to construct

bases of hard scattering operators at any order in the power counting parameter λ, by

simply taking products of the scalar building blocks.

There are several extensions to this construction that should be considered. One is the

extension to SCETII with collinear and soft fields, rather than collinear and ultrasoft fields.

A table of scalar building block operators for SCETII that is analogous to table 1 will be

given in [62]. Also, the completeness of the set of helicity building blocks relies on massless

quarks and gluons having two helicities, which is specific to d = 4 dimensions. Depending

on the regularization scheme, this may or may not be true when dimensional regularization

with d = 4−2ε dimensions is used, and evanescent operators [79–81], beyond those given in

table 1 can appear. While evanescent operators are not required at leading power, (see [7]

for a detailed discussion), this need no longer be the case at subleading power, and will be

discussed further in [62].

4 Constraints from angular momentum conservation

If we include the spin of objects that are not strongly interacting, such as electrons and pho-

tons, then the overall hard scattering operators in eq. (2.12) are scalars under the Lorentz
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group. In this section we will show that this constraint on the total angular momentum

gives restrictions on the angular momentum that is allowed in individual collinear sec-

tors. These restrictions become nontrivial beyond leading power, when multiple operators

appear in the same collinear sector.

If we consider a leading power hard scattering process where two gluons collide to

produce two well separated quark jets plus an e+e− pair, then this is described by a leading

power operator with each field sitting alone in a well separated collinear direction, such as

Ba1λ1B
b
2λ2J

ᾱβ
34λq

Je56λe . (4.1)

Here, the leading power electron current is defined in a similar way as the quark current,

but without gluon Wilson lines,

Je± ≡ Jeij± = ∓

√
2

ωi ωj
εµ∓(ni, nj)

ēi±γµej±
〈nj ∓ |ni±〉

. (4.2)

For notational convenience we will drop the explicit ij label on the electron current, denot-

ing it simply by Je±. Although the operator in eq. (4.1) has to be a scalar, there are still

no constraints on the individual values of the λi. Each building block has spin components

that are defined with respect to a distinct axis n̂i, and yields a linear combination of spin

components when projected onto a different axis. Thus, projecting all helicities onto a

common axis we only find the trivial constraint that the angular momenta factors of 1

or 1/2 from each sector must together add to zero.2 In the example of eq. (4.1), this is

1⊕1⊕ 1
2⊕

1
2⊕

1
2⊕

1
2 = 0 for a generic kinematic configuration.3 Note that for the quark and

electron currents here, we have individual spin-1/2 fermions in different directions, so λq and

λe do not correspond to helicities. As another example, consider 4-gluon scattering, with all

gluon momenta well separated and thus in their own collinear sectors, we have the operators

Ba11λ1
Ba22λ2
Ba33λ3
Ba44λ4

. (4.3)

Here we can again specify the helicities λi = ± independently, because each of these

helicities is specified about a different quantization axis. Each carries helicity h = ±1,

and angular momentum is conserved because these four spin-1 objects can add to spin-0.

Therefore all helicity combinations must be included.

To understand the constraints imposed by angular momentum conservation at sublead-

ing power, it is interesting to consider a specific example in more detail. As a simple exam-

ple, consider an e+e− collision in the center of mass frame producing two back-to-back jets,

where we label the associated jet directions as n and n̄. The leading power operators are

O
(0)ᾱβ
(+;+) = J ᾱβnn̄+Je+ , O

(0)ᾱβ
(+;−) = J ᾱβnn̄+Je− , (4.4)

2There are of course simple examples where this constraint reduces the basis of operators. For example,

for gluon fusion Higgs production, angular momentum conservation implies that only two operators are

required in the basis

Oab
++ =

1

2
Ba1+ Bb2+ H3 , Oab

−− =
1

2
Ba1− Bb2−H3 ,

where H3 is the scalar Higgs field.
3If we were in a frame where the gluons were back-to-back, there spins would be combined along a single

axis. In this example, this would still not give us any additional restrictions.
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O
(0)ᾱβ
(−;+) = J ᾱβnn̄−Je+ , O

(0)ᾱβ
(−;−) = J ᾱβnn̄−Je− ,

where J ᾱβnn̄± were defined in eq. (2.11). Here, we can view J ᾱβnn̄± as creating or destroying

a state of helicity h = ±1 about the n axis, and Je± as creating or destroying a state of

helicity h = ±1 about the electron beam axis. Defining θ as the angle between the quark

and electron and taking all of the particles to be outgoing, the spin projection implies

that the Wilson coefficients are proportional to the Wigner d functions,

C
(0)ᾱβ
(+;+) ∝ 1 + cos θ , C

(0)ᾱβ
(+;−) ∝ 1− cos θ , (4.5)

C
(0)ᾱβ
(−;+) ∝ 1− cos θ , C

(0)ᾱβ
(−;−) ∝ 1 + cos θ .

As expected, all helicity combinations are non-vanishing (except when evaluated at special

kinematic configurations).

Considering this same example at subleading power, the analysis of angular momentum

becomes more interesting, since multiple fields are present in a single collinear sector. For

the subleading e+e− → dijet operators with only n-collinear and n̄-collinear fields, we only

have a single axis n̂ for all strongly interacting operators, and can simply add up their

helicities to determine the helicity hn̂ in this direction. Since the operator in the only other

direction, Je±, has spin-1, this implies that the total helicity for the n-n̄ sector must be

hn̂ = 0, 1,−1 for the operator to have a non-vanishing contribution. Any operator with

|hn̂| > 1 must belong to a representation of spin J > 1, and is ruled out because we can

not form a scalar when combining it with the spin-1 electron current. An example of this

is shown in figure 2.

As an explicit example of the constraints that this places on the subleading power he-

licity operators, consider the O(λ) back-to-back collinear operators involving two collinear

quark fields and a single collinear gluon field, which appears at O(λ). For the case that

the quarks are in different collinear sectors we can start by considering the operator list

O
(1)a ᾱβ
+(+;±) = Ban+ J

ᾱβ
nn̄+ Je± , O

(1)a ᾱβ
+(−;±) = Ban+ J

ᾱβ
nn̄− Je± , (4.6)

O
(1)a ᾱβ
−(+;±) = Ban− J

ᾱβ
nn̄+ Je± , O

(1)a ᾱβ
−(−;±) = Ban− J

ᾱβ
nn̄− Je± ,

while for the case that the quarks are in the same collinear sector we consider

O
(1)a ᾱβ
n̄+(0;±) = Ban+ J

ᾱβ
n̄0 Je± , O

(1)a ᾱβ

n̄+(0̄;±)
= Ban+ J

ᾱβ
n̄0̄
Je± , (4.7)

O
(1)a ᾱβ
n̄−(0;±) = Ban− J

ᾱβ
n̄0 Je± , O

(1)a ᾱβ

n̄−(0̄;±)
= Ban− J

ᾱβ
n̄0̄
Je± .

We have used the fact that chirality is conserved in massless QCD, eliminating the need to

consider J ᾱβnn̄0 or J ᾱβn̄± for the process being considered here. There are also operators with

Ban̄± that are obtained from those in eqs. (4.6) and (4.7) by taking n↔ n̄. Furthermore, we

do not consider the color structure, as it is irrelevant for the current discussion. (Also note

that we are not attempting to enumerate all O(λ) operators here. This is done in [62].)

The constraint from conservation of angular momentum gives further restrictions, im-

plying that only a subset of the eight operators in eqs. (4.6) and (4.7) are non-vanishing.
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(a) (b)

Figure 2. A schematic illustration of the helicity selection rule with two axes, as relevant for the

case of e+e− → dijets. In a) the n-collinear sector carries |h| = 2, and therefore has a vanishing

projection onto the Je± current. In b), the collinear sector carries |h| = 0 and has a non-vanishing

projection onto the Je± current.

In eq. (4.6) the strongly interacting operators have hn̂ = 0 or hn̂ = ±2, and only those

with hn̂ = 0 can contribute to the J = 0 hard scattering Lagrangian, leaving only

O
(1)a ᾱβ
+(−;±) = Ban+ J

ᾱβ
nn̄− Je± , O

(1)a ᾱβ
−(+;±) = Ban− J

ᾱβ
nn̄+ Je± . (4.8)

Thus angular momentum reduces the number of hard scattering operators by a factor of

two in this case. On the other hand, for the case with both quarks in the same collinear

sector in eq. (4.7), the operators all have hn̂ = ±1, and therefore all of them are allowed.

Having understood how the angular momentum conservation constraint appears in the

helicity operator language, it is interesting to examine how it appears if we instead work

with the traditional operators of eq. (2.4). Here we must construct the SCET currents J µ

at O(λ) involving two collinear quarks and a collinear gluon. The Lorentz index on J µ

is contracted with the leptonic tensor to give an overall scalar, and thus preserve angular

momentum. The operators in a basis for J µ can be formed from Lorentz and Dirac

structures, as well as the external vectors, nµ and n̄µ. When the collinear quarks are each

in a distinct collinear sector, the SCET projection relations of eq. (3.1) imply that χ̄n̄/nχn =

χ̄n̄ /̄nχn = 0. To conserve chirality we must have a γ⊥ν between the quark building blocks, and

this index must be contracted with the other free ⊥-index, ν, in the collinear gluon building

block Bν⊥n (which we again choose to be in the n direction). Therefore an n or n̄ must carry

the µ Lorentz index. After the BPS field redefinition it can be shown4 that for photon

exchange the unique O(λ) operator with collinear quark fields in distinct collinear sectors is

J (1)µ
1 = rµ−χ̄n̄Y

†
n̄Yn/B⊥nχn , (4.9)

where, defining qµ as the sum of the momenta of the colliding leptons, we have

rµ− =
n · q

2
n̄µ − n̄ · q

2
nµ . (4.10)

4Note that in constructing a complete basis of Lorentz and Dirac structures for eqs. (4.9) and (4.11),

that all other operators can be eliminated using symmetry properties and the conservation of the current,

qµJ (1)µ
i = 0. Eliminating operators here is tedious compared to the helicity operator approach.
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In the case that both collinear quark fields are in the same collinear sector, similar

arguments using the SCET projection relations can be used to show that the collinear

gluon field must carry the Lorentz index, and that the unique operator is

J (1)µ
2 = χ̄n̄Y

†
n̄YnB

µ
⊥nY

†
nYn̄/r−χn̄ . (4.11)

We see a direct correspondence between eqs. (4.7) and (4.11). In both equations the

collinear quark fields have h = 0 and thus form a scalar, and the collinear gluon field carries

the spin that is combined with the leptonic current. For photon exchange, all of the Wilson

coefficients of the operators in eq. (4.7) are related by CP properties and angular momentum

constraints, so there is only one combination of the four operators that appears with a

nontrivial Wilson coefficient. This combination maps exactly to the single operator in

eq. (4.11). We also see a correspondence between eqs. (4.8) and (4.9), where both collinear

quarks are contracted with the collinear gluon to form a h = 0 combination. Indeed, using

the completeness relation of eq. (3.4) for g⊥µν(ni, n̄i), the operators of eqs. (4.9) and (4.11)

can straightforwardly be converted to the helicity operators of eqs. (4.7) and (4.8).

It is interesting to note that when working in terms of building blocks involving Lorentz

and Dirac structures, the SCET projection relations, which were ultimately what allowed

us to define helicity fields along given axes, played a central role in reducing the basis. One

is also forced to incorporate the constraints from the total angular momentum as part of the

analysis, by the need to keep track of the contraction of Lorentz indices. In the helicity op-

erator basis the same constraints appear as simple elimination rules on the allowed helicities

when taking products of building blocks in the same collinear sector (and any back-to-back

sector if one is present). These products can be classified by the minimal total angular

momentum object for which they are a component, and eliminated if this value is too large.

We can now specify the general constraint from angular momentum on the helicities of

an operator basis. The operator basis must be formed such that J
(i)
min, the minimal angular

momentum carried by the ni-collinear sector, satisfies

J
(i)
min ≤

∑
j with n̂j 6=n̂i

J
(j)
min . (4.12)

If the helicities in the ni-collinear sector of some operator add up to htot
ni , then the minimum

angular momentum for that sector is J
(i)
min = |htot

ni |. Therefore we can write eq. (4.12) in a

form that is useful for constraining the helicity of operators,

|htot
ni | ≤

∑
j with n̂j 6=n̂i

|htot
nj | . (4.13)

In cases where two of our light-like vectors are back-to-back, ni · nk = 2 +O(λ2), then the

operators in both the ni and nk collinear directions are considered simultaneously when cal-

culating the value of htot
ni (where ± for nk count as ∓ for ni), and not as distinct terms in the

sum. This includes the case where nk = n̄i. Eq. (4.13) prevents subleading power operators

from having exceedingly large angular momenta about any particular collinear direction.

This constraint of angular momentum conservation of the hard scattering process shows

that when writing down a basis of helicity operators, not all helicity combinations should be
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included in the basis. Especially when working at higher powers, this places considerable

constraints on the basis, and supplements additional constraints from parity and charge

conjugation invariance (see [7]). This reduction can be contrasted with the leading power

operators explored in [7], where most often all possible different helicity combinations had

to be included in the basis of hard scattering operators.

5 Example: qq̄gg operators for n-n̄ directions

To demonstrate the simplicity of the helicity operator approach, in this section we will

explicitly construct a basis of hard scattering operators with two back-to-back collinear

sectors, n and n̄. For simplicity, we will restrict ourselves to the channel involving two

collinear gluons, a collinear quark and a collinear antiquark. The operators to be discussed

in this section are suppressed by O(λ2) compared to the leading power operator, which

involves a quark and antiquark field in opposite collinear sectors, and contribute at sub-

leading power to e+e− → dijet event shapes, Drell-Yan, or DIS with one jet. They do not

in themselves constitute a complete basis of O(λ2) operators, but do make up a unique

subset which we can use to illustrate the power of our approach. The complete O(λ2) basis

of operators will be presented and analyzed in [62].

The angular momentum arguments of section 4 enforce that the helicity along the

single jet axis satisfies |htot
n̂ | ≤ 1. Additionally, for the particular process e+e− → dijets

the quark and antiquark have the same chirality, which provides further restrictions on the

allowed operators that we will enumerate below. Using the notation of eq. (2.13) we write

the three-dimensional color basis for the qq̄gg channels as

T̄ abαβ̄ =
(

(T aT b)αβ̄ , (T bT a)αβ̄ , tr[T aT b] δαβ̄

)
. (5.1)

The color basis after BPS field redefinition will be given separately for each distinct partonic

configuration, each of which will be discussed in turn.

We begin by considering operators where the quark and antiquark fields have distinct

collinear sector labels, and the gluon fields are in the same collinear sector. In this case, a

basis of helicity operators is

(ggq)n(q̄)n̄ :

O
(2)ab ᾱβ
B1++(−;±) =

1

2
Ban+ Bbn+ J

ᾱβ
nn̄−Je± , O

(2)ab ᾱβ
B1−−(+;±) =

1

2
Ban− Bbn− J

ᾱβ
nn̄+Je± ,

O
(2)ab ᾱβ
B1+−(+;±) = Ban+ Bbn− J

ᾱβ
nn̄+Je± , O

(2)ab ᾱβ
B1+−(−;±) = Ban+ Bbn−J

ᾱβ
nn̄−Je± , (5.2)

(ggq̄)n(q)n̄ :

O
(2)ab ᾱβ
B2++(−;±) =

1

2
Ban+ Bbn+ J

ᾱβ
n̄n+Je± , O

(2)ab ᾱβ
B2−−(+;±) =

1

2
Ban− Bbn− J

ᾱβ
n̄n−Je± ,

O
(2)ab ᾱβ
B2+−(+;±) = Ban+ Bbn− J

ᾱβ
n̄n+Je± , O

(2)ab ᾱβ
B2+−(−;±) = Ban+ Bbn−J

ᾱβ
n̄n−Je± . (5.3)
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Here we have used constraints from angular momentum conservation to eliminate operators

whose non-leptonic component do not have h = 0,±1 along the n̂ axis. For example, we

have not allowed the operators Ban+ Bbn+ J
ᾱβ
nn̄+Je± which have h = +3 along the n axis

and could not be created from the intermediate vector boson. Also, we have used the

n ↔ n̄ symmetry to only write operators with both gluons in the n-collinear sector, a

simplification that we will make repeatedly in this section. Operators with n̄-collinear

gluons are obtained by simply taking n↔ n̄. The color basis for the operators in eqs. (5.2)

and (5.3) after the BPS field redefinition is

T̄ abαβ̄
BPS =

(
(T aT bY †nYn̄)αβ̄ , (T bT aY †nYn̄)αβ̄ , tr[T aT b] [Y †nYn̄]αβ̄

)
. (5.4)

In order to see how this is derived, we will go through the algebra explicitly for the first color

structure. Using the result for the transformations in eq. (2.14), we see that each gluon

field from (5.2) or (5.3) contributes an adjoint Wilson line while each fermion contributes

a fundamental Wilson line. So, our color structure becomes

(T aT b)αβ̄ → (Y †nT
a′Ya′an T b

′Yb′bn Yn̄)αβ̄ = (Y †nYnT
aY †nYnT

bY †nYn̄)αβ̄

= (T aT bY †nYn̄)αβ̄ , (5.5)

where we have used T a
′Ya′ai = YiT

aY †i . Similar manipulations give the other Wilson line

structures in eq. (5.4).

Next we consider the operators where the quark and antiquark fields have distinct

collinear sector labels, as do the gluons. In this case, the basis of helicity operators is

(gq)n(gq̄)n̄ :

O
(2)ab ᾱβ
B3++(+;±) = Ban+ Bbn̄+ J

ᾱβ
nn̄+Je± , O

(2)ab ᾱβ
B3−−(−;±) = Ban− Bbn̄− J

ᾱβ
nn̄−Je± ,

O
(2)ab ᾱβ
B3++(−;±) = Ban+ Bbn̄+ J

ᾱβ
nn̄−Je± , O

(2)ab ᾱβ
B3−−(+;±) = Ban− Bbn̄− J

ᾱβ
nn̄+Je± , (5.6)

O
(2)ab ᾱβ
B3+−(−;±) = Ban+ Bbn̄− J

ᾱβ
nn̄−Je± , O

(2)ab ᾱβ
B3−+(+;±) = Ban− Bbn̄+ J

ᾱβ
nn̄+Je± ,

where we have used angular momentum to eliminate operators such as Ban+ Bbn̄− J
ᾱβ
nn̄+Je±

and Ban− Bbn̄+ J
ᾱβ
nn̄−Je±. Here the post-BPS color basis is given by

T̄ abαβ̄
BPS =

(
(T aY †nYn̄T

b)αβ̄ , (Y †nT
dYdbn̄ T cYcan Yn̄)αβ̄ , tr[T cYcan T dYdbn̄ ] [Y †nYn̄]αβ̄

)
. (5.7)

This is easily obtained following the steps described below eq. (5.4).

The next relevant case is when the gluons are in distinct collinear sectors and the

quarks are in the same collinear sector. Here, the basis of helicity operators is

(gqq̄)n(g)n̄ :

O
(2)ab ᾱβ
B4++(0:±) = Ban+ Bbn̄+ J

ᾱβ
n 0Je± , O

(2)ab ᾱβ

B4++(0̄:±)
= Ban+ Bbn̄+ J

ᾱβ
n 0̄
Je± , (5.8)
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O
(2)ab ᾱβ
B4−−(0:±) = Ban− Bbn̄− J

ᾱβ
n 0Je± , O

(2)ab ᾱβ

B4−−(0̄:±)
= Ban− Bbn̄− J

ᾱβ
n 0̄
Je± .

In writing eq. (5.8) we have again used constraints of angular momentum conservation to

restrict the allowed operators in the basis (e.g. we have eliminated Ban+ Bbn̄− J
ᾱβ
n 0Je±). The

color basis after BPS field redefinition in this case is

T̄ abαβ̄
BPS =

(
(T aY †nYn̄T

bY †n̄Yn)αβ̄ , (Y †nYn̄T
bY †n̄YnT

a)αβ̄ , tr[T cYcan T dYdbn̄ ] δαβ̄

)
. (5.9)

Finally, we consider the basis of operators with both quarks in the same collinear sector,

and both gluons in the other collinear sector. Imposing angular momentum conservation

reduces the basis from four to two distinct operators

(qq̄)n(gg)n̄ :

O
(2)ab ᾱβ
B5+−(0:±) = Ban̄+ Bbn̄− J

ᾱβ
n 0Je± , O

(2)ab ᾱβ

B5+−(0̄:±)
= Ban̄+ Bbn̄− J

ᾱβ
n 0̄
Je± . (5.10)

Here, the color basis after BPS field redefinition is

T̄ abαβ̄
BPS =

(
(Y †nYn̄T

aT bY †n̄Yn)αβ̄ , (Y †nYn̄T
bT aY †n̄Yn)αβ̄ , tr[T aT b] δαβ̄

)
. (5.11)

These operators, provide a complete basis of hard scattering operators with two back

to back collinear sectors in the qq̄gg channel. This example illustrates several key aspects of

using the subleading helicity operators: imposing the angular momentum constraints has

helped reduce the number of distinct helicity labels that we must consider, the structure of

the ultrasoft Wilson lines is determined by the BPS field redefinition and the enumeration

of a complete basis is as simple as writing down all allowed helicity choices. The analysis

of this channel only gives partial results for the O(λ2) operator basis. The full basis of

subleading operators for the back-to-back case at O(λ) and O(λ2) will be discussed in detail

in [62], including an analysis of relations that occur from parity and charge conjugation.

6 Conclusions

In this paper we have defined a complete set of helicity operator building blocks which

can be used to construct operators at any order in the SCET power expansion, extending

the leading power construction of [7]. These building blocks are summarized in table 1,

and are each collinear and ultrasoft gauge invariant in SCETI. They include two collinear

gluon fields, three ultrasoft gluon fields, two types of derivatives, and various bilinear

fermion currents constructed from collinear and ultrasoft fields. The use of gauge invariant

building blocks allows for a simple organization of color structures, and generalizes the color

bases familiar from the study of on-shell amplitudes to include the ultrasoft Wilson lines

describing the eikonalized particles involved in the scattering process. We also discussed the

appearance of interesting angular momentum selection rules which first become nontrivial

at subleading power, when multiple fields appear in the same collinear sector. The efficiency

of the helicity operator building blocks for constructing minimal bases, as well as the
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angular momentum selection rules, were demonstrated by constructing an O(λ2) basis of

qq̄gg operators with two hard scattering directions. These operators are required for the

study of e+e− → dijets or Drell-Yan, at subleading power.

A key application of the ideas in this paper is to the calculation of subleading power

corrections to physical observables of phenomenological interest. While leading power fac-

torization and resummation has been widely applied to DIS, e+e− → jets and hadron

collider observables (see e.g. [18, 82–102] for a non-exhaustive selection), the complexity of

subleading factorization has rendered it impractical despite its theoretical and phenomeno-

logical importance. In a companion paper [62], we will provide a more detailed discussion

of the subleading helicity building blocks introduced here, including a construction of a

complete basis of all operators needed for two hard scattering directions up to O(λ2) (in-

cluding operators for other partonic channels, P⊥ insertions, etc.). Symmetry arguments,

which are manifest in a helicity operator basis, simplify the construction of operators, and

also many aspects of their use for factorizing amplitudes and cross sections. We expect that

the use of helicity inspired methods will prove useful in the future study of the subleading

singular limits of gauge theories, and of factorization theorems at subleading power.
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