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1 Introduction

It is well known that the discrete duality symmetries of toroidally compactified string theo-

ries imply continuous duality symmetries of the classical effective field theory for the mass-

less string degrees of freedom [1–4]. Double field theory formulates the higher-dimensional

two-derivative massless effective field theory in a way that the duality symmetry can be

anticipated before dimensional reduction [5–9]. When higher-derivative corrections (or α′

corrections) are included it becomes much harder to provide a duality covariant formula-

tion. It is generally expected that as soon as higher-derivatives are included, all numbers

of them are required for exact duality invariance.

At present, there is only one known example of an effective gravitational theory with

higher-derivatives and exact duality invariance: the “doubled α′ geometry” of Hohm, Siegel

and Zwiebach, henceforth called HSZ theory [10]. Two key facts about this theory are

relevant to our discussion. First, its spacetime Lagrangian is efficiently written in terms of

a double metricM, an unconstrained version of the generalized metricH which encodes the

metric g and the antisymmetric field b in a familiar fashion. The Lagrangian is cubic in M
and includes terms with up to six derivatives. In H variables, however, the Lagrangian has

terms of all orders in derivatives [11]. Second, HSZ theory is not the low-energy effective

field theory of bosonic strings, nor that of heterotic strings. It does not contain gauge

fields, but due to the Green-Schwarz modification of the gauge transformations of the b

field, it contains higher-derivative terms such as a Chern-Simons modification of the field

strength H for b [12]. A gauge principle to accommodate higher-derivative corrections of

bosonic and heterotic strings has been investigated in [13].

The purpose of this paper is to calculate the simplest amplitudes in HSZ theory; on-

shell three-point amplitudes for the metric and b field. While this is a relatively simple
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matter in any gravitational theory described in terms of a metric and a b field, it is a rather

nontrivial computation in a theory formulated in terms of a double metric M.1 This is

so because metric and b field fluctuations are encoded nontrivially in M fluctuations and

because M also contains unfamiliar auxiliary fields. These amplitudes, not yet known,

will be obtained using the M field Lagrangian. The procedure is instructive: it requires

us to obtain the explicit α′ expansion of the Lagrangian and to discuss the elimination of

auxiliary fields. The three-point amplitudes turn out to be simple, suggesting that higher

point functions should be calculable. We suspect that world-sheet methods will eventually

prove superior for the computation of general amplitudes. In fact, reference [10] discussed

how the chiral world-sheet theory appears to be a singular limit of the conventional world

sheet theory, and the recent elaboration in [14] goes further in this direction and discusses

amplitudes. Our results provide a test of world-sheet methods for the simplest case. There

are other works on amplitudes motivated by or making use of double field theory [15, 16].

In both bosonic string theory and heterotic theory, on-shell three-point amplitudes fac-

torize into factors that involve left-handed indices and right-handed indices (see eq. (2.4)).

We show that in HSZ these amplitudes also factorize (see eq. (2.5)). The explicit form of

the result has implications for the low-energy effective field theory. In the bosonic string

the terms in the low-energy effective action needed to reproduce its three-point amplitudes

include Riemann-squared (or Gauss-Bonnet) [17, 18] and HHR terms to first order in α′,

and Riemann-cubed to second order in α′ [19, 20]. To reproduce the (gravitational) het-

erotic three-point amplitudes the theory has only order α′ terms: Gauss-Bonnet, HHR and

a b-odd term bΓ∂Γ, with Γ the Christoffel connection. At order α′ HSZ theory contains

only the b-odd term with twice the coefficient in heterotic string, and to second order in

α′ the bosonic string Riemann-cubed term with opposite sign. Our work shows that to

order (α′)2, the following is the gauge invariant action that reproduces the on-shell cubic

amplitudes of HSZ theory:

S =

∫
dDx

√−g e−2φ

(
R+ 4(∂φ)2 − 1

12
ĤijkĤ

ijk − 1

48
α′2Rµν

αβRαβ
ρσRρσ

µν

)
. (1.1)

The O(α′) terms above arise from the kinetic term for the three-form curvature [21]. We

have Ĥijk = Hijk + 3α′Ωijk(Γ), where Hijk = 3 ∂[ibjk] with the Chern Simons term Ω

given by:

Ωijk(Γ) = Γ q

[i|p|∂jΓ
p

k]q +
2

3
Γ q

[i|p|Γ
p

[j|r|Γ
r
[k]q| . (1.2)

In the conclusion section we discuss possible calculations that may advance our under-

standing of duality-invariant higher-derivative field theories.

2 Bosonic, heterotic, and HSZ three-point amplitudes

In this section we motivate and state our main claim: in HSZ theory, on-shell three-point

amplitude for gravity and b fields exhibits a factorization structure analogous to that of the

1The computation in terms of H variables would not be practical, as even the terms with four derivatives

have not been explicitly written out.
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bosonic and heterotic string. For this purpose let us consider these amplitudes. Let k1, k2,

and k3 denote the momenta of the particles. Since we are dealing with massless states, the

on-shell condition and momentum conservation imply that for all values of a, b = 1, 2, 3:

ka · kb = 0 . (2.1)

We also have three polarization tensors ea ij with a = 1, 2, 3. Symmetric traceless polariza-

tions represent gravitons, and antisymmetric polarizations represent b fields. Dilaton states

are encoded by polarizations proportional to the Minkowski metric [22]. The polarizations

satisfy transversality

kiaea ij = 0 , kjaea ij = 0 , a not summed. (2.2)

To construct the three-point amplitudes one defines the auxiliary three-index tensors T

and W :

T ijk(k1, k2, k3) ≡ ηij kk12 + ηjk ki23 + ηki k
j
31 ,

W ijk(k1, k2, k3) ≡
1

8
α′ ki23 k

j
31k

k
12 ,

(2.3)

with kab = ka − kb. Note the invariance of T and W under simultaneous cyclic shifts of

the spacetime indices and the 1, 2, 3 labels. For bosonic and heterotic strings the on-shell

amplitudes for three massless closed string states with polarizations ea ij are given by (see,

for example, eq. (6.6.19) in [23] and eq. (12.4.14) in [24]):

Sbos =
i

2
κ (2π)DδD

(∑
p
)
e1ii′e2jj′e3kk′(T +W )ijk (T +W )i

′j′k′ ,

Shet =
i

2
κ (2π)DδD

(∑
p
)
e1ii′e2jj′e3kk′(T +W )ijk T i′j′k′ .

(2.4)

Note the factorization of the amplitude into a factor that involves the first indices on

the polarization tensors and a factor that involves the second indices on the polarization

tensors.2 We claim that in HSZ theory the on-shell amplitudes also factorize:

Shsz =
i

2
κ (2π)DδD

(∑
p
)
e1ii′e2jj′e3kk′(T + W )ijk (T −W )i

′j′k′ . (2.5)

For the bosonic string (T +W )ijk (T +W )i
′j′k′ is symmetric under the simultaneous

exchange of primed and unprimed indices. As a result, the amplitude for any odd number

of b fields vanishes. Expanding out

Sbos =
i

2
κ (2π)DδD

(∑
p
)
e1ii′e2jj′e3kk′

×
(
T ijkT i′j′k′ + [W ijkT i′j′k′ +W i′j′k′T ijk] +W ijkW i′j′k′

)
,

(2.6)

2The on-shell conditions satisfied by the momenta imply that there are no candidates for three-point

amplitudes with more than six derivatives.
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making clear the separation into two-, four-, and six-derivative structures, all of which

are separately invariant under the simultaneous exchange of primed and unprimed in-

dices. The four-derivative structure indicates the presence of Riemann-squared or Gauss-

Bonnet terms [17, 18]. The six-derivative structure implies the presence of Riemann-cubed

terms [20]. For the heterotic string we write the amplitude as

Shet =
i

2
κ (2π)DδD

(∑
p
)
e1ii′e2jj′e3kk′

(
T ijkT i′j′k′ +

1

2
[W ijkT i′j′k′ +W i′j′k′T ijk]

+
1

2
[W ijkT i′j′k′ −W i′j′k′T ijk]

)
.

(2.7)

We have split the four-derivative terms into a first group, symmetric under the simultaneous

exchange of primed and unprimed indices, and a second group, antisymmetric under the

simultaneous exchange of primed and unprimed indices. The first group is one-half of

the four-derivative terms in bosonic string theory, a well-known result. The second group

represents four-derivative terms that can only have an odd number of b fields. In fact, only

one b field is allowed. The term with three b fields would have to be of the form HH∂H,

with H = db and it can be shown to vanish by Bianchi identities. The term that one gets is

of the form HΓ∂Γ, and arises from the kinetic term of the Chern-Simons corrected b-field

field strength. This kind of term also appears in HSZ theory, as discussed in [11].

Expanding the HSZ amplitude above one finds

Shsz =
i

2
κ (2π)DδD

(∑
p
)
e1ii′e2jj′e3kk′

×
(
T ijkT i′j′k′ + [W ijkT i′j′k′ − T ijkW i′j′k′ ]−W ijkW i′j′k′

)
,

(2.8)

implying that there is no Gauss-Bonnet term, that the term with four derivatives has a

single b field and is the same as in heterotic string but with twice the magnitude. The

six-derivative term is the same as in bosonic string, but with opposite sign. This implies

that the Riemann-cubed term in the HSZ action and in bosonic strings have opposite

signs. Most of the work in the rest of the paper deals with the computation of the g and b

three-point amplitudes that confirms (2.8) holds.

It is useful to have simplified expressions for the amplitudes. For later use we record

the following results, with ‘cyc.’ indicating that two copies of the terms to the left must

be added with cyclic permutations of the 1,2, and 3 labels:

e1ii′e2jj′e3kk′T
ijkT i′j′k′ =tr(eT1 e2)(k12e3k12)+k12(e3e

T
2 e1+eT3 e2e

T
1 )k23+cyc.

e1ii′e2jj′e3kk′(W
ijkT i′j′k′±T ijkW i′j′k′)=

1

8
α′

[
k12(e3e

T
1 ± eT3 e1)k23(k31e2k31) + cyc.

]
,

e1ii′e2jj′e3kk′W
ijkW i′j′k′ =

1

64
α′2(k12e3k12)(k23e1k23)(k31e2k31) . (2.9)

The formulae (2.4) for massless on-shell three-point amplitudes also hold for amplitudes

that involve the dilaton. For the dilaton one must use a polarization tensor proportional

to the Minkowski metric. Although we will not use the HSZ action to compute dilaton
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amplitudes, the predictions from the factorized amplitude (2.5) are exactly what we expect

for the the dilaton. We explain this now.

Let φ̂ denote the physical dilaton field. For cubic dilaton interactions φ̂3 there is no

on-shell candidate at two, four, or six derivatives. For φ̂2e interactions there is no on-

shell candidate at four or six derivatives, but there is one at two derivatives: ∂iφ̂∂jφ̂ eij ∼
∂iφ̂∂jφ̂ hij . This term does arise from the first line in (2.9) when we take e1ii′ ∼ ηii′ φ̂,

e2jj′ ∼ ηjj′ φ̂, and e3kk′ = hkk′ . It is present in all three theories as it is the universal

coupling of a scalar to gravity.

For φ̂ee there are no on-shell candidates with six derivatives, but there are candidates

with two and with four derivatives. Let’s consider first the on-shell candidates with two

derivatives. Again, an examination of the first line in (2.9) shows that φ̂hh vanishes. This

is expected: the physical dilaton does not couple to the scalar curvature. There is also

no φ̂hb coupling. On the other hand one can check that φ̂bb does not vanish. This is also

expected, as an exponential of φ̂ multiplies the b-field kinetic term. Again, all this is valid

for the three theories.

Let us now consider φ̂ee on-shell couplings with four derivatives. There is just one on-

shell candidate: φ̂∂ijekl∂
kleij . Due to the commutativity of derivatives this term requires

both e’s to be gravitons. This coupling arises both in bosonic and heterotic string theory

because an exponential of φ̂ multiplies Riemann-squared terms. As expected, it can be seen

from the second line in (2.9), using the top sign. It does not arise in HSZ theory because

in this theory the four-derivative terms are odd under the Z2 transformation b → −b [21],

and thus must involve a b field. In conclusion, HSZ theory only has on-shell couplings of

dilatons at two derivatives, and shares them with heterotic and bosonic strings. The latter

two have a single on-shell coupling of the dilaton at four derivatives. These are indeed the

predictions of the three factorized formulae.

3 Derivative expansion of HSZ theory

Our first goal is to give the action for M and φ in explicit form and organized by the

number of derivatives, a number that can be zero, two, four, and six. While the parts with

zero and two derivatives are known and take relatively simple forms [10, 21], the parts

with four and six derivatives are considerably longer. We give their partially simplified

forms and then their fully simplified forms when the dilaton field is set to zero. This will

suffice for our later computation of on-shell three-point amplitudes for gravity and b field

fluctuations.

We will define actions S as integrals over the double coordinates of the density eφ times

the Lagrangian L. For the theory in question [10] we have

S =

∫
eφL , L =

1

2
tr(T )− 1

6
〈T |T ⋆ T 〉 . (3.1)

The field T is a tensor operator and encodes the double metric. For arbitrary tensor

operators T we have the expansion

T =
1

2
TMNZMZN − 1

2
(T̂MZM )′ , (3.2)
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here TMN and T̂M are, respectively, the tensor part and the pseudo-vector part of the

tensor operator. The trace of the tensor operator T is a scalar operator trT defined by

(eq. (5.17), [10])

trT ≡ ηMNTMN − 3(TMN∂M∂Nφ+ ∂ · T̂ + T̂ · ∂φ) . (3.3)

If a tensor operator T is divergenceless, the pseudo-vector part is determined as a dilaton

dependent function G linear in the tensor component:

T̂M = GM (TPQ) = GM
1 (T ) +GM

3 (T ) , (3.4)

where G1 and G3 have one and three derivatives, respectively (eq. (5.37), [10]):

GM
1 (T ) = ∂NTMN + TMN∂Nφ

GM
3 (T ) = −1

2
TNP∂N∂P∂

Mφ− 1

2
∂M

(
∂N∂PT

NP + TNP (∂N∂Pφ+ ∂Nφ∂Pφ)
)
.

(3.5)

We make the following remarks:

1. The free index on G3 is carried by a derivative.

2. G1(T ) and G3(T ) both vanish if the two indices in TMN are carried by derivatives,

3. G3(T ) vanishes if one index on TMN is carried by a derivative.

The tensor operator T featuring in the action is parametrized by a double metric

MMN , and the pseudo-vector part M̂M is determined by the condition that T is diver-

genceless:

T =
1

2
MMNZMZN − 1

2
(M̂NZM )′ , M̂M = GM (M) . (3.6)

A short calculation gives

trT = ηMNMMN − 3∂M∂NMMN − 6MMN∂M∂Nφ− 6∂MMMN∂Nφ− 3MMN∂Mφ∂Nφ ,

(3.7)

which contains terms linear, quadratic and cubic in fields, and no more than two derivatives.

We now use the star product ⋆ of two tensors, which gives a divergenceless tensor, to define

W ≡ T ⋆ T =
1

2
WMNZMZN − 1

2

(
ŴMZM

)′
, (3.8)

where the last equality defines the components of W . The definition of the star product

([10], section 6.2) implies that

WMN ≡ (T ◦2 T )MN , WM ≡ GM (WPQ) , (3.9)

the second following because W is divergenceless. The formula for product ◦2 is given in

(6.67) of [10].3 The field WMN has an expansion on derivatives,

WMN = WMN
0 +WMN

2 +WMN
4 +WMN

6 , (3.10)

3In [10] symmetrizations or antisymmetrizations carry no weight, in this paper they do.
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which, using the notation ∂M1···Mk
≡ ∂M1

· · · ∂Mk
, takes the form

W0MN = 2MMKMK
N ,

W2MN = −1

2
∂MMPQ∂NMPQ +MPQ∂PQMMN + 4∂(MMKL∂LMN)K

− 2∂QMM
P∂PMN

Q+GK
1 (M)∂KMMN+2

(
∂(NGK

1 (M)−∂KG1(N (M)
)
MM)K ,

W4MN = ∂MPMLK∂NLMK
P − 2∂K(MMPQ∂PQMN)

K

+ 2
(
∂(MGK

3 (M)− ∂KG3(M (M)
)
MN)K − 2∂P (MGK

1 (M)∂KMP
N)

+ ∂P
(
∂(MG1Q(M)− ∂QG1(M (M)

)
∂N)MPQ ,

W6MN = −1

4
∂MPQMKL∂NKLMPQ + ∂P

(
∂(MG3Q(M)− ∂QG3(M (M)

)
∂N)MPQ

− 1

2
∂PQ(MGK

1 (M)∂N)KMPQ . (3.11)

We note that

1. On W4MN at least one index is carried by a derivative.

2. On W6MN both indices are carried by derivatives.

We now turn to the pseudo-vector components ŴK which, by definition are given by

ŴK = GK(WMN ) = GK
1 (W0 +W2 +W4 +W6) +GK

3 (W0 +W2 +W4 +W6) . (3.12)

It then follows by the remarks that the only terms in WK are:

ŴK
1 = GK

1 (W0) ,

ŴK
3 = GK

1 (W2) +GK
3 (W0) ,

ŴK
5 = GK

1 (W4) +GK
3 (W2) .

(3.13)

These are terms with one, three, and five derivatives. Note that on G1(W4) the free index

is on a derivative because it is an index on W4 and the other index on W4 must be the

non-derivative one to have a non vanishing contribution. Thus the free index in Ŵ5 is on

a derivative.

It is now possible to evaluate the full Lagrangian in (3.1). For the cubic term we need

the inner product formula that follows from eq. (6.67) of [10]

〈T1|T2〉 =
1

2
T
PQ
1 T2PQ − ∂PT

KL
1 ∂LT2K

P +
1

4
∂PQT

KL
1 ∂KLT

PQ
2

− 3

2
(T̂M

1 T̂N
2 ηMN − ∂N T̂M

1 ∂M T̂N
1 )− 3

2
(∂P T̂

K
1 T2K

P + ∂P T̂
K
2 T1K

P )

+
3

4

(
∂PQT̂

K
1 ∂KT

PQ
2 + ∂PQT̂

K
2 ∂KT

PQ
1

)
.

(3.14)

This formula must be used for T1 = T and T2 = W . A useful identity, easily derived by

integration by parts, reads
∫

eφ fKG(1)K(T ) =

∫
eφ(−∂P fK TKP ) . (3.15)

– 7 –
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Using this identity and the earlier results we find the following terms in the Lagrangian

L0 = −1

6
MMNMNPMP

M +
1

2
MM

M , (3.16)

L2 =
1

2

(
M2 − 1

)MPMP
N∂M∂Nφ+

1

8
MMN∂MMPQ∂NMPQ

− 1

2
MMN∂NMKL∂LMKM −MMN∂M∂Nφ ,

L4 = − 1

12
MMNW4MN +

1

6
∂PMKL∂LW2KP +

1

4
∂PG

K
1 (W2)MK

P

− 1

24
∂P∂QMKL∂K∂LW

PQ
0

− 1

4
∂NGM

1 (M)∂MGN
1 (W0)−

1

8
∂P∂QG

K
1 (M)∂KW

PQ
0 − 1

8
∂P∂QG

K
1 (W0)∂KMPQ,

L6 = − 1

12
MMNW6MN +

1

6
∂PMKL∂LW4KP +

1

4
∂PG

K
1 (W4)MK

P

− 1

24
∂P∂QMKL∂K∂LW

PQ

(2)

− 1

4
∂NGM

1 (M)∂MGN
1 (W2)−

1

8
∂P∂QG

K
1 (M)∂KW

PQ
2 − 1

8
∂P∂QG

K
1 (W2)∂KMPQ .

The results for the zero and two derivative part of the Lagrangian were given in [10, 21]

and cannot be simplified further. One can quickly show that the last line of L4 and L6

vanish if we have zero dilaton derivatives. Also the last two terms in the first lines of L4

and L6 admit simplification. Still keeping all terms, we can simplify L4 and L6 to read

L4 = − 1

12
MMNW4MN +

1

12
∂MGN

1 (M)W2MN +
1

6
MMKW2K

N∂MNφ

− 1

24
∂P∂QMKL∂K∂LW

PQ
0

+
1

4
GM

1 (M)GN
1 (W0)∂MNφ+

1

8

(
GK

1 (M)WPQ
0 +GK

1 (W0)MPQ
)
∂KPQ φ,

L6 = − 1

12
MMNW6MN +

1

12
∂MGN

1 (M)W4MN +
1

6
MMKW4K

N∂MNφ

− 1

24
∂P∂QMKL∂K∂LW

PQ
2

+
1

4
GM

1 (M)GN
1 (W2)∂MNφ+

1

8

(
GK

1 (M)WPQ
2 +GK

1 (W2)MPQ
)
∂KPQφ .

(3.17)

The fourth and sixth derivative part of the Lagrangian, written explicitly in terms of M
and φ are rather long. Since we will focus in this paper on gravity and b field three-point

amplitudes, we will ignore the dilaton. With dilaton fields set to zero a computation gives:

L4|φ=0 = MMN

(
1

6
∂MLMPQ∂PQMN

L − 1

12
∂NPMLQ∂MLMP

Q (3.18)

+
1

12
∂MNMKQ∂

K
P MPQ − 1

12
∂MPMPQ∂NKMQ

K

+
1

3
∂PMM

K∂NKQMPQ − 1

6
∂MMPQ∂PK[NMQ]

K

)

+ ∂MPMP
N

(
1

6
∂NMKL∂LMMK − 1

6
∂QMM

K∂KMN
Q +

1

12
∂LMKL∂KMMN

)
,

– 8 –
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L6|φ=0 = MMN

(
1

48
∂MPQMKL∂NKLMPQ +

1

24
∂MPQLMKL∂NKMPQ

− 1

24
∂PQKLMKL∂MNMPQ +

1

12
∂MPKLMKL∂NQMPQ

)

− 1

24
∂MNKLMKL

(
∂PMPQ∂QMMN − 2∂PMMQ∂QMNP

)

− 1

24
∂NLMML

(
2∂MKMPQ∂PQMN

K+2∂MPQMKQ∂KMP
N+∂PQRMNR∂MMPQ

)
.

4 Perturbative expansion of HSZ theory

In this section we discuss the perturbative expansion of the Lagrangian obtained in the

previous section around a constant background 〈M〉 that can be identified with a constant

generalized metric, as discussed in [21]. We define projected O(D,D) indices as follows:

VM = PM
NVN , VM̄ = P̄M

NVN , (4.1)

where the projectors are defined as:

PM
N =

1

2
(η − H̄)M

N , P̄M
N =

1

2
(η + H̄)M

N . (4.2)

Here H̄ is the background, constant, generalized metric. We expand the double metric M
as follows:

MMN = H̄MN +mMN = H̄MN +mMN +mMN̄ +mM̄N +mM̄N̄ , (4.3)

where we have decomposed the fluctuations mMN into projected indices. It was shown

in [21] that the projections mM̄N̄ and mMN are auxiliary fields and the physical part of the

metric and the b-field fluctuations are encoded in mMN̄ = mN̄M . To obtain the Lagrangian

in terms of physical fields, we need to expand it in fluctuations and then eliminate the

auxiliary fields using their equations of motion. To illustrate this procedure more clearly,

and for ease of readability we will write

aMN ≡ mMN , aM̄N̄ ≡ mM̄N̄ , (4.4)

where the label a for the field reminds us that it is auxiliary. With this notation the M
field expansion reads

MMN = H̄MN + aMN +mMN̄ +mM̄N + aM̄N̄ . (4.5)

Let us now carry out the procedure of elimination of auxiliary field explicitly for the two

derivative part of the Lagrangian.

4.1 Perturbative expansion of the two-derivative Lagrangian

Let us use L(i,j) to denote the part of the Lagrangian with i fields and j derivatives. In

what follows, we are only interested in the Lagrangian up to cubic order in fields, so we

will ignore all terms with more than three fields. Also note that the Langrangian appears

– 9 –



J
H
E
P
0
3
(
2
0
1
6
)
1
4
7

in the action multiplied with a factor of eφ. Using the expansion (4.5) we see that the zero

derivative Lagrangian L0 has terms quadratic and cubic in field fluctuations:

eφL0 = L(2,0) + L(3,0) + · · · , (4.6)

where the dots denote terms quartic in fields and

L(2,0) =
1

2
aMNaMN − 1

2
aM̄N̄aM̄N̄ ,

L(3,0) = −1

2
aMNmM

P̄mNP̄ − 1

6
aMNaM

PaNP − 1

2
aM̄N̄mP

M̄mPN̄ − 1

6
aM̄N̄aN̄

P̄aN̄P̄

+
1

2
φ
(
aMNaMN − aM̄N̄aM̄N̄

)
. (4.7)

If we denote generically by a an auxiliary field (aMN or aM̄N̄ ) and by m the physical field

mMN̄ , the structure of terms with auxiliary field that we find here is

a2 + am2 + a3 + a2m. (4.8)

If we solve for the auxiliary field based on the above, to leading order we will find a ∼ m2.

The perturbative expansion for the two-derivative Lagrangian L2 in (3.16) is more involved.

It decomposes into a quadratic and a cubic part in fluctuations:

eφL2 = L(2,2) + L(3,2) + · · · . (4.9)

and we find

L(2,2) =
1

2
∂M̄mPQ̄∂M̄mPQ̄ +

1

2
∂MmPQ̄∂PmMQ̄ − 1

2
∂M̄mPQ̄∂Q̄mPM̄

− 2mMN̄∂M∂N̄φ− 2φ∂M̄∂M̄φ

+
1

4
∂M̄aP̄ Q̄ ∂M̄aP̄ Q̄ +

1

4
∂M̄aPQ∂M̄aPQ

+
1

2
∂MaPQ ∂QaPM − 1

2
∂M̄aP̄ Q̄ ∂Q̄aP̄ M̄ ,

L(3,2) =
1

2
mMN̄

(
∂MmPQ̄∂N̄mPQ̄ − ∂MmPQ̄∂Q̄mPN̄ − ∂N̄mPQ̄∂PmMQ̄

)

+
1

2
φ
(
∂M̄mPQ̄∂M̄mPQ̄ − ∂M̄mPQ̄∂Q̄mP

M̄ + ∂MmPQ̄∂PmMQ̄)

− 1

2

(
mM

P̄mNP̄∂
M∂Nφ−mP

M̄mPN̄∂M̄∂N̄φ
)

− φ2∂M̄∂M̄φ − 2φmMN̄∂M∂N̄φ+ L(3,2)
aux ,

(4.10)

where L
(3,2)
aux denotes the terms that contain at least one auxiliary field. The precise expres-

sion for these terms will not be needed. Note, however, from L(2,2) that we have terms of

the form

∂a∂a , (4.11)

and from L(3,2) terms that couple an a field to two fields in a term with two derivatives.
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Next, we eliminate the auxiliary fields from the total Lagrangian with three or less

fields and at most two derivatives.

L(≤3,2) = L(2,0) + L(3,0) + L(2,2) + L(3,2) , (4.12)

From the terms in (4.7) and (4.10), denoted schematically in (4.8) and (4.11), we now find:

aM̄N̄ = −1
2m

P
M̄mPN̄ + · · · , aMN = 1

2mM
P̄mNP̄ + · · · . (4.13)

where the dots denote terms with at least two fields and at least two derivatives. Now, we

plug this solution for the auxiliary field into the Lagrangian L(≤3,2) and keep only terms

with two derivatives and up to cubic order in physical fields. The terms indicated by dots

in (4.13) do not contribute; they always lead to terms with at least four fields or at least four

derivatives. Nor does L
(3,2)
aux lead to any contributions. In fact, most of the terms involving

auxiliary fields do not contribute. After a short computation, we obtain the following two

derivative Lagrangian completely in terms of the physical fields:

L(≤3,2) =
1

2
∂M̄mPQ̄∂M̄mPQ̄ +

1

2
∂MmPQ̄∂PmMQ̄ − 1

2
∂M̄mPQ̄∂Q̄mPM̄

− 2mMN̄∂M∂N̄φ− 2φ∂M̄∂M̄φ

+
1

2
mMN̄

(
∂MmPQ̄∂N̄mPQ̄ − ∂MmPQ̄∂Q̄mPN̄ − ∂N̄mPQ̄∂PmMQ̄

)

+
1

2
φ
(
∂M̄mPQ̄∂M̄mPQ̄ − ∂M̄mPQ̄∂Q̄mP

M̄ + ∂MmPQ̄∂PmMQ̄)

− 1

2

(
mM

P̄mNP̄∂
M∂Nφ−mP

M̄mPN̄∂M̄∂N̄φ
)

− φ2∂M̄∂M̄φ − 2φmMN̄∂M∂N̄φ .

(4.14)

Next, we write the action in terms of double field theory (or string field theory) variables

eij . The way to translate from mMN̄ variables to eij variables is explained in section 5.3

of [21]. Here is the rule that follows: convert all barred and under-barred indices into

latin indices respecting the contractions, replacing m by e, underbar derivatives by D and

barred derivatives by D̄, and multiply by a coefficient that is the product of a factor of

2 for each m field, a factor of +1
2 for each barred contraction, and a factor of −1

2 for

each under-barred contraction. As an example, consider the second term on the first line

of (4.14), after integration by parts, it becomes:

1

2
∂MmPQ̄∂PmMQ̄ =

1

2
∂Pm

PQ̄∂MmMQ̄ → 1

2
·22 · 1

2

(
−1

2

)2

Dpe
pqDmemq =

1

4
Dpe

pqDmemq.

(4.15)

Using this technique for all the terms appearing in the Lagrangian (4.14) we obtain:

L(≤3,2) =
1

4

(
eijD̄2eij +

(
Dieij

)2
+

(
D̄ieij

)2)
+ eijDiD̄jφ− φD̄2φ.

+
1

4
eij

(
DieklD̄

jekl −DieklD̄
lekj −DkeilD̄jekl

)

− 1

4
φ

((
Dieij

)2
+
(
D̄jeij

)2
+
1

2

(
Dkeij

)2
+
1

2

(
D̄keij

)2
+2eij

(
DiD

kekj+D̄jD̄
keik

))

+ φeijD
iD̄jφ− 1

2
φ2D̄2φ. (4.16)
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With the identification φ = −2d the above cubic Lagrangian becomes precisely the double

field theory Lagrangian in equation (3.25) of [7]. From the quadratic part of the above

action, we see that the kinetic term of φ has wrong sign. This is, because the action (4.16)

is in the string frame and φ is not the physical dilaton. To obtain the action in terms of

physical fields êij and φ̂ that decouple at the quadratic level, we need a field re-definition.

Physical fields êij and φ̂ are obtained in the Einstein frame as a linear combination of eij
and φ. We write schematically:

eij ∼ êij + φ̂ ηij , φ ∼ φ̂+ ê i
i . (4.17)

If we are looking for pure gravitational three-point amplitudes the first redefinition need

not be performed in the action, as it would give rise to terms that involve the dilaton. The

second one is not needed either, since on-shell gravitons have traceless polarizations.

After solving the strong constraint by setting ∂̃i = 0 and setting the dilaton to zero,

the above Lagrangian becomes:

L(≤3,2)
∣∣∣
φ=0

=
1

4

(
eij∂2eij+2

(
∂ieij

)2)
+
1

4
eij

(
∂iekl∂

jekl−∂iekl∂
lekj−∂keil∂jekl

)
. (4.18)

For an off-shell three-point vertex all terms in the cubic Lagrangian must be kept. But for

the computation of on-shell three-point amplitudes we may use the on-shell conditions to

simplify the cubic Lagrangian. These conditions can be stated as follows in terms of eij .

∂ieij = ∂jeij = 0 , ∂ie
··∂ie·· · · · = 0. (4.19)

The first condition is transversality and the second condition follows from the momentum

conservation and masslessness. For the cubic terms in (4.18) the on-shell conditions do not

lead to any further simplification and we record:

L(3,2)
∣∣∣
φ=0, on-shell

=
1

4
eij

(
∂iekl∂

jekl − ∂iekl∂
lekj − ∂peiq∂jepq

)
. (4.20)

Three-point on-shell amplitudes can now be computed from this expression.

4.2 General treatment of auxiliary fields

Here we argue that for the purposes of three-point on-shell amplitudes and, with the dilaton

set to zero, the auxiliary field does not affect the Lagrangian and can safely be ignored. To

prove the claim we must use on-shell conditions (4.19): we will argue that any contribution

from auxiliary fields vanishes upon use of these conditions. It is straightforward to translate

these on-shell conditions in terms of the double metric fluctuations. They can be written as:

∂MmMN̄ = ∂N̄mMN̄ = ∂M̄m··∂M̄m·· · · · = 0 . (4.21)

Setting all dilatons to zero, the only physical field is mMN̄ , which we symbolically represent

by m. The most general form of the Lagrangian involving at least one auxiliary field is as

follows:

L[a,m] = am+ a2 + a3 + a2m+ am2 . (4.22)
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Since the theory is cubic in M and the dilaton is set to zero, this is all there is. In here we

are leaving derivatives implicit; all the above terms can carry up-to six derivatives. As we

have seen before, there is no am coupling with zero derivatives nor with two derivatives.

Let us now see that no such term exists that does not vanish using the on-shell conditions.

The general term of this kind would be

mM̄N̄

(
· · ·mPQ̄) , (4.23)

where the dots represent derivatives or metrics η that contract same type indices, barred

or un-barred. These are required to contract all indices and yield an O(D,D) invariant.

Since integration by parts is allowed we have assumed, without loss of generality that all

derivatives are acting on the physical field. Since the un-barred index P is the only un-

barred index, it must be contracted with a derivative. Thus the term must be of the form

mM̄N̄

(
· · · ∂PmPQ̄) . (4.24)

Regardless of what we do to deal with the other barred indices, we already see that this

coupling vanishes using the on-shell conditions, proving the claim.

The Lagrangian (4.22) then reduces to the following:

L[a,m] = a2 + a3 + a2m+ am2 . (4.25)

The equation of motion for the auxiliary field is, schematically, a ∼ m2 + am + a2,

which implies that a perturbative solution in powers of physical fields begins with terms

quadratic on the physical fields. Thus we write

a(m) = a2(m) + a3(m) + · · · , (4.26)

where dots indicate terms with quartic or higher powers of m. But now it is clear that

substitution back into (4.25) can only lead to terms with quartic or higher powers of m.

This concludes our argument that the elimination of auxiliary fields is not required for the

computation of on-shell three-point amplitudes for metric and b fields.

4.3 Higher-derivative Lagrangian and on-shell amplitudes

In this subsection we perform the perturbative expansion of the four and six derivative

Lagrangian and compute the on-shell three-point amplitudes. We use the on-shell condi-

tions (4.21) and ignore the auxiliary field in light of our earlier discussion. We note that

∂MMMN̄ = ∂M̄aM̄N̄ + ∂MmMN̄ ,

∂MMMN = ∂M̄mM̄N + ∂MaMN .
(4.27)

Since we are allowed to set auxiliary fields to zero and to use the on-shell condi-

tions (4.21), both ∂MMMN̄ and ∂MMMN can be set to zero, and as a result, we are

allowed to set

∂MMMN → 0 , (4.28)

in simplifying the higher-derivative cubic interactions! This is a great simplification.
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Now we use (4.28) in the four derivative Lagrangian L4 given in (3.18). Only the terms

on the first line survive and we get:

L4

∣∣∣
φ=0

=
1

6
MMN∂NLMPQ∂PQMM

L − 1

12
MMN∂NPMLQ∂MLMP

Q . (4.29)

Now we plug in the expansion (4.5) and keep only the cubic terms which do not vanish

on-shell. After a short computation we obtain the four derivative cubic Lagrangian in

terms of the physical fields

L(3,4)
∣∣∣

φ=0

on-shell

=
1

3
mMN̄

(
∂N̄L̄m

PQ̄

[
∂PQ̄mM

L̄ − 1

2
∂MQ̄mP

L̄

]
+ ∂MLm

PQ̄

[
∂PQ̄m

L
N̄ − 1

2
∂N̄Pm

L
Q̄

])
.

(4.30)

Translating this to e fluctuations (three m’s and 5 contractions):

L(3,4)
∣∣∣

φ=0

on-shell

=
1

12
eij

(
∂jle

pq

[
∂pqei

l − 1

2
∂iqep

l

]
− ∂ile

pq

[
∂pqe

l
j −

1

2
∂pje

l
q

])
. (4.31)

Using integration by parts and the gauge conditions this simplifies into:

L(3,4)
∣∣∣

φ=0

on-shell

=
1

8
eij

(
∂jqekl∂

kleiq − ∂ipekl∂
klep

j
)
, (4.32)

and written in terms of the metric and b field fluctuations using eij = hij + bij :

L(3,4)
∣∣∣

φ=0

on-shell

=
1

2
bij ∂jlh

mn ∂mnh
l
i . (4.33)

A short computation confirms that this result is precisely produced by the on-shell pertur-

bative evaluation of the action

L(3,4) = −1

2
H ijkΓq

ip∂jΓ
p
kq , (4.34)

given in equation (3.23) of [11] and arising from the expansion of the kinetic term for the

Chern-Simons improved field strength Ĥ. There is no Riemann-squared term appearing,

as has been argued before.

In the six-derivative Lagrangian L6 given in (3.18) only the first term survives after

we impose the on-shell condition. Integrating by parts the ∂N derivative we have

L6

∣∣∣
φ=0

on-shell

= − 1

48
MMN∂MNPQMKL∂KLMPQ. (4.35)

Using theM field expansion and keeping only cubic terms which are non-vanishing on-shell,

we get:

L(3,6)
∣∣∣

φ=0

on-shell

= −1

6
mMN̄∂MN̄PQ̄m

KL̄∂KL̄m
PQ̄. (4.36)

In term of eij this takes the form:

L(3,6)
∣∣∣

φ=0

on-shell

=
1

48
eij ∂

ijpqekl ∂
klepq . (4.37)
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The structure of the six-derivative term is such that only the symmetric part of eij
contributes. In terms of the metric fluctuations we get:

L(3,6)
∣∣∣

φ=0

on-shell

=
1

48
hij ∂

ijpqhkl ∂
klhpq . (4.38)

This term is produced by the perturbative on-shell evaluation of the following Riemann-

cubed term:

− 1

48
R kl

ij R
pq

kl R ij
pq , (4.39)

where the linearized Riemann tensor is: Rijkl =
1
2 (∂jkhil + ∂ilhjk − ∂kihjl − ∂jlhik) . A

short computation then shows:

− 1

48
R kl

ij R
pq

kl R ij
pq

∣∣∣
on-shell

= − 1

48
∂lqhij∂

pjhkl∂
kihpq , (4.40)

which gives precisely the term (4.38) after integration by parts.

Collecting our results (4.20), (4.32) and (4.37) for the cubic interactions with two, four,

and six derivatives, we have:

L3

∣∣∣
φ=0

on-shell

=
1

4
eij

[
∂iekl∂

jekl − ∂iekl∂
lekj − ∂peiq∂jepq

+
1

2
α′
(
∂jqekl∂

kleiq − ∂ipekl∂
klep

j
)
+

1

12
α′2 ∂ijpqekl ∂

klepq

]
,

(4.41)

where we have made explicit the α′ factors in the various contributions. To compute the

on-shell amplitude we pass to momentum space. We need not concern ourselves with overall

normalization; all that matters here is the relative numerical factors between the two, four,

and six-derivative terms. We thus have an on-shell amplitude A proportional to

A = e1ii′e2jj′e3kk′

[
−ki2k

i′

3 ηjkηj
′k′ + ki2k

j′

3 ηjkηi
′k′ + kk2k

i′

3 ηijηj
′k′ + permutations

+
1

2
α′

(
ki

′

2 k
k′

2 k
j
3k

j′

3 ηik − ki2k
k
2k

j
3k

j′

3 ηi
′k′
)
+ permutations

− 1

12
α′2 ki2k

i′

2 k
k
2k

k′

2 k
j
3k

j′

3 + permutations

]
,

(4.42)

where we have used three different lines to list the terms with two, four, and six deriva-

tives. By ‘permutations’ here we mean adding, in each line, the five copies with index

permutations required to achieve full Bose symmetry. In order to show that the above

has the conjectured factorized form we must rewrite the momentum factors in terms of

momentum differences k12, k23, and k31. This is possible because momentum factors must

contract with polarization tensors, and using momentum conservation and transversality

ensure they can be converted into momentum differences. For example,

e2jj′k
j′

1 =
1

2
e2jj′(k

j′

1 + k
j′

1 ) =
1

2
e2jj′(k

j′

1 − k
j′

2 − k
j′

3 ) = −1

2
e2jj′k

j′

31. (4.43)

After rewriting all momenta as momentum differences the sum over permutations simplify

and with modest work one can show that the two, four, and six derivative terms can be
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written as sum of products of the T and W tensors introduced in (2.3). Indeed, making

use of (2.9) one finds,

A =
1

2
e1ii′(k1)e2jj′(k2)e3kk′(k3)

[
T ijkT i′j′k′ + (W ijk T i′j′k′ − T ijkW i′j′k′)−W ijk W i′j′k′

]

=
1

2
e1ii′(k1)e2jj′(k2)e3kk′(k3) (T

ijk +W ijk)(T i′j′k′ −W i′j′k′) , (4.44)

in agreement with (2.5) and thus proving the claimed factorization.

5 Conclusions and remarks

Our work has determined the form (1.1) of the gauge invariant HSZ action that reproduces

the on-shell cubic amplitudes of the theory. The O(α′) terms arise from the kinetic term

for the three-form curvature Ĥ, which contains the Chern-Simons correction. Our work in

section 4.3 reconfirmed that the cubic on-shell four-derivative couplings arise correctly —

see (4.34). The kinetic term Ĥ2 also contains O(α′2) contributions, but those would only

affect six and higher-point amplitudes. The full HSZ action may contain other O(α′) terms

that do not contribute to three-point amplitudes. The action includes the Riemann-cubed

term derived in (4.39). Its coefficient is minus the coefficient of the same term in bosonic

string theory. In bosonic string theory there is also a non-zero ‘Gauss-Bonnet’ Riemann-

cubed term, but its presence can only be seen from four-point amplitudes [20]. Neither the

Riemann-cubed nor its related Gauss-Bonnet term are present in heterotic string theory.

It would be interesting to see if the cubic-curvature Gauss-Bonnet interaction is present

in HSZ theory. The physical effects of Riemann-cubed interactions were considered in [25]

and, regardless of the sign of the term, they lead to causality violations that require the

existence of new particles.

The action (1.1), while exactly gauge invariant, is unlikely to be exactly duality in-

variant. It is not, after all, the full action for HSZ theory. Reference [26] showed that the

action (1.1), without the Riemann-cubed term, is not duality invariant to order α′ squared.

It may be possible to use the methods in [26] to find out what other terms (that do not

contribute to cubic amplitudes) are needed for duality invariance to order α′ squared. We

continue to expect that, in terms of a metric and a b-field, an action with infinitely many

terms is required for exact duality invariance.

We have not attempted to compute dilaton amplitudes from HSZ theory. There is no

in-principle obstacle, and such computation could be done working in the Einstein frame.

The graviton and dilaton fluctuations (ĥµν , φ̂) with standard, decoupled, kinetic terms are

linear combinations of the fluctuations (hµν , φ) that we use. These redefinitions must be

performed to compute physical dilaton amplitudes. They were not needed to compute

gravity and b-field amplitudes because hµν differs from ĥµν only by dilaton dependent

terms and the dilatons differ from each other by traces of h, which do not contribute for

on-shell three-point amplitudes.

The computation of quartic amplitudes in HSZ theory is clearly a very interesting

challenge. World-sheet methods may give an efficient way to obtain answers. It is still

important, however, to develop techniques to compute amplitudes in a theory with a double
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metric. The HSZ action is not uniquely fixed by the gauge structure of the theory [10]: one

can add higher-order gauge-invariant products of the tensor field T which are expected to

modify quartic and higher-order amplitudes. In those theories, the spacetime action would

be the natural tool to compute amplitudes, and one could wonder how the conformal field

theory method would work. In this paper we have taken the first steps in the computation

of amplitudes starting from a theory with a double metric. The computation of four-point

amplitudes and of amplitudes that involve dilatons would be significant progress.

It is natural to ask to what degree global duality determines the classical effective action

for the massless fields of string theory. Additionally, given an effective field theory of metric,

b-field and dilaton, it is also natural to ask if the theory has a duality symmetry. HSZ theory

is useful as it is the simplest gravitational theory with higher derivative corrections and

exact global duality. By investigating HSZ theory we will better understand the constraints

of duality and its role in the effective field theory of strings.
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