
J
H
E
P
0
4
(
2
0
1
6
)
1
7
1

Published for SISSA by Springer

Received: February 26, 2016

Accepted: April 23, 2016

Published: April 28, 2016

Deformations with maximal supersymmetries part 2:

off-shell formulation

Chi-Ming Chang,a Ying-Hsuan Lin,a Yifan Wangb and Xi Yina

aJefferson Physical Laboratory, Harvard University,

Cambridge, MA 02138, U.S.A.
bCenter for Theoretical Physics, Massachusetts Institute of Technology,

Cambridge, MA 02139, U.S.A.

E-mail: cmchang@physics.harvard.edu, yhlin@physics.harvard.edu,

yifanw@mit.edu, xiyin@fas.harvard.edu

Abstract: Continuing our exploration of maximally supersymmetric gauge theories

(MSYM) deformed by higher dimensional operators, in this paper we consider an off-

shell approach based on pure spinor superspace and focus on constructing supersymmetric

deformations beyond the first order. In particular, we give a construction of the Batalin-

Vilkovisky action of an all-order non-Abelian Born-Infeld deformation of MSYM in the

non-minimal pure spinor formalism. We also discuss subtleties in the integration over the

pure spinor superspace and the relevance of Berkovits-Nekrasov regularization.

Keywords: Extended Supersymmetry, Superspaces, Supersymmetric Effective Theories,

Supersymmetric gauge theory

ArXiv ePrint: 1403.0709

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP04(2016)171

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78069864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:cmchang@physics.harvard.edu
mailto:yhlin@physics.harvard.edu
mailto:yifanw@mit.edu
mailto:xiyin@fas.harvard.edu
http://arxiv.org/abs/1403.0709
http://dx.doi.org/10.1007/JHEP04(2016)171


J
H
E
P
0
4
(
2
0
1
6
)
1
7
1

Contents

1 Introduction 1

2 Pure spinor superspace 2

2.1 Super-Yang-Mills theory and the pure spinor superfield 3

2.2 Reducing to component fields 5

2.3 The non-minimal pure spinor superspace 6

2.4 Descendant pure spinor superfields 8

2.5 Recovering the on-shell Yang-Mills superfields 9

3 The Born-Infeld deformation 11

3.1 The first order deformation 11

3.2 Non-Abelian Born-Infeld deformation at the second order 13

3.3 No obstruction to all order 15

4 Other examples 19

4.1 Noncommutative deformation 19

4.2 The 5-form deformation 20

5 Regularization by smearing 21

5.1 A smearing operator 22

5.2 Shifted pure spinor variables 23

5.3 Superspace Lagrangian deformations using smeared fields 24

6 Discussion 26

A Siegel gauge and the b ghost 27

1 Introduction

Methods of formulating maximally supersymmetric gauge theories with all 16 supersym-

metries manifest have been developed, in the on-shell formulation [1] based on the algebra

of super-gauge covariant derivatives and its deformations [2–5], and in the off-shell formu-

lation based on pure spinor superspace by Cederwall and Karlsson [6, 7], after the work

of Berkovits [8]. The algebraic, on-shell approach was explored in our previous paper [9]

to classify infinitesimal deformations that preserve 16 supersymmetries, while allowing the

possibility of breaking either Lorentz or R-symmetry. In this approach, the problem of

finding higher order deformations (or identifying the obstructions) can be formulated sys-

tematically as a cohomology problem. In practice, however, it was very difficult to compute

the relevant obstruction classes and to verify their triviality.

– 1 –



J
H
E
P
0
4
(
2
0
1
6
)
1
7
1

In this paper, we adopt the off-shell approach based on pure spinor superspace. This

formalism was first developed in the context of superstring perturbation theory [10–24]. It

was known for some time that the standard two-derivative, undeformed, MSYM can be re-

formulated as a Chern-Simons-like theory in pure spinor superspace [1, 8], in close analogy

with cubic open string field theory [25]. Although, it was not immediately obvious how to

write down higher derivative deformations in this language. It was explained in [6] how the

Born-Infeld deformation, to first order, can be constructed in the non-minimal pure spinor

superspace formalism, and that the first order deformation in the Abelian case already

gives a consistent action to all orders. We will develop this construction further, and show

that the non-Abelian Born-Infeld deformation can be extended to all orders. (See [26–35]

for previous works in the conventional component field formalism.) This is achieved in

the BV formalism [36, 37], where the question of finding higher order deformations of the

action that solve the BV master equation is turned into a problem of showing the triviality

of certain cohomology classes. We will see close analogies with the on-shell algebraic ap-

proach, and how introducing non-minimal pure spinor variables helps solving the problem.

We also describe similar constructions in other examples, including the noncommutative

deformation and the 5-form deformation (the latter in zero spacetime dimension only).

We note an important subtlety in dealing with the higher order deformations, as well

as the construction of D-terms, in the non-minimal pure spinor formalism. Inversion of

pure spinor variables is used in writing the descendant superfields, and the higher derivative

terms in pure spinor superspace. This could potentially lead to divergences in the integra-

tion over the tip of the pure spinor cone. Such divergences do not seem to appear in our con-

struction of F-term deformations, but this is not a priori obvious. We find it useful to con-

sider a regularization introduced by Berkovits and Nekrasov [24], which amounts to smear-

ing the superfields in pure spinor superspace in a manner that preserves the BV master

equation. This allows us to demonstrate the absence of divergences in simple examples. We

suspect that it is relevant for the construction of general D-terms in this formalism as well.

In section 2 we will review the pure spinor superspace and the descendant pure spinor

superfields of [6], and set up our notations and conventions. In section 3, we apply this

formalism to the Born-Infeld deformation, and demonstrate that the construction can be

extended to all orders in the deformation parameter, solving the BV master equation [36,

37] order by order. Other examples such as noncommutative deformations, and the 5-form

deformation in the IKKT matrix model [38], are discussed in section 4. We introduce the

Berkovits-Nekrasov regulator in the context of MSYM theories in section 5, and discuss

their role in regularizing potential divergences in the pure spinor integral, and possibly the

construction of D-terms. We conclude with some open questions in section 6.

2 Pure spinor superspace

In this section we review the construction of the action of maximally supersymmetric Yang-

Mills theories based on pure spinor superspace. A first attempt at constructing an action

based on the Yang-Mills superfield involves a Chern-Simons type functional defined by an

integration over the “minimal” pure spinor superspace. We will see that this action gives
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rise to the correct SYM equation of motion up to pure gauge terms, provided that a trun-

cation on the superfield is implemented. The truncation condition breaks manifest super-

symmetry, however. To fix the problem, one extends the superfield to one defined over the

non-minimal pure spinor superfields [6]. Instead of a classical gauge invariant action, in this

formalism one find a Batalin-Vilkovisky action functional [6, 36, 37]. A conventional BRST

invariant action may be obtained by imposing the Siegel gauge condition that effectively

eliminates the BV anti-fields in the pure spinor superfield. Working with the BV action

has the advantage that deformations of BRST transformations need not be introduced

explicitly, but rather is determined via the BV anti-bracket. The problem of finding su-

persymmetric higher derivative deformations turns into the problem of constructing higher

derivative terms that solve the BV master equation [6]. We will also see later that the clo-

sure of BV master equation order by order can be reformulated as a cohomology problem.

2.1 Super-Yang-Mills theory and the pure spinor superfield

Let us begin by considering the classical action of N = 1 SYM in 10 dimensions. The

dimensional reduction to d dimensional (undeformed) MSYM will be straightforward. Let

(xm, θα) be superspace coordinates, m = 0, · · · , 9, α = 1, · · · , 16. The ordinary Yang-Mills

superfield is written as Aα(x, θ). The super-derivative is written as

dα =
∂

∂θα
− (Γmθ)α

∂

∂xm
. (2.1)

It obeys the anti-commutator

{dα, dβ} = −2Γm
αβ

∂

∂xm
. (2.2)

Let λα be a pure spinor variable, namely it obeys the constraint

λαΓm
αβλ

β = 0. (2.3)

The ordinary SYM equation of motion can be written in the form [1]

λαλβ(dαAβ +AαAβ) = 0. (2.4)

If we write a pure spinor superfield Ψ(x, θ, λ) as λαAα(x, θ), then the equation of motion

can be put in the simple form

QΨ+Ψ2 = 0, (2.5)

where1

Q = λαdα (2.6)

is a nilpotent differential, namely Q2 = 0, by virtue of (2.2) and the pure spinor constraint

on λ. Super-gauge transformations δAα = dαΩ+[Aα,Ω] can be expressed in terms of Ψ as

δΨ = QΩ+ [Ψ,Ω]. (2.7)

1Although Q is analogous to the BRST charge in the worldsheet formulation of pure spinor string theory,

here in the context of spacetime gauge theory it is merely a differential and should not be confused with

the BRST charge.
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As an example, in the Abelian case, when Aα(x, θ) obeys the equation of motion, there is

a gauge in which Aα can be put in the form

Aα(x, θ) =
1

2
(Γmθ)αam(x) +

1

12
(θΓmnpθ)(Γmnp)αβχ

β(x) +
1

16
(θΓmnpθ)(Γpθ)α∂man + · · · ,

(2.8)

where · · · involves derivatives of am and χα. am(x) and χα(x) are the component fields for

the gauge boson and the gaugino.

So far the pure spinor superfield Ψ is by definition linear in λα, or in other words, it has

ghost number 1, where the ghost number here simply counts the degree in λ (the notion

of ghost number will be extended later when we consider the non-minimal formalism). In

writing a BRST invariant action or a BV action functional, it will be useful to relax the

ghost number condition on Ψ(x, θ, λ), and allow for components of all degrees in λ:

Ψ(x, θ, λ) = C(x, θ)+λαAα(x, θ)+(λγmnpqrλ)A∗
mnpqr(x, θ)+λαλβλγC∗

αβγ(x, θ)+· · · , (2.9)

where · · · stands for terms that involve more than 3 powers of λ (such terms will not play

any role in the minimal formalism). Here C(x, θ) is the ordinary ghost superfield, A∗
mnpqr

and C∗
αβγ are BV anti-fields. Note that the pure spinor constraint implies that λα1 · · ·λαn

transforms under Lorentz group or Spin(10) in a single irreducible representation of Dynkin

label [0000n].

A first attempt of writing a superspace action in connection with the Yang-Mills su-

perfield equation is the following Chern-Simons-like action [8]

S =

∫
d10xTr

〈
1

2
ΨQΨ+

1

3
Ψ3

〉
. (2.10)

Here Tr stands for the trace over the gauge index of Ψ. 〈· · · 〉 amounts to an integration

over the minimal pure spinor superspace, with a peculiar choice of measure. It is defined

to be nonzero only when evaluated on the spin(10) singlet constructed out of λ3θ5,

〈
(λΓmθ)(λΓnθ)(λΓpθ)(θΓmnpθ)

〉
= 1, (2.11)

and vanishes on any other monomials of the form λkθℓ. This seemingly ad hoc definition

has a natural explanation in the language of non-minimal pure spinor superspace, which

will be reviewed in section 2.3. Note that while this measure has the property that 〈Q(· · · )〉

is a total derivative, 〈∂θα(· · · )〉 generally is not a total derivative.

If we restrict Ψ to its ghost number 1 component, of the form λαAα(x, θ), then the

expression (2.10) reduces to a gauge invariant functional of Aα(x, θ). The problem is

that varying it with respect to Aα(x, θ) does not quite reproduce the equation of motion

QΨ + Ψ2 = 0. For instance all terms involving 5 or more θ’s in Ψ drop out of the action

functional. Such terms will end up as pure gauge, but still (2.10) is not quite the correct

action in the conventional sense. This problem will be resolved in the non-minimal pure

spinor formalism, where infinitely many more auxiliary fields are introduced.
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2.2 Reducing to component fields

It is instructive nonetheless to inspect explicitly the functional (2.10) restricted to Ψ =

λαAα(x, θ). Since the resulting functional is gauge invariant under δAα = dαΩ + [Aα,Ω],

let us first restrict the form of Aα(x, θ) using such a gauge transformation. For simplicity,

we will illustrate with the example zero-dimensional MSYM (also known in its component

field form as the IKKT matrix model), where Aα is a function of θ only, and the gauge

transformation takes the form

δAα(θ) =
∂

∂θα
Ω+ [Aα,Ω]. (2.12)

We can remove Aα(0) with a linear gauge parameter in θ. Let A
(n)
α be the degree n

component of Aα in θ. Now the minimal action can be written as

S =

〈
λαλβλγTr

(
A(1)

α

∂

∂θβ
A(5)

γ

∣∣∣
[00030]

+A(2)
α

∂

∂θβ
A(4)

γ

∣∣∣
[10020]

+
1

2
A(3)

α

∂

∂θβ
A(3)

γ +A(1)
α A

(1)
β A(3)

γ +A(1)
α A

(2)
β A(2)

γ

)〉
.

(2.13)

Note that here we only retain dependence on the representation component [00030] in A(5)

(which contains Λ5[00001] = [00030]⊕ [11010]), and the component [10020] in A(4) (which

contains Λ4[00001] = [02000] ⊕ [10020]). Varying with respect to A(5) and A(4) gives the

following equations

λαλβ∂αA
(1)
β = 0 ⇒ A(1)

α = (Γmθ)αam,

λαλβ∂αA
(2)
β = 0 ⇒ A(2)

α = (θΓmnpθ)(Γ
mnp)αβχ

β .
(2.14)

These conditions remove some of the gauge redundancy in A
(1)
α and A

(2)
α while retaining

the physical degrees of freedom, the gauge boson am and the gaugino χα. Varying with

respect to A(3) gives

λαλβ
(
∂αA

(3)
β +A(1)

α A
(1)
β

)
= 0, (2.15)

which is the precisely the degree 2 component of the equation QΨ+Ψ2 = 0 with A(0) set

to zero. Here we have used the fact that θ3 contains only 1 irreducible representation of

spin(10), namely Λ3[00001] = [01010]. We have also used the fact that in the minimal pure

spinor superspace integral we can integrate by parts on Q (but not on ∂θα by itself). Next,

if we vary A(2) and A(1), we obtain

λαλβ

(
∂α A

(4)
β

∣∣∣
[10020]

+ {A(1)
α , A

(2)
β }

)
= 0,

λαλβ

(
∂α A

(5)
β

∣∣∣
[00030]

+ {A(1)
α , A

(3)
β }

∣∣∣
[10020]

+ A(2)
α A

(2)
β

∣∣∣
[10020]

)
= 0.

(2.16)

The first equation is the correct restriction of QΨ + Ψ2 = 0 to degree 3, keeping only

the [10020] representation component of A(4). The second equation is the restriction of

QΨ+Ψ2 = 0 to degree 4 and the representation [10020], keeping only the [00030] component
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of A(5). Note that the degree 4, [02000] component of the equation of motion is missing

here. However, this component of QΨ + Ψ2 = 0 would have only involved the [11010]

component of A(5), which has dropped out the minimal superspace action altogether. As

a result, we do get the correct equation of motion for A(5)|[00030].

To summarize, once we have fixed on the gauge condition A(0) = 0, the only compo-

nents of Aα(θ) that appears in the minimal pure spinor action S are given by

Aα = A(1)
α

∣∣∣
[00001]

+ A(2)
α

∣∣∣
[00100]

+ A(3)
α

∣∣∣
[01010]

+ A(4)
α

∣∣∣
[10020]

+ A(5)
α

∣∣∣
[00030]

. (2.17)

The resulting equations by varying S with respect to these components are precisely the

restriction of the equation QΨ+Ψ2 = 0 to the relevant components. These equations then

give the correct SYM equations for am and χα, in zero dimension.

The price to pay, if we make the restriction (2.17), is that the super-gauge invari-

ance is no longer manifest, since the gauge variation δAα generally does not maintain the

form (2.17). This is expected, since we cannot implement 16 off-shell supersymmetries with

finitely many auxiliary fields [39]. The way to cure this problem is to introduce the non-

minimal pure spinor variables, which allows for writing down the superspace action with a

conventional measure, and no restriction of the form (2.17) on the pure spinor superfield

will be needed.

2.3 The non-minimal pure spinor superspace

In order to write down higher order terms in the pure spinor superfield, one needs some

way of taking derivative with respect to the pure spinor variable λ, as the naive ∂/∂λα

is generally not well defined due to the constraints. This is achieved through the non-

minimal pure spinor variables, as was first introduced in the context of pure spinor string

theory [23]. We must pay a hefty price however: infinitely many more auxiliary fields are

introduced, and generally we will need to work in the BV formalism [40].

One introduces a new “conjugate” pure spinor λ̄α, of the opposite chirality as λα, that

obeys λ̄Γmλ̄ = 0. It will be also necessary to introduce a Grassmannian variable rα that

obeys λ̄γmr = 0. rα can be identified with the differential dλ̄α, and we will sometimes use

this notation when it does not cause confusion. The differential Q will be modified to

Q = λαdα + rα
∂

∂λ̄α

. (2.18)

Note that the combination rα∂λ̄α
annihilates λ̄γmλ̄ due to the constraint on r, and thus is

well defined. This is also clear if we think of rα∂λ̄α
= dλ̄α∂λ̄α

as taking exterior derivative

on λ̄.

Now we will extend the pure spinor Yang-Mills superfield Ψ(x, θ, λ) to one that depends

on λ̄, r also, Ψ(x, θ, λ, λ̄, r). This introduces infinitely many more auxiliary fields, but does

not change the number of physical degrees of freedom because the cohomology of Q in the

(λ̄, r) sector is trivial. The superspace integration will take the form

∫
d16θ[dλ][dλ̄][dr], (2.19)

– 6 –
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where the spin(10) invariant measure factors [dλ], [dλ̄], [dr] are defined as

[dλ]λαλβλγ = (ǫT̄ )αβγα1···α11
dλα1 · · · dλα11 ,

[dλ̄]λ̄αλ̄βλ̄γ = (ǫT )α1···α11
αβγ dλ̄α1 · · · dλ̄α11 ,

[dr] = (ǫT̄ )αβγα1···α11
λ̄αλ̄βλ̄γ

∂

∂rα1

· · ·
∂

∂rα11

.

(2.20)

Here T is the spin(10) invariant tensor defined by

(λΓmθ)(λΓnθ)(λΓpθ)(θΓmnpθ) = Tαβγα1···α5λ
αλβλγθα1 · · · θα5 , (2.21)

and ǫT its contraction with the 16-dimensional anti-symmetric tensor. T̄ is the same tensor

with chiral and anti-chiral spinors exchanged. In performing the integration of (λ, λ̄) over

the pure spinor superspace, λ̄α will be regarded as the complex conjugate variable of λα.

Note that we could have also simplified our notation by identifying rα with dλ̄α and write

the integration measure as ∫
d16θ[dλ], (2.22)

while the d11λ̄ factor will be supplied from the integrand which is now regarded as a

differential form in λ̄α rather than a function of rα.

The superfield will be regarded as an analytic function in the pure spinor variables

λ, λ̄. In order for the integration over the pure spinor space to converge as λ, λ̄ → ∞, one

multiplies the integration measure with a regulator of the form

exp(−ζ{Q,Λ}). (2.23)

It is crucial that such a regulator formally differs from 1 by a Q-exact expression, so as to

ensure that Q-exact integrands integrate to zero. A convenient choice is

Λ = λ̄αθ
α, {Q,Λ} = λ̄αλ

α + rαθ
α. (2.24)

Note that the BV action constructed by integrating with this regulator, as a functional of

Ψ, will generally depend on ζ, since the integrand isn’t Q-closed. Note that the dependence

on ζ would drop out if we restrict to the part of integrand of homogeneous degree 3 in λ

and r. Now the superspace SYM action is written as

S =

∫
d10xd16θ[dλ][dλ̄][dr]e−ζ(λ̄λ+rθ)Tr

(
1

2
ΨQΨ+

1

3
Ψ3

)
. (2.25)

If we restrict Ψ to be independent of λ̄, r, then the (θ, λ, λ̄, r) measure factor may be

replaced by ∫
d16θ[dλ]e−ζλ̄λ (−ζdλ̄θ)11

11!
(2.26)

which is nonzero only when evaluated with the integrand (λ3θ5), giving
∫

d16θ[dλ]e−ζλ̄λ (−ζdλ̄θ)11

11!
λαλβλγ =

∫
d16θ(ǫT )αβγα1···α11

θα1 · · · θα11

= Tαβγα1···α5
∂

∂θα1
· · ·

∂

∂θα5

∣∣∣∣
θ=0

.

(2.27)
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This is the minimal pure spinor superspace measure we have seen in the previous subsection.

Let us denote collectively Z = (λ, θ, λ̄, r), and the regularized non-minimal superspace

integration measure as [dZ] = d10xd16θ[dλ][dλ̄][dr]e−ζ{Q,Λ}. Given two functionals F,G of

Ψ, one may define a Batalin-Vilkovisky antibracket [40] by

(F,G) = −Tr

∫
[dZ]

δF

δΨ(Z)

δG

δΨ(Z)
. (2.28)

The sign convention has to do with the fact that our measure factor [dZ] is odd. The

extension of the nilpotency of BRST transformation in the BV formalism is the (classical)

BV master equation

(S, S) = 0. (2.29)

2.4 Descendant pure spinor superfields

A key ingredient introduced by [6] is the construction of descendant superfields from Ψ by

acting with certain linear differential operators. The first few descending operators are Âα,

Âm, χ̂α, F̂mn, η̂
α
n . They obey the descending relations

[Q, Âα] = −dα − 2(Γmλ)αÂm.

{Q, Âm} = ∂m − λΓmχ̂,

[Q, χ̂α] = −
1

2
(Γmnλ)αF̂mn,

{Q, F̂mn} = 2λΓ[mη̂n].

(2.30)

Explicitly, they are given by

Âα=−(λλ̄)−1

[
1

4
λ̄αN +

1

8
(Γmnλ̄)αNmn

]
, (2.31)

Âm=−
1

4
(λλ̄)−1(λ̄Γmd) +

1

32
(λλ̄)−2(λ̄Γmnpr)N

np,

χ̂α=
1

2
(λλ̄)−1(Γmλ̄)α∂m−

1

192
(λλ̄)−2(λ̄Γmnpr)(Γmnpd)

α−
1

64
(λλ̄)−3(Γmλ̄)α(rΓmnpr)Nnp,

F̂mn=
1

8
(λλ̄)−2(λ̄Γmn

pr)∂p+
1

32
(λλ̄)−3(rΓmnpr)(λ̄Γ

pd)−
1

256
(λλ̄)−4(λ̄Γmnpr)(rΓ

pqrr)Nqr,

where N = λα ∂
∂λα and Nmn = λα(Γmn)α

β ∂
∂λβ . It will be convenient to introduce an

operator ∆m,

∆m ≡ ∂m +
1

4
(λλ̄)−1(rΓmd)−

1

32
(λλ̄)−2(rΓmnpr)N

np. (2.32)

∆m is analogous to ∂m but has a nontrivial commutator with Q,

[Q,∆m] =
1

2
(λλ̄)−1(rΓmΓnλ)∆n. (2.33)

This property will be useful later in constructing deformations of the BV action. The

descending operators χ̂α, F̂mn and η̂αm are related to ∆m by

χ̂α =
1

2
(λλ̄)−1(Γmλ̄)α∆m, F̂mn =

1

8
(λλ̄)−2(λ̄Γmn

pr)∆p,

η̂αm = −
1

16
(λλ̄)−3(Γnλ̄)

α(rΓm
npr)∆p = −

1

32
(λλ̄)−2(rΓmnpr)(Γ

npχ̂)α.

(2.34)
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A useful fact is that all of χ̂α and F̂mn anti-commute or commute with one another.2 Note

that λΓmχ̂ and λΓnχ̂ do not commute,3 though they would commute when their indices

are contracted with F̂mn or F̂mp · · · F̂nq · · · . The following relations are also useful:

χ̂Γmχ̂ = 0, (λΓmχ̂)F̂mn = F̂mn(λΓ
mχ̂) = 0,

[∆m,∆n] = 0, [∆m, λλ̄] = 0.
(2.35)

2.5 Recovering the on-shell Yang-Mills superfields

We will later construct deformations of the undeformed MSYM action in the sense of

Batalin-Vilkovisky in non-minimal pure spinor superspace, generally of the form

S =

∫
[dZ]Tr

(
1

2
ΨQΨ+

1

3
Ψ3

)
+

∞∑

n=1

ǫnS(n)[Ψ], (2.36)

where S(n)[Ψ] will be an integral over the non-minimal superspace of a function of linear

descendant fields χ̂Ψ, F̂Ψ, etc. The BV master equation will be solved order by order in

the deformation parameter ǫ. Since Ψ(x, θ, λ, λ̄, r) now contains infinitely many auxiliary

fields, here we would like to describe how to recover a deformed equation of motion for an

ordinary Yang-Mills superfield Aα(x, θ).

We will consider an analogous expansion of a ghost number 1 superfield Ψ in ǫ,

Ψ = Ψ0(x, θ, λ) +
∞∑

n=1

ǫnΨn(x, θ, λ, λ̄, r), Ψ0 = λαAα(x, θ). (2.37)

Suppose Ψ0 solves the equation QΨ0+Ψ2
0 = 0 of the undeformed MSYM theory. We would

like to construct a nearby solution of the deformed theory. To first order in ǫ, the equation

to solve is

QΨ1 + {Ψ0,Ψ1}+
δS(1)

δΨ

∣∣∣∣∣
Ψ0

= 0. (2.38)

The key is to show that δS(1)/δΨ evaluated on Ψ0 can be put in the form

δS(1)

δΨ

∣∣∣∣∣
Ψ0

= E1[Ψ0] +QΛ + {Ψ0,Λ}, (2.39)

where the term E1[Ψ0] involves only the minimal variables, and Λ is a function of Ψ0 and

its derivatives that generally involves non-minimal variables. If we can do this, then we

would have recovered the first order deformation of the equation on minimal superfield

Ψmin(x, θ, λ) as

QΨmin +Ψ2
min + ǫ E1[Ψmin] = O(ǫ2). (2.40)

Here Ψ simply differs from Ψmin by ǫΛ.

2The LiE package [41] and the decomposition of tensor products of r and λ̄ into irreps of SO(10) listed

in [6] are useful in verifying the relations among the descendent operators.
3There appears to be an incorrect statement regarding this in [6].
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In practice, we can construct E1[Ψ0] from S(1) roughly by replacing the linear descen-

dant fields with the minimal descendant superfields. To illustrate this, let us consider the

example of Abelian Born-Infeld theory, with

δS(1)

δΨ

∣∣∣∣∣
Ψ0

= (λΓmχ̂Ψ0)(λΓ
nχ̂Ψ0)(F̂mnΨ0)

= −
1

2
(λλ̄)−2(rΓmnpλ̄)(∆mΨ0)(∆nΨ0)(∆pΨ0).

(2.41)

The expected E1[Ψ0] is

E1[Ψ0] = (λΓmχ)(λΓnχ)Fmn, (2.42)

where χα and Fmn are the minimal descendant superfields, related to Aα(x, θ) via

Am = −
1

16
Γαβ
m dαAβ , χα = −

1

10
Γαβ
m (dβA

m − ∂mAβ), Fmn = ∂mAn − ∂nAm. (2.43)

For λαdα-closed Ψ0(x, θ), both (2.41) and (2.42) are Q-closed. Generally, the existence

of E1[Ψ0] is a consequence of the statement that the non-minimal variables λ̄, r do not

introduce new Q-cohomology. What we need to see here is that (2.41) and (2.42) differ by

aQ-exact term, thus verifying in particular that the off-shell deformation is a nontrivial one.

We can write

(λΓmχ)(λΓnχ)Fmn=(λΓmχ)(λΓnχ)

[
−
1

2
(λλ̄)−1(rΓmnχ)+

1

2
(λλ̄)−2(λr)(λ̄Γmnχ)

]

+Q

[
1

2
(λλ̄)−1(λΓmχ)(λΓnχ)(λ̄Γmnχ)

]
(2.44)

= −
1

2
(λλ̄)−2(rΓmnpλ̄)(λΓmχ)(λΓnχ)(λΓpχ)+Q

[
1

2
(λλ̄)−1(λΓmχ)(λΓnχ)(λ̄Γmnχ)

]
.

This is now very close to (2.41), but there is still a little difference between ∆mΨ0 and

λΓmχ. We have

∆mΨ0 = λα∂mAα +
1

4
(λλ̄)−1(rΓmd)(λA)−

1

32
(λλ̄)−2(rΓmijr)(λΓ

ijA)

= λΓmχ+Q

[
Am +

1

4
(λλ̄)−1(λ̄Γmd)(λA)−

1

32
(λλ̄)−2(λ̄Γmijr)(λΓ

ijA)

]

+ (stuff that vanishes upon contraction with rΓmnpλ̄)

= λΓmχ+Q

[
1

2
(λλ̄)−1(λΓmΓkλ̄)Ak −

1

8
(λλ̄)−2(λΓmΓkr)(λ̄Γ

kA)

]

+ (stuff that vanishes upon contraction with rΓmnpλ̄).

(2.45)

Now we can put (2.41) in the form

δS(1)

δΨ

∣∣∣∣∣
Ψ0

= −
1

2
(λλ̄)−2(rΓmnpλ̄)(λΓmχ′)(λΓnχ

′)(λΓpχ
′), (2.46)

where

χ′α = χα +Q

[
1

2
(λλ̄)−1(Γkλ̄)αAk −

1

8
(λλ̄)−2(Γkr)

α(λ̄ΓkA)

]
(2.47)
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Using the identity

Q
[
(λλ̄)−1(λΓm)[α(λΓ

n)β(λ̄Γmn)γ]
]
= (λλ̄)−2(rΓmnpλ̄)(λΓm)α(λΓn)β(λΓp)γ , (2.48)

which in particular implies that the r.h.s. commutes with Q, we see that (2.46) is indeed

equal to (2.42) up to Q-exact terms.

3 The Born-Infeld deformation

A primary example of interest in this paper is the Born-Infeld deformation of MSYM

theory. At the infinitesimal level, this is an F-term deformation of the Lagrangian by a

dimension 8 operator. While this deformation is expected to preserve all 16 supersymme-

tries, in the usual component field formalism the Lagrangian deformation is only invariant

under supersymmetries up to terms proportional to the equation of motion, which must

be compensated by deformation of the supersymmetry transformations. Such a procedure

generally requires adding terms to all orders in the deformation parameter, and there could

be potential obstructions in finding higher order terms. The Abelian Born-Infeld theory to

all orders in the deformation parameter (a.k.a. α′2 in the context of string theory) was first

constructed in [42] by gauge fixing a kappa symmetric D-brane action. It seemed difficult

to generalize this approach to the non-Abelian case.

In the conventional component field formalism, the second order Born-Infeld deforma-

tion was constructed in [34]. Using pure spinor superspace, an all-order Abelian Born-Infeld

deformation was constructed in [6]. It was not clear whether the action of [6] upon inte-

grating out auxiliary fields would coincide with the construction from the super D-brane

action. A priori they could differ by D-terms. The objective of this section is to extend the

construction of [6] in the non-Abelian case to all orders in the deformation parameter. In

principle this also gives a solution to the on-shell deformation problem, considered in Part

1 of the paper [9].

3.1 The first order deformation

Let us begin by recalling the construction of the infinitesimal Born-Infeld deformation in

BV formalism based on non-minimal pure spinor superspace [6]. This is described by a

quartic deformation of the MSYM action,4

S4 =
ǫ

4

∫
[dZ]Tr

[
Ψ ◦ (λΓmχ̂Ψ) ◦ (λΓnχ̂Ψ) ◦ (F̂mnΨ)

]
, (3.1)

where ◦ denotes the symmetric product. Variation with respect to Ψ corrects the equation

of motion to

QΨ+Ψ2 + ǫ(λΓmχ̂Ψ) ◦ (λΓnχ̂Ψ) ◦ (F̂mnΨ) = 0, (3.2)

which is cohomologically equivalent to the on-shell Born-Infeld deformation in terms of

minimal pure spinor superfields, in the sense explained in section 2.5. In showing this, one

integrates by part with respect to the differential operators (λΓmχ̂) and F̂mn, making use

4We shall use Sn to denote the part of the BV action S with degree n in Ψ.
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of the identities (λΓmχ̂)(λΓnχ̂)(λ̄Γmnpr) = 0 and (λΓmχ̂)F̂mn = 0. Note that despite the

presence of the regulator e−ζ(λλ̄+rθ) in [dZ], χ̂α and F̂mn in fact commute with this regula-

tor. Note also that while χ̂α does not commute with λβ, they satisfy λΓmχ̂ = χ̂Γmλ. This

infinitesimal deformation actually does not depend on the value of the parameter ζ in the

regulator. If we vary ζ in (3.1), we obtain a term that can be written as (S2+S3, G), where

G =

∫
[dZ]λ̄αdαTr

[
Ψ ◦ (λΓmχ̂Ψ) ◦ (λΓnχ̂Ψ) ◦ (F̂mnΨ)

]
. (3.3)

The integrand inside (S2 + S3, G) is proportional to the undeformed equation of

motion (2.5); hence, it can be absorbed by field redefinition of Ψ.

To see that the action of the form S2 +S3 +S4 obeys BV master equation up to order

ǫ, one needs to show that (S2, S4) = 0 and (S3, S4) = 0. The manipulations needed to

verify these relations will be useful for the extension to higher order deformations later,

and so let us recall how this is done. Firstly, we have

(S2, S4)=
ǫ

4

∫
[dZ]Tr

[
QΨ ◦ (λΓmχ̂Ψ) ◦ (λΓnχ̂Ψ) ◦ (F̂mnΨ)−Ψ ◦ (λΓmχ̂QΨ) ◦ (λΓnχ̂Ψ) ◦ (F̂mnΨ)

+Ψ ◦ (λΓmχ̂Ψ) ◦ (λΓnχ̂QΨ) ◦ (F̂mnΨ)−Ψ ◦ (λΓmχ̂Ψ) ◦ (λΓnχ̂Ψ) ◦ (F̂mnQΨ)
]
. (3.4)

Using the fact that Q commutes with λΓmχ̂, {Q, F̂mn} = 2λΓ[mη̂n], and the basic

pure spinor identity (λΓm)α(λΓm)β = 0, we see that the integrand is Q-exact and thus

(S2, S4) = 0.

To see the vanishing of (S3, S4), it is useful to use the identity F̂mn =

−1
4(λλ̄)

−1(rΓmnχ̂), and rewrite S4 as

S4 =
ǫ

4

∫
[dZ](λλ̄)−1(Γmλ)[α(Γ

nλ)β(Γmnr)γ]Tr
(
Ψ ◦ χ̂αΨ ◦ χ̂βΨ ◦ χ̂γΨ

)
. (3.5)

Further using χ̂α = 1
2(λλ̄)

−1(Γmλ̄)α∆m, we can write

S4 = −
ǫ

16

∫
[dZ](λλ̄)−4(λΓmΓiλ̄)(λΓnΓ

j λ̄)(rΓmnkλ̄)Tr [Ψ ◦∆iΨ ◦∆jΨ ◦∆kΨ]

= −
ǫ

8

∫
[dZ](λλ̄)−2(rΓijkλ̄)Tr (Ψ∆iΨ∆jΨ∆kΨ) .

(3.6)

In going to the second line, we used the pure spinor constraints on λ̄α and rα, which in

particular implies (λΓmΓiλ̄)(λΓnΓ
j λ̄)(rΓmnkλ̄) = 4(λλ̄)2(rΓijkλ̄). In the last trace we can

replace the symmetric product by ordinary, due to the symmetry on [ijk]. The BV bracket

with S3 is computed as

(S3, S4) = −
ǫ

8

∫
[dZ](λλ̄)−2(rΓijkλ̄)Tr

(
Ψ2∆iΨ∆jΨ∆kΨ−Ψ∆iΨ

2∆jΨ∆kΨ

+Ψ∆iΨ∆jΨ
2∆kΨ−Ψ∆iΨ∆jΨ∆kΨ

2
)

=
ǫ

8

∫
[dZ](λλ̄)−2(rΓijkλ̄)Tr

(
Ψ2 ◦∆iΨ ◦∆jΨ ◦∆kΨ

)
.

(3.7)

We’ve chosen to rewrite the last line in terms of a symmetrized product once again, for

later convenience. The representation in terms of the ∆’s is particularly useful due to the

– 12 –



J
H
E
P
0
4
(
2
0
1
6
)
1
7
1

properties [∆i,∆j ] = 0, [∆i, λλ̄] = 0, and
∫
[dZ]∆i(· · · ) = 0 which allows for integration by

parts on ∆i. Repeatedly applying integration by parts and cyclicity of the trace, as well

as the anti-symmetry on [ijk], we can make the following replacement on the integrand

Tr
(
Ψ2 ◦∆iΨ ◦∆jΨ ◦∆kΨ

)
→

3

2
Tr ({Ψ,∆iΨ} ◦Ψ ◦∆jΨ ◦∆kΨ)

→
3

2
Tr (∆iΨ ◦ {Ψ,Ψ ◦∆jΨ ◦∆kΨ})

→ 3Tr
(
∆iΨ ◦Ψ2 ◦∆jΨ ◦∆kΨ

)
+ 3Tr

(
∆iΨ ◦Ψ ◦∆jΨ ◦∆kΨ

2
)

→ 6Tr
(
Ψ2 ◦∆iΨ ◦∆jΨ ◦∆kΨ

)
.

(3.8)

This shows that indeed (S3, S4) = 0, thus completing the verification that the Born-Infeld

deformation (3.1) solves the BV master equation at order ǫ. Now at order ǫ2, there is a

potentially non-vanishing contribution to the BV master equation,

(S4, S4) = −3ǫ2
∫
[dZ](λλ̄)−4(rΓijkλ̄)(rΓmnpλ̄)Tr(∆iΨ∆jΨ∆kΨ∆mΨ∆nΨ∆pΨ). (3.9)

Note that the combination r2λ̄2 appearing in the prefactor of the integrand can only trans-

form in the representation [00120]⊕ [01011] of spin(10), due to the pure spinor constraints

on r and λ̄. In the case of Abelian gauge theory, ∆iΨ · · ·∆pΨ lives in the 6th anti-symmetric

tensor representation, or [00011]. It cannot form a singlet by contracting with r2λ̄2, and

hence (3.9) vanishes in the Abelian theory. It does not vanish in the non-Abelian case, and

a second order deformation of the action must be introduced to cancel this term in the BV

master equation. This will be analyzed next.

3.2 Non-Abelian Born-Infeld deformation at the second order

Let us now consider (S4, S4) in the non-Abelian theory. Using Baker-Campbell-Hausdorff

formula, we can write the integrand in (S4, S4) as

(λλ̄)−4(rΓijkλ̄)(rΓmnpλ̄)Tr

[(
∆iΨ ◦∆jΨ ◦∆kΨ

)(
∆mΨ ◦∆nΨ ◦∆pΨ

)]

= (λλ̄)−4(rΓijkλ̄)(rΓmnpλ̄)Tr

[
∆iΨ ◦∆jΨ ◦∆kΨ ◦∆mΨ ◦∆nΨ ◦∆pΨ

−
9

2
∆iΨ ◦∆mΨ ◦ {∆jΨ,∆nΨ} ◦ {∆kΨ,∆pΨ}+ 3∆iΨ ◦∆mΨ ◦∆nΨ ◦ [∆jΨ, {∆kΨ,∆pΨ}]

+
3

4
{∆iΨ,∆mΨ} ◦ {∆jΨ, [∆nΨ, {∆pΨ,∆kΨ}]} −

1

4
[∆iΨ, {∆jΨ,∆mΨ}] ◦ [∆nΨ, {∆pΨ,∆kΨ}]

−
1

5
∆iΨ ◦

[
∆jΨ, {∆mΨ, [∆nΨ, {∆pΨ,∆kΨ}]}

]
−
3

5
∆iΨ ◦

[
∆mΨ, {∆jΨ, [∆nΨ, {∆pΨ,∆kΨ}]}

]]
.

=
3

2
(λλ̄)−4(rΓijkλ̄)(rΓmnpλ̄)Tr

[
∆iΨ ◦∆mΨ ◦ {∆jΨ,∆nΨ} ◦ {∆kΨ,∆pΨ}

−
1

5
[{∆iΨ,∆mΨ},∆jΨ] ◦ [∆nΨ, {∆pΨ,∆kΨ}]}

]
. (3.10)

In above we used the fact that the term appearing in the second line is zero, for the

same reason as in the Abelian case, and simplified the rest using cyclicity of the trace. The

resulting expression is nonzero, and we would like to cancel it by an order ǫ2 deformation of
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the action. A priori, one may try to cancel it with either (S2, S6), by adding to S some sextic

term S6, or with (S3, S5), by adding a quintic term S5. It is easy to see that this cannot be

done using S6. The reason is that we would have to construct S6 by taking rλ̄3 contracted

with the trace of a product of 6 ∆Ψ’s. However, rλ̄3 consists of the representations [00040]⊕

[00120] of spin(10), and neither appear in the (unsymmetrized) 6-fold tensor power of the

vector representation, and so no such singlet exist as a candidate for S6.

On the other hand, it is possible to cancel (S4, S4) by introducing a quintic term S5,

such that (S4, S4)+2(S3, S5) = 0. Let us first consider the term on the r.h.s. of (3.10) that

involves a 4-fold symmetric product. Firstly, we have the identity
∫
[dZ](λλ̄)−4(rΓijkλ̄)(rΓmnpλ̄)Tr

[
∆iΨ ◦∆mΨ ◦ {∆jΨ,∆nΨ} ◦ {∆kΨ,∆pΨ}

]

=

∫
[dZ](λλ̄)−4(rΓijkλ̄)(rΓmnpλ̄)Tr

[
3Ψ2 ◦∆iΨ ◦∆mΨ ◦ {∆n∆kΨ,∆j∆pΨ}

− 8Ψ2 ◦∆mΨ ◦∆j∆nΨ ◦ {∆k∆pΨ,∆iΨ}

]
.

(3.11)

In this manipulation we used integration by parts on the ∆i’s (recall that ∆i also commutes

with λλ̄), the cyclicity of the trace, and the symmetry on the indices [ijk][mnp]. It is now

easy to write down an S5 such that (S3, S5) can be used to cancel the term appearing

in (3.11). We must at the same time make sure that S5 has vanishing BV anti-bracket

with S2. This can be achieved by rewriting expressions involving ∆i’s in terms of λΓmχ̂

and (λΓmn)αF̂mn,

λΓmχ̂ =
1

2
(λλ̄)−1(λΓmΓnλ̄)∆n,

(λΓmn)αF̂mn =
1

8
(λλ̄)−2(λΓmn)α(λ̄Γmn

pr)∆p,

(3.12)

both of which commute with Q. One can verify that the quintic term that can be used to

cancel the r.h.s. of (3.10) is

S5 = −
3

4

∫
[dZ](λλ̄)−4(rΓijkλ̄)(rΓmnpλ̄)Tr

[
Ψ ◦∆iΨ ◦∆mΨ ◦ {∆n∆kΨ,∆j∆pΨ}

− 2Ψ ◦∆mΨ ◦∆j∆nΨ ◦ {∆k∆pΨ,∆iΨ} −
1

5
Ψ ◦ [{∆jΨ,∆i∆mΨ}, {∆pΨ,∆n∆kΨ}]

]

= −48

∫
[dZ] Tr

[
Ψ ◦ (λΓiχ̂)Ψ ◦ (λΓmχ̂)Ψ ◦ {(λΓnχ̂)F̂ijΨ, (λΓjχ̂)F̂mnΨ}

− 2Ψ ◦ (λΓmχ̂)Ψ ◦ (λΓjχ̂)(λΓnχ̂)Ψ ◦ {F̂ijF̂mnΨ, (λΓiχ̂)Ψ}

−
1

5
Ψ ◦

[
{(λΓiχ̂)Ψ, (λΓjχ̂)F̂mnΨ}, {(λΓmχ̂)Ψ, (λΓnχ̂)F̂ijΨ}

] ]
. (3.13)

The way we could solve for an S5 with the property (S3, S5) = −1
2(S4, S4) is no

accident. The essential point is that (S4, S4) is closed with respect to (S3, · ), and the

operation (S3, · ), which is nilpotent and can be regarded as a coboundary operator on the

space of functionals of Ψ, has trivial cohomology in this case. We will demonstrate this

more generally in the next subsection.
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3.3 No obstruction to all order

In this section, we will prove the existence of an all-order formal deformation that solves the

BV master equation, whose first order term in the deformation parameter ǫ is S4. Firstly,

note that the BV anti-bracket satisfies Jacobi identity

(A, (B,C)) = ((A,B), C) + (−1)|A||B|(B, (A,C)), (3.14)

where A,B,C are functionals of Ψ. We define an odd differential δ̂A ≡ (S3, A) on

functionals of Ψ, that obeys δ̂ 2A = 0 because of the Jacobi identity and (S3, S3) = 0.5

The BV anti-bracket of two δ̂-closed functionals is δ̂-closed, and the BV anti-bracket

of a δ̂-closed functional with a δ̂-exact functional is δ̂-exact. So in other words, the

BV anti-bracket defines a cup product on the cohomology of δ̂. Note that in fact, the

cohomology of δ̂ is defined already on the traces of products of derivatives of Ψ, without

the need for integration over pure spinor superspace.

Now consider the vector space V spanned by functionals constructed by taking F̂mn’s

and (λΓmχ̂)’s acting on Ψ, with all vector indices on the (λΓmχ̂)’s contracted with those of

the F̂ ’s, traced and then integrated over the pure spinor superspace. A typical functional

of this type looks like
∫
[dZ]tr

[
· · · F̂mnF̂pqΨ(λΓnχ̂)Ψ · · · (λΓqχ̂)Ψ(λΓmχ̂)Ψ · · · (λΓpχ̂)Ψ · · ·

]
. (3.15)

The virtue of this construction is that, due to (3.12), such a functional has vanishing BV

anti-brackets with S2. Furthermore, the BV anti-bracket of two such functionals remains

in V .

The action of δ̂ on such functionals, on the other hand, is simplified if we express F̂mn

and λΓmχ̂ in terms of ∆m, using

F̂mn = −
1

8
(λλ̄)−2(rΓmnΓ

pλ̄)∆p, and λΓmχ̂ =
1

2
(λλ̄)−1(λΓmΓnλ̄)∆n. (3.16)

By construction, here the vector index on λΓmχ̂ is always contracted with an index on an

F̂mn, and so the λΓmχ̂ will always appears in the combination (rΓmnΓpλ̄)λΓ
mχ̂, which can

be simplified as

(rΓmnΓpλ̄)λΓ
mχ̂ =

1

2
(λλ̄)−1(rΓmnΓpλ̄)(λΓ

mΓqλ̄)∆q

=
1

2
(λλ̄)−1(rΓnpΓmλ̄)(λΓmΓqλ̄)∆q = (rΓnpΓmλ̄)∆m = (rΓmnΓpλ̄)∆

m.

(3.17)

In other words, on any of the functionals in V , we can replace λΓmχ̂ by ∆m. Next, because

∆m commutes with λλ̄ (and trivially commutes with r, λ̄), after expressing F̂ in terms of

∆, we can move all explicit factors involving r, λ, λ̄ outside the ∆’s and outside the trace.

A functional in V can thus be rewritten as a linear combination of the terms
∫

[dZ]T i1···i3ntr
[(

∆iw(1)
· · ·∆iw(p1)

Ψ
)(

∆iw(p1+1)
· · ·∆iw(p2)

Ψ
)
· · ·

(
∆iw(pm−1)+1

· · ·∆iw(pm)
Ψ
)]

,

(3.18)

5It is important here that the BV anti-bracket is even and S3 has odd degree by convention of (3.14)

(which is shifted by 1 from the usual convention). Of course, it is also easy to verify directly that δ̂ 2 = 0.
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where 0 ≤ p1 ≤ · · · ≤ pm = 3n,6 w is an element of the permutation group S3n on

{1, · · · , 3n}, and T i1···i3n = (λλ̄)−2n(rΓi1i2i3 λ̄) · · · (rΓi3n−2i3n−1i3n λ̄). Since T i1···i3n com-

mutes with ∆k, we are free to integrate by part on the ∆’s.

The tensor T (n) ∼ T i1···i3n transforms in the overlap between the representation content

of rnλ̄n (as listed in the table of [6]) and Λn[00100]. We list these representations below:7

T (1) ∈ [00100],

T (2) ∈ [01011],

T (3) ∈ [02020]⊕ [10022],

T (4) ∈ [00033]⊕ [11031],

T (5) ∈ [01042]⊕ [20140],

T (6) ∈ [10151]⊕ [30060],

T (7) ∈ [00260]⊕ [20071],

T (8) ∈ [10180],

T (9) ∈ [0, 1, 0, 10, 0],

T (10) ∈ [0, 0, 0, 12, 0],

T (11) ≡ 0.

(3.19)

The structures in Sn+3 that we will encounter at the n-th order in the deformation param-

eter are of the schematic form T (n)tr∆3nΨn+3.

The cohomology of δ̂ on V is equivalent to a certain invariant cyclic cohomology. Let ti
be a set of commutative variables, i = 1, · · · , 10 (they can be thought of as dual variables

to the ∆i’s that act on a single Ψ inside the trace). Let h = 〈ti〉 be the Abelian Lie

algebra generated by commuting variables ti (i.e. the linear vector space spanned by the

ti’s), and A = U(h) = C[ti] its universal enveloping algebra. Let Ck = Hom(⊗k+1A,C) be

the Hochschild cochains. The cyclic complex Ck
λ is obtained by taking the part of Ck that

is invariant under the Zk+1 that shifts the k + 1 arguments with sign, namely

Ck
λ = {ϕ ∈ Ck : ϕ(ak, a0, · · · , ak−1) = (−1)kϕ(a0, a1, · · · , ak)}. (3.20)

The differential δ : Ck
λ → Ck+1

λ defined by

(δϕ)(a0, · · · , ak+1) =
k∑

i=0

(−)iϕ(a0, · · · , aiai+1, · · · , ak+1) + (−)k+1ϕ(ak+1a0, · · · , ak)

(3.21)

is nilpotent. The cohomology of δ at Ck
λ defines the cyclic cohomology HCk(A). Next,

consider the complex Cℓ,k = Λℓh∗ ⊗ Ck
λ with the chain map d : Λℓh∗ ⊗Ck

λ → Λℓ−1h∗ ⊗ Ck
λ

6If pℓ−1 and pℓ coincide then by convention there is no ∆ acting on Ψ in the ℓ-th factor.
7Interestingly, the absence of T (11) ensures that we do not have a term with (λλ̄)−11 pole in the integrand,

that would come with 11 powers of r. If such a term were present, it would lead to a log divergence in the

(λ, λ̄) integral, making the action ill defined.
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defined by

d(η1 ∧ · · · ∧ ηℓ ⊗ ϕ)(a0, · · · , ak) (3.22)

=
ℓ∑

i=1

k∑

j=0

(−1)i−1η1 ∧ · · · ∧ ηi−1 ∧ ηi+1 ∧ · · · ∧ ηℓ ⊗ ϕ(a0, · · · , aj−1, ηi(aj), aj+1, · · · , ak).

Here h∗ is the dual Lie algebra of h, generated by ∂/∂ti, and η(a) is defined as the derivative

map for a ∈ A = C[ti], η ∈ h∗. In other words, with Ck
λ viewed as an h∗-module as above,

the cohomology of the complex Λℓh∗⊗Ck
λ with respect to the differential d defines the Lie

algebra homology Hℓ(h
∗, Ck

λ). It is easy to see that dδ = δd.

Now δ induces a map on Hℓ(h
∗, Ck

λ),

δ∗ : Hℓ(h
∗, Ck

λ) → Hℓ(h
∗, Ck+1

λ ). (3.23)

The cohomology of δ∗ on H0(h
∗, Ck

λ) defines the invariant cyclic cohomology HCk
h∗(A).

The cohomology of δ̂ on the space of functionals V at the n-order (with n+ 3 Ψ’s) lies in

HCn+2
h∗ (A); they correspond to the components that transform under spin(10) according

to the representations of T (n).

The ordinary cyclic cohomology HCk(A) can be computed using a homology version

of Grothendieck’s algebraic de Rham complex [43],

HCk(A) ≃ Ker d∗|(Ωk)∗ ⊕Hk−2,dR(A)⊕Hk−4,dR(A)⊕ · · · (3.24)

where (Ωk)∗ is the space of de Rham k-currents in the ti’s. d
∗ is the transpose of de Rham

differential. H∗,dR(A) is the algebraic de Rham homology of A, which coincides with the

ordinary de Rham homology on Spec(A) = V ≃ C
10, defined in terms of the codifferential

on polyvector fields. For odd k, HCk(A) ≃ Ker d∗|(Ωk)∗ is the dual vector space of the

cokernal of d : Ωk−1 → Ωk. In this case due to the triviality of de Rham homology we can

also identify it as the dual space of dΩk ⊂ Ωk+1. These classes are in correspondence with

the (unintegrated) traces of derivatives of Ψ’s of the form8

∆i1 · · ·∆imTr
(
∆j1Ψ ◦ · · · ◦∆jk+1

Ψ
)
. (3.26)

This statement is familiar in the context of counting BPS operators [44]. But since all of

these term will end up giving total derivatives, they will not be relevant in the invariant

cyclic cohomology of interest here. For even k, there is an additional part of HCk(A)

coming from H0,dR(A) ≃ C. This corresponds to the element TrΨk+1, which is nonzero

only for even k.

8There is a canonical pairing between integrands of the form (3.26) and algebraic de Rham differential

forms in dΩk,

〈
f(∆i)Tr(∆j1Ψ ◦ · · · ◦∆jk+1Ψ)|∂kg(ti)dtk ∧ dtj1 ∧ · · · ∧ dtik

〉
= δ

i1
[j1

· · · δ
ik
jk
f(∂i)∂jk+1]g(ti). (3.25)

Note that expressions of the form (3.26) are not all independent: for intance, ∆[kTr(∆j1Ψ◦· · ·◦∆jk+1]Ψ) ≡ 0.

This is precisely consistent with the pairing (3.25). Therefore, we can identify the set of operators (3.26)

with (dΩk)
∗ ≃ Ker(d∗)|(Ωk)∗ .
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Now for the invariant cyclic cohomology HCk
h∗(A), there is an analogous relation with

the invariant de Rham homology [45] (with respect to the action of h∗, by translation on

the affine space in this case),

HCk
h∗(A) ≃ Ker d∗|(Ωk

h∗ )∗
⊕Hh

∗

k−2,dR(A)⊕Hh
∗

k−4,dR(A)⊕ · · · (3.27)

The invariant de Rham homology on the r.h.s. are simply represented by constant de Rham

currents, i.e.

Hh
∗

k−2ℓ,dR(A) ≃ Λk−2ℓV. (3.28)

Similarly, Ker d∗|(Ωk
h∗ )∗

≃ ΛkV . So we conclude that

HCk
h∗(A) ≃

⊕

ℓ≥0

Λk−2ℓV. (3.29)

These class have clear interpretations in terms of the functionals of Ψ, of degree n+3 = k+1.

The ΛkV consists of δ̂-closed integrals of the form

∫
[dZ]Tr

(
Ψ ◦∆i1Ψ ◦ · · · ◦∆in+2Ψ

)
. (3.30)

The remaining Λk−2ℓV for ℓ ≥ 1 are represented by integrals of the form

∫
[dZ]Tr

(
Ψ2ℓ+1 ◦∆i1Ψ ◦ · · · ◦∆in+2−2ℓ

Ψ+ · · ·
)
, (3.31)

where the · · · stands for terms of the same degree in ∆ and Ψ but with different orderings

in the trace. The key point in conclusion is that the only nontrivial δ̂-cohomology classes

are represented by functionals in V that involve fewer ∆’s than Ψ’s. This is enough to

prove the absence of obstruction in solving the BV master equation for the Born-Infeld

deformation to all orders.

Now we show that there is an all-order formal deformation of the form

S = S2 + S3 +

∞∑

n=1

Sn+3, (3.32)

where S4 is the first order non-Abelian Born-Infeld deformation (3.1), and S5, S6, · · · are

functionals in V . Sn+3 is of order ǫn. We prove this by induction. Suppose S5, S6, · · · , SM

are all functionals of the form V , and solve the BV master equation up to order ǫM . Namely,

(S3, Sn) = −
1

2

n−1∑

i=4

(Si, Sn+3−i), n = 5, 6, · · · ,M. (3.33)

The order ǫM+1 term in the BV master equation takes the form

δ̂SM+1 = (S3, SM+1) = −
1

2

M∑

n=4

(Sn, SM+4−n). (3.34)
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The r.h.s. of this equation is a functional of the type V , of degree 3M − 3 in ∆ and M + 2

in Ψ, and by (3.33) one sees that the r.h.s. of (3.34) is a δ̂-closed. Namely,

(
S3,

M∑

n=4

(Sn, SM+4−n)
)
= 2

M∑

n=5

(
(S3, Sn), SM+4−n

)

= −
M∑

n=5

n−1∑

i=4

(
(Si, Sn+3−i), SM+4−n

)
= 0.

(3.35)

In above the Jacobi identity on the BV anti-bracket was used repeatedly. We have seen

that cohomology of δ̂ on V of such degrees in ∆ and Ψ is trivial. This means that the r.h.s.

of (3.34) is δ̂-exact, and a solution for SM+1 of the type V exists.

4 Other examples

In this section, we consider two examples of deformations that preserve maximal supersym-

metries, but break either Lorentz invariance (noncommutative deformation) or R-symmetry

(5-form deformation).

4.1 Noncommutative deformation

In every spacetime dimension d between 0 and 10, besides the Born-Infeld deformation,

there is only one class of maximally supersymmetric single trace F-term deformations

that preserve the Spin(10 − d) R-symmetry. This is the noncommutative deformation of

MSYM [46]. As was well known, it can be implemented by replacing the product of fields

in MSYM action (2.25) with a noncommutative associative ⋆-product, defined by

f(x) ⋆ g(x) = f(x) exp
(
ǫ ωij←−∂ i

−→
∂ j

)
g(x), (4.1)

where ωij is a constant 2-form (more precisely, a Poisson structure). We will fix ωij and

think of the coefficient ǫ as an expansion parameter. Cyclicity of the trace is maintained

up to total derivatives. Consequently the noncommutative-deformed action still solves the

BV master equation. Expanding the deformed action in ǫ to the first order, we obtain the

undeformed action S2 + S3 plus

S′
3 =

2

3
ǫ

∫
[dZ] Tr

(
ωijΨ∂iΨ∂jΨ

)
. (4.2)

An alternative and equivalent way to write the first order deformation in ǫ is9

S′′
3 + S′′

4 =
2

3
ǫ

∫
[dZ] Tr

(
ωijΨ(λΓiχ̂)Ψ(λΓjχ̂)Ψ

)
−

1

6
ǫ

∫
[dZ]ωijTr

(
Ψ3 ◦ F̂ijΨ

)
(4.3)

This differs from S′
3 by a term that can be removed by field redefinition at the first order.

Namely, their difference is (S2 + S3)-exact:

S′
3 − (S′′

3 + S′′
4 ) = (S2 + S3, G), (4.4)

9Written this way, the Born-Infeld deformation looks like a noncommutative deformation with the field

strength Fij replacing the non-commutativity parameter ωij . Though, of course, such a naive replacement

would have resulted in a non-associative star product.
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where G is the functional

G[Ψ] =
2

3
ǫ

∫
[dZ]ωijTr

(
Ψ ◦ ÂiΨ ◦ (∂j + (λΓjχ̂))Ψ

)
. (4.5)

To see this, we can compute the BV anti-brackets of G with S2, S3 as

(S2, G) =
2

3
ǫ

∫
[dZ]ωijTr

(
Ψ ◦ {Q, Âi}Ψ ◦ (∂j + (λΓjχ̂))Ψ

)
,

(S3, G) =
1

6
ǫ

∫
[dZ]ωijTr

(
Ψ3 ◦ F̂ijΨ

)
.

(4.6)

Eq. (4.4) follows from the descending relation {Q, Âi} = ∂i−λΓiχ̂. Now the r.h.s. of (4.4) is

an integral whose integrand is proportional to the undeformed equation of motion. There-

fore, the deformations by S′
3 and by S′′

3+S′′
4 are equivalent up to a field redefinition, modulo

O(ǫ2) terms.

4.2 The 5-form deformation

An F-term deformation that is not an R-symmetry singlet exists in zero dimensional MSYM

(IKKT matrix model), transforming in the self-dual 5-form representation of the Spin(10)

R-symmetry.10 This arises in the world volume theory of multi-D-instantons probing the

AdS5 × S5 background of type IIB string theory, when viewed as a deformation of flat

spacetime. The first order deformation of the action is given by

S′
3 + S′

4 = ǫ

∫
[dZ]ωαβTr

[
Ψ((Γmλ)αÂmΨ)((Γnλ)βÂnΨ)

]

+
1

16
ǫ

∫
[dZ]ωαβTr

[
Ψ3([Âα, [Q, Âβ]]Ψ)

]
,

(4.7)

where

ωαβ ≡ ωpqrst(Γpqrst)
αβ . (4.8)

Using [Q, Âα] = −dα − 2(Γmλ)αÂm, it is easy to verify that

(S2, S
′
3) = (S3, S

′
3) + (S2, S

′
4) = (S3, S

′
4) = 0, (4.9)

and so the BV master equation is obeyed at first order in ǫ.

One may attempt to extend this deformation to all-order, by representing it as a

noncommutative deformation in the superspace, with the Poisson structure given by ωαβ .

Namely, we replace the ordinary product in the undeformed action (2.25) by a noncommu-

tative ⋆-product defined as

f(θ) ⋆ g(θ) = f(θ) exp
(
ǫ ωαβ←−d α

−→
d β

)
g(θ). (4.10)

10There are other R-symmetry breaking F-term deformations in general d dimensions, that transform in

the symmetric traceless tensor representation of Spin(10 − d). They may be viewed as a generalization of

the Born-Infeld deformation. We will not discussion their off-shell constructions here.
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This is only well-defined on (0|16) superspace, because in higher spacetime dimensions the

superderivatives dα’s do not commute with one another. Expanding the action to first

order in ǫ, one has

S′′
3 =

2

3
ǫ

∫
[dZ]Tr

(
ωαβΨ(dαΨ)(dβΨ)

)
. (4.11)

This amounts to replacing (λΓm)αÂm in S′
3 by dα. However, such a construction appears

problematic because dα does not commute with the regulator exp(−ζ(λλ̄ + rθ)), and so

we would not be able to integrate by parts on dα. Perhaps a suitable ζ → 0 limit can be

taken, or one may add terms that cancel the ζ-dependence in the BV master equation.

5 Regularization by smearing

In the non-minimal pure spinor descendant field construction, the factor (λλ̄)−1 appears

in the descending differential operators, which has a pole at the tip of the pure spinor

cone. With sufficiently many descendant fields in the integrand, one may worry about a

potential divergence in the integration over the pure spinor space. On the other hand, each

net factor of (λλ̄)−1 is accompanied by an rα. When there are more than 11 r’s in the

numerator, the integrand vanishes due to the pure spinor constraint relating rα and λ̄α. A

priori, there could be a logarithmic divergence coming from integrating r11(λλ̄)−11. In the

example of Born-Infeld deformation, the coefficients of such terms appear to be zero, but

this isn’t immediately obvious.

It was suggested by Berkovits and Nekrasov [24] in the context of pure spinor string

theory that one can regularize a potential divergence in the pure spinor integral by smearing

the vertex operators in pure spinor space, in a way that preserves BRST invariance. In

this section, we will adopt the same smearing operator and consider superspace Lagrangian

terms built out of smeared descendant pure spinor superfields. In this way, one could

eliminate potential divergences in the pure spinor space integral from the start.

A related issue is the construction of D-term deformations. The three examples of

deformed BV action of MSYM we have constructed so far are all F-term deformations.

It is not clear whether D-terms can be expressed as the integral of a local expression of

the superfields over the pure spinor superspace. Naively one may try to apply enough

descending operators so that r11 appears and turns the fermionic superspace integral

into an integration purely over the 16 θ’s. Such attempts seem to fail. In fact if we

could write such an expression using the descending operators, we would also encounter

a bosonic integration of (λλ̄)−11 which is logarithmically divergent. It would seem that

the construction of D-terms must involve non-local terms on the pure spinor superspace,11

where the smearing construction could be useful as well.

11This is not unfamiliar in the context of harmonic superspace.
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5.1 A smearing operator

First, one introduces a new bosonic pure spinor variable fα and its fermionic counterpart

gαI , as well as their conjugate variables f̄α, ḡα, that obey the constraints12

fαΓm
αβf

β = fαΓm
αβg

β = f̄α(Γ
m)αβ f̄β = f̄α(Γ

m)αβ ḡβ = 0. (5.1)

We may also identify gα with the odd differential dfα, and ḡα with df̄α. The descendant

superfields generally contain terms involving some powers of r and (λλ̄)−1. The idea is to

consider the exponential of a Q-exact operator that acts on the field, and effectively shifts

λ and λ̄ by a small amount, roughly proportional to f and f̄ , so as to smear out the pole

in (λλ̄). The differential Q will be extended to

Q = λαdα + rα
∂

∂λ̄α

+ fα ∂

∂gα
+ ḡα

∂

∂f̄α
. (5.2)

Note that Q is well defined due to the pure spinor constraints on rα, f
α, and ḡα.

The smearing operator, which may also be viewed as a regulator, acts on a descendant

pure spinor field ĜΨ as

[ĜΨ]ǫ =

∫
e−f̄f−df̄df exp(ǫ{Q,X})ĜΨ. (5.3)

Here X is a linear differential operator in the non-minimal pure spinor variables that acts

on ĜΨ, and so is {Q,X}. ǫ is a smearing parameter. In writing (5.3) we have made the

identification g = df, ḡ = df̄ , and the integral is understand as that of a differential top form

d11fd11f̄ over the pure spinor space of (f, f̄). Note that f̄f + df̄df = {Q, f̄g} is Q-exact.

It is somewhat nontrivial to construct the desired X, since various pure spinor con-

straints must be obeyed and only certain combinations of the derivatives with respect to

the pure spinor variables are allowed. The resulting expression is

X = gαWα + f̄αV
α, (5.4)

where Wα and V α are differential operators in λ and r respectively,

Wα = −(λf̄)−1

[
1

4
f̄αN +

1

8
(Γmnf̄)αN

mn

]
,

V α = −(fλ̄)−1

[
1

4
fα(λ̄∂r) +

1

8
(Γmnf)α(λ̄Γmn∂r)

]
.

(5.5)

Note that Wα takes the same form as the descending operator Âα, except that λ̄ has been

replaced by f̄ . It is useful to write down the Q-commutator of Wα and V α, given by

[Q,Wα] = −dα − 2(Γmλ)αUm,

Um ≡ −
1

4
(λf̄)−1(f̄Γmd) +

1

32
(λf̄)−2(f̄Γmnpḡ)N

np.
(5.6)

12One can also generalize this construction by introducing several copies of (f, g, f̄ , ḡ) variables.
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and

{Q, V α} = W
α
−

fr

fλ̄
V α,

W
α
≡ −(λ̄f)−1

[
1

4
fαN +

1

8
(Γmnf)αN

mn
]
,

N ≡ λ̄∂λ̄ + r∂r, Nmn ≡ λ̄Γmn∂λ̄ + rΓmn∂r.

(5.7)

Be cautious that W
α
is not the same as Wα simply with λ, f and λ̄, f̄ exchanged, as it has

the extra terms involving r-derivatives.

We omit lengthy algebra and record the final expression for the differential operator

in the regulator exponent

{Q,X} = f̂Πλ∂λ + f̄Πλ̄∂λ̄ + gΠλd+

[
ḡΠλ̄ +

1

16
(rΓijmλ̄)(λ̄−1Γij f̄)(Γmλ̄−1)

]
∂r, (5.8)

where we used the notation

λ−1
α ≡ (λf̄)−1f̄α, (λ̄−1)α ≡ (λ̄f)−1fα. (5.9)

Πλ and Πλ̄ are projectors that ensures the λ and λ̄ derivatives are well defined. Explicitly,

they are given by

(Πλ)α
β ≡ δβα −

1

2
(Γmλ)α(Γmλ−1)β = −

1

4
(λ−1)αλ

β −
1

8
(Γmnλ−1)α(λΓmn)

β ,

(Πλ̄)
β
α ≡ δβα −

1

2
(Γmλ̄)β(Γmλ̄−1)α = −

1

4
(λ̄−1)βλ̄α −

1

8
(Γmnλ̄−1)β(λ̄Γmn)α.

(5.10)

In (5.8) we have also defined f̂α as a shifted version of fα,

f̂α ≡ fα −
1

2
(λf̄)−1(gΓmλ)(Γmḡ)α. (5.11)

5.2 Shifted pure spinor variables

The operator exp(ǫ{Q,X}) acts on a field by shifting all superspace variables

xm, θα, λα, λ̄α, rα. First, consider the terms in {Q,X} that involve only bosonic deriva-

tives, dropping g, ḡ dependence for the moment,

eǫ{Q,X}
∣∣∣
g,ḡ=0

= exp
[
ǫ(f̂Πλ∂λ + f̄Πλ̄∂λ̄)

]
. (5.12)

The shift of λ and λ̄ by (5.12) was computed by Berkovitz and Nekrasov,

eǫ{Q,X}
∣∣∣
g,ḡ=0

λα = (λ+ ǫf)α − ǫ
(λΓmf)(Γmf̄)α

2(λ+ ǫf)f̄
,

eǫ{Q,X}
∣∣∣
g,ḡ=0

λ̄α = (λ̄+ ǫf̄)α − ǫ
(λ̄Γmf̄)(Γmf)α
2(λ̄+ ǫf̄)f

.

(5.13)

As a consistency check, note that the r.h.s. obey the pure spinor constraint for any finite

value of ǫ.
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Now let us include the g, ḡ dependence. The notation is simplified if we now make the

identification rα = dλ̄α, g
α = dfα, and ḡα = df̄α. We can write

eǫ{Q,X}F (x, θ, λ, λ̄, dλ̄) = F (xǫ, θǫ, λǫ, λ̄ǫ, dλ̄ǫ) (5.14)

for any superfield F , where (xǫ, θǫ, λǫ, λ̄ǫ) are functions of (x, θ, λ, λ̄) (independent of dλ̄),

that also depends on f, f̄ , df, df̄ . It follows immediately from the structure of {Q,X} that

rǫ is recovered from λǫ by differentiation with respect to λ̄ and f̄ , namely

(rǫ)α = [Q, (λ̄ǫ)α] = ∂̄(λ̄ǫ)α ≡ (r∂λ̄ + ḡ∂f̄ )(λ̄ǫ)α. (5.15)

Thus, it suffices to consider the action of

[
f −

1

2
(λf̄)−1(dfΓmλ)(df̄Γm)

]
Πλ∂λ + dfΠλ (∂θ − Γmθ∂m) + f̄Πλ̄∂λ̄ (5.16)

instead of {Q,X}, on a function of (x, θ, λ, λ̄). The last term in (5.16) commutes with the

rest. And so we learn that

λ̄ǫ = λ̄+ ǫ

[
f̄ −

λ̄Γmf̄

2(λ̄+ ǫf̄)f
Γmf

]
. (5.17)

We do not know a simple closed formula for xǫ, θǫ, λǫ. They can be computed order by

order in the fermionic variables df, df̄ . We write below the first two terms in the expansions

of xǫ, θǫ, λǫ in df, df̄ . Firstly λǫ, which is independent of x, θ, λ̄, takes the form

λǫ = λ+ ǫ

[
f −

λΓmf

2(λ+ ǫf)f̄
Γmf̄

]
(5.18)

−
ǫ

2

∫ 1

0
dt

[
dfΓmλ

(λ+tǫf)f̄
−tǫ

(dfΓmΓnf̄)(λΓ
nf)

2((λ+ tǫf)f̄)2

][
Γmdf̄−

df̄(λ+tǫf)

f̄(λ+tǫf)
Γmf̄

]
+O(df2df̄2).

Up to order df2df̄2 terms in the expansion in df and df̄ , this expression is exact in ǫ.

Likewise, θǫ and xǫ can be solved recursively,

(θǫ)
α = θα + ǫ

∫ 1

0
dt (Πλtǫ

df)α

= θα + ǫdfα −
ǫ

2
(Γmf̄)α

∫ 1

0
dt

[
dfΓmλ

f̄(λ+ tǫf)
− tǫ

(dfΓmΓnf̄)(λΓ
nf)

2(f̄(λ+ tǫf))2

]
+O(df2df̄),

xmǫ = xm − ǫ

∫ 1

0
dt (dfΠλtǫ

Γmθtǫ). (5.19)

5.3 Superspace Lagrangian deformations using smeared fields

A simple class of smeared deformations is the following. Suppose S′ is a first order defor-

mation of the BV action, constructed out of a superspace integral of smeared descendant

pure spinor superfields, typically of the form

S′ =

∫
[dZ] Tr

{
Ψ · · · [ĜiΨ]ǫi · · · [Ĝj1ΨĜj2Ψ]ǫj · · ·

}
(5.20)
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It is useful to group several descendants together, and act on with a smearing operator, in

constructing a deformation that solves the BV master equation. Let us consider a total

action of the form S2 + S3 + S′, and the BV master equation at the first order in the

deformation parameter, which demands the vanishing of (S2, S
′) and (S3, S

′).13

Taking the BV anti-bracket (S2, S
′) amounts to computing the variation of S′ under

δΨ = ηQΨ, where η is an arbitrary odd parameter.14 Consider a smeared descendant

superfield that appears in the integrand of S′,

[ĜΨ]ǫ =

∫
e−f̄f−df̄ f̄eǫ{Q,X}ĜΨ, (5.21)

where X is the first order differential operator defined as in previous subsections, and Ĝ is a

descending operator that involves the non-minimal variables (but only contains derivatives

on x, θ and λ). If Ĝ commutes (when it is even) or anti-commutes (when it is odd) with

Q, we would have

δ[ĜΨ]ǫ = ηQ[ĜΨ]ǫ. (5.22)

This is the case with the non-commutative deformation and the 5-form deformation, as

discussed before. Basic example of such Ĝ operators are λΓmχ̂ and (λΓmn)αF̂mn. It is also

possible that while not all Ĝi’s commute with Q, a suitable linear combination of products

of such descendant superfields has the desired property

δ[Ĝ1ΨĜ2Ψ]ǫ = ηQ[Ĝ1ΨĜ2Ψ · · · ]ǫ. (5.23)

We have seen this in the example of the Born-Infeld deformation, in the combination

(λΓmΨ)(λΓnΨ)(F̂mnΨ). If all smeared factors in (5.20) have this property, then S′ obeys

(S2, S
′) = 0. On the other hand, it is easy to see by similar arguments that the ǫ-dependence

is S2-exact, which means that the deformation by smearing is independent of ǫ, at least

when ǫ is nonzero.

In the non-Abelian MSYM theory, we also need to demand the vanishing of (S3, S
′),

which is equivalent to the invariance of S′ under δΨ = ηΨ2. This is the translation-invariant

cyclic cocycle condition as discussed before. It seems difficult to satisfy this cocycle condi-

tion with the product of generic smeared superfields. On the other hand, the cocycle condi-

tion can be satisfied if we take ǫ → 0 limit on [ĜΨ · · · ]ǫ. Note that when the naive product

of such field operators vanishes due to more than 11 powers of r’s, the smeared product

can potentially be nontrivial in the ǫ → 0 limit (after the pure spinor superspace integral).

We have seen that in the descending operators χ̂α, F̂mn, etc., each pole factor (λλ̄)−1 is

accompanied by a factor of rα. Whenever there is potentially an n-th order divergence com-

ing from integrating (λλ̄)−11−n over the pure spinor space, we also have a factor formally of

13For the deformation to be nontrivial (not removable by field definition), we also need S′ to be not exact

with respect to (S2, · ) and (S3, · ).
14This variation is not to be confused with a BRST or gauge transformation; if one gauge fixes the BV

action by fixing the anti-fields, then the vanishing of (S2, S
′) implies that the BRST transformation can be

deformed in such a way that S2 + S′ is BRST invariant to first order in the deformation parameter of S′.
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the form r11+n in the numerator that vanishes. After replacing some of the descendant su-

perfields by their smeared versions, some of the r’s will be shifted to rǫ = ∂̄λ̄ǫ, so that the nu-

merator is no longer identically zero, but of order ǫn. In the denominator, some of (λλ̄)’s will

be replaced by (λǫλ̄ǫ), and typically the divergent (λ, λ̄)-integral will be of order ǫ−n. After

this “regularization”, the resulting functional can stay finite if we take ǫ → 0 in the end.15

It is clear that the new terms in the integrand that arise this way in the ǫ → 0 limit

will always contain r11, which then absorbs the Grassmannian r-integral, leaving no room

for a θ-dependent factor from the regulator e−ζ(λλ̄+rθ). The result then looks like an

integral of descendant superfields over the full θ-superspace. These appear to be D-terms.

We don’t yet have a proposal for the construction of the general D-terms, which we leave

for future work.

6 Discussion

The main result of this paper is a construction of an all-order Born-Infeld deformation

of the MSYM theory, in the non-minimal pure spinor superspace formalism. It would be

nice to produce the corresponding all-order deformed superfield equation of motion in the

ordinary superfield Aα(x, θ), after eliminating the auxiliary fields having to do with the

non-minimal variables. In practice, as explained in section 2.5, this amounts to finding the

minimal representatives of certain non-minimal pure spinor cohomology classes.

An unsatisfying aspect of the story is that we don’t know how to write the general

D-terms in the non-minimal superspace formalism (which one might have expected to be

the easiest thing). This question is also related to how to write the D-term deformation

of the equation of motion in terms of the on-shell superfield Aα(x, θ). The answer to the

latter question is nontrivial though in principle known: as explained by [4, 5] and also

discussed in [9], a gauge invariant expression tr(G) in component fields is mapped to a

deformation of the superfield equation by the composition of the Connes differential with

a map δ that amounts to performing a full superspace integral, but is constructed rather

inexplicitly through a spectral sequence argument that involves lifting the relevant chain

complex to a complex of vector bundles over the projective pure spinor space.

We suspect that the D-terms must be written as a non-local expression in pure spinor

superspace. This is presumably closely related to the regularization of [24], which is relevant

in computing the D-term contributions in higher genus string amplitudes. Though we have

constructed an all-order Born-Infeld deformation, in principle it may differ from the Born-

Infeld theory that arises as the α′-expansion of the low energy effective theory of open

strings on D-branes, by some D-term ambiguity. A potential application of our construction

of the all-order Born-Infeld action, as well as a test of its relation to the open string effective

action, would be to find some nontrivial nonlinear solutions to the equation of motion in

the non-minimal pure spinor superfields and compare it with D-brane configurations (along

15One might worry about the terms that involve ((λ + ǫf)f̄)−1 or ((λ̄ + ǫf̄)f)−1 in the formula for the

shifted pure spinor variables giving rise to extra poles in ǫ. A more careful inspection of the λǫλ̄ǫ factors in

the denominator shows that this doesn’t happen.

– 26 –



J
H
E
P
0
4
(
2
0
1
6
)
1
7
1

the lines of [47]). It would also be interesting to directly connect our construction to open

string disc amplitudes in the pure spinor formalism.

Ultimately, the non-minimal pure spinor formalism for constructing higher derivative

terms may be most useful in maximally supersymmetric supergravity theories. In [40, 48]

Cederwall wrote down a remarkable manifestly supersymmetric complete BV action for 11-

dimensional supergravity in pure spinor superspace. It would be interesting to construct

the R4 deformation in this formalism.
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A Siegel gauge and the b ghost

In order to go from the BV action functional to a gauge fixed BRST invariant action, a

gauge fixing condition must be imposed that determines the anti-fields in terms of the

ordinary gauge fields and the ghosts. Note that the gauge fixing procedure in the BV

formalism is different from that of an ordinary gauge invariant classical action, in that

one should impose the gauge fixing condition before applying the variational principle

on the action functional to obtain the equation of motion. In the pure spinor superspace

formulation of the BV action of MSYM, it is a priori not clear how to separate Ψ(x, θ, λ, λ̄, r)

into ordinary gauge fields and anti-fields. It has been suggested that an appropriate gauge

fixing condition is the Siegel gauge [6, 7, 49]

bΨ = 0, (A.1)

where b is a second order differential operator that obeys

{Q, b} = ∂m∂m. (A.2)

The b ghost admits the following representation16

b = −
1

2
(λλ̄)−1(λ̄Γmd)∂m +

1

16
(λλ̄)−2(λ̄Γmnpr)

(
Nmn∂p −

1

24
dΓmnpd

)

+
1

64
(λλ̄)−3(rΓmnpr)(λ̄Γmd)Nnp −

1

1024
(λλ̄)−4(λ̄Γmnsr)(rΓpq

sr)NmnNpq.

(A.3)

16The signs in our formula differ slightly from those of [7].
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This expression can be expressed simply in terms of the descending operators

b = ∂mÂm −
1

2
dαχ̂

α +
1

4
NmnF̂

mn. (A.4)

This is reminiscent of the form of the integrated massless vertex operator in pure spinor

string theory. Indeed it is easy to verify

{Q, b} = ∂m{Q, Âm}+ ∂m(λΓmχ̂α) +
1

2
dα[Q, χ̂α]−

1

4
(λΓmnd)F̂

mn +
1

4
Nmn{Q, F̂mn}

= ∂m∂m +
1

2
NmnλΓmη̂n = ∂m∂m. (A.5)

Another property of the b ghost operator is b2 = 0. This is necessary for the Siegel gauge

condition to be compatible with BV master equation.

After fixing to Siegel gauge, the equation of motion may be obtained from the BV

action of the form S2 + Sint as

QΨ+
δSint

δΨ
+ bΛ = 0, (A.6)

where Λ is an arbitrary Lagrangian multiplier superfield. Acting on this equation with b,

using the Siegel gauge condition and the nilpotency of b, we obtain

�Ψ+ b
δSint

δΨ
= 0. (A.7)

Let us inspect the Siegel gauge condition more explicitly in the simple example of free

Abelian theory. Consider a solution to QΨ = 0 that involves only the minimal pure spinor

variables of the form

Ψ(x, θ, λ) = (λΓmθ)am(x) +
1

4
(λΓmθ)(θΓmnpθ)∂nap + · · · . (A.8)

Such a Ψ does not obey Siegel gauge condition, since

bΨ = −
1

2
(λλ̄)−1(λ̄ΓmΓnλ)∂man(x) +O(θ)

= −
1

2
∂mam(x)−

1

2
(λλ̄)−1(λ̄Γmnλ)∂man(x) +O(θ).

(A.9)

While we can set ∂mam to zero by imposing Lorentz gauge condition on am, ∂man is a

nontrivial field strength and cannot be removed this way. We would like to add to Ψ

some Q-exact terms to go to Siegel gauge. Using the non-minimal variables, we can write

(λΓmθ)am + · · · as an exact expression with respect to λαdα (which is not the same as Q

in the non-minimal formalism)

Ψ(x, θ, λ) = (λαdα)

[
1

8
(λλ̄)−1(λ̄Γnpλ)(θΓ

mnpθ)am

]
+ · · · , (A.10)

and now remove the term (λΓmθ)am by shifting Ψ to

Ψ′ = Ψ−Q

[
1

8
(λλ̄)−1(λ̄Γnpλ)(θΓ

mnpθ)am + · · ·

]

= −
1

8
(λλ̄)−1(rΓnpλ)(θΓ

mnpθ)am +
1

8
(λλ̄)−2(rλ)(λ̄Γnpλ)(θΓ

mnpθ)am + · · ·

(A.11)
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The physical degree of freedom am is now moved to the rθ2 component of Ψ′. By repeating

such a procedure we should be able to put the shifted Ψ in Siegel gauge. In the end, am(x)

will no longer sit in the r0 component of Ψ.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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