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1 Introduction

Supersymmetry plays an important role in constraining the dynamics of string theory. In

toroidal compactifications of type II string theory, up to 14-derivative order couplings in

the quantum effective action can be determined as exact functions of the moduli (including

the string coupling), by combining supersymmetry non-renormalization conditions and U-

duality [1–10]. In this paper, we extend such results to 4- and 6-derivative order couplings

of tensor multiplets in the compactification of type IIB string theory on K3 surface.

We will begin by classifying the supervertices (local S-matrix elements that obey su-

persymmetry Ward identities) in a 6d (2, 0) supergravity theory, at the relevant derivative
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orders. We will focus on the 4 and 6-derivative couplings of tensor multiplets, of the

schematic form

f
(4)
abcd(φ)HaHbHcHd and f

(6)
ab,cd(φ)D2(HaHb)HcHd,

where φ stands for the massless scalar moduli fields, that parameterize the moduli space [11]

M = O(Γ21,5)\SO(21, 5)/(SO(21)× SO(5)), (1.1)

and we have omitted the contraction of the Lorentz indices on the self-dual tensor fields

Ha in the tensor multiplets (not to be confused with the anti-self-dual tensor fields in the

supergravity multiplet), a = 1, · · · , 21.

By consideration of the factorization of six-point superamplitudes through graviton

and tensor poles, we derive second order differential equations that constrain f
(4)
abcd(φ) and

f
(6)
ab,cd(φ). These equations are of the schematic form

∇a · ∇bf (4) ∼ f (4),

∇a · ∇bf (6) ∼ f (6) + (f (4))2.
(1.2)

By consideration of the duality between type II string theory on K3×S1 and the heterotic

string on T 5, we find that f (4) and f (6) are given exactly by the low energy limit of the

one-loop and two-loop heterotic string amplitudes, with the results

f
(4)
abcd =

∂4

∂ya∂yb∂yc∂yd

∣∣∣∣
y=0

∫
F1

d2τ
τ

1
2

2 ΘΛ(y|τ, τ̄)

∆(τ)
,

f
(6)
ab,cd =

εIKεJL + εILεJK
3

∂4

∂yaI∂y
b
J∂y

c
K∂y

d
L

∣∣∣∣
y=0

∫
F2

∏
I≤J

d2ΩIJ
ΘΛ(y|Ω, Ω̄)

(det ImΩ)
1
2 Ψ10(Ω)

.

(1.3)

Here F1 is the fundamental domain of the SL(2,Z) action on the upper half plane, param-

eterized by τ , and F2 is the fundamental domain of the Sp(4,Z) action on the Siegel upper

half space, parameterized by the period matrix ΩIJ . ΘΛ(y|τ, τ̄) is the theta function of the

even unimodular lattice Λ of signature (21, 5), embedded in R21,5, and ΘΛ(y|Ω, Ω̄) is an

analogous genus two theta function. The precise expressions of these theta functions will

be given later. The above two expressions depend on the embedding of the lattice Λ into

R21,5 through the theta functions, and the space of inequivalent embeddings is the same

as the moduli space M (1.1) of the 6d (2, 0) supergravity. ∆(τ) = η24(τ) is the weight 12

cusp form of SL(2,Z), and Ψ10(Ω) is the weight 10 Igusa cusp form of Sp(4,Z). The result

for the 4-derivative term f (4) has previously been obtained in [12].

We will verify, through rather lengthy calculations, that (1.3) indeed obey second order

differential equations of the form (1.2), and fix the precise numerical coefficients in these

equations.

While the expressions (1.3) for the coupling coefficients f (4) and f (6) are fully non-

perturbative in type IIB string theory, the results are nontrivial even at string tree-level.

For instance, in the limit of weak IIB string coupling gIIB, f (4) reduces to

f
(4)
ijk` →

√
VK3

gIIB`4s
Aijk`(ϕ), (1.4)
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where ϕ denotes collectively ϕ±±i (i = 1, · · · , 20), the moduli of the 2d (4, 4) CFT given by

the supersymmetric nonlinear sigma model on K3 (we will refer to this as the K3 CFT).

From the point of view of the worldsheet CFT, we can express Aijk`(ϕ) as an integrated

four-point function of marginal BPS operators of the K3 CFT, through the expansion∫
d2z

2π
|z|−s−1|1− z|−t−1

〈
φRRi (z)φRRj (0)φRRk (1)φRR` (∞)

〉
=
δijδk`
s

+
δikδj`
t

+
δi`δjk
u

+Aijk` +Bij,k`s+Bik,j`t+Bi`,jku+O(s2, t2, u2).

(1.5)

Here u = −s − t, and φRRi (z) are the weight ( 1
4 ,

1
4) RR sector superconformal primaries

in the R-symmetry singlet, related to the NS-NS sector weight ( 1
2 ,

1
2), exactly marginal,

superconformal primaries by spectral flow. The z-integral is defined using Gamma function

regularization, or equivalently, analytic continuation in s and t from the domain where the

integral converges. While Aijk` gives the tree-level contribution to f (4), Bij,k` captures the

tree-level contribution to f (6).

Note that, in contrast to the Riemannian curvature of the Zamolodchikov metric [13],

which is contained in a contact term of the four-point function [14], Aijk` and Bij,k` are

determined by the non-local part of the four-point function and do not involve the contact

term. Unlike the Zamolodchikov metric which has constant curvature on the moduli space

of K3 (with the exception of orbifold type singularities), Aijk` and Bij,k` are nontrivial

functions of the moduli. In particular, the latter coefficients blow up at the points of the

moduli space where the CFT becomes singular, corresponding to the K3 surface developing

an ADE type singularity, with zero B-field flux through the exceptional divisors.

We can give a simple formula for Aijk` in the case of A1 ALE target space, which may

be viewed as a certain large volume limit of the K3. In this case, the indices i, j, k, ` only

take a single value (denoted by 1), corresponding to a single multiplet that parameterizes

the 4-dimensional moduli space

MA1 =
R3 × S1

Z2
. (1.6)

MA1 has two orbifold fixed points by the Z2 quotient, one of which corresponds to the

C2/Z2 free orbifold CFT, whereas the other corresponds to a singular CFT, singular in

the sense of a continuous spectrum, that is described by the N = 4 A1 cigar CFT [15–17].

While the Zamolodchikov metric does not exhibit any distinct feature between these two

points on the moduli space, the integrated four-point function A1111 does. The latter is a

harmonic function onMA1 , is finite at the free orbifold point, but blows up at the A1 cigar

point. When the A1 singularity is resolved, in the limit of large area of the exceptional

divisor, we find that A1111 receives a one-loop contribution in α′, plus worldsheet instanton

contributions (5.21).

The paper is organized as follows. In section 2 we set up the super-spinor-helicity

formalism in 6d (2, 0) supergravity and classify the supervertices of low derivative orders.

In section 3, we derive the differential equation constraints on the four-point 4- and 6-

derivative coupling between the tensor multiplets based on the absence of certain six-point

supervertices, with some model-independent constant coefficients yet to be determined.
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In section 4, using type II/heterotic duality, we obtain the exact non-perturbative 4- and

6-derivative couplings in type IIB string theory on K3. We verify that these couplings

indeed satisfy the differential equations and fix the constant coefficients in these equations.

In section 5, we consider the weak coupling limit of the above results, which gives the

integrated four-point function of BPS primaries in the K3 CFT, with an explicit dependence

on the moduli space. We also consider the A1 ALE sigma model limit of the K3 CFT and

study the 4-derivative couplings in that limit.

2 Supervertices in 6d (2, 0) supergravity

2.1 6d (2, 0) Super-spinor-helicity formalism

Following [18–20], we adopt the convention for 6d spinor-helicity variables

pAB = ζAαζBβε
αβ , pAB ≡ 1

2
εABCDpCD = ζ̃Aα̇ζ̃

B
β̇ε
α̇β̇ , (2.1)

and define Grassmannian variables ηαI and η̃α̇I , where the lower and upper A,B are

SO(5, 1) chiral and anti-chiral spinor indices respectively, (α, α̇) are SU(2) × SU(2) lit-

tle group indices, and I = 1, 2 is an auxiliary index which may be identified with the spinor

index of an SO(3) subgroup of the SO(5) R-symmetry group.

Let us represent the 1-particle states in the (2, 0) tensor multiplet and the (2, 0) su-

pergravity multiplet as polynomials in the Grassmannian variables ηαI and η̃α̇I . The 1-

particle states of the (2, 0) tensor multiplet transform in the following representations of

the SU(2)× SU(2) little group,

(3,1)⊕ 4(2,1)⊕ 5(1,1) . (2.2)

These 1-particle states can be represented collectively as a polynomial

P (η) (2.3)

up to degree 4 in η, but with no η̃. In particular, the monomial ηαIηβJε
IJ corresponds

to the self-dual two form (3,1) and the monomials 1, ηαIηβJε
αβ , η4 correspond to the 5

scalars (1,1).

The 1-particle states of the (2, 0) supergravity multiplet, on the other hand, transform

in the following representations of the SU(2) × SU(2) little group,

(3,3)⊕ 4(2,3)⊕ 5(1,3) . (2.4)

These states are represented by

P (η)η̃α̇I η̃β̇Jε
IJ . (2.5)

In particular, the monomial P (η) = ηαIηβJε
IJ corresponds to the graviton (3,3) and the

monomials P (η) = 1, (η2)IJ ≡ ηαIηβJεαβ , and η4 correspond to the 5 anti-self-dual tensor

fields (1,3).
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The 16 supercharges are represented on 1-particle states as

qAI = ζAαη
α
I , qAI = ζAα

∂

∂ηαI
. (2.6)

They obey the supersymmetry algebra

{qAI , qBJ} = pABεIJ , {q, q} = {q, q} = 0. (2.7)

The 10 SO(5) R-symmetry generators are

(η2)IJ , (∂2
η)IJ , ηI∂ηJ − δ

J
I (2.8)

when acting on 1-particle states.

In an n-point scattering amplitude, we will associate to each particle spinor helicity

variables ζiAα, ζ̃iAα̇ and Grassmannian variables ηiαI , η̃iα̇I , with i = 1, · · · , n. Correspond-

ingly we define the supercharges for each particle,

qiAI = ζiAαη
α
iI , qiAI = ζiAα

∂

∂ηiαI
. (2.9)

The supercharges acting on the amplitude are represented by sums of the 1-particle repre-

sentations
QAI =

∑
i

qiAI , QAI =
∑
i

qiAI , (2.10)

and so are the R-symmetry generators∑
i

(η2
i )IJ ,

∑
i

(∂2
ηi)IJ ,

∑
i

ηiI∂ηiJ − δ
J
I . (2.11)

The solutions to the supersymmetry Ward identities can be expressed in terms of the

super-spinor-helicity variables. If such expression is local in these variable, we call it a

supervertex, otherwise it is a superamplitude. Among all the supervertices, the D-term

type takes the form

δ8(Q)Q
8P(ζi, ζ̃i, ηi, η̃i), (2.12)

where δ8(Q) =
∏
A,I QAI , and P is a polynomial in the super-spinor-helicity variables

ζi, ζ̃i, ηi, η̃i associated with the external particles labeled by i = 1, . . . , n, that is Lorentz

invariant and little group invariant. On the other hand, the F-term supervertices are of

the form

δ8(Q)F(ζi, ζ̃i, ηi, η̃i), (2.13)

where F is a Lorentz invariant and little group invariant polynomial in the super-spinor-

helicity variables that cannot be written in the D-term form [9, 21–24]. From momentum

counting, we expect D-term supervertices in general to come at or above 8-derivative order.

In the following subsections, we will focus on three- and four-point supervertices in

the (2, 0) supergravity. We will start with supervertices involving tensor multiplets only,

whose classification coincides with that of the (2, 0) SCFT on the tensor branch. We

will then introduce couplings to the supergravity multiplet and classify the supervertices

thereof. In particular, we will discover that the four-point D-term supervertices involving

supergravitons do not appear until at 12-derivative order.
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2.2 Supervertices for tensor multiplets

Among the four-point supervertices that only involve the (2, 0) tensor multiplets, the lead-

ing F-term ones arise at 4 and 6-derivative orders and take the form

δ8(Q)f
(4)
abcd,

δ8(Q)(f
(6)
ab,cds+ f

(6)
ac,bdt+ f

(6)
ad,bcu),

(2.14)

where QAI =
∑4

i=1 qiAI and δ8(Q) =
∏
A,I QAI . The coefficients f (4), f (6) are constant in

s, t, u but functions of the moduli. Their dependence on the moduli is the main object of

the current paper. The subscripts a, b, c, d label the 21 tensor multiplets. They contain

the H4 and D2H4 couplings, respectively, where H denotes the self-dual three form field

strength in the 21 tensor multiplets.

There are also four-point D-term supervertices of the form δ8(Q)Q
8P(ζi, ζ̃i, ηi). For

this expression to be non-vanishing, we need P to contain at least eight η’s. On the other

hand, by exchanging the order of δ8(Q) and Q
8
, we see that we cannot have more than

eight η’s in P because there are in total 4 × 4 η’s from the four 1-particle states. Hence

the lowest derivative order D-term supervertices for tensor multiplets arise at 8-derivative

order
δ8(Q)Q

8∑
i<j

η4
i η

4
j (2.15)

This is the unique D-term supervertex of tensor multiplets at 8-derivative order. Al-

though we could act Q on other little group singlets made out of eight ηi’s, like for in-

stance (η2
1)IJ(η2

2)IJ(η2
3)KL(η2

4)KL, such expressions always turn out to be proportional to∑
i<j η

4
i η

4
j .

Next, we will show that three-point supervertices of tensor multiplets are absent. In

general it is more intricate to write down the three-point supervertices due to the kinematic

constraints,1 and we will work in a frame where the three momenta p1, p2, p3 lie in a null

plane spanned by e0 + e1 (the 0−-direction) and e2 + ie3 (the 1−-direction). The null plane

is equivalently specified by the linear operator,

N̂ = pm1 p
n
2 Γmn ≡ (p+)2Γ0−1− , (2.16)

such that the spinor helicity variables associated with the momenta satisfy

N̂A
BζiBα = 0, N̂A

B ζ̃i
B
α̇ = 0. (2.17)

We write both the lower (chiral) and upper (anti-chiral) SO(5, 1) spinor index A as (±±)

which represent spins on the 01 and 23 planes, while the spin in the 45 plane is fixed by

the 01 and 23 spins due to the chirality condition. For instance, we write ζiAα as ζ±±iα ,

and ζ̃i
A
α̇ as ζ̃±±iα̇ . By definition, ζs0s1iα (or ζ̃s0s1iα̇ ) has charge s0

2 and s1
2 under the SO(1, 1)01

boost and SO(2)23 rotation in the 01 and 23 planes, respectively. Then by the chirality

1As will be shown in this section, for any choice of the three momenta, two QAI ’s and two QAI ’s vanish.

While this implies that δ8(Q) = 0 (and hence the naive construction of the supervertices as in the four-

point and higher-point cases does not apply), the supersymmetry Ward identities associated with the two

vanishing QAI ’s also become trivial, which means that the full factor of δ8(Q) is not needed in a supervertex.

– 6 –



J
H
E
P
1
2
(
2
0
1
5
)
1
4
2

Symbol SO(1, 1)01 SO(2)23 SO(2)45

ζ++ / ζ̃++ 1
2

1
2

1
2 / −1

2

ζ+− / ζ̃+− 1
2 −1

2 −1
2 / 1

2

ζ−+ / ζ̃−+ −1
2

1
2 −1

2 / 1
2

ζ−− / ζ̃−− −1
2 −1

2
1
2 / −1

2

p+ 1
2

1
2 0

p+
1 1 0 0

p+
2 0 1 0

Table 1. The charges of different symbols (SO(1, 5) representations) under the boost and rotations

in the three orthogonal planes. Note that in the last two rows, we choose a frame where p1 is

parallel to e0 + e1, and p2 is parallel to e2 + ie3.

condition, ζs0s1iα has charge (−1)
s0+s1

2

2 and ζ̃s0s1iα has charge − (−1)
s0+s1

2

2 under the SO(2)45

“tiny group” that rotates the 45 plane. The momentum p+ has charge 1
2 under both the

SO(1, 1)01 and SO(2)23, and is not charged under the SO(2)45. For clarity, these charges

are summarized in table 1.

The constraint (2.17) implies that ζ−−iα = ζ̃−−iα̇ = 0. Consequently the supercharges

Q−−I and Q
−−
I vanish identically. The expression∏

I=1,2

Q+−
I Q−+

I Q++
I (2.18)

is thus annihilated by all 16 supercharges QAI and QAI . Since (2.18) has SO(2)45 tiny

group charge −1, a general three-point supervertex for the tensor multiplets must take the

following form  ∏
I=1,2

Q+−
I Q−+

I Q++
I

 fabc(ζi, ηi), (2.19)

where fabc must be annihilated by Q up to terms proportional to Q, invariant with respect

to the little groups, and have charge +1 under tiny group. By consideration of CPT

conjugation,2 fabc cannot depend on ηi (otherwise the CPT conjugate expression would

2For an n-point (n ≥ 4) supervertex or superamplitude

V = δ8(Q)F(ζi, ηi; ζ̃i, η̃i), (2.20)

the CPT conjugate is

V = Q
8F(ζi, ∂/∂ηi; ζ̃i, η̃i)

n∏
i=1

η4i . (2.21)

For a three-point supervertex

V =
∏
I=1,2

Q+−
I Q−+

I Q++
I F(ζi, ηi; ζ̃i, η̃i), (2.22)

the CPT conjugate is

V =
∏
I=1,2

Q
+−
I Q

−+

I Q
++

I F(ζi, ∂/∂ηi; ζ̃i, η̃i)

n∏
i=1

η4i . (2.23)
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involve fewer than 6 η’s and cannot be proportional to Q6). Little group invariance then

forces it to be a function of the momenta only. In particular, since all three momenta are

SO(2)45 tiny group invariant, fabc would have to be tiny group invariant by itself which

then forces it to vanish.

2.3 Supervertices for supergravity and tensor multiplets

We will now incorporate the coupling to the supergravity multiplet. Below to ease the

notation, we will define

q̃AI ≡ ζ̃Aα̇η̃α̇I , (q̃2)AB ≡ q̃AI q̃BJεIJ . (2.24)

Four-point supervertices. The four-point F-term supervertex of supergravity multiplet

arises at 8-derivative order,

δ8(Q)(q̃2
1)AA

′
(q̃2

2)BB
′
(q̃2

3)CC
′
(q̃2

4)DD
′
εABCDεA′B′C′D′ . (2.25)

which includes the R4 coupling. The lowest derivative order D-term four-point superver-

tex is

δ8(Q)Q
8∑
i<j

η4
i η

4
j (q̃2

1)AA
′
(q̃2

2)BB
′
(q̃2

3)CC
′
(q̃2

4)DD
′
εABCDεA′B′C′D′

= δ8(Q)
∑
i<j

s2
ij (q̃2

1)AA
′
(q̃2

2)BB
′
(q̃2

3)CC
′
(q̃2

4)DD
′
εABCDεA′B′C′D′ ,

(2.26)

which is at 12-derivative order and contains the D4R4 coupling.3

We also have a four-point F-term supervertex at 8-derivative order that involves one

tensor multiplet and two supergravity multiplets as external states

δ8(Q)(q̃2
1)AB(q̃2

2)CDp3ACp4BD, (2.27)

which contains the D2(R2H2) coupling.4 We can also obtain a 10-derivative F-term by

multiplying the 8-derivative one (2.27) by s12, which contains the D4(R2H2) coupling. The

lowest derivative order D-term is

δ8(Q)Q
8
η4

3η
4
4(q̃2

1)AB(q̃2
2)CDp3ACp4BD, (2.28)

which is at 12-derivative order and contains the D6(R2H2) coupling.

The fact that D term four-point supervertices involving the supergravity multiplet only

start appearing at 12-derivative order is a special feature of (2, 0) supergravity, in contrast

to the naive momentum counting that may suggest they occur at 8-derivative order (as in

the case of maximally supersymmetric gauge theories, with sixteen supersymmetries).

3This is also the only D-term supervertex of supergravity multiplet at the 12-derivative order. The η̃’s

anti-commute with the supercharges. Their only role is to form supergraviton states and they must be

contracted with the ζ̃’s to form little group singlets.
4The 6-derivative order supervertex that contains the R2H2 coupling appears to be absent.
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Three-point supervertices. Let us now discuss the three-point supervertices between

the (2, 0) supergravity multiplet and the tensor multiplets. Below we will explicitly con-

struct the 2-derivative supervertices and also argue for the absence of three-point super-

vertices at 4-derivative order and beyond.

At 2-derivative order, the 3-supergraviton supervertex is given by

1

(p+)4

 ∏
I=1,2

Q+−
I Q−+

I Q++
I

 (q̃2
1)AA

′
(q̃2

2)BB
′
(q̃2

3)CC
′
εABC,−−εA′B′C′,−−. (2.29)

The power of p+ is fixed by the SO(1, 1)01 and SO(2)23 invariance, and this expression

is also invariant under the SO(2)45 tiny group, thereby consistent with the full SO(1, 5)

Lorentz symmetry.

More generally, a cubic supervertex of the supergravity multiplet must be of the form ∏
I=1,2

Q+−
I Q−+

I Q++
I

 (q̃2
1)AA

′
(q̃2

2)BB
′
(q̃2

3)CC
′
PABCA′B′C′(ζi, ηi). (2.30)

PABCA′B′C′ must be annihilated by Q up to terms proportional to Q, invariant with re-

spect to the little groups, and must have charge 2 under tiny group scaling. As we have

argued for the 3-tensor supervertices in the previous subsection, by applying CPT conju-

gation and little group invariance, we conclude PABCA′B′C′ is a tiny group invariant that

only depends the momenta. The tiny group invariance of the full amplitude then forces

(AA′, BB′, CC ′) to have a total of 4 −’s and 8 +’s, and then SO(1, 1)01 and SO(2)23 in-

variance forces PABCA′B′C′ to scale like (p+)−4, and we are back to the two-derivative

cubic supervertex (2.29). This rules out any higher derivative cubic supervertices of the

supergravity multiplet.

Now let us consider the three-point supervertex for one supergravity and two tensor

multiplets. We can further choose the lightcone coordinates to be aligned with the momenta

of the first and second particle, by demanding that p1 = p+
1 (e0 +e1), and p2 = p+

2 (e2 + ie3).

This amounts to the restriction

ζ−+
1 = 0, ζ+−

2 = 0. (2.31)

At two-derivative order, the gravity-tensor-tensor supervertex is

1

(p+
1 )2

 ∏
I=1,2

Q+−
I Q−+

I Q++
I

 (q̃2
1)(+−,+−), (2.32)

where p1 labels the momentum of the supergraviton. At 4-derivative order and beyond,

there do not appear to be three-point supervertices for the gravity-tensor-tensor coupling,

using the same argument as above. Similarly one can argue that no gravity-gravity-tensor

supervertex exists.5

5It appears that one can write down a 2-derivative order supervertex

1

(p+1 )2p+2

( ∏
I=1,2

Q+−
I Q−+

I Q++
I

)
(q̃21)(+−,+−)(q̃22)(++,−+) + (1↔ 2). (2.33)
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Supervertices Derivative Order

ggg 2 only

gtt 2 only

ggt absent

ttt absent

gggg F-terms: 8 and possibly 12+

D-terms: 12+

ggtt F-terms: 8, 10, and possibly 12+

D-terms: 12+

tttt F-terms: 4, 6, and possibly 8+

D-terms: 8+

Table 2. Classification of supervertices in 6d (2, 0) supergravity. Here g and t refer to the gravity

and tensor supermultiplets which include R and H, respectively. The derivative order includes the

derivatives implicit in the fields. For example, D2(R2H2) is regarded as an 8-derivative supervertex

(2 + 2× 2 + 2× 1).

It is claimed in [25] that in type IIB string theory on K3, there is a CP-odd RH2

effective coupling that arises at one-loop order, where here H refers to a mixture of the

self-dual two-form in a tensor multiplet and the anti-self-dual two-form in the multiplet

that also contains the dilaton . This would seem to correspond to a 4-derivative cubic

supervertex. A more careful inspection of the 6d IIB cubic vertex of [25] shows that it in

fact vanishes identically [26], which is consistent with our finding based on the super spinor

helicity formalism.

The classification of three-point and four-point supervertices given in this section is

summarized in table 2. In particular, the three- and four-point supervertices are all in-

variant under the SO(5) R-symmetry (2.8). In other words, our classification implies that

SO(5) breaking supervertices in (2, 0) supergravity can only start appearing at five-point

and higher. The simplest examples of such supervertices are δ8(Q) at n-point with n > 4,

which transform in the [n− 4, 0] representations of the SO(5) R-symmetry [27].

3 Differential constraints on f (4) and f (6) couplings

In this section, we shall deduce the general structures of the differential constraints on f (4)

and f (6) couplings due to supersymmetry, using superamplitude techniques [9, 10, 23].

The construction of the f (4) and f (6) supervertices in (2, 0) supergravity gives the

on-shell supersymmetric completion of the H4 and D2H4 couplings. In particular, given

their relatively low derivative orders, such supervertices must be of F-term type which are

rather scarce and have been classified and explicitly constructed in the previous section.

However, after restoring the full SO(1, 5) Lorentz invariance, the resulting expression cannot be a local

supervertex. This can be seen by noting that the expression is SO(5) R-symmetry invariant, and there simply

does not exist any 2-derivative three-point coupling that involves two fields from the gravity multiplet and

the self-dual tensor field, which is the only component of the tensor multiplet that is R-symmetry invariant.

– 10 –



J
H
E
P
1
2
(
2
0
1
5
)
1
4
2

1

2

3 4

5

6

→
1

2

3 4

5

6

Figure 1. Factorization channels for the ϕ2H4 superamplitude. The solid lines stand for the tensor

multiplet states while the dotted lines stand for the supergravity multiplet states. The black circles

represent the 4-derivative four-tensor-multiplet supervertex, and the trivalent vertices represent the

2-derivative supervertex involving one gravity and two tensor multiplets.

As we shall see below, the absence of certain higher point supervertices of these derivative

orders will lead to differential constraints on the moduli dependence of the aforementioned

couplings in the quantum effective action of (2, 0) supergravity.

For example, we can expand the supersymmetric f (4) coupling, in terms of the moduli

fields, and obtain higher-point vertices. In particular, the resulting six-point ϕ2H4 coupling

in the singlet representation of SO(5) R-symmetry can be related to a symmetric double soft

limit of the corresponding six-point superamplitude (at 4-derivative order) [10, 27]. The

absence of SO(5) R-symmetry invariant six-point supervertices at 4-derivative order [27]

means that this six-point ϕ2H4 coupling from expanding f (4) cannot possibly have a local

supersymmetric completion. Rather, it must be related to polar pieces of the superam-

plitude via supersymmetry; in other words, it is fixed by the residues in all factorization

channels. The ϕ2H4 superamplitude can only factorize through the 4-derivative super-

vertex for tensor multiplets and 2-derivative cubic supervertices for two tensor and one

graviton multiplets (see figure 1), giving rise to

∇(e · ∇f)f
(4)
abcd = Uf

(4)
abcdδef + V f

(4)
(e(abcδd)f) +Wf

(4)
ef(abδcd). (3.1)

Here a natural SO(21, 5) homogeneous vector bundle W overM arises as the quotient

SO(21, 5)× R21,5

SO(21)× SO(5)
, (3.2)

where R21,5 transforms as a vector under SO(21)×SO(5). We define the covariant derivative

∇ai, where a = 1, . . . , 21 and i = 1, . . . , 5, by the SO(21, 5) invariant connection on W that

gives rise to the symmetric space structure of the scalar manifold M. Further imposing

invariance under the SO(5) R-symmetry means we can focus on the SO(21) subbundle

V ⊂ W . The coupling f
(4)
abcd becomes a section of the symmetric product vector bundle

V , on which the second order differential operator ∇(e · ∇f) acts naturally.
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Figure 2. Factorization channels for the D2(ϕ2H4) superamplitude. The solid lines stand for the

tensor multiplet states while the dotted lines stand for the supergravity multiplet states. The black

and white circles represent the 4 and 6-derivative four-tensor-multiplet supervertices, respectively,

and the trivalent vertices represent the 2-derivative supervertex involving one gravity and two tensor

multiplets.

For the f (6) coupling, recall that it is defined as the coefficient in the superamplitude

δ8(Q)(f
(6)
ab,cds+ f

(6)
ac,bdt+ f

(6)
ad,bcu). (3.3)

Due to the relation s+ t+u = 0, there is an ambiguity in the definition of f
(6)
ab,cd, where we

can shift f (6) by a term that is totally symmetric in three of the four indices. We fix this

ambiguity by demanding that f
(6)
a(b,cd) = 0, which makes f (6) a section of the V vector

bundle. The corresponding D2(ϕ2H4) superamplitude can also factorize through two f (4)

supervertices (see figure 2), and we end up with the following differential constraint

2∇(e · ∇f)f
(6)
ab,cd = u1f

(6)
ab,cdδef + u2(f

(6)
ef,abδcd + f

(6)
ef,cdδab) + u′2f

(6)
ef,(c(aδb)d)

+ u3(f
(6)
ea,fbδcd + f

(6)
ec,fdδab) + u′3f

(6)
e(c,f(aδb)d)

+ u4(f
(6)
e(c,abδfd) + f

(6)
e(a,cdδfb)) + u5(f

(6)
e(b,a)(cδd)f + f

(6)
e(d,c)(aδb)f )

+
v1

2
(f

(4)
gab(cf

(4)
d)efg+f

(4)
gcd(af

(4)
b)efg)+v2f

(4)
egabf

(4)
cdfg+v3f

(4)
ega(cf

(4)
d)bfg+(e↔ f) .

(3.4)

As we shall argue in the next section, the constant coefficients in (3.1) and (3.4) can be fixed

using results from the type II/heterotic duality and heterotic string perturbation theory.

4 An example of f (4) and f (6) from type II/heterotic duality

In section 3, we wrote down the differential constraints (3.1) and (3.4) on the 4- and 6-

derivative four-point couplings f (4) and f (6) between the 21 tensor multiplets in 6d (2, 0)

supergravity, with undetermined model-independent constant coefficients. To determine

these coefficients, we can consider the specific example of four-point scattering amplitudes

in type IIB string theory on K3. In this section, we will relate the exact non-perturbative 4-

and 6-derivative couplings in type IIB on K3 to a certain limit of the one- and two-loop am-

plitudes in the T 5 compactified heterotic string theory, via a chain of string dualities. With

explicit expressions for the heterotic amplitudes, we verify the differential constraints (see

appendix A for the detailed computations), and thereby determine the model-independent

constant coefficients.
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4.1 Type II/heterotic duality

We consider type IIB string theory on K3× S1
B with string coupling gB, and circle radius

rB. The 6d limit of interest corresponds to keeping gB ∼ O(1) while sending rB →∞. We

shall work in units with type II string tension α′ = 1. By T-duality, we can equivalently

look at type IIA string theory on K3 × S1
A with string coupling gA = gB/rB ∼ rA and

circle size rA = 1/rB. In terms of type IIA parameters, the 6d limit corresponds to

gA ∼ rA → 0. Now we use type IIA/heterotic duality to pass to heterotic string theory on

T 4×S1 where the size of both T 4 and S1 are of order rA in type II string units. Since the

heterotic string is dual to a wrapped NS5 brane on K3, their tensions satisfy the relation

Mh ≡ 1/`h ∼ 1/gA ∼ 1/rA. The heterotic string coupling, on the other hand, can be fixed

by matching the 6d (or 5d) supergravity effective couplings

1

g2
A

∼
M8
hr

4
A

g2
h

(4.1)

to be gh ∼ 1/rA ∼ Mh.6 Hence in the limit where the circle of K3 × S1
B in the type IIB

picture decompactifies rB →∞, we have

gh ∼Mh →∞ (4.2)

in the dual T 5 compactified heterotic string theory.

Under the duality, the 21 tensor multiplets of (2, 0) supergravity on S1
B are related

to the 21 abelian vector multiplets of heterotic string on T 5. In particular the effective

action of the tensor multiplets in the (2, 0) supergravity is captured by that of the vector

multiplets in heterotic string. Let us now focus on the four-point amplitude of abelian

vector multiplets in heterotic string on T 5. As we shall see in the next subsection, apart

from the tree-level contribution at 2-derivative order due to supergraviton exchange, the

four-point amplitudes at 4-derivative and 6-derivative orders receive contributions up to

one-loop and two-loop, respectively. Furthermore we will argue that, in the limit of interest

gh ∼Mh →∞, these couplings in the effective action are free from contributions at higher

loop orders.

Relative to the tree-level contribution to the 2-derivative amplitude f (2), the 4-deriva-

tive f (4) coupling in the 6d (2, 0) supergravity from type IIB on K3, which contains H4

can be written as

f (4)

f (2)
∼ lim

gh∼1/`h→∞
`2h
(
β0 + β1g

2
h + β2g

4
h + β3g

6
h + · · ·

)
, (4.3)

where βng
2n
h is the n-loop contribution. By using type I/heterotic duality and confirmed by

two-loop computation in [28–31], it has been argued that the F 4 coupling in heterotic string

is does not receive contributions beyond one-loop, namely βn = 0 for n ≥ 2. Therefore, we

expect that f (4) is completely captured by the one-loop contribution β1g
2
h`

2
h.7 Indeed, we

6One can also derive this using the equivalence between the IIA string and the wrapped heterotic NS5

brane on T 4.
7Note that the tree-level contribution β0`

2
h to the 4-derivative coupling vanishes in the limit of interest

gh ∼ 1/`h → ∞. Similarly, the tree-level and one-loop contributions γ0`
4
h and γ1`

4
hg

2
h to the 6-derivative

coupling vanish in that limit.
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will see in section 4.2.1 that the heterotic one-loop amplitude (4.6) satisfies the differential

constraint for the 4-derivative coupling (3.1) in 6d (2, 0) supergravity.

Likewise, the 6-derivative f (6) coupling which contains D2H4 can be written as

f (6)

f (2)
∼ lim

gh∼1/`h→∞
`4h
(
γ0 + γ1g

2
h + γ2g

4
h + γ3g

6
h + · · ·

)
. (4.4)

We will see in section 4.2.2 that the two-loop contribution (4.31) corresponding to the

γ2g
4
h`

4
h term alone satisfies the differential constraint (3.4) for the 6-derivative coupling in

6d (2, 0) supergravity. This strongly suggests that the D2F 4 does not receive higher than

two-loop contributions in the T 5 compactified heterotic string theory, though we are not

aware of a clear argument.8

4.2 Heterotic string amplitudes and the differential constraints

In this subsection, we compute the four-point amplitude of scalars in the abelian vector

multiplets in five dimensions, of heterotic string on T 5, or more precisely, heterotic string

compactified on the Narain lattice Γ21,5. As explained in the previous subsection, the co-

efficients of F 4 (or (∂φ)4) and D2F 4 (or ∂6φ4) in five dimensions at genus one and genus

two in heterotic string capture exactly the six dimensional effective couplings f (4) and f (6)

of type IIB string theory on K3, expanded in the string coupling constant including the

instanton corrections. These results can be extracted by slightly modifying the 10d het-

erotic string amplitudes, computed by D’Hoker and Phong (see for instance (6.5) of [29]

and (1.22) of [31]). Furthermore, we fix the constant coefficients in the differential con-

straints (3.1) and (3.4) by explicitly varying the heterotic amplitudes with respect to the

moduli fields.

4.2.1 One-loop four-point amplitude

The scalar factor in the 4-gauge boson amplitude at one-loop takes the form9

A1 =

∫
F1

d2τ

τ2
2

τ
5
2

2 ΘΛ(τ, τ̄)

∆(τ)

4∏
i=1

d2zi
τ2

e
1
2

∑
i<j sijG(zi,zj)

〈
4∏
i=1

jai(zi)

〉
τ

. (4.5)

Here Λ denotes the even unimodular lattice Γ21,5, ∆(τ) = η(τ)24 is the weight 12 cusp

form of SL(2,Z), and ΘΛ is the theta function of the lattice Λ with modular weight ( 21
2 ,

5
2).

ja stand for the current operators associated to the 5d Cartan gauge fields in the Narain

lattice CFT and G(zi, zj) is the scalar Green function on the torus. The zi integrals are

performed over the torus and the τ over F1 which is the fundamental domain of SL(2,Z)

on H2. Note that the integrand has total modular weight (2, 2), and hence the integral

8The consistency check with the differential constraints still allows for the possibility of shifting the 4-

and 6-derivative coupling f (4) and f (6) by eigenfunctions of the covariant Hessian. However, we believe that

f (4) and f (6) are given exactly by the low energy limit of the heterotic one- and two-loop contributions.

The above possibility can in principle be ruled out by studying the limit to 6d (2, 0) SCFT, but we will not

demonstrate it here.
9The summation over spin structures has been effectively carried out already in this expression.
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is independent of the choice of the fundamental domain of SL(2,Z). To extract the F 4

coefficient, we can simply set sij to zero in the above scalar factor (4.5), and write

f (4)
a1a2a3a4 ≡ (A1|F 4)a1a2a3a4 =

∫
F1

d2τ

τ2
2

τ
5
2

2 ΘΛ(τ, τ̄)

∆(τ)

4∏
i=1

d2zi
τ2

〈
4∏
i=1

jai(zi)

〉
τ

=
∂4

∂ya1 · · · ∂ya4

∣∣∣∣
y=0

∫
F

d2τ

τ2
2

τ
5
2

2 ΘΛ(y|τ, τ̄)

∆(τ)
,

(4.6)

where y is a vector in R21, that lies in the positive subspace of the R21,5 in which the

lattice Λ is embedded. We have rewritten the four-point function of the currents as a

fourth derivative on the theta function (see, for example, [32]). The theta function ΘΛ is

defined as

ΘΛ(y|τ, τ̄) = e
π

2τ2
y◦y∑

`∈Λ

eπiτ`
2
L−πiτ̄`

2
R+2πi`◦y

= e
π

2τ2
y◦y∑

`∈Λ

eπiτ`◦`−2πτ2`2R+2πi`◦y.
(4.7)

As we have argued previously, the f (4) coupling satisfies a differential constraint (3.1)

on M due to supersymmetry. Given the explicit expression for f (4) (4.6) from the type

II/heterotic duality, we can now proceed to fix the constant coefficients in (3.1). The above

expression for the 4-derivative term f (4) has previously been determined in [12].

In the following we will explicitly parametrize the coset moduli space M and write

down the covariant Hessian ∇(e ·∇f). We will work in a trivialization of the SO(21) vector

bundle V. In particular, we shall identify the coordinates on the base manifold M with

variations of the embedding on the lattice Γ21,5 in R21,5.

Let eI be a set of lattice basis vectors, I = 1, · · · , 26, with the pairing eI ◦ eJ = ΠIJ

given by the even unimodular quadratic form of Γ21,5. Let P+ and P− be the linear

projection operator onto the positive and negative subspace, R21 and R5, respectively, of

R21,5. We can write P+eI as (eLIa)a=1,··· ,21, and P−eI as (eRIi)i=1,··· ,5.

We expand the lattice vectors into components y = ỹIeI . The left components of y

are then ya = ỹIeLIa. The requirement that y lies in the positive subspace means that

ỹIeRIi = 0. This constraint implies that, under a variation of the lattice embedding, while

y ◦ y = yaya stays invariant, y itself must vary, and so does ` ◦ y = `IeLIay
a.

From
21∑
a=1

eLIae
L
Ja −

5∑
i=1

eRIie
R
Ji = ΠIJ , (4.8)

we see that (eLIa, e
R
Ii) is the inverse matrix of ΠIJ(eLJa,−eRJi). Note that eRIi are specified by

eLIa up to an SO(5) rotation. eRIi by itself is subject to the constraint

ΠIJeRIie
R
Jj = −δij . (4.9)

This constraint leaves 26 × 5 − 15 independent components of eRIi. The SO(5) rotation of

the negative subspace further removes 10 degrees of freedom from eRIi, leaving the 21× 5 =
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105 moduli of the lattice embedding which give rise to a parametrization of the scalar

manifold M.10

Now consider variation of the lattice embedding,

eLIa → eLIa + δeLIa, eRIi → eRIi + δeRIi. (4.12)

subject to the constraints

ΠIJeLI(aδe
L
Jb) = O((δe)2), ΠIJ

(
δeLIae

R
Ji + eLIaδe

R
Ji

)
= O((δe)2),

ΠIJeRI(iδe
R
Jj) = O((δe)2), eL(Iaδe

L
J)a − e

R
(Iiδe

R
J)i = O((δe)2).

(4.13)

Let f(eRIi) be a scalar function on the moduli space M of the embedding of Γ21,5. We can

expand

f(eRIi + δeRIi) = f(e) + f Ii(e)δeRIi + f IJij(e)δeRIiδe
R
Jj +O((δe)3). (4.14)

f Ii and f IJij are subject to shift ambiguities

f Ii → f Ii + ΠIJeRJjg
ij ,

f IJij → f IJij +
1

2
ΠIJgij + ΠIKeRKkh

JKijk + ΠJKeRKkh
IKijk

(4.15)

for arbitrary symmetric gij and hIJijk, due to the constraints on δeRIi. We can fix these

ambiguities by demanding

eRIjf
Ii = 0, eRIkf

IJij = 0. (4.16)

This can be achieved, for instance, by shifting f Ii with ΠIJeRJjg
ij , for some gij . We can

then define

f̃a
i = eLIaf

Ii, f̃ab
ij = eLIae

L
Jbf

IJij +
1

2
δabe

R
I

(if Ij). (4.17)

Note that these are invariant under the shift (4.15) and hence give rise to well-defined

differential operators on the moduli space M.

This construction can be straightforwardly generalized to non-scalar functions on M,

and we can therefore write the covariant Hessian of f
(4)
abcd (4.6) as

∇(e · ∇f)f
(4)
abcd =

5∑
i=1

f̃
(4) ii
abcd;ef . (4.18)

In appendix A.1, we explicitly compute f̃
(4) ii
abcd;ef and find

5∑
i=1

f̃
(4) ii
abcd;ef = −3

2
f

(4)
abcdδef − 2f

(4)
(e(abcδd)f) + 6f

(4)
ef(abδcd). (4.19)

10Consider the symmetric matrix MIJ defined by

MIJ = eLIae
L
Ja + eRIie

R
Ji = 2eLIae

L
Ja −ΠIJ = ΠIJ + 2eRIie

R
Ji. (4.10)

We have

MIKΠKLMLJ = eLIaδabe
L
Jb + eRIi(−δij)eRJj = ΠIJ . (4.11)

The symmetric matrix M , subject to the constraint MΠM = Π, can be used to parameterize the coset

SO(21, 5)/(SO(21)× SO(5)).
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which allows us to fix the constant coefficients in (3.1) to be

U = −3

2
, V = −2, W = 6. (4.20)

4.2.2 Two-loop four-point amplitude

The scalar factor in the two-loop heterotic amplitude takes the form [31]

A2 =

∫
F2

∏
I≤J d

2ΩIJ

(det ImΩ)
5
2 Ψ10(Ω)

ΘΛ(Ω, Ω̄)

∫
Σ4

e
1
2

∑
i<j sijG(zi,zj)

〈
4∏
i=1

jai(zi)

〉
Ω

YS , (4.21)

where YS is given by

YS =
1

3
(k1 − k2) · (k3 − k4)∆(z1, z2)∆(z3, z4) + (2 permutations),

∆(z, w) ≡ εIJωI(z)ωJ(w).
(4.22)

ωI(z) are a basis of holomorphic one-form on the genus two Riemann surface normalized

such that ∮
αI

ωJ = δIJ ,

∮
βI

ωJ = ΩIJ , (4.23)

where the cycles αI and βJ have intersection numbers (αI , βJ) = δIJ , (αI , αJ) = (βI , βJ) =

0. Ψ10(Ω) is the weight 10 Igusa cusp form of Sp(4,Z) [33]. F2 is the moduli space of the

genus two Riemann surface. G(zi, zj) is the Green’s function on the genus two Riemann

surface. Again, the contribution to D2F 4 coefficient is simply extracted as

A2|D2F 4 =
t− u

3

∫
F2

∏
I≤J d

2ΩIJ

(det ImΩ)
5
2 Ψ10(Ω)

ΘΛ(Ω, Ω̄)

∫
Σ4

〈
4∏
i=1

jai(zi)

〉
Ω

∆(z1, z2)∆(z3, z4)

+ (2 permutations).

(4.24)

To proceed, we need to compute the four-point correlation function of

T aI =

∫
d2zja(z)ωI(z) =

∮
αI

ja(z)dz, (4.25)

on the genus two Riemann surface Σ. This allows us to express the correlators of T aI in

terms of the theta function (see for instance [32]),

ΘΛ(Ω, Ω̄)

〈
n∏
i=1

T aiIi

〉
= (det Im Ω)2 ∂n

∂ya1I1 · · · ∂y
an
In

∣∣∣∣∣
y=0

ΘΛ(y|Ω, Ω̄), (4.26)

where

ΘΛ(y|Ω, Ω̄) ≡
∑

`1,`2∈Λ

eπiΩAB`
A
L ·`

B
L−πiΩ̄AB`

A
R·`

B
R+2πi`A◦yA+π

2
((ImΩ)−1)AByA·yB

=
∑

`1,`2∈Λ

eiπΩAB`
A◦`B−2πIm ΩAB`

A
R·`

B
R+2πi`A◦yA+π

2
((ImΩ)−1)AByA·yB .

(4.27)
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Thus, we can simplify the result to

A2|D2F 4 =

[
t− u

3
εIJεKL

∂4

∂ya1I ∂y
a2
J ∂y

a3
K ∂y

a4
L

∣∣∣∣
y=0

+ (2 perms)

]∫
F2

∏
I≤J d

2ΩIJ

(det ImΩ)
1
2 Ψ10(Ω)

ΘΛ(y|Ω, Ω̄).

(4.28)

Next, we would like to verify that the coefficient functions f (6) extracted from A2 obeys

the differential constraint (3.4) on the moduli space SO(5, 21)/(SO(5)× SO(21)), and also

fix the precise coefficients thereof.

In principle, it should be possible to show that ∆f (6) is f (6) plus the integral of a total

derivative on the moduli space F2 of the genus two Riemann surface Σ, which reduces

to a boundary contribution where Σ is pinched into two genus one surfaces. However,

this calculation is somewhat messy so instead we will fix the coefficients of for (f (4))2 by

comparison to similar differential constraints on the tensor branch of the 6d (2, 0) SCFT.

We can write A2|D2F 4 as

(A2|D2F 4)a1a2a3a4 = f (6)
a1a2,a3a4s12 + f (6)

a1a3,a2a4s13 + f (6)
a1a4,a2a3s14 , (4.29)

However, the definition (4.29) of f
(6)
a1a2,a3a4 is ambiguous because s12 + s13 + s14 = 0. We

fix this ambiguity by imposing

f
(6)
a1(a2,a3a4) = 0. (4.30)

Explicitly, f
(6)
a1a2a3a4 is given by,

f (6)
a1a2,a3a4 =

1

3
(εA1A3εA2A4 + εA1A4εA2A3)

× ∂4

∂ya1A1
∂ya2A2

∂ya3A3
∂ya4A4

∫
F2

∏
I≤J d

2ΩIJ

(det ImΩ)
1
2 Ψ10(Ω)

ΘΛ(y|Ω, Ω̄)

∣∣∣∣∣
y=0

.
(4.31)

f
(6)
a1a2,a3a4 enjoys the symmetry

f (6)
a1a2,a3a4 = f (6)

a2a1,a3a4 = f (6)
a1a2,a4a3 = f (6)

a3a4,a1a2 . (4.32)

The condition (4.30) gives rise to constraints between the coefficients in (3.4),

u2 +
u′2
2

= 0, u3 +
u′3
2

= 0. (4.33)

We therefore end up with 5 coefficients u1, u2, u3, u4, u5 to determine for the terms pro-

portional to f (6) on the r.h.s. of the differential equation (3.4). We determine the ui’s by

explicit computation of the covariant Hessian in appendix A.2 and find

u1 = −2, u2 = 1, u3 = 0, u4 = 1, u5 = 0. (4.34)

On the other hand, to determine the 2 independent coefficients v1, v2 for the (f (4))2

terms in (3.4), we shall take advantage of the following differential constraint on the 6-

derivative four-point term in the tensor branch effective action of (2, 0) SCFT [35]

2∂(e · ∂f)F
(6)
ab,cd=

w1

2

(
F

(4)
gab(cF

(4)
d)efg+F

(4)
gcd(aF

(4)
b)efg

)
+w2F

(4)
egabF

(4)
cdfg+w3F

(4)
ega(cF

(4)
d)bfg+(e↔ f) .

(4.35)

– 18 –



J
H
E
P
1
2
(
2
0
1
5
)
1
4
2

Here F (6) and F (4) are 6-derivative and 4-derivative four-point couplings of tensor multi-

plets in the (2, 0) SCFT, which are related to the supergravity couplings f (6) and f (4) by

taking the large volume limit of K3 and zooming in on an ADE singularity that gives rise

to the particular 6d SCFT.11 The 4- and 6-derivative terms on the tensor branch of the 6d

(2, 0) SCFT can be in turn computed by the one- and two-loop amplitudes in 5d maximal

SYM on its Coulomb branch as discussed in [27]. Explicitly, we have (see appendix B.1

and B.2 for details)

A1|F 4 → 210π
13
2 F (4), A2|D2F 4 → 215π9F (6). (4.36)

In [35], the coefficients in (4.35) are fixed to be12

w1 = 0, w2 = −w3 = − 2π

3× 211π4
. (4.37)

Hence we fix the rest of the constants in (3.4) to be

v1 = 0, v2 = −v3 = − 1

3× 215π7
. (4.38)

In summary, the 4- and 6-derivative couplings satisfy the following differential

equations

∇(e · ∇f)f
(4)
abcd = − 3

2
f

(4)
abcdδef − 2f

(4)
(e(abcδd)f) + 6f

(4)
ef(abδcd),

2∇(e · ∇f)f
(6)
ab,cd = − 2f

(6)
ab,cdδef +

(
f

(6)
ef,abδcd + f

(6)
ef,cdδab − 2f

(6)
ef,(c(aδb)d)

)
+
(
f

(6)
e(c,abδfd + f

(6)
e(a,cdδfb)

)
− 1

3× 215π7

(
f

(4)
egabf

(4)
cdfg − f

(4)
ega(cf

(4)
d)bfg

)
+ (e↔ f) .

(4.39)

5 Implications of f (4) and f (6) for the K3 CFT

As alluded to in the introduction, since spacetime supersymmetry imposes differential

constraints on the four-point string perturbative amplitudes which involve, in particular,

integrated correlation functions of exactly marginal operators in the internal K3 CFT, we

will be able to derive nontrivial consequences for the K3 CFT itself. As an illustration, we

will see how the resulting moduli dependence of the f (4) and f (6) couplings at tree-level can

pinpoint the singular points on the moduli space of the K3 CFT which the Zamolodchikov

metric does not detect (since the moduli space is a symmetric space).

Below we will first explain how to extract the data relevant for K3 CFT from string tree-

level amplitudes and general features thereof. We will then demonstrate their implications,

11The contribution due to supergraviton exchange on the r.h.s. of (3.4) is absent in (4.35) due to this

decoupling limit. A similar reduction of the genus one and two amplitudes in the type II string theory to

supergravity amplitudes was considered in [34].
12The factor 2π in the numerator comes from the relative normalization between the lattice vectors and

the 5d scalars. In particular, the mass square of the W -boson is m2 = 2π`2R.
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in a particular slice of the K3 CFT moduli space where the K3 CFT is approximated by

the supersymmetric nonlinear sigma model on A1 ALE space.

In principle, we expect to arrive at the same set of constraints from the K3 CFT

worldsheet Ward identities with spin fields associated to the Ramond sector ground states

which appear in the spacetime supercharge. The same set of constraints is expected to

hold for all c = 6 (4, 4) SCFTs.13 We will leave this generalization to future work.

5.1 Reduction to the K3 CFT moduli space

The string theory amplitudes we have obtained in the previous section are exact results

which can be regarded as sections of certain SO(21) vector bundles over the full moduli

space O(Γ21,5)\SO(21, 5)/SO(21)×SO(5). Among the 105 moduli, one comes from the IIB

dilaton, 24 come from RR fields, and the rest 80 NSNS scalars describe the moduli space

of the K3 CFT, thus locally

SO(21, 5)

SO(21)× SO(5)
≈ SO(20, 4)

SO(20)× SO(4)
×H∗(K3,R)× R+. (5.1)

Globally the K3 CFT has moduli space [36, 37]

MK3 = O(Γ20,4)\SO(20, 4)/SO(20)× SO(4), (5.2)

parametrized by the scalars inside 20 of the 21 tensor multiplet, ϕ±±i with i = 1, 2 . . . , 20,

from the 6d perspective. From the worldsheet CFT point of view, ϕ±±i are associated with

the BPS superconformal primaries that are doublets of the two SU(2) current algebras.

We will restrict the full string four-point amplitude obtained from the type II/heterotic

duality to these 20 tensor multiplets, and expand in the limit of small gIIB.14 In this limit,

the theta function of the Γ21,5 lattice can be approximated by the product of the theta

function of the Γ20,4 lattice and that of the Γ1,1 lattice whose integral basis has the following

embedding in R1,1,

u = (r0, r0), v =

(
1

2r0
,− 1

2r0

)
, (5.3)

with r0 →∞ in the limit. Since at genus one ΘΓ1,1(τ) ∼ r0 and at genus two ΘΓ1,1(Ω) ∼ r2
0,

we have in this limit

Afull
H4 ∼ r0Ared

H4(ϕi), Afull
D2H4 ∼ r2

0Ared
D2H4(ϕi). (5.4)

Now on the other hand, working with the canonically normalized fields (Einstein frame)

which involves rescaling the string frame metric and B-fields by

Gµν →M−2
6 Gµν , Bµν →M−2

6 Bµν (5.5)

where M6 = (VK3/g
2
IIB`

8
s)

1/4 is the 6d Planck scale, we know that the four-point coupling

f (4) must scale as M2
6 and f (6) as M4

6 . From this we conclude that r0 ∼M2
6 .

13The condition c = 6 is used in writing down the spacetime supercharges (in combination with the space-

time part of the worldsheet CFT) hence making connection to the spacetime supersymmetry constraints

on the integrated CFT correlation functions.
14Note that by doing so we break the SO(5) R symmetry to SU(2) × SU(2).
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The differential constraint on Afull in the perturbation expansion implies a similar

constraint on Ared. Focusing on the scalar component of the superamplitude, we have the

following derivative expansion

Ared
H4(ϕ++

i ϕ++
j ϕ−−k ϕ−−` ) (5.6)

= s2

[
δijδk`
s

+
δikδj`
t

+
δi`δjk
u

+Aijk` +Bij,k`s+Bik,j`t+Bi`,jku+O(s2)

]
.

where the first two terms come from the supergraviton exchange, while Aijkl and Bij,kl
are obtained from the tree-level limit of the f (4) and f (6) couplings respectively. The

coefficients Aijk` and Bij,k` for the N = 4 AK−1 cigar CFT, which is the ZK orbifold of

the supersymmetric SU(2)K/U(1)× SL(2)K/U(1) coset CFT, are studied in [38].

On the other hand, Ared can be evaluated directly from IIB tree-level perturbation

theory. The K3 CFT admits a small (4, 4) superconformal algebra, that contains left and

right moving SU(2) R-current algebra at level k = 1 [39]. Focusing on the left moving

part, the super-Virasoro primaries are labeled by its weight h and SU(2) spin `. The BPS

super-Virasoro primaries in the (NS,NS) sector consist of the identity operator (h = ` =

h̄ = ¯̀ = 0), and 20 others labeled by O±±i with h = ` = h̄ = ¯̀ = 1/2 which correspond to

the 20 (1, 1) harmonic forms in the K3 sigma model.15 The BPS primaries O±±i are the

exactly marginal primaries of the K3 CFT, corresponding to the moduli fields ϕ±±i . Under

spectral flow, the identity operator is mapped to a unique h = h̄ = 1/4, ` = ¯̀= 1/2 ground

state O±±0 in the (R,R) sector, whereas the weight-1/2 BPS super-Virasoro primaries give

rise to h = h̄ = 1/4, ` = ¯̀= 0 (R,R) sector ground states labeled by φRRi [39]. The vertex

operators for the 6d massless fields all involve these 21 BPS super-Virasoro primaries and

their spectral flowed partners.

More explicitly, the vertex operators in the NSNS sector are

e−φ−φ̄ψµψ̄νe
ik·X · 1,

e−φ−φ̄eik·X · O±±i , i = 1, · · · , 20,
(5.7)

Here eik·X comes from the R1,5 part of the worldsheet CFT. The associated 1-particle

states transform under the SU(2) × SU(2) little group as

(3,3)⊕ (3,1)⊕ (1,3)⊕ (1,1) ,

20× 4× (1,1) .
(5.8)

The 80 scalars in the second line of (5.7) are denoted by ϕ±±i .

On the other hand, the vertex operators in the RR sector are

e−φ/2−φ̄/2Sα̇S̄β̇e
ik·X · O±±0 ,

e−φ/2−φ̄/2SαS̄βe
ik·X · φRRi , i = 1, · · · , 20.

(5.9)

15Here O±±i are BPS superconformal primaries of the N = (4, 4) superconformal algebra. With respect

to an N = (2, 2) superconformal subalgebra, O++
i is a chiral primary both on the left and the right, whereas

O−+
i is an anti-chiral primary on the left and a chiral primary on the right.
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NSNS RR 6d multiplet

1h=h̄=0 ↔ 4h=h̄= 1
4

supergravity + tensor

20× 4h=h̄= 1
2
↔ 20× 1h=h̄= 1

4
20 tensors

Table 3. The BPS primaries of the K3 CFT and the associated 6d massless multiplets of type IIB

string theory on R1,5 ×K3. The 1 and 4 denote the trivial and ` = ¯̀ = 1
2 representations of the

worldsheet SU(2) R-symmetry, and the arrows represent the spectral flow.

The chiralities of the spin fields are dictated by the IIB GSO projection in RR sector,

which depends on the SU(2) R-charge of the vertex operator.16 The associated 1-particle

states transform as

4×
(

(1,3)⊕ (1,1)
)
,

20×
(

(3,1)⊕ (1,1)
)
,

(5.11)

under the SU(2) × SU(2) little group. (5.8) and (5.11) together give the 1-particles states

in the (2,0) supergravity multiplet and the 21 tensor multiplets. See table 3 for summary.

The four-scalar amplitude of ϕ±±i in tree-level string theory is given by

Ared
H4(ϕ++

i ϕ++
j ϕ−−k ϕ−−` )

=

∫
d2z

2π

〈
G− 1

2
G− 1

2
O++
i eik1·X(z)G− 1

2
G− 1

2
O++
j eik2·X(0)O−−k eik3·X(1)O−−` eik4·X(∞)

〉
(5.12)

where G(z) is the N = 1 super-Virasoro current, which acts on both Oi and eik·X .17 We

have put two vertex operators in the (−1,−1) picture and the other two in the (0, 0)

picture to add up to the total picture number (−2,−2) for the tree-level string scattering

amplitude. The correlator of the superconformal ghosts have already been taken into

account in the above.

By deforming the contour of G−− 1
2

=
∮

dw
2πiG

−(w), it is easy to see that the following

correlation function vanishes identically〈
G− 1

2
G− 1

2
O++
i (z)G− 1

2
G− 1

2
O++
j (0)O−−k (1)O−−` (∞)

〉
=

〈
G−− 1

2

G
−
− 1

2
O++
i (z)G−− 1

2

G
−
− 1

2
O++
j (0)O−−k (1)O−−` (∞)

〉
.

(5.13)

16The IIB GSO projection in the RR sector is [17, 38]

FL + 2J3
L −

1

2
∈ 2Z, FR + 2J3

R −
1

2
∈ 2Z (5.10)

where FL,R are the left and right worldsheet fermion numbers in R1,5, and J3
L,R denote the left and right

SU(2) Cartan R-charges of the internal K3 CFT.
17The sigma model on R1,5 × K3 has N = 2 worldsheet supersymmetry. The N = 1 super-Virasoro

current G(z) is the sum of N = 2 super-Virasoro currents G+(z) +G−(z), and G± are each a combination

of the N = 4 super-Virasoro currents. The U(1) charge of the N = 2 algebra coincides with the J3 charge

of the N = 4.
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Therefore in (5.12) we can take G− 1
2
, G− 1

2
to act on eik·X only, which gives

Ared
H4(ϕ++

i ϕ++
j ϕ−−k ϕ−−` ) = s2

∫
d2z

2π
|z|−s−2|1− z|−t

〈
O++
i (z)O++

j (0)O−−k (1)O−−` (∞)
〉
.

(5.14)

Thus, comparing with (5.6), we obtain the relation∫
d2z

2π
|z|−s−2|1− z|−t

〈
O++
i (z)O++

j (0)O−−k (1)O−−` (∞)
〉

=
δijδk`
s

+
δikδj`
t

+
δi`δjk
u

+Aijk` +Bij,k`s+Bik,j`t+Bi`,jku+O(s2, t2, u2).

(5.15)

From the CFT perspective, the polar terms in t and u are simply due to the appearance

of the identity operator in the OPE of O++ with O−−, while Aijk` and Bijk` capture

information about all intermediate primaries in the conformal block decomposition of the

four-point function of the marginal operators. It is then natural to expect this relation

to hold for exactly marginal operators in any c = 6 (4, 4) SCFT. Furthermore, we expect

Aijk` and Bijk` to obey the same kind of differential equations as f (4) and f (6), for any

c = 6 (4, 4) SCFT.

Using the relation between the correlation function of O±±i and their spectral flowed

partners φRRi ,〈
O++
i (z)O++

j (0)O−−k (1)O−−` (∞)
〉

=
|z|
|1− z|

〈
φRRi (z)φRRj (0)φRRk (1)φRR` (∞)

〉
, (5.16)

we can put (5.15) into an equivalent form, where the crossing symmetries are manifest in

all channels,∫
d2z

2π
|z|−s−1|1− z|−t−1

〈
φRRi (z)φRRj (0)φRRk (1)φRR` (∞)

〉
(5.17)

=
δijδk`
s

+
δikδj`
t

+
δi`δjk
u

+Aijk` +Bij,k`s+Bik,j`t+Bi`,jku+O(s2, t2, u2).

5.2 A1 ALE limit

To illustrate the power of the relation (5.15), we consider the A1 ALE limit where we

zoom in on and resolve an A1 singularity. In other words, we focus on a slice near the

boundary of the full moduli space MK3, where the K3 CFT is reduced to a sigma model

on A1 ALE space, which is related to the sigma model on C2/Z2 by exactly marginal

deformations [37, 40, 41].

The slice of interest is parametrized by the normalizable exactly marginal deformations

of the orbifold CFT C2/Z2, which is simply the moduli space of the A1 SCFT18

MA1 =
R3 × S1

Z2
, (5.18)

18In [42], the moduli space of the non-linear sigma model on a general hyperkähler manifold is dis-

cussed. For the A1 ALE space sigma model, the moduli space metric is flat because we have scaled the

Zamolodchikov metric by an infinite volume factor of the target space.
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where R3 corresponds to the Kähler and complex structure deformations associated with

the exceptional divisor of the C2/Z2, and the S1 is parameterized by the integral of the B

field on the exceptional divisor. This Z2 can be understood from the fact that the SO(3)

rotation of the asymptotic geometry of the circle fibration of the Eguchi-Hanson geometry

that exchanges the two points of degenerate fiber effectively also flips the orientation of

the P1 hence reflects the B-field flux. The two orbifold singularities on the moduli space

corresponds to the free orbifold point and the singular CFT point where a linear dilaton

throat develops. The distinction between these two points on the moduli space is not

detected by the Zamolodchikov metric, but should be detected by f (4) restricted to the

single tensor multiplet corresponding to this exceptional divisor (or rather A1111).19

Since the overall volume of the CFT target space is infinite, A1111 is a harmonic function

on the moduli space.20 Near the singular CFT point, A1111 goes like 1/|~ϕ|2, where ~ϕ is a

local Euclidean coordinate on the moduli space, as in the case of the A1 DSLST at tree-

level (either (2, 0) or (1, 1)) [38, 43]. At the free orbifold point, on the other hand, the

four-point function of marginal operators are perfectly non-singular, and A1111 should be

finite. This together with the harmonicity and R-symmetry determines A1111 to be (up to

an overall coefficient)

A1111 =
∞∑

n=−∞

1∑3
i=1 ϕ

2
i + (ϕ4 − 2πnR)2

, (5.19)

where R is the radius of the S1 of the moduli space.21 It is easy to identify from (5.19) that,

~ϕ = (0, 0, 0, 0) is the singular CFT point, and ~ϕ = (0, 0, 0, πR) is the free orbifold point,

since A1111 is non-singular at the latter point, and the Z2 symmetry is clearly preserved.

Let us define r2 =
∑3

i=1 ϕ
2
i , ϕ4 = πR + y. Then near the free orbifold point, r, y are

small, we have

A1111 =
1

4R2
+

3y2 − r2

48R4
+O(r4, y4, r2y2). (5.20)

One should be able to confirm this using conformal perturbation theory [44].

In the large ϕ regime, where the CFT is described by a nonlinear sigma model on

T ∗CP1, performing Poisson summation on (5.19), we can write A1111 as the expansion

A1111 =
1

2Rr

[
1 +

∞∑
n=1

(−)ne−
n(r+iy)

R +

∞∑
n=1

(−)ne−
n(r−iy)

R

]
. (5.21)

Since r scales like the area of the CP1, the leading 1/r contribution should come from

one-loop order in α′ perturbation theory. The e−nr/R corrections, on the other hand, are

expected to come from worldsheet instanton effects. Moreover, the phase e±iny/R indi-

cates that there are contributions from both holomorphic and anti-holomorphic worldsheet

19Note that f (6) vanishes in this case because there is only one tensor multiplet involved.
20The contribution from supergraviton exchange on the r.h.s. of (3.1) is suppressed in this limit.
21The S1 parameterized by the B-field flux through the exceptional divisor P1 is of constant size along

the R3. This is because the marginal primary operator associated with the normalizable harmonic 2-form

on the ALE space with unit integral on the P1 also has a normalized two-point function.
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instantons. In other words, our exact result based on supersymmetry constraints gives

the striking prediction that in α′ perturbation theory, A1111 which is related to the four-

point function of exactly marginal operators of the A1 SCFT, receives only one-loop plus

worldsheet instanton contributions.

It would be interesting to understand if a similar worldsheet instanton expansion ap-

plies for the K3 CFT at finite overall volume, and its relation to the N = 4 topological

string [45–48]. In particular, the N = 4 topological string amplitudes are written as inte-

grals over the fundamental domain F1 and also satisfy certain differential equations on the

moduli space [48].

6 Discussions

The main result of this paper is the exact non-perturbative coupling of tensor multiplets

at 4 and 6-derivative orders in type IIB string theory compactified on K3, f
(4)
abcd(φ) and

f
(6)
ab,cd(φ), and the differential equations they obey on the 105-dimensional moduli space. In

the weak coupling limit (tree-level string theory), as described in section 5, they reduce to

(up to a factor involving the IIB string coupling) the functions Aijk`(ϕ) and Bij,k`(ϕ) on

the 80-dimensional moduli space of the K3 CFT. Aijk` and Bij,k` are integrated four-point

functions of 1
2 -BPS operators in the K3 CFT on the sphere. Unlike the Zamolodchikov

metric or its curvature [14], Aijk` and Bij,k` do not receive contribution from contact

terms, and depend nontrivially on the moduli. In particular, these functions diverge at the

points in the moduli space where the CFT develops a continuous spectrum (corresponding

to ADE type singularities on the K3 surface, with no B-field through the exceptional

divisors [37]). This allows us to pinpoint the location on the moduli space using CFT data

alone (as opposed to, say, BPS spectrum of string theory), and makes it possible to study

the K3 CFT through the superconformal bootstrap [49–52] (e.g. constraining the non-BPS

spectrum of the CFT) at any given point on its moduli space. This is currently under

investigation [53].

In the full type IIB string theory on K3, at the ADE points on the moduli space, there

are new strongly interacting massless degrees of freedom, characterized by the 6d (2, 0)

superconformal theory at low energies. Near these points, the components of f
(4)
abcd(φ) and

f
(6)
ab,cd(φ) associated with the moduli that resolve the singularities are precisely the H4 and

D2H4 couplings on the tensor branch of the (2, 0) SCFT, studied in [27, 54]. Note that

this is different from the ALE space limit discussed in section 5.2, which was restricted to

the weak string coupling regime.

As pointed out in section 2, there are F-term supervertices involving the supergraviton

in 6d (2, 0) supergravity theories as well, including one that corresponds to a coupling

of the schematic form fR(φ)R4 + · · · . It appears that a six-point supervertex involving 4

supergravitons and 2 tensor multiplets in the SO(5)R singlet does not exist at this derivative

order (namely 8), and so by the same reasoning as section 3, we expect that fR(φ) obeys

a second order differential equation with respect to the moduli, whose form is determined

by the factorization structure of the six-point superamplitude of 4 supergravitons and 2

tensor multiplets. One complication here is the potential mixing of the coefficients of R4,
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D2(R2H2), and D4H4, in the differential constraining equations. In particular, D4H4 is

a D-term, and by itself is not subject to such constraining equations. We leave a detailed

analysis of the supersymmetry constraints on the higher derivative supergraviton couplings

in (2, 0) supergravity to future work.

One can similarly classify the supervertices in the 6d (1,1) supergravity theory and

derive differential constraints for the higher derivative couplings. In this case however, the

string coupling lies in the 6d supergraviton multiplet rather than the vector multiplets,

and its dependence is not controlled by the same type of differential equations considered

in this paper.

Finally, one may wonder whether our exact results for integrated correlators in the

K3 CFT can be extended to 2d (4, 4) SCFTs with c = 6k for k > 1, such as the D1-D5

CFT [55, 56]. While this is conceivable, the arguments used in this paper are based on

the spacetime supersymmetry of the string theory and cannot be applied directly to the

k > 1 case. In the CFT language, our constraints can be recast as Ward identities involving

insertions of spin fields, and we have implicitly used the property that the spin fields of the

c = 6 (4, 4) SCFT transform in a doublet of the SU(2)R symmetry. It would be interesting

to understand whether there are analogous Ward identities in the c = 6k (4, 4) SCFTs,

where the spin fields carry SU(2)R spin j = k
2 .22
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A Explicit check of the differential constraints

A.1 Four-derivative coupling f (4)

In this appendix we will explicitly show that the 4-derivative term coefficient f
(4)
abcd between

the 21 tensor multiplets satisfies the following differential equation and determine the

22In the case of the c = 12 (4, 4) SCFT, say described by the nonlinear sigma model on a hyperKähler

4-fold, one may compactify type IIB string theory to 2d, which generally leads to a (6, 0) supergravity

theory in two dimension [57, 58], and examine the 4-derivative F-term coupling of moduli fields in this

theory. However, we are not able to derive differential constraining equations on these couplings based on

soft limits of superamplitudes, due to the existence of local supervertices for the relevant six-point couplings

at the same derivative order, in contrast to the 6d (2, 0) supergravity theory.
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coefficients U, V,W ,

∇e · ∇ff
(4)
abcd = Uf

(4)
abcdδef + V f

(4)
(e(abcδd)f) +Wf

(4)
ef(abδcd) . (A.1)

Let us first decompose the 4-derivative coefficient f
(4)
abcd into the

f
(4)
abcd = Aabcd + δ(abBcd) + δ(abδcd)C (A.2)

where Aabcd and Bcd are symmetric and traceless. The covariant Hessian ∇(a ·∇b) of these

tensors can be expressed, through a set of relations similar to (4.14) and (4.16), in the form

5∑
i=1

Ãabcd,efii,

5∑
i=1

B̃ab,cdii,

5∑
i=1

C̃abii. (A.3)

The differential constraints (A.1) can be expressed as∑
e,i

Ãabcd,eeii = aAabcd,∑
c,i

B̃ab,ccii = bBab,∑
a,i

C̃aaii = cC,

∑
i

Ãabcd,efii −
1

21
δef
∑
g,i

Ãabcd,ggii = uδ(e(aAf)cde) + vδe(aδfbBcd) − traces,

∑
i

B̃ab,cdii −
1

21
δcd
∑
e,i

B̃ab,eeii = xAabcd + yδ(c(aBd)b) + zδc(aδb)dC − traces,

∑
i

C̃abii −
1

21
δab
∑
c,i

C̃ccii = wBab.

(A.4)

We will relate the coefficients a, b, c, u, v, x, y, z, w to U, V,W later.

To start with, let us determine the constant in the differential equation for the scalar

function C. From (4.6) and (A.2), we first write C as

C=4!

∫
F

d2τ τ
1
2

2

∆(τ)

∑
`∈Λ

q
`◦`
2 e−2πτ2`IeRIie

R
Ji`

J

[
π2

8τ2
2

− π3

21τ2
`I`JeLIae

L
Ja +

2π4

3 · 161
(`I`JeLIae

L
Ja)

2

]

=24

∫
F

d2τ τ
1
2

2

∆(τ)

∑
`∈Λ

q
`◦`
2

[
π2

8τ2
2

− π3

21τ2

(̀
◦ `+ i

π
∂τ

)
+

2π4

3 · 161

(̀
◦ `+ i

π
∂τ

)2
]
e−2πτ2`IeRIie

R
Ji`

J
,

(A.5)

where we have used `I`JeLIae
L
Ja = ` ◦ `+ `I`JeRIie

R
Ji. After integration by part, we have

C =
16π4

161

∫
F

d2τ τ
1
2

2

∆(τ)

∑
`∈Λ

q
`◦`
2

[
(` ◦ `)2 − 11

πτ2
` ◦ `+

33

π2τ2
2

]
e−2πτ2`IeRIie

R
Ji`

J
. (A.6)

– 27 –



J
H
E
P
1
2
(
2
0
1
5
)
1
4
2

Under the variation eR → eR + δeR, the first and second order variations of C are given by

CIiδeRIi + CIJijδeRIiδe
R
Jj

= 24

∫
F

d2τ τ
1
2

2

∆(τ)

∑
`∈Λ

q
`◦`
2

[
π2

8τ2
2

− π3

21τ2

(
` ◦ `− 1

4πτ2

)
+

2π4

3 · 161

(
(` ◦ `)2 +

` ◦ `
2πτ2

− 1

16π2τ2
2

)]
e−2πτ2`IeRIie

R
Ji`

J

×
{
−4πτ2`

I`JeRIiδe
R
Ji +

(
− 2πτ2`

I`Jδij + 8π2τ2
2 `
I`J`K`LeRKie

R
Lj

)
δeRIiδe

R
Jj

}
.

(A.7)

We can thus determine

C̃abij = eLIae
L
JbC

IJij +
1

2
δabe

R
I

(iCIj)

= 24

∫
F

d2τ τ
1
2

2

∆(τ)

∑
`∈Λ

q
`◦`
2

[
π2

8τ2
2

− π3

21τ2

(
` ◦ `− 1

4πτ2

)
+

2π4

3 · 161

(
(` ◦ `)2+

` ◦ `
2πτ2

− 1

16π2τ2
2

)]
× e−2πτ2`

IeRIie
R
Ji`

J
{
−2πτ2δab`

I`JeRIie
R
Jj+

(
−2πτ2`

I`Jδij+8π2τ2
2 `
I`J`K`LeRKie

R
Lj

)
eLIae

L
Jb

}
.

(A.8)

We can now compute the Laplacian of C,

21∑
a=1

∇a ·∇aC=
∑
a,i

C̃aaii

= 24

∫
F

d2τ τ
1
2

2

∆(τ)

∑
`∈Λ

q
`◦`
2

[
π2

8τ2
2

− π3

21τ2

(̀
◦ `− 1

4πτ2

)
+

2π4

3 · 161

(
(` ◦ `)2+

` ◦ `
2πτ2

− 1

16π2τ2
2

)]
×
{

26τ2∂τ2 + ` ◦ `
(
− 10πτ2 − 4πτ2

2 ∂τ2

)
+ 2τ2

2 ∂
2
τ2

}
e−2πτ2`

IeRIie
R
Ji`

J

.

(A.9)

After replacing ∂τ2 by −2i∂τ , and integration by parts, we find

∑
a,i

C̃aaii =
25

2
C. (A.10)

This fixes the constant c in (A.4) to be c = 25/2.

Similarly we can write

Aabcd = (2πi)4

∫
F

d2τ τ
1
2

2

∆(τ)

∑
`∈Λ

q
`◦`
2 e−2πτ2`IeRIie

R
Ji`

J

[
`I`J`K`LeLIâe

L
Jb̂
eLKĉe

L
Ld̂

]
,

Bab =
96π4

25

∫
F

d2τ τ
1
2

2

∆(τ)

∑
`∈Λ

q
`◦`
2 e−2πτ2`IeRIie

R
Ji`

J

[
` ◦ `− 6

πτ2

]
`I`JeLIâe

L
Jb̂
,

(A.11)

where the hatted indices are taken to be symmetric traceless combinations.
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The covariant Hessians of Aabcd, Bab, and C can be computed straightforwardly to be

∇(e · ∇f)Aabcd = Ãabcd,efii

= 16π4

∫
F

d2τ τ
1
2

2

∆(τ)

∑
`∈Λ

q
`◦`
2 e−2πτ2`IeRIie

R
Ji`

J

[
− 2`I`J`M`NeLIâe

L
Jb̂
eLMĉe

L
N(eδf)d̂

+
3

2πτ2
`I`JeLIâe

L
Jb̂
δĉeδd̂f

]

− 24π4δef

∫
F

d2τ τ
1
2

2

∆(τ)

∑
`∈Λ

q
`◦`
2 e−2πτ2`IeRIie

R
Ji`

J
`I`J`M`NeLIâe

L
Jb̂
eLMĉe

L
Nd̂
,

∇(c · ∇d)Bab = B̃ab,cdii

=
96π4

25

∫
F

d2τ τ
1
2

2

∆(τ)

∑
`∈Λ

q
`◦`
2 e−2πτ2`IeRIie

R
Ji`

J

×

[
`I`JeLIâe

L
Jb̂

(
24`M`NeLMce

L
Nd + δcd

(
3

πτ2
− 3

2
` ◦ `

))

+ δâcδb̂d

(
` ◦ `+

6

πτ2

)
1

4πτ2
− `I`JeLIâeLJ(dδc)b̂

(
` ◦ `+

18

πτ2

)]
,

∇(a · ∇b)C = C̃âb̂ii =
704π4

161

∫
F

d2τ τ
1
2

2

∆(τ)

∑
`∈Λ

q
`◦`
2 e−2πτ2`IeRIie

R
Ji`

J

[
` ◦ `− 6

πτ2

]
`I`JeLIâe

L
Jb̂
,

(A.12)

where we have used (fixing the SO(21) freedom)

δeLJa = eRJie
LI
a δeRIi +

1

2
eLIa δeRIiδe

R
Ji −

1

2
eRJje

RM
j eLNa δeRMkδe

R
Nk + . . . . (A.13)

After a somewhat tedious but straightforward calculation, we obtain all the differential

equations in (A.4),

∑
e,i

Ãabcd,eeii = −67

2
Aabcd,

∑
c,i

Bab,ccii = −17

2
Bab,∑

i

Ãabcd,êf̂ ii = −2Aâb̂ĉ(eδf)d̂ −Bâb̂δĉ(eδf)d̂ − trace in (ef),

∑
i

B̃ab,ĉd̂ii =
144

25
Aabcd +

71

25
Bâ(cδd)b̂ + 2Cδâ(cδd)b̂ − trace in (cd),

∑
i

C̃âb̂ii =
550

483
Bab,

(A.14)

where the hatted indices are taken to be symmetric and traceless. Together with (A.10),
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we have thus determined all the coefficients in (A.4),

a = −67

2
, b = −17

2
, c =

25

2
, u = −2, v = −1,

x =
144

25
, y =

71

25
, z = 2, w =

550

483
. (A.15)

Determination of U, V,W . With the above 9 coefficients determined, we now arrange

them into the form (A.1) and determine U, V,W . Let us start by inspecting the trace part

in (ef) of (A.1),

∇2f
(4)
abcd = (21U + V )f

(4)
abcd +W δeff

(4)
ef(abδcd). (A.16)

Noting that δeff
(4)
efab = 25

6 Bab + 23
3 δabC, we obtain the first three equations in (A.4),

∇2Aabcd = (21U + V )Aabcd,

∇2Bab = (21U + V +
25

6
W )Bab,

∇2C = (21U + V +
23

3
W )C.

(A.17)

Next, the traceless part in (ef) of (A.1) can be written as[
∇(e · ∇f) −

1

21
δef∇2

]
Aabcd = V A(e(abcδd)f) +

V

2
δe(aBbcδd)f) − trace in (ef), (abcd),[

∇(e · ∇f) −
1

21
δef∇2

]
Bab =

6

25

[(
V

2
+

25

6
W

)
Aefab +

(
29

12
V +

25

9
W

)
B(e(aδb)f)

+

(
25

6
V +

25

9
W

)
δ(e(aδb)f)C

]
− trace in (ef), (ab),[

∇(e · ∇f) −
1

21
δef∇2

]
C =

1

161

(
25

6
V +

575

18
W

)
Bef .

(A.18)

Matching (A.17) and (A.18) with (A.4), we find the 9 coefficients a, b, c, u, v, x, y, z, w

are indeed determined by U, V,W , which are

U = −3

2
, V = −2, W = 6. (A.19)

A.2 Six-derivative coupling f (6)

In this appendix we will show that the 6-derivative term between the 21 tensor multiplets

f (6) defined in (4.29) satisfies the following differential equation,

∇(e · ∇f)f
(6)
a1a2,a3a4 = u1f

(6)
a1a2,a3a4δef + u2

(
f

(6)
ef,a1a2

δa3a4 + f
(6)
ef,a3a4

δa1a2 − 2 f
(6)
ef,(a3(a1

δa2)a4)

)
+ u3

(
f

(6)
ea1,fa2

δa3a4 + f
(6)
ea3,fa4

δa1a2 − 2f
(6)
e(a3,f(a1

δa2)a4)

)
+ u4

(
f

(6)
e(a3,a1a2

δfa4) + f
(6)
e(a1,a3a4

δfa2)

)
+ u5

(
f

(6)
e(a2,a1)(a3

δa4)f + f
(6)
e(a4,a3)(a1

δa2)f

)
,

(A.20)
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modulo terms of the schematic form (f (4))2. In the following the symmetrization on the

indices (ef) is always understood if not explicitly written. We have already taken the

condition (4.30) and its consequence (4.33) into account.

In the following we will use an abbreviated notation to simplify the notations, eIa ≡ eLIa,
ẽIi = eRIi, and MAB ≡ Im ΩAB.

From (4.31), we can write f
(6)
a1a2a3a4 as

f (6)
a1a2,a3a4 =

1

3

∫ ∏
G≤H d

6ΩGH

Ψ10(Ω)M
1
2

∑
`1,`2∈Λ

exp
[
iπΩAB`

A ◦ `B − 2πMAB`
AI`BJ ẽIiẽJi

]
×
[
32π4εABεCD`

AI`BJ`CM`DNeIa1eMa2eJ(a3eNa4)

+ 8π3M−1MAB`
AI`BJ(e2)a1a2,a3a4,IJ

+ 4π2M−1(δa1a2δa3a4 − δa1(a3δa4)a2)
]
,

(A.21)

where

(e2)a1a2,a3a4,IJ := − δa3a4eIa1eJa2 − δa1a2eIa3eJa4

+
1

2
δa2a3eIa4eJa1 +

1

2
δa1a4eIa2eJa3 +

1

2
δa2a4eIa1eJa3 +

1

2
δa1a3eIa2eJa4 ,

(A.22)

with symmetrization on the (IJ) indices.

Recall that under the variation ẽ→ ẽ+ δẽ, eIa transforms as, up to second order,

δeIa = ẽIie
J
a δẽJi +

1

2

(
e(M
a δ

N)
I − ẽIj ẽ

(M
j eN)

a

)
δẽMiδẽNi, (A.23)

where the M,N indices are raised by ΠMN . We will define the tensor G,H,E, F as

δ(eIaeJb) = GKiIJ,ab δẽKi +HMiNj
IJ,ab δẽMiδẽNj ,

δ(eI1a1eI2a2eI3a3eI4a4) = EIiI1I2I3I4,a1a2a3a4 δẽIi + FMiNj
I1I2I3I4,a1a2a3a4

δẽMiδẽNj .
(A.24)

They can be computed straightforwardly to be

GKiIJ,ab = ẽIie
K
a eJb + ẽJie

K
b eIa,

HMiNj
IJ,ab =

1

2

(
e(M
a δ

N)
I − ẽIkẽ

(M
k eN)

a

)
eJbδij +

1

2

(
e

(M
b δ

N)
J − ẽJkẽ

(M
k e

N)
b

)
eIaδij

+ ẽIiẽJje
M
a e

N
b ,

EIiI1I2I3I4,a1a2a3a4 = ẽI1ie
I
a1eI2a2eI3a3eI4a4 + 3 more,

FMiNj
I1I2I3I4,a1a2a3a4

=
1

2

(
e(M
a1 δ

N)
I1
− ẽI1kẽ

(M
k eN)

a1

)
eI2a2eI3a3eI4a4δij + 3 more

+ ẽI1iẽI2je
M
a1e

N
a2eI3a3eI4a4 + 5 more.

(A.25)
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Now we can compute the variation of f
(6)
a1a2,a3a4 under ẽIi → ẽIi + δẽIi up to second

order,

δf (6)
a1a2,a3a4= f (6) Ii

a1a2,a3a4δẽIi + f (6)MiNj
a1a2,a3a4δẽMiδẽNj

=
1

3

∫ ∏
G≤H d

6ΩGH

Ψ10(Ω)M
1
2

∑
`1,`2∈Λ

exp
[
iπΩAB`

A ◦ `B − 2πMAB`
AI`BJ ẽIiẽJi

]
×
{[

32π4(ε2e4`4)a1a2,(a3a4) + 8π3M−1MAB`
AI`BJ(e2)a1a2,a3a4,IJ

+4π2M−1
(
δa1a2δa3a4 − δa1(a3δa4)a2

) ]
×
[
− 4πMAB`

AI`BJ ẽIi δẽJi

+
(
−2πMAB`

AI`BJδij + 8π2MABMCD`
AI`BM `CJ`DN ẽMiẽNj

)
δẽIiδẽJj

]
+32π4εABεCD`

AI1`CI2`BI3`DI4
[
EIiI1I2I3I4,a1a2(a3a4)δẽIi+F

MiNj
I1I2I3I4,a1a2(a3a4)δẽMiδẽNj

]
+8π3M−1(MEF `

EI`FJ)
[
−δa3a4

(
GKiIJ,a1a2δẽKi +HMiNj

IJ,a1a2
δẽMiδẽNj

)
+ 5 more

]
+
[
32π4εABεCD`

AI1`CI2`BI3`DI4EMi
I1I2I3I4,a1a2(a3a4)

+8π3M−1
(
MEF `

EI`FJ
)(
−δa3a4GMi

IJ,a1a2+5 more
)]
×
(
−4πMAB`

AK`BN ẽKj
)
δẽMiδẽNj

}
(A.26)

where we have defined

(ε2e4`4)a1a2,a3a4 = εABεCD`
AI`BJ`CM`DNeIa1eMa2eJa3eNa4 . (A.27)

Note that (ε2e4`4)a1a2,(a3a4) = (ε2e4`4)(a1a2),(a3a4) = (ε2e4`4)(a3a4),(a1a2).

The second derivative of f (6) is then given by∑
i

f̃
(6)
a1a2,a3a4,efii

=
∑
i

(
eIeeJff

(6) IJii +
δef
2
ẽIif

(6) Ii

)

=
1

3

∫ ∏
G≤H d

6ΩGH

Ψ10(Ω)M
1
2

∑
`1,`2∈Λ

exp
[
iπΩAB`

A ◦ `B
]

×
{[

32π4(ε2e4`4)a1a2,(a3a4) + 8π3M−1MAB`
AI`BJ(e2)a1a2,a3a4,IJ

+ 4π2M−1
(
δa1a2δa3a4 − δa1(a3δa4)a2

) ]
×
[
δefMAB

∂

∂MAB

+

(
−10πMAB`

AI`BJ − 4πMABMCD`
AI`CJ

∂

∂MBD

)
eIeeJf

]
+ 32π4εABεCD`

AI1`CI2`BI3`DI4FMiNi
I1I2I3I4,a1a2(a3a4) eMeeNf

+ 8π3M−1(MEF `
EI`FJ)eMeeNf

(
−δa3a4HMiNi

IJ,a1a2 + 5 more
)

+

[
32π4εABεCD`

AI1`CI2`BI3`DI4EMi
I1I2I3I4,a1a2(a3a4)

+ 8π3M−1(MEF `
EI`FJ)

(
−δa3a4GMi

IJ,a1a2 + 5 more
) ]

×
(
−4πMAB`

AK`BN ẽKi
)
eM(eeNf)

}
× exp

[
−2πMAB`

AI`BJ ẽIiẽJi
]
,

(A.28)

where we have used EIiI1I2I3I4,a1a2(a3a4)ẽIj = 0 and GIiI1I2,a1a2 ẽIj = 0.

– 32 –



J
H
E
P
1
2
(
2
0
1
5
)
1
4
2

Let us now study the different powers of ` terms in the integrand. Note that since we

can replace `AI`BJ ẽIiẽJi by − 1
2π

∂
∂MAB

, ẽIi should be treated as `−1 in the power counting.

Also note that the tensors G,H,E, F contain factors of ẽIi.

First let us note that the `6 terms cancel as in the 4-derivative case after integration
by parts. Moving on to the `4 terms, they can be organized to be

∑
i

f̃
(6)
a1a2,a3a4,efii

∣∣∣
`4

=
1

3

∫ ∏
G≤H d

6ΩGH

Ψ10(Ω)M
1
2

∑
`1,`2∈Λ

exp
[
iπΩAB`

A ◦ `B
]

×
{
− 64π4δef (ε2e4`4)a1a2,(a3a4)

+32π4

[
δa3a4(ε2e4`4)ef,(a1a2)+δa1a2(ε2e4`4)ef,(a3a4)−

1

2
δa2a3(ε2e4`4)ef,(a1a4)

− 1

2
δa1a4(ε2e4`4)ef,(a2a3) −

1

2
δa2a4(ε2e4`4)ef,(a1a3) −

1

2
δa1a3(ε2e4`4)ef,(a2a4)

]
+16π4

[
δa1e(ε

2e4`4)fa2,(a3a4) + δa2e(ε
2e4`4)a1f,(a3a4) + δa3e(ε

2e4`4)a1a2,(fa4)

+δa4e(ε
2e4`4)a1a2,(a3f)

]}
.

(A.29)

This already fixes ui’s to be

u1 = −2, u2 = 1, u3 = 0, u4 = 1, u5 = 0. (A.30)

In the following we will show that the terms with `2 and `0 in the integrand also

satisfies the same differential equation (A.20) with the same values of ui’s. Let us start

with the `0 term in the covariant Hessian (l.h.s. of (A.20)),

∑
i

f̃
(6)
a1a2,a3a4,efii

∣∣∣
`0
∝ 1

3

∫ ∏
G≤H d

6ΩGH

Ψ10(Ω)M
1
2

∑
`1,`2∈Λ

exp
[
iπΩAB`

A ◦ `B
]

×MAB
∂

∂MAB
exp

[
− 2πMAB`

AI`BJ ẽIiẽJi

]
= 0.

(A.31)

Hence we need to show that the righthand side of (A.20) is also zero when replacing

f
(6)
a1a2,a3a4 by its `0 term in the integrand, namely, f

(6)
a1a2,a3a4 → (δa1a2δa3a4 − δa1(a3δa4)a2).

Indeed, under this replacement the righthand side of (A.20) is zero with ui’s given by (A.30)

u1

(
δa1a2δa3a4 − δa1(a3δa4)a2

)
δef

+ 2u2

(
δefδa1a2δa3a4 − δe(a1δa2)fδa3a4 − δefδ(a3(a1δa2)a4) + δe(a1δa2)(a3δa4)f

)
+ 2u4

(
δea3δa4)fδa1a2 − δe(a1δa2)(a3δa4)f

)
+ (a1 ↔ a3, a2 ↔ a4) = 0.

(A.32)

Again, the symmetrization on the indices (ef) is implicitly understood.
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Next, the `2 terms can be organized as

∑
i

f̃
(6)
a1a2,a3a4,efii

∣∣∣
`2
=

1

3

∫ ∏
G≤H d

6ΩGH

Ψ10(Ω)M
1
2

∑
`1,`2∈Λ

exp
[
iπΩAB`

A ◦ `B − 2πMAB`
AI`BJ ẽIiẽJi

]
×eJf

{[
−8π3δef (e2)a1a2,a3a4,IJ−16π3

(
δa1a2δa3a4−δa1(a3δa4)a2

)
eIeeJf

]
− 4π3

(
2δa1eδa2feIa3eJa4 + 2δa3eδa4feIa1eJa2

−δa1eδa3feIa2eJa4−δa1eδa4feIa2eJa3−δa2eδa3feIa1eJa4−δa2eδa4feIa1eJa3
)

− 4π3
[
− δa3a4(δa1eeIa2 + δa2eeIa1)− δa1a2(δa3eeIa4 + δa4eeIa3)

+
1

2
δa2a3(δa1eeIa4 + δa4eeIa1) + 3 more

]}
.

(A.33)

We need to match the second derivative of f (6) given above with the righthand side of (A.20)

at the `2 order in the integrand. For example, the coefficient for δef (e2)a1a2,a3a4,IJ on the

righthand side of (A.20) is 8π3(u1+u2) = −8π3, which agrees with the coefficient the second

derivative f̃ (6). Similarly one can show that the `2 terms agree on both sides of (A.20).

In conclusion, we have checked that f
(6)
a1a2,a3a4 given in (4.31) satisfies the following

differential equation,

2∇(e · ∇f)f
(6)
a1a2,a3a4 = − 2f (6)

a1a2,a3a4δef +
(
f

(6)
ef,a1a2

δa3a4 + f
(6)
ef,a3a4

δa1a2 − 2 f
(6)
ef,(a3(a1

δa2)a4)

)
+
(
f

(6)
e(a3,a1a2

δfa4) + f
(6)
e(a1,a3a4

δfa2)

)
+ (e↔ f) ,

(A.34)

modulo the (f (4))2 term that is determined in section 4 and appendix B.

B Relation to 5d MSYM amplitudes

In section 4, we discuss how the numerical coefficients v1, v2, v3 for the (f (4))2 term in (3.4)

can be fixed from the 6d (2, 0) SCFT limit, where a similar differential equation holds [35].

The four-point 4- and 6-derivative couplings on the tensor branch of the 6d (2, 0) SCFT

can be in turn computed by the one- and two-loop amplitudes in 5d maximal SYM on its

Coulomb branch [27]. Therefore, to determine these coefficients, we will fix the relative

normalization between the F 4 and D2F 4 couplings in the Coulomb branch effective action

of 5d maximal SYM and the T 5 compactified heterotic string amplitudes in this appendix.

B.1 Four-derivative coupling f (4)

In this subsection, we would like to fix the relative normalization between the F 4 coupling

from one-loop heterotic string amplitude and that from one-loop 5d maximal SYM on its

Coulomb branch by looking at a point of enhanced ADE gauge symmetry in the heterotic

moduli space and a degeneration limit of the genus one Riemann surface (see figure 3).

A similar reduction of the genus one and two amplitudes in the type II string theory to

supergravity amplitudes was considered in [34].
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Figure 3. The reduction of the genus one T 5 compactified heterotic string amplitude A1|F 4 to the

one-loop amplitude ASYM
1 in 5d maximal SYM.

Recall that the heterotic one-loop amplitude is

A1|F 4 =
∂4

∂ya1 · · · ∂ya4

∣∣∣∣
y=0

∫
F

d2τ

τ2
2

τ
5
2

2 ΘΛ(y|τ, τ̄)

∆(τ)
, (B.1)

with the theta function ΘΛ defined by

ΘΛ(y|τ, τ̄) = e
π

2τ2
y◦y∑

`∈Λ

eπiτ`
2
L−πiτ̄`

2
R+2πi`◦y

= e
π

2τ2
y◦y∑

`∈Λ

eπiτ`◦`−2πτ2`2R+2πi`◦y.
(B.2)

Let us inspect the contributions to the integral in the large τ2 regime, where ∆(τ) can

be approximated by q = e2πiτ . Then ΘΛ is dominated by the contribution from ` ◦ ` =

`2L − `2R = 2, and we have

A1|F 4 → (2π)4

∫
dτ2 τ

1
2

2

∑
`◦`=2

`La1`
L
a2`

L
a3`

L
a4e
−2πτ2`2R . (B.3)

In the limit of the moduli space where `R → 0 for some of the ` ◦ ` = 2 lattice vectors, the

dominant contribution takes the form of the one-loop contribution from integrating out

W -bosons labeled the root vectors ` in 5d maximal SYM. Here `2R is proportional to the

W -boson mass squared, and `La labels the charge of the W -boson with respect to the a-th

Cartan generator.

To compare the normalization with the 5d SYM one-loop amplitude, we use the

Schwinger parametrization to write down the contribution from the diagrams involving

light internal W -bosons, which are labeled by the root vectors `L,

ASYM
1 =

∑
(`L)2=2

3

∫
dt
t3

3!
`La1`

L
a2`

L
a3`

L
a4

∫
d5p

(2π)5
e−t(p

2+m2)

=
1

26π
5
2

∫
dt t

1
2

∑
(`L)2=2

`La1`
L
a2`

L
a3`

L
a4e
−tm2

(B.4)
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Identifying m2 = 2π`2R, we fix the relative normalization to be

A1|F 4 → 210π
13
2 ASYM

1 . (B.5)

B.2 Six-derivative coupling f (6)

In this subsection, we would like to fix the relative normalization between the D2F 4 cou-

pling from two-loop heterotic string amplitude and that from two-loop 5d maximal SYM

on its Coulomb branch by looking at a point of enhanced ADE gauge symmetry in the

heterotic moduli space and a degeneration limit of the genus two Riemann surface (see

figure 4).
Recall that the heterotic two-loop amplitude is

A2|D2F 4 =

[
t− u

3
εIJεKL

∂4

∂ya1I ∂y
a2
J ∂y

a3
K ∂y

a4
L

∣∣∣∣
y=0

+ (2 perms)

]∫
F2

∏
I≤J d

2ΩIJ

(det ImΩ)
1
2 Ψ10(Ω)

ΘΛ(y|Ω, Ω̄),

(B.6)

with the theta function given by

ΘΛ(y|Ω, Ω̄) ≡
∑

`1,`2∈Λ

eπiΩAB`
A
L ·`

B
L−πiΩ̄AB`

A
R·`

B
R+2πi`A◦yA+π

2
((ImΩ)−1)AByA·yB

=
∑

`1,`2∈Λ

eiπΩAB`
A◦`B−2πIm ΩAB`

A
R·`

B
R+2πi`A◦yA+π

2
((ImΩ)−1)AByA·yB .

(B.7)

Each component of ReΩAB has periodicity 1. The imaginary part of the period matrix can

be written as

ImΩ =

(
t1 + t3 t3
t3 t2 + t3

)
, (B.8)

with det ImΩ = t1t2 + t1t3 + t2t3. In the limit of large positive t1, t2, t3, this corresponds

to the genus two Riemann surface degenerating into three long tubes, of length t1, t2, t3
respectively. We can also write

ImΩAB`
A · `B = t1(`1)2 + t2(`2)2 + t3(`1 + `2)2,

((ImΩ)−1)AByA · yB =
t1y

2
2 + t2y

2
1 + t3(y1 − y2)2

t1t2 + t1t3 + t2t3
.

(B.9)

In the limit of large positive t1, t2, t3, the theta function, apart from the term 1 which

vanishes upon taking y-derivative, is dominated by the terms involving lattice vectors `

such that `2L + `2R is close to 2, when the lattice embedding is near an ADE point in the

moduli space. The Igusa cusp form Ψ10(Ω), on the other hand, behaves as

Ψ10(Ω)→ e2πiRe(Ω11+Ω22−Ω12)e−2π(t1+t2+t3), (B.10)

where we have used the product expression for Ψ10(Ω),

Ψ10(Ω) = e2πi(τ+σ+ν)
∏

(n,k,`)>0

(
1− e2πi(nτ+kσ+`ν)

)
. (B.11)
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Here (n, k, `) > 0 means that n, k ≥ 0, ` ∈ Z, and in the case when n = k = 0, the product

is only over ` < 0. In the above expression we parametrize Ω as

Ω =

(
τ ν

ν σ

)
. (B.12)

The integration over ReΩAB then picks out the terms in the theta function with

`1 ◦ `1 = `2 ◦ `2 = (`1 + `2)2 = 2, (B.13)

giving the factor

exp
[
−2π(t1(`1R)2 + t2(`2R)2 + t3(`1R + `2R)2) + 2πi`A ◦ yA

]
. (B.14)

We are interested in the limit where (`1R)2, (`2R)2, and (`1R+ `2R)2 are small, and correspond

to W -boson masses of three propagators in the two-loop diagram. We have (in the rest of

this section we will not distinguish `Ia with (`L)Ia since in the limit of interest (`R)Ia → 0)

A2|D2F 4→
t− u

3
(2π)4

∑
(`1)2=(`2)2=(`1+`2)2=2

εIJεKL`
I
a1`

J
a2`

K
a3`

L
a4

×
∫

dt1dt2dt3

(t1t2 + t1t3 + t2t3)
1
2

e−2π(t1(`1R)2+t2(`2R)2+t3(`1R+`2R)2)+(cyclic perms in 2, 3, 4).

(B.15)

Here `Ia is the eigenvalue of the Cartan generator Ta on the W -boson labeled by the root

vector `I , on the propagator of length tI , I = 1, 2. On the third propagator of length t3,

the W -boson has charge `1a + `2a with respect to Ta.

Let us compare this with the two-loop amplitude at 6-derivative order in 5d SYM,

whose contribution from the diagrams involving two light internal W -bosons takes the form

ASYM
2 =

s

2

∑
(`1L)2=(`2L)2=(`1L+`2L)2=2

∫
dt1dt2dt3[

t21t
2
2`

1
a1`

1
a2`

2
a3`

2
a4 + 5 more

− t21t2t3`1a1`
1
a2(−`1a3 − `

2
a3)`2a4 − t

2
1t2t3(−`1a1 − `

2
a1)`2a2`

1
a3`

1
a4 + 10 more

]

×
∫
d5p1d

5p2

(2π)10
e−

∑3
i=1 ti(p

2
i+m

2
i ) + (cyclic perms in 2, 3, 4),

(B.16)

where the first and the second lines come from the first and the second two-loop diagrams

in figure 4, respectively. The term proportional to t21t
2
2, for instance, comes from the two-

loop diagram with two external lines (with Cartan label a1, a2) attached to the propagator

of length t1 and two external lines (with Cartan label a3, a4) attached to the propagator of

length t2. The · · · stand for all the other possible assignments of the W -boson root vectors

`1, `2, −`1 − `2 to each internal propagator.
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Figure 4. The reduction of the genus two T 5 compactified heterotic string amplitude A2|D2F 4 to

two-loop amplitudes ASYM
2 in 5d maximal SYM.

We can identify m2
1 = 2π(`1R)2, m2

2 = 2π(`2R)2, m2
3 = 2π(`1R + `2R)2. The factor in the

bracket, after multiplication by s and summation over permutations, can be organized into

the form (taking into account s+ t+ u = 0)

s(t1t2 + t1t3 + t2t3)2
(
`1a1`

1
a2`

2
a3`

2
a4 + `2a1`

2
a2`

1
a3`

1
a4

)
+ (cyclic perms in 2, 3, 4)

=
2

3
s(t1t2 + t1t3 + t2t3)2

(
`1a1`

1
a2`

2
a3`

2
a4 + `2a1`

2
a2`

1
a3`

1
a4 − 2`1(a1`

2
a2)`

1
(a3
`2a4)

)
+ (cyclic perms in 2, 3, 4)

=
s

3
(t1t2 + t1t3 + t2t3)2(εIKεJL + εILεJK)`Ia1`

J
a2`

K
a3`

L
a4 + (cyclic perms in 2, 3, 4).

(B.17)

Notice that only terms with two `1 and two `2 will survive after summing over the s, t, u

channels. Hence the SYM two-loop amplitude can be put into the form

ASYM
2 = 2−11π−5

∑
(`1L)2=(`2L)2=(`1L+`2L)2=2[

s

3
(εIKεJL + εILεJK)`Ia1`

J
a2`

K
a3`

L
a4 + (cyclic perms in 2, 3, 4)

]
×
∫

dt1dt2dt3

(t1t2 + t1t3 + t2t3)
1
2

e−
∑
i tim

2
i .

(B.18)

This is indeed proportional to (B.15),

A2|D2F 4 → 215π9ASYM
2 . (B.19)
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