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Abstract: Cross sections for top quarks provide very interesting physics opportunities,

being both sensitive to new physics and also perturbatively tractable due to the large

top quark mass. Rigorous factorization theorems for top cross sections can be derived

in several kinematic scenarios, including the boosted regime in the peak region that we

consider here. In the context of the corresponding factorization theorem for e+e− colli-

sions we extract the last missing ingredient that is needed to evaluate the cross section

differential in the jet-mass at two-loop order, namely the matching coefficient at the scale

µ ' mt. Our extraction also yields the final ingredients needed to carry out logarithmic re-

summation at next-to-next-to-leading logarithmic order (or N3LL if we ignore the missing

4-loop cusp anomalous dimension). This coefficient exhibits an amplitude level rapidity

logarithm starting at O(α2
s) due to virtual top quark loops, which we treat using rapidity

renormalization group (RG) evolution. Interestingly, this rapidity RG evolution appears

in the matching coefficient between two effective theories around the heavy quark mass

scale µ ' mt.
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1 Introduction

The top quark mass is one of the most important parameters in the Standard Model. As

the heaviest observed fermion, the top quark provides an important probe for the Higgs

sector, and gives dominant contributions to many electroweak observables, thus providing

strong benchmark constraints for extensions of the Standard Model. Furthermore, the

mass of the top quark and the Higgs boson represent crucial parameters in studies of the

stability of the Standard Model vacuum [1–6]. Precision measurements of the top quark

mass are a difficult task due to challenges from both experimental and theoretical sides,

mainly related to the fact that the top quark is a colored particle.

The current value of the top quark mass from a combined analysis of Tevatron and

LHC data is mt = 173.34 ± 0.76 GeV [7], see also [8, 9]. The precision obtained in this

result relies on Monte Carlo (MC) based template and matrix element methods, which

aim to account for essentially all of the kinematic final state information in the top quark

events. However, this approach does not account for the relation of the extracted MC

top quark parameter to an unambiguous field theoretic QCD top mass definition [10–12].

At the time of writing, no procedure to systematically quantify and improve this relation

exists. While it seems unlikely that the template and matrix element analyses can be based

on first principle QCD calculations which can be systematically improved to specify the

– 1 –



J
H
E
P
1
2
(
2
0
1
5
)
0
5
9

top mass scheme unambiguously, it is quite plausible that other highly sensitive top mass

observables can be devised which can clarify the issue by making high precision theoretical

calculations feasible.

One method to determine mt in a well-defined mass scheme from a kinematic spectrum

with small uncertainties has been discussed in refs. [10, 13, 14]. Here the hemisphere dijet

invariant mass distribution in the peak region for the production of boosted tops in electron-

positron annihilation was suggested as an observable and it was shown that hadron level

predictions of the double differential distribution can be carried out in a stable manner

within a constrained set of top quark mass schemes. It was in particular demonstrated that

the location of the peak of the distribution is highly sensitive to the top quark mass, and

that only specific low-scale short-distance mass definitions are suitable for high-precision

extractions. Although the effective theory setup developed therein was devised for the

context of a future e+e− collider, the approach can be extended to the environment at

hadron colliders taking into account the complications related to initial state radiation,

underlying event, parton distribution functions and dependence on jet algorithms and jet

radius [15]. In refs. [13, 14] the calculation for e+e− annihilation was carried out at Next-

to-Leading Logarithmic (NLL) accuracy with the perturbative ingredients at O(αs). In

this paper we provide a result for the O(α2
s) matching correction at the scale µ ' mt for

the e+e−-collider setup. Taken together with the known O(α2
s) results for the jet function

in the heavy-quark limit from ref. [16], for the massless soft function from refs. [17–19],

and input from previous form factor calculations for massless quark production [20, 21],

our result provides the last missing ingredient needed to extend the e+e− boosted top jet

analysis to O(α2
s). In turn, with known results, these fixed order contributions can be

accompanied with resummation of logarithms up to next-to-next-to-leading logarithmic

order (NNLL). Up to the missing four loop cusp anomalous dimension, which is known to

give a very small correction (see e.g. [22, 23]), all ingredients are also available for N3LL.

Boosted top quark production with subsequent decays in the peak region of the invari-

ant mass distributions involves physical effects in a range of widely separated energy scales.

The hierarchy between the production energy Q, the top mass mt, the decay width Γt and

the hadronization scale ΛQCD is given by Q � mt � Γt > ΛQCD. Given this hierarchy

of scales, the cross section contains large logarithms of ratios of these scales which spoil

the perturbative expansion in αs. This necessitates to replace fixed order computations by

resummed calculations. The Effective Field Theory (EFT) setup devised in ref. [13, 14]

disentangles the fluctuations at the different scales and allows us to resum the logarithms

through renormalization group evolution (RGE).1

We are interested in the peak region where each of the jet invariant masses, for the

top st and antitop st̄, is close to the top quark mass, i.e.,

ŝt,t̄ ≡
st,t̄ −m2

t

mt
� mt . (1.1)

1Note that our boosted top limit differs from the application of HQET in ref. [24], which considers tt̄

production with slow top quarks. It also differs from the work of ref. [25], which considers the top-pair

invariant mass for boosted top quarks, rather than the individual boosted top jets. Hence the factorization

theorem for our case differs from the ones considered there.
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mŝt
Q , Qŝtm , ŝt
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Figure 1. Scales and effective theories with associated structures in the factorization theorem for

boosted top production (Q� mt) with jet invariant masses close to the top mass. The superscripts

(5) and (6) indicate the number of dynamic flavors in the theory. Note that in this context SCET

just plays a role of an intermediate EFT with all invariant mass fluctuations above or of order the

mass scale, in which the observable is not yet measured. For definiteness we also display the scaling

of the EFT modes in light-cone coordinates.

For this kinematic region both of the hierarchies ŝt,t̄ ∼ Γt and ŝt,t̄ � Γt are allowed. The

sequence of the EFTs and the corresponding modes relevant for this problem are displayed

in figure 1. First, hard modes with fluctuations with virtualities of order ∼ Q are integrated

out in QCD. The corresponding low-energy theory containing collinear and soft modes is

Soft Collinear Effective Theory (SCET) [26–29], which allows to resum large logarithms

between Q and mt. In a second step all fluctuations with virtualities of order ∼ mt are

integrated out, and SCET is thus matched onto boosted Heavy Quark Effective Theory

(bHQET), an EFT with ultracollinear and ultrasoft modes at a lower invariant mass scale,

which allows to resum logarithms between mt and ŝt,t̄. The factorization theorem for the

double differential cross section in e+e− collisions reads

1

σ0

dσ

dst dst̄
=HQ (Q,µ)Hm

(
mt,

Q

mt
, µ

)∫
d`+d`−S(`+, `−, µ)

× JB
(
st −m2

t −Q`+
mt

,Γt, δm, µ

)
JB

(
st̄ −m2

t −Q`−
mt

,Γt, δm, µ

)
×
[
1 +O

(
mtαs
Q

)
+O

(
m2
t

Q2

)
+O

(
Γt
mt

)
+O

(
ŝ2
t,t̄

m2
t

)]
. (1.2)

Here σ0 denotes the tree level cross section for e+e− → qq̄. The terms HQ and Hm are hard

functions related to the matching from QCD to SCET at the scale µ ∼ Q and from SCET

to bHQET at the scale µ ∼ m, respectively. The terms JB and S denote the jet and soft

functions, respectively, which are nonlocal matrix elements in bHQET. Note that we use
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JB for the heavy-quark jet function, rather than the symbol B employed in refs. [13, 14, 16].

Here JB describes the dynamics of the ultracollinear radiation inside the t or t̄ jet at the

scale µ ∼ ŝt. The function S incorporates the ultrasoft cross talk between the two jets at

the scale µ ∼ mŝt/Q, which is O(ΛQCD) in the peak region, and perturbative in the tail

above the peak. In eq. (1.2) the RGE between the characteristic scale of each function and

the common renormalization scale µ are implicit. We stress that in SCET the top quark is

considered as dynamical and hence the RGE takes place with six active flavors, while for

the ingredients that arise in bHQET there are only five dynamical flavors in the evolution.

Note that it is possible that the O(mtαs/Q) power corrections indicated in eq. (1.2) are

absent, but we are not aware of a rigorous proof at this time.

It is through the residual mass term δm appearing in the bHQET jet functions JB that

the top quark mass scheme is specified unambiguously beyond tree-level. For order-by-order

stable perturbative behavior, the top quark mass scheme employed should be free of the

O(ΛQCD) renormalon ambiguity, thus excluding the pole mass (specified by δm = 0) as a

choice. Furthermore, the parametric scaling of higher order corrections defining the mass

scheme must be set by scales associated to the measurement, namely ŝt,t̄,Γt � mt, in order

not to violate the power counting required for the factorization. This excludes employing

the MS mass where these corrections scale as δm ∼ αsmt. Valid options include the jet

mass scheme [13, 14, 16] or the MSR mass scheme [10, 16] which matches continuously

onto MS. These two mass schemes have an adjustable cutoff parameter R which controls

the scaling of higher order corrections.

The exact algorithm to determine the two jet regions and the precise form of the

observable is irrelevant for the structure of eq. (1.2) as long as parametrically st ∼ st̄, but

does matter for the explicit perturbative expressions of its ingredients. The restriction

st ∼ st̄ avoids large logarithms of the form ln(st/st̄), and is satisfied by variables designed

to study the peak region of both jets, such as thrust. In the analysis of ref. [14] all particles

were assigned to either of the two top jets depending on which hemisphere with respect to

the thrust axis they enter. Thus the observable considered was physically close to event-

shape distributions. The analysis of ref. [14] for this inclusive jet observable was carried out

at NLL′, i.e. including perturbative ingredients at O(αs) and NLL resummation. At the

time of writing the hard function HQ, the bHQET jet function and the soft function are

already known up to O(α2
s) [16, 17, 20] or beyond, while resummation can be carried out

to N3LL.2 Thus, the only relevant correction missing to perform a N3LL analysis for the

double hemisphere invariant mass distribution and similar observables in the peak region

is the hard function Hm at O(α2
s). This correction will affect the normalization of the

differential cross section, while the shape of the cross section is determined mainly by the

jet and soft functions. Here NNLL′ refers to NNLL resummation with O(α2
s) fixed-order

matching and matrix element corrections.

In this paper we carry out the computation of the O(α2
s) correction to Hm. In section 2

we outline two methods to perform the computation. Instead of directly calculating the

2So far the only missing ingredient for N3LL resummation (besides the four-loop cusp anomalous dimen-

sion) was the anomalous dimension of the jet function JB , or equivalently of the bHQET current, which we

have now extracted from a recent result in literature in appendix B.
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current matching factor between bHQET and SCET, we can also exploit the knowledge of

the QCD heavy quark form factor calculated in refs. [30, 31] and various properties of the

EFT to extract the hard function. In section 3 we carry out the computation at O(α2
s)

using this method and show how to handle issues associated with the number of active

quark flavors. This yields the result given in eq. (3.8) in terms of the pole mass. In the

two loop expression for Hm we find terms of the form

α2
sCFTF ln

(
Q2

m2

)
ln0,1,2

(
µ2

m2

)
. (1.3)

The large logarithm ln(Q2/m2) is induced by the separation in rapidity of soft mass-shell

fluctuations with the scaling (p+, p−, p⊥) ∼ (m,m,m) from collinear mass-shell fluctuations

with (p+, p−, p⊥) ∼ (m2/Q,Q,m). It can not be eliminated by a choice of µ or summed by

the RGE in µ. This effect is directly related to virtual top quark loops which first appear at

O(α2
s), and has been discussed in detail in refs. [32, 33] together with other subtleties con-

cerning the incorporation of a massive quark in primary massless jet production in SCET.

In section 4 we will explicitly carry out the matching calculation for the O(α2
sCFTF ) correc-

tion with primary massive top quarks, and demonstrate how the amplitudes factorize into

collinear and soft components which each involve a single rapidity scale. We show that this

factorization is the same as that for massless external quarks, computed in ref. [33], up to

a different constant term that appears in the collinear corrections. The direct computation

of the SCET soft and collinear diagrams at O(α2
sCFTF ) can be performed elegantly by first

computing the virtual correction for the radiation of a “massive gluon” at one-loop and

performing in a second step a dispersion integral. In section 5 we show how to resum the

type of rapidity logarithm in eq. (1.3) using the framework of the rapidity renormalization

group established in refs. [34, 35]. We also demonstrate that the residual scale dependence

of Hm on µ significantly decreases when employing the complete two-loop correction, and

assess the impact of the rapidity logarithm. We conclude in section 6.

2 Setup and notation

As described in refs. [13, 14] for the description of the peak region we first match QCD

onto SCET, and then SCET onto bHQET. The relevant current operators needed to define

the hard functions in eq. (1.2) are

JQCD = ψ̄(x)Γµi ψ(x) ,

JSCET = χ̄nS
†
nΓµi Sn̄χn̄ ,

JbHQET = h̄v+WnY
†
nΓµi Yn̄W

†
n̄hv− , (2.1)

where Γµv = γµ and Γµa = γµγ5. The jet fields χn = W †nξn and χn̄ = W †n̄ξn̄ describe the

collinear radiation in SCET, and contain the massive collinear quarks ξn and ξn̄ [36, 37]

and Wilson lines Wn,n̄ where in position space W †n(x) = P exp
(
ig
∫∞

0 ds n̄·An(n̄s+x)
)
. The

ultracollinear radiation in bHQET is described by the heavy quark fields hv+,− and by Wn,n̄.

The wide-angle radiation in SCET is described by soft Wilson lines Sn,n̄, where in position
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space S†n(x) = P exp
(
ig
∫∞

0 ds n·As(ns+x)
)
, and ultrasoft Wilson lines Yn,n̄ are the analogs

with ultrasoft gluon fields in bHQET. The difference between the SCET fields and bHQET

fields is that SCET still contains soft and collinear fluctuations at the top mass scale, i.e.

the SCET fields contain mass mode fluctuations which scale as (p+, p−, p⊥) ∼ (m,m,m)

and (Q,m2/Q,m) or (m2/Q,Q,m) which are absent in bHQET. This makes our EFT

above the top mass scale an SCETII type theory. There are six flavors in the MS running

coupling in QCD and SCET, and five flavors in bHQET.

The notation above differs from ref. [14] which used a hybrid of SCETI and SCETII,

where the current operator was written as

J̃SCET = χ̄nY
†
nS
†
nΓµi Sn̄Yn̄χn̄ . (2.2)

Here the Wilson lines Sn,n̄ describe exclusively soft mass mode fluctuations and have ultra-

soft zero-bin subtractions. In eq. (2.1) the SCET operator only describes soft fluctuations

above and of order of the mass scale m, and not far below m. This simplifies the setup for

the matching coefficient calculation, which in particular can be viewed as going from a six

flavor theory to a five flavor theory.

The matching coefficients between these effective theories are defined by

J (nl+1)
QCD = C

(nl+1)
Q J (nl+1)

SCET

[
1 +O(m/Q)

]
, (2.3)

J (nl+1)
SCET = C

(nf )
m J (nl)

bHQET

[
1 +O(ŝ/m)

]
. (2.4)

Here both the currents and Wilson coefficients refer to the renormalized quantities. When

we refer to the bare objects we will indicate this explicitly as e.g. in J (bare,nl+1)
SCET . For

all quantities we consider we use the renormalized coupling constant. When we want to

separate the color structures of the matching coefficients we will do so in the following way:

C
(nl+1)
Q = 1 + C

(1, nl+1)
Q + C

(C2
F , nl+1)

Q + C
(CFCA, nl+1)
Q + C(CFnlTF , nl+1)

m + C
(CFTF , nl+1)
Q ,

C
(nf )
m = 1 + C

(1, nf )
m︸ ︷︷ ︸
O(αs)

+ C
(C2
F , nf )

m + C
(CFCA, nf )
m + C

(CFnlTF , nf )
m + C

(CFTF , nf )
m︸ ︷︷ ︸

O(α2
s)

. (2.5)

In all the objects above the coupling is renormalized in the MS scheme with the number

of dynamical flavors, nf , being either nl or (nl + 1) as indicated by the superscript. Here

nl is the number of light quarks, and the additional flavor indicates the heavy quark (here

the top quark). The choice for the number of flavors in each of the expressions above is

motivated by the scales at which these objects live compared to the top mass. Note that

we have kept the number of flavors appearing in Cm unspecified, as it can be expressed in

either the nl- or the (nl + 1)-flavor scheme. We will be explicit about which scheme we are

using in the equations below.

The hard functions in eq. (1.2) are related to the Wilson coefficients via

HQ(Q,µ) = |CQ|2, Hm

(
m,

Q

m
,µ

)
= |Cm|2 . (2.6)

Here the dependence on Q in the hard function Hm appears due to the boost factor Q/m.
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In eq. (1.2) all the functions live at their respective scales and are evolved to a common

scale µfinal through renormalization group running. While the jet and the soft functions

have convolution running [14], the large logarithms of the hard matching coefficients are

summed by multiplicative evolution factors,

Hevol(Q,m, µfinal;µQ, µm, νQ, νm) ≡H(nl+1)
Q (Q,µQ) U

(nl+1)
HQ

(Q,µQ, µm) (2.7)

×H(nl)
m

(
m,

Q

m
,µm; νQ, νm

)
U (nl)
v

(
Q

m
,µm, µfinal

)
,

for µQ ' Q, µm ' m and µfinal < µm. On the l.h.s. the dependence on µQ and µm only

comes from higher order corrections when the objects in eq. (2.7) are truncated at a given

order in resummed perturbation theory. The same is true for the rapidity scales νQ and

νm, which are induced by the rapidity RGE that will be discussed further below and in

section 5.1. We will frequently drop these arguments that appear after the semicolon. The

evolution factors here obey the RG equations

µ
d

dµ
U

(nl+1)
HQ

(Q,µQ, µ) = −γ(nl+1)
HQ

(Q,µ)U
(nl+1)
HQ

(Q,µQ, µ) ,

µ
d

dµ
U (nl)
v

(
Q

m
,µ, µfinal

)
= +γ(nl)

v

(Q
m
,µ
)
U (nl)
v

(
Q

m
,µ, µfinal

)
, (2.8)

where γ
(nl)
v is the anomalous dimension for the squared current in bHQET.

Eqs. (2.3) and (2.4) suggest two different methods that one can use to calculate the

O(α2
s) piece of Cm or equivalently Hm.

1) Indirect calculation using the known result for CQ and the matrix elements for the

QCD and bHQET current operators in pure dimensional regularization.

Using eq. (2.3) and (2.4), and taking matrix elements of the operators with onshell

top-quark states as in [13], we have

〈J (nl+1)
QCD 〉 = C

(nl+1)
Q C(nl)

m 〈J (nl)
bHQET〉 . (2.9)

Using the relation between bare and renormalized bHQET currents

〈J (nl)
bHQET〉 = Z

(nl)
bHQET 〈J

(bare, nl)
bHQET 〉 , (2.10)

we get

C(nl)
m =

〈J (nl+1)
QCD 〉

C
(nl+1)
Q Z

(nl)
bHQET 〈J

(bare, nl)
bHQET 〉

. (2.11)

Note that the terms on the r.h.s. involve objects with different flavor number schemes

for the strong coupling, which must all be converted to nl-flavors to get C
(nl)
m . Here

we work in dimensional regularization for both UV and IR divergences and renormalize

the quantities in the MS scheme. With this regulator we can use the known two loop

result for the heavy form factor 〈JQCD〉 given in refs. [30, 31]. The result for CQ is also

– 7 –
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known [20, 21] in MS, and the result for Z
(nl)
bHQET can be determined by RG consistency

as discussed below. Loop graphs in bHQET factorize into ultrasoft and ultra-collinear

contributions, and in general each involve at most a single dimensionful scale. The use

of dimensional regularization for both the UV and IR, and employing onshell external

quarks, imply that these loop corrections in bHQET are scaleless and vanish, such that

〈J (bare,nl)
bHQET 〉 = 1. In general, the IR divergences in the QCD and bHQET matrix elements

will match up, and the UV divergences in 〈J (bare, nl)
bHQET 〉 are eliminated by the counterterm

Z
(nl)
bHQET. In dimensional regularization with 1/εIR = 1/εUV, this implies a cancellation of

1/ε poles between 〈J (nl+1)
QCD 〉 and Z

(nl)
bHQET. Thus we can use the simpler relation

C(nl)
m =

〈J (nl+1)
QCD 〉

Z
(nl)
bHQETC

(nl+1)
Q

. (2.12)

2) Direct calculation by matching the SCET and bHQET current operators.

Using eq. (2.4) we can also just directly compute the Wilson coefficient from a matching

calculation, computing partonic matrix elements using the same IR regulator in SCET and

bHQET,

C(nl)
m =

〈J (nl+1)
SCET 〉

〈J (nl)
bHQET〉

≡ F
(nl+1)
SCET

F
(nl)
bHQET

. (2.13)

These matrix elements are form factors in the respective theories which we denote by F .

We will use the same notation for the color structures in the perturbative expansion of

FSCET and FbHQET as in eq. (2.5). We define the relation between bare and renormalized

SCET currents by

〈J (nl+1)
SCET 〉 = Z

(nl+1)
SCET 〈J

(bare, nl+1)
SCET 〉 . (2.14)

As usual the bare currents are µ-independent, so from eqs. (2.10), (2.13) and (2.14) the

µ-RG equation for C
(nl)
m can be written as

µ
d

dµ
lnC(nl)

m =
[
γ

(nl+1)
SCET (Q,µ)− γ(nl)

bHQET

(Q
m
,µ
)]

(α(nl)
s ) ≡ γCmµ (Q,m, µ) , (2.15)

where the current anomalous dimensions are computed order-by-order from the countert-

erms in the standard fashion

γ
(nl+1)
SCET (Q,µ) = µ

d

dµ
lnZ

(nl+1)
SCET , γ

(nl)
bHQET

(Q
m
,µ
)

= µ
d

dµ
lnZ

(nl)
bHQET . (2.16)

The anomalous dimension for the SCET current is known to 3-loop order [38]. Up to two

loops the result reads

γ
(nl+1)
SCET (Q,µ) =

α
(nl+1)
s (µ)CF

4π

[
− 4LQ + 6

]
+

(
α

(nl+1)
s (µ)

4π

)2{
C2
F

[
3− 4π2 + 48ζ3

]
+ CFCA

[
−
(

268

9
− 4π2

3

)
LQ +

961

27
+

11π2

3
− 52ζ3

]
+ (nl + 1)CFTF

[
80

9
LQ −

260

27
− 4π2

3

]}
, (2.17)
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where LQ = ln[(−Q2 − i0)/µ2]. The bHQET anomalous dimension can be derived using

one of the consistency relations [14] for the factorization theorem in eq. (1.2):

γv = γbHQET + γ∗bHQET = 2γJB + 2γS , (2.18)

where γS indicates the soft function anomalous dimension for one hemisphere. Using the

results for γJB given in eq. (41) of ref. [16] and for γS given in eq. (19) of ref. [39] (which

can be derived via consistency from the two-loop jet function anomalous dimension [40])

we find

γbHQET

(Q
m
,µ
)

=
α

(nl)
s (µ)CF

4π

[
− 4L+ 4

]
+

(
α

(nl)
s (µ)

4π

)2{
nlCFTF

[
80

9
L− 80

9

]
+ CFCA

[
−
(

268

9
− 4π2

3

)
L+

196

9
− 4π2

3
+ 8ζ3

]}
+O(α3

s) , (2.19)

where L = ln[(−Q2 − i0)/m2]. Expanding the recently calculated anomalous dimension in

HQET at O(α3
s) [41, 42] we extract in appendix B also the three-loop coefficient, which

has — to our knowledge — not yet been displayed in literature.

As mentioned above, the two-loop expression of Cm contains large logarithms of the

form α2
sCFTF ln(−m2/Q2) ∼ O(αs) which cannot be resummed using the RGE in µ. They

are rapidity logarithms and originate from a separation of the soft and collinear mass modes

which have the same invariant mass but different rapidity. These rapidity logarithms only

appear inside Hm, and not for the other soft, jet, and hard functions in eq. (1.2). Our

focus here will be on the leading rapidity logarithms, which start contributing with the

O(α2
sCFTF ) piece. The latter comes from virtual top quark loops, and hence we only need

to compute the correction F
(CFTF , nl+1)
SCET , while the bHQET graphs give no contribution for

this color structure, i.e. F
(CFTF ,nl)
bHQET = 0.

To set up the stage for rapidity resummation we can factorize the current operators

and its matrix elements into products of soft and collinear diagrams,

〈J (nl+1)
SCET 〉 = 〈J (nl+1)

SCET 〉n 〈J
(nl+1)
SCET 〉s 〈J

(nl+1)
SCET 〉n̄ ,

〈J (nl+1)
bHQET〉 = 〈J (nl+1)

bHQET〉n 〈J
(nl+1)
bHQET〉s 〈J

(nl+1)
bHQET〉n̄ , (2.20)

where the {n, s, n̄} labels in bHQET indicate n-ucollinear, ultrasoft, and n̄-ucollinear con-

tributions respectively. Note that in order to split up these corrections we must choose

an IR regulator which preserves the SCETII nature of the theory. We will regulate the

IR divergences using a gluon mass Λ, which thus differs from the use of pure dimensional

regularization discussed above for method 1. In SCETII the individual soft and collinear

diagrams have rapidity divergences, and using the regulator of refs. [34, 35] the coefficients

will depend on a rapidity renormalization scale ν. Thus eq. (2.13) can be decomposed into

individual contributions involving n-collinear, n̄-collinear, and soft amplitudes,

C
(nl)
m, i =

〈J (nl+1)
SCET 〉i

〈J (nl)
bHQET〉i

, i = n, n̄, s . (2.21)
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This leads to

C(nl)
m

(
m,

Q

m
,µ

)
= C(nl)

m,n

(
m,µ,

ν

Q

)
C(nl)
m,s

(
m,µ,

ν

m

)
C

(nl)
m,n̄

(
m,µ,

ν

Q

)
, (2.22)

where we included the dependence on scales and renormalization parameters. Thus we see

that the logarithmic dependence on the Q/m boost variable is factorized by the rapidity

regularization parameter ν into collinear factors that depend on Q and a soft factor which

does not. To sum the rapidity logarithms we can follow the standard approach of matching

and running.

We define hard functions H
(nl)
m,i =

∣∣∣C(nl)
m,i

∣∣∣2. The individual Wilson coefficient and hard

functions obey related RG equations,

ν
d

dν
C

(nl)
m,i = γCmν,i C

(nl)
m,i , ν

d

dν
H

(nl)
m,i = γHmν,i H

(nl)
m,i , γHmν, i = γCmν, i +

(
γCmν, i

)∗
. (2.23)

The ν-anomalous dimensions appearing here can be computed directly from the SCET

and bHQET counterterms and depend only on m and µ. Taking eqs. (2.10) and (2.14)

and introducing individual counterterm factors for each of the collinear and soft component

amplitudes, noting that the bare coefficients are ν-independent, and using eq. (2.21) we get

γCmν, i (m,µ) = ν
d

dν
lnC

(nl)
m, i = ν

d

dν
ln 〈J (nl+1)

SCET 〉i − ν
d

dν
ln 〈J (nl)

bHQET〉i

= ν
d

dν
lnZ

(nl+1)
SCET,i − ν

d

dν
lnZ

(nl)
bHQET,i , i = n, n̄, s . (2.24)

As we will see in detail below, individual contributions on the right hand side of eq. (2.24)

contain IR divergences, but they will always cancel to leave an IR finite result for the

γCmν, i , when we fully expand in either the nl-flavor or (nl + 1)-flavor scheme for the strong

coupling.

3 Two loop determination of Hm from QCD heavy form factor

In this section we use the first method outlined in section 2 to determine the bHQET

matching coefficient, Cm at two loops. From eq. (2.12) the ingredients we need are the

UV renormalized QCD two-loop heavy quark form factor, 〈J (nl+1)
QCD 〉, in dimensional regu-

larization and the SCET matching coefficient, C
(nl+1)
Q . In the following we abbreviate the

appearing logarithms as

L = ln

(−Q2 − i0
m2

)
, Lm = ln

(
m2

µ2

)
, LQ = ln

(−Q2 − i0
µ2

)
. (3.1)

From refs. [30, 31] we extract the renormalized two loop QCD heavy quark form fac-

tor result in the high energy limit, Q2 � m2, evaluated at an arbitrary scale µ & m,
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abbreviating α
(nl+1)
s ≡ α(nl+1)

s (µ),3

F
(nl+1)
QCD = 1+

α
(nl+1)
s CF

4π

{
2L−2

ε
−L2−(2Lm−3)L+2Lm−4+

π2

3
+ε

[
L3

3
+

(
Lm−

3

2

)
L2

+

(
L2
m−3Lm+8−π

2

6

)
L−L2

m+

(
4−π

2

3

)
Lm−8+

π2

3
+4ζ3

]
+O(ε2)

}
+

(
α

(nl+1)
s

4π

)2

C2
F

{
1

ε2
[
2L2−4L+2

]
+

1

ε

[
− 2L3−(4Lm−8)L2+

(
8Lm− 14+

2π2

3

)
L

− 4Lm+8− 2π2

3

]
+

7

6
L4+

(
4Lm−

20

3

)
L3+

(
4L2

m−16Lm+
55

2
− 2π2

3

)
L2

−
(

8L2
m−

(
28− 4π2

3

)
Lm+

85

2
−32ζ3

)
L+4L2

m−
(

16− 4π2

3

)
Lm+46+

13π2

2

− 44ζ3−8π2 ln 2− 59π4

90
+O(ε)

}
+

(
α

(nl+1)
s

4π

)2

CFCA

{
1

ε2

[
− 11

3
L+

11

3

]
+

1

ε

[(
67

9
−π

2

3

)
L− 49

9
+
π2

3
−2ζ3

]
+

11

9
L3

+

(
11

3
Lm−

233

18
+
π2

3

)
L2+

(
11

3
L2
m−

(
233

9
− 2π2

3

)
Lm+

2545

54
+

11π2

9
−26ζ3

)
L

− 11

3
L2
m+

(
230

9
− 17π2

9
+4ζ3

)
Lm−

1595

27
− 7π2

54
+

134

3
ζ3+4π2 ln 2−π

4

60
+O(ε)

}
+

(
α

(nl+1)
s

4π

)2

CFnlTF

{
1

ε2

[
4

3
L− 4

3

]
+

1

ε

[
− 20

9
L+

20

9

]
− 4

9
L3−

(
4

3
Lm−

38

9

)
L2

−
(

4

3
L2
m−

76

9
Lm+

418

27
+

4π2

9

)
L+

4

3
L2
m−

(
88

9
− 4π2

9

)
Lm+

424

27
− 14π2

27

− 16

3
ζ3+O(ε)

}
+

(
α

(nl+1)
s

4π

)2

CFTF

{
1

ε

[
8

3
Lm L−

8

3
Lm

]
− 4

9
L3−

(
4

3
Lm−

38

9

)
L2−

(
4L2

m−4Lm

+
530

27
+

2π2

3

)
L+4L2

m−
(

16

3
− 4π2

9

)
Lm+

1532

27
− 4π2

9
+O(ε)

}
. (3.2)

Note that we keep the O(ε) part of the one loop piece in F
(1,nl+1)
QCD since it yields a contribu-

tion when considering the cross terms in the expansion of the ratio in eq. (2.12). (One can

avoid considering these cross terms and obtain the same answer by taking the logarithm

of eq. (2.12).) We remark that in these expressions the pole mass scheme has been used

for the top quark mass m.

The other ingredient we need is the well known two-loop expression for CQ, widely used

in the SCET literature, and obtained with the aid of the massless form factor calculation

3Note that in ref. [30] the counterterm for the renormalization of the coupling constant contains an

extra factor Γ(1 + ε), so that also additional finite terms are subtracted compared to the conventional MS

renormalization.
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of refs. [20, 21],

C
(nl+1)
Q = 1+

α
(nl+1)
s (µ)CF

4π

{
− L2

Q+3LQ−8+
π2

6

}
+

(
α

(nl+1)
s (µ)

4π

)2

C2
F

{
1

2
L4
Q−3L3

Q+

(
25

2
−π

2

6

)
L2
Q−
(

45

2
+

3π2

2
−24ζ3

)
LQ

+
255

8
+

7π2

2
−30ζ3−

83π4

360

}
+

(
α

(nl+1)
s (µ)

4π

)2

CACF

{
11

9
L3
Q−
(

233

18
−π

2

3

)
L2
Q+

(
2545

54
+

11π2

9
−26ζ3

)
LQ

− 51157

648
− 337π2

108
+

313ζ3

9
+

11π4

45

}
+

(
α

(nl+1)
s (µ)

4π

)2

CFTF (nl+1)

{
− 4

9
L3
Q+

38

9
L2
Q−
(

418

27
+

4π2

9

)
LQ

+
4085

162
+

23π2

27
+

4ζ3

9

}
. (3.3)

The remaining quantities in eq. (2.12) are the coefficient C
(nl)
m we wish to determine,

and the counterterm Z
(nl)
bHQET. The contributions to these two quantities can be easily

distinguished since Z
(nl)
bHQET only has terms with powers of 1/ε, whereas C

(nl)
m is given by

the finite O(ε0) contribution. Therefore, it is straightforward to distinguish these two

quantities unambiguously. Since we wish to determine these with nl active flavors, we

must convert the strong coupling in 〈J (nl+1)
QCD 〉 and C

(nl+1)
Q to the nl-flavor scheme using

the decoupling relation

α(nl+1)
s (µ) = α(nl)

s (µ)

{
1 + α(nl)

s (µ)

[
Π(m2, 0)− α

(nl)
s (µ)TF

3π

1

ε

]
+O(α2

s)

}
, (3.4)

where the one-loop vacuum polarization at zero momentum transfer for a massive quark

pair is given by

Π(m2, 0) =
αs(µ)TF

3π

(
µ2eγE

m2

)ε
Γ(ε) =

αs(µ)TF
3π

[
1

ε
−Lm+ε

(
1

2
L2
m+

π2

12

)
+O(ε2)

]
. (3.5)

We need to keep terms up to O(ε) in eq. (3.4) since they contribute in the dimensional reg-

ularization scheme we are using when multiplying O(αs/ε) IR divergent terms in eq. (2.12).

Using these results in eq. (2.12) we find the following expression for Z
(nl)
bHQET,

Z
(nl)
bHQET = 1+

α
(nl)
s (µ)CF

4π

1

ε

(
2L−2

)
+

(
α

(nl)
s (µ)

4π

)2

C2
F

1

ε2
(
2L2−4L+2

)
+

(
α

(nl)
s (µ)

4π

)2

CFCA

{
1

ε2

[
− 11

3
L+

11

3

]
+

1

ε

[(
67

9
−π

2

3

)
L− 49

9
+
π2

3
−2ζ3

]}
+

(
α

(nl)
s (µ)

4π

)2

CFnlTF

{
1

ε2

[
4

3
L− 4

3

]
+

1

ε

[
− 20

9
L+

20

9

]}
. (3.6)
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This result can also be extracted from earlier literature using the consistency relation for

RG running between Hm, and the soft and the jet functions in eq. (1.2). In particular, the

1/ε2 terms in eq. (3.6) are given by a term involving the lowest order β-function, and the

square of the one-loop result (due to non-abelian exponentiation), while the 1/ε terms are

directly related to the two-loop anomalous dimension given in eq. (2.19). This provides a

key cross-check for Z
(nl)
bHQET and hence for our result below for C

(nl)
m .

After cancellation of the 1/ε and 1/ε2 terms in eq. (2.12) with the help of Z
(nl)
bHQET,

the remaining O(ε0) terms give the desired result for C
(nl)
m . With the top-mass in the pole

scheme we find

C(nl)
m

(
m,

Q

m
,µ
)

= 1 +
α
(nl)
s (µ)CF

4π

(
L2
m − Lm + 4 +

π2

6

)
+

(
α
(nl)
s (µ)

4π

)2

C2
F

{
1

2
L4
m − L3

m +

(
9

2
+
π2

6

)
L2
m −

(
11

2
− 11π2

6
+ 24ζ3

)
Lm

+
241

8
+

13π2

3
− 8π2 log 2− 6ζ3 −

163π4

360

}
+

(
α
(nl)
s (µ)

4π

)2

CACF

{
− 11

9
L3
m +

(
167

18
− π2

3

)
L2
m −

(
1165

54
+

28π2

9
− 30ζ3

)
Lm

+
12877

648
+

323π2

108
+ 4π2 log 2 +

89ζ3
9
− 47π4

180

}
+

(
α
(nl)
s (µ)

4π

)2

CFnlTF

{
4

9
L3
m −

26

9
L2
m +

(
154

27
+

8π2

9

)
Lm −

1541

162
− 37π2

27
− 52ζ3

9

}
+

(
α
(nl)
s (µ)

4π

)2

CFTF

{
− 8

9
L3
m −

2

9
L2
m +

(
130

27
+

2π2

3

)
Lm +

5107

162
− 41π2

27
− 4ζ3

9

−
(

4

3
L2
m +

40

9
Lm +

112

27

)
ln

(−Q2−i0
m2

)}
, (3.7)

Finally we arrive at the main result of this section - the result for Hm = |Cm|2 in the

nl-flavor scheme with the top-mass in the pole scheme (α
(nl)
s ≡ α(nl)

s (µ))

H(nl)
m

(
m,

Q

m
,µ
)

= 1 +
α
(nl)
s (µ)

4π
CF

(
2L2

m−2Lm+8+
π2

3

)
+

(
α
(nl)
s (µ)

4π

)2

C2
F

{
2L4

m−4L3
m+

(
18+

2π2

3

)
L2
m−

(
19− 10π2

3
+48ζ3

)
Lm

+
305

4
+10π2−16π2 log 2−12ζ3−

79π4

90

}
+

(
α
(nl)
s (µ)

4π

)2

CACF

{
− 22

9
L3
m+

(
167

9
− 2π2

3

)
L2
m−

(
1165

27
+

56π2

9
−60ζ3

)
Lm

+
12877

324
+

323π2

54
+8π2 log 2+

178ζ3
9
− 47π4

90

}
+

(
α
(nl)
s (µ)

4π

)2

CFnlTF

{
8

9
L3
m−

52

9
L2
m+

(
308

27
+

16π2

9

)
Lm−

1541

81
− 74π2

27
− 104ζ3

9

}
+

(
α
(nl)
s (µ)

4π

)2

CFTF

{
− 16

9
L3
m−

4

9
L2
m+

(
260

27
+

4π2

3

)
Lm+

5107

81
− 82π2

27
− 8ζ3

9

−
(

8

3
L2
m+

80

9
Lm+

224

27

)
ln

(
Q2

m2

)}
. (3.8)

– 13 –



J
H
E
P
1
2
(
2
0
1
5
)
0
5
9

As anticipated, all of the logarithms in this expression are minimized for µ ' m, except for

the contributions in the last line that involve the rapidity logarithm α2
sCFTF ln(Q2/m2).

To understand the origin of this type of logarithm in the context of the renormalization

group requires a further factorization of H
(nl)
m into soft and collinear pieces, as in eq. (2.22).

In the next section we will carry out an independent calculation of the O(α2
sCFTF ) terms

in H
(nl)
m . This sets up the rapidity renormalization group analysis of this term, which can

be found in section 5.1. In section 5.2 we present the result for H
(nl+1)
m̄ with the top mass

renormalized in the MS scheme.

4 Direct computation of the O(α2
sCFTF ) result

4.1 Ingredients for the calculation

In this section we perform a direct computation of the α2
sCFTF piece of the matching

coefficient Cm(m,Q/m,µ) due to massive quark loops using the second method from sec-

tion 2. We carry out the calculation in analogy to refs. [32, 33], where the corresponding

contribution to the matching coefficient at the mass scale for massless external quarks (in

the following called “primary”) was computed. In this section we extend the calculation

to the case of primary massive quarks.

Starting from eq. (2.13) we note that for the α2
sCFTF massive quark term, the bHQET

graphs expressed in the usual nl-flavor scheme do not give any contribution. The SCET

graphs do contribute, and should be expressed in the same scheme for the strong coupling.

Using the decoupling relation in eq. (3.4) we obtain in the notation of eq. (2.5)

C(CFTF , nl)
m

(
m,

Q

m
,µ
)

=

[
F

(CFTF , nl+1)
SCET (Q,m,Λ, µ) (4.1)

− α
(nl)
s (µ)TF

3π
ln

(
m2

µ2

)
F

(1,nl+1)
SCET (Q,m,Λ, µ)

]
α

(nl+1)
s →α

(nl)
s

.

The second term on the right hand side accounts for the coupling conversion of the SCET

form factor from (nl + 1) to nl flavors.4 As discussed in detail below, we will use a massive

gluon as an IR regulator Λ, such that O(ε) terms in the coupling conversion in eq. (3.4)

can be dropped. For the remainder of this section we will drop the superscript (nl + 1) on

the SCET form factors.

We adopt the calculational method of refs. [32, 33], where the two loop graphs contain-

ing a “secondary” massive quark bubble are calculated by starting with one-loop graphs

describing the radiation of a massive gluon with mass M and applying in a second step

dispersion relations to account for the gluon splitting into a pair of secondary massive

4Note that the subscript “α
(nl+1)
s → α

(nl)
s ” used here and elsewhere stands for the plain replacement of

the couplings and does not involve any expansion based on eq. (3.4).
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quarks with masses m. The corresponding relation can be written as

(−i)gµρ
p2 + iε

Πρσ(m2, p2)
(−i)gσν
p2 + iε

=
1

π

∫
dM2

M2

(−i)
(
gµν − pµpν

p2

)
p2 −M2 + iε

Im
[
Π(m2,M2)

]

−
(−i)

(
gµν − pµpν

p2

)
p2 + iε

Π(m2, 0) . (4.2)

Here Π(m2, p2) is the gluonic vacuum polarization due to the massive quark-antiquark

bubble,

ΠAB
µν (m2, p2) = −i(p2gµν − pµpν)Π(m2, p2)δAB ≡

∫
d4x eipx〈0|TJAµ (x)JBν (0)|0〉 , (4.3)

with the imaginary part in d = 4− 2ε dimensions given by

Im
[
Π(m2, p2)

]
= θ(p2−4m2) g2TF

(
p2

µ̃2

)−ε
23−2dπ(3−d)/2

Γ
(
d+1

2

) (
d−2+

4m2

p2

)(
1− 4m2

p2

)(d−3)/2

.

(4.4)

We note that the same method can be applied to account for any kind of secondary particles

by a corresponding choice of the polarization function Π. Eq. (4.2) allows us to express

the contribution to the SCET form factor due to the massive quark loops as

F
(CFTF , bare)
SCET (Q,m,Λ) = F

(OS,CFTF ,bare)
SCET (Q,m)

−
(

Π(m2, 0)− α
(nl)
s (µ)TF

3π

1

ε

)
F

(1, bare)
SCET (Q,m,Λ) , (4.5)

where the “on-shell” form factor is

F
(OS,CFTF ,bare)
SCET (Q,m) =

1

π

∫
dM2

M2
F

(1, bare)
SCET (Q,m,M) Im

[
Π(m2,M2)

]
. (4.6)

In eq. (4.5) Λ denotes the gluon mass acting as our IR regulator, which we distinguish

from the gluon mass M used in the dispersion integration. Since total bare quantities

are µ-independent, we do not add µ as an argument to the components of bare quantities

at a specific order. In F
(OS,bare)
SCET the massive quark contributions to the coupling are

renormalized with the onshell subtraction, i.e. F
(OS,bare)
SCET is given in the scheme with nl

dynamic flavors. In eq. (4.5) the second term accounts for the change to nl + 1 dynamic

flavors. The form factor itself is still unrenormalized, as indicated by the (bare) superscript.

We perform the MS renormalization for the SCET current using eq. (2.14). Incorporating

eqs. (4.5) and (2.14) into eq. (4.1) the result for C
(CFTF , nl)
m can be written as

C(CFTF , nl)
m

(
m,

Q

m
,µ
)

=F
(OS,CFTF ,bare)
SCET (Q,m) (4.7)

−
(

Π(m2, 0)− α
(nl)
s (µ)TF

3π

1

ε

)(
F

(1)
SCET(Q,m,Λ, µ)−Z(1)

SCET(Q,m, µ)
)

+Z
(CFTF )
SCET (Q,m, µ)−α

(nl)
s (µ)TF

3π
ln

(
m2

µ2

)
F

(1)
SCET(Q,m,Λ, µ) .
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F
(1)
n F

(1)
n̄F

(1)
s

p

p′

p

p′

p

p′

Z
(1,a)
ξ,m

Z
(1,b)
ξ,m

M

m

Figure 2. Non-vanishing EFT diagrams for the computation of the hard current at O(αs) with

primary massive quarks and secondary massive gluons with masses m and M , respectively. Soft-bin

subtractions are implied for the collinear diagrams.

Here the 1-loop form factor F
(1,bare)
SCET is a UV and IR divergent amplitude, and Z

(CFTF )
SCET is

the SCET current counterterm in the (nl + 1)-flavor scheme. Using the explicit form of

Π(m2, 0) in eq. (3.5) one can rewrite eq. (4.7) as

C(CFTF , nl)
m

(
m,

Q

m
,µ
)

= F
(OS,CFTF ,bare)
SCET (Q,m) + Z

(CFTF )
SCET (Q,m, µ) (4.8)

+

(
Π(m2, 0)− α

(nl)
s TF
3π

1

ε

)
Z

(1)
SCET(Q,m, µ) ,

where we see explicitly that the dependence on the IR regulator is canceled. Note that

we could have also carried out the computation employing the (nl + 1)-flavor scheme to

determine C
(CFTF ,nl+1)
m , which involves converting the bHQET form factor from the nl

to (nl + 1)-flavor scheme. In this case the cancellation of IR divergences occurs in a

different manner, and involves the O(αs) bHQET form factor. This approach is discussed

in appendix A.

Note that nothing in eq. (4.8) depends on the low energy bHQET theory. Therefore

the result applies equally well to the case where one integrates out the heavy quark loop

without approaching the jet invariant mass threshold st → m2 and matches onto a nl-flavor

SCET theory instead of bHQET. In this case the matching coefficient only contains the

contribution from the massive quark loop and receives corrections starting at O(α2
sCFTF ),

so switching between the nl and (nl+1)-flavor schemes only affects the corrections at O(α3
s)

and beyond. This is in close analogy to the case of primary massless quarks discussed in

detail in refs. [32, 33].

4.2 One-loop computation for secondary massive gluons

Having laid out the basic framework in the previous section we now start with calculating

the one loop SCET heavy quark form factors for a top-quark of mass m with a massive

gluon of mass M to be used in the dispersion relation. The complete unrenormalized SCET

result for the current form factor at O(αs) can be written as

F
(1,bare)
SCET (Q,m,M) = F

(1,bare)
SCET,m=0(Q,M) + F

(1,bare)
SCET (Q,m,M)− F (1,bare)

SCET,m=0(Q,M)︸ ︷︷ ︸
= δF

(1,bare)
SCET (m,M)

. (4.9)
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The correction with primary massless quarks F
(1,bare)
SCET,m=0 has been already calculated in

refs. [32, 35, 43–45] and reads in d = 4− 2ε dimensions

F
(1,bare)
SCET,m=0 =

αs(µ)CF
4π

{
2

ε2
+

3

ε
− 2

ε
LQ+(2LQ−3)LM−L2

M+
9

2
− 5π2

6
+O(ε)

}
, (4.10)

where LQ = ln (−Q
2−i0
µ2 ) and LM = ln (M

2

µ2 ). The corresponding one-loop counterterm in

MS reads

Z
(1)
SCET =

αs(µ)CF
4π

{
− 2

ε2
− 3

ε
+

2

ε
LQ

}
. (4.11)

Figure 2 illustrates the SCET graphs with massive gluons needed to compute F
(1,bare)
SCET . For

the first three graphs in figure 2 the form factor contributions are defined as prefactors to

the spinors, F
(1)
i ūn,pγ

µun̄,p′ for i = n, n̄, s and are computed using the SCET Feynman

rules for massive quarks given in ref. [36].

Due to the eikonal structure the result for the soft diagram, F
(1,bare)
s , is same as that

for primary massless quarks [here µ̃2 = µ2eγE/(4π)],

F (1,bare)
s = − 2ig2CF µ̃

2ε

∫
ddk

(2π)d
1

[k− + iε]

1

[k+ − iε]
1

[k2 −M2 + iε]
. (4.12)

For the n-collinear diagram we get

F (1,bare)
n = 2ig2CF µ̃

2ε

∫
ddk

(2π)d
Q− k−

[k2 −Qk+ − m2

Q k− + iε]

1

[k− + iε]

1

[k2 −M2 + iε]
. (4.13)

We can decompose this contribution into a correction corresponding to the diagram with

primary massless quarks, and a UV and IR-finite difference of terms which can be computed

in 4 dimensions,

F (1,bare)
n = F

(1,bare)
n,m=0 +

(
F (1,bare)
n − F (1,bare)

n,m=0

)
. (4.14)

After performing a contour integration in k+, carrying out the k⊥-integration and rescaling

the label momentum as k− ≡ zQ, the finite correction due to the mass of the primary

quark yields

F (1,bare)
n − F (1,bare)

n,m=0 (4.15)

= −αsCF
2π

Γ

(
2− d

2

)(
µ2eγE

M2

)2− d
2
∫ 1

0
dz

1− z
z

[(
1− z +

m2

M2
z2

) d
2
−2

− (1− z)
d
2
−2

]

=
αsCF

2π

[
ln

(
1 + a

2

)
ln

(
1− a

2

)
+

1 + a

1− a ln

(
1 + a

2

)
+

1− a
1 + a

ln

(
1− a

2

)
+ 1 +O(ε)

]
,

with

a =

√
1− 4m2

M2
. (4.16)
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In SCET loop graphs include soft 0-bin subtractions [46] which ensure that there is no

double counting of infrared regions. For the soft 0-bin subtraction of F
(1,bare)
n the depen-

dence on the primary quark mass drops out, and we obtain the same result as for primary

massless quarks, which is therefore fully contained in F
(1,bare)
n,m=0 . Note that the result in

eq. (4.15) does not contain any rapidity divergences, so that rapidity logarithms arise only

in the computation of F
(1)
n,m=0. This can be understood from the fact that the corrections

due to soft modes are the same for massless and massive primary quarks, so that the ra-

pidity divergences in the soft sector and, by consistency, also in the collinear sectors have

to agree in both cases.

The n̄-collinear diagram corresponds to switching k− and k+ in eq. (4.13). We perform

a decomposition analogous to eq. (4.14),

F
(1,bare)
n̄ = F

(1,bare)
n̄,m=0 +

(
F

(1,bare)
n̄ − F (1,bare)

n̄,m=0

)
. (4.17)

The difference correction due to the primary quark mass is again UV and IR-finite and

does not contain any rapidity divergences. Thus it yields for any choice of regulator the

same result as the n-collinear correction, i.e.

F
(1,bare)
n̄ − F (1,bare)

n̄,m=0 = F (1,bare)
n − F (1,bare)

n,m=0 . (4.18)

Finally, we also have to consider the wave function corrections. In analogy to the compu-

tation in ref. [14] we have

Σ(1) = 2ig2CF µ̃
2ε /n

2

∫
ddk

(2π)d
Qm2(3− ε)− (Q2k+ +Qp2 +m2k−)(1− ε)

Q2[k2 −M2 + iε][(k + p)2 −m2 + iε]
. (4.19)

Using p2 = m2 + ∆2 and decomposing the integrals into elementary one- and two-point

functions we obtain

Σ(1) = ig2CF µ̃
2ε /n

2

(1− ε)
Q(m2 + ∆2)

{[
A0(m2)−A0(M2)

]
[2m2 + ∆2]

+ B0(m2 + ∆2,M2,m2)

[
4m2(m2 + ∆2)

1− ε + 2m2M2 +M2∆2 −∆4

]}
, (4.20)

which uses the loop integrals

A0(m2) =

∫
ddk

(2π)d
1

[k2 −m2 + iε]
,

B0(p2,M2,m2) =

∫
ddk

(2π)d
1

[k2 −M2 + iε]

1

[(p− k)2 −m2 + iε]
. (4.21)

The wave function renormalization constant Z
(1)
ξ is defined by taking the on-shell limit

∆→ 0

Σ(1) ∆→0−→ i
/n

2

1

Q

[
2mδm

(OS,1)
M + ∆2 Z

(1)
ξ +O(∆4)

]
, (4.22)

where δm
(OS,1)
M is the one-loop renormalization constant for the quark mass m in the pole

mass scheme for the interaction with a massive gluon (with mass M). The wavefunction
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correction Z
(1)
ξ can be written in terms of the wavefunction correction for primary massless

quarks and a UV and IR finite remainder,

Z
(1)
ξ = Z

(1)
ξ,m=0 +

(
Z

(1)
ξ − Z

(1)
ξ,m=0

)
. (4.23)

The remainder contribution in d = 4 dimensions reads

Z
(1)
ξ − Z

(1)
ξ,m=0 =

αsCF
4π

3

2a(1− a2)2

[
2(1 + a)4(2− a) ln

(
1 + a

2

)
− 2(1− a)4(2 + a) ln

(
1− a

2

)
+ a

(
11− 14a2 + 3a4

)
+O(ε)

]
, (4.24)

where a was given above in eq. (4.16).

The complete finite correction at one-loop, which accounts for the mass of the primary

quark is given by the sum of the terms from eqs. (4.15) and (4.24),

δF
(1)
SCET(m,M) = 2

(
F (1,bare)
n − F (1,bare)

n,m=0

)
(m,M)−

(
Z

(1)
ξ − Z

(1)
ξ,m=0

)
(m,M) . (4.25)

This result will be used for our two-loop computation in the next section.

4.3 Two-loop computation for secondary massive quarks

In this section we use the one-loop results from section 4.2 to calculate the two-loop graph

with the massive quark loop, and to determine the CFTF contribution to Cm. First we

compute F
(OS,CFTF ,bare)
SCET via eq. (4.6) using the one-loop result in eq. (4.9). Again we

can decompose the two loop SCET form factor into a primary massless component and a

correction for primary massive top quarks:

F
(OS,CFTF ,bare)
SCET = F

(OS,CFTF ,bare)
SCET,m=0 + δF (CFTF )

m (4.26)

The calculation for primary massless quarks has already been performed in ref. [33]. We

display the result here for convenience:

F
(OS,CFTF ,bare)
SCET,m=0 =

(
α

(nl)
s (µ)

4π

)2

CFTF

{
2

ε3
+

1

ε2

[
8

3
L−4LQ+

8

9

]
+

1

ε

[
4

3
L2−

(
16

3
L+

16

9

)
LQ

+4L2
Q+4L− 65

27
−π

2

9

]
+

56

9
L2−

[
242

27
+

4π2

9

]
L− 8

3
L3
Q+

[
16

3
L+

16

9

]
L2
Q

−
[

8

3
L2+8L− 130

27
− 2π2

9

]
LQ+

875

54
+

8π2

9
− 20ζ3

3

}
. (4.27)

The contribution from the two-loop MS counterterm is known from the massless quark

case and reads

Z
(CFTF )
SCET =

(
α

(nl+1)
s (µ)

4π

)2

CFTF

{
− 2

ε3
+

1

ε2

[
4

3
LQ−

8

9

]
+

1

ε

[
− 20

9
LQ+

65

27
+
π2

3

]}
, (4.28)

where L and LQ are defined in eq. (3.1). The 1/εn divergences in eqs. (4.27) and (4.28)

differ, and are reconciled only once we account for the additional scheme change correction
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in the last term of eq. (4.5). The δF
(CFTF )
m term can be computed by inserting the one-loop

massive gluon correction term of eq. (4.25) into the dispersive integral (4.6) which can be

performed in four dimensions. The result reads

δF (CFTF )
m =

(
α

(nl)
s (µ)

4π

)2

CFTF

{
1241

81
− 56π2

27
+

16

3
ζ3

}
. (4.29)

Thus the only modification in the massive quark loop contributions to the form factor

for primary massive quarks with respect to primary massless quarks is a simple constant

term. In particular no additional rapidity logarithm ∼ ln(Q2/m2) appears, which can

be again traced back to the universality of the soft corrections for massless and massive

primary quarks.

Assembling all the pieces above in eq. (4.8) we get the following result for C
(CFTF , nl)
m :

C(CFTF , nl)
m

(
m,

Q

m
,µ
)

=

(
α

(nl)
s (µ)

4π

)2

CFTF

{
− 8

9
L3
m−

2

9
L2
m+

(
130

27
+

2π2

3

)
Lm (4.30)

−
(

4

3
L2
m+

40

9
Lm+

112

27

)
ln

(−Q2−i0
m2

)
+

5107

162
− 41π2

27
− 4ζ3

9

}
,

which matches exactly with the CFTF result we obtained above in eq. (3.7). In the next

section we decompose the SCET form factor result into soft and collinear pieces in order

to find the terms needed for the rapidity RGE analysis.

4.4 Two loop ingredients for the rapidity renormalization group

In order to determine the ingredients needed for the rapidity renormalization group anal-

ysis, we now calculate the O(α2
sCFTF ) SCET form factor contributions for the individ-

ual collinear and soft sectors using dispersion relations. We will employ the symmetric

η-regulator [34, 35] to regulate the rapidity divergences in the individual sectors. This

corresponds to modifying the Wilson lines in the respective sectors according to

Wn :
1

n̄ · P →
w2(ν) νη

(n̄ · P)1+η
, Sn :

1

n · P →
1

n · P
w(ν) νη/2

|n̄ · P−n · P|η/2 , (4.31)

and similarly for Wn̄ and Sn̄. Here Pµ denotes the label momentum operator and w(ν) is

a dimensionless book keeping coupling parameter satisfying

ν
d

dν
w(ν) = −η

2
w(ν) , lim

η→0
w(ν) = 1 . (4.32)

The one-loop form factor corrections for the radiation of a massive gluon have been already

calculated in ref. [35] for massless quarks. Including the modification due to the quark mass
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in eq. (4.25) they read after expanding in η

F
(1,bare)
SCET, n = F

(1,bare)
SCET, n̄ (4.33)

=
α

(nl+1)
s (µ)w2(ν)CF

4π
Γ(ε)eγEε

(
µ2

M2

)ε{2

η
+ln

(
ν2

Q2

)
+2ψ(2− ε)+2γE−

1−ε
2−ε

}
+
δF

(1)
SCET(m,M)

2
,

F
(1,bare)
SCET, s =

α
(nl+1)
s (µ)w2(ν)CF

4π
Γ(ε)eγEε

(
µ2

M2

)ε{
−4

η
−2 ln

(
ν2

−M2+i0

)
−2ψ(ε)−2γE

}
.

In the collinear results we have included the wave function contributions Zξn/2 and Zξn̄/2.

The soft-bin subtractions in the collinear diagrams vanish for the η-regulator.

In direct analogy to eq. (4.5) the corresponding two-loop expressions for the individual

soft and collinear sectors read

F
(CFTF ,bare)
SCET, i (Q,m) =

1

π

∫
dM2

M2
F

(1,bare)
SCET, i (Q,m,M) Im

[
Π(m2,M2)

]
−
(

Π(m2, 0)− αsTF
3π

1

ε

)
F

(1,bare)
SCET, i (Q,m,Λ) . (4.34)

for i = n, n̄, s. Note that for this relation to make sense also the one-loop form factor

corrections with a massless gluon have to be decomposed according to eq. (2.21). To

achieve this goal we use a gluon mass Λ � m as an infrared regulator which allows us to

use the results in eq. (4.33). As discussed in section 2, we absorb all divergences of the

form 1/η, η0/εn in the form factors into separate counterterms Z
(CFTF )
SCET, i for each sector, so

that

F
(1)
SCET, i = F

(1, bare)
SCET, i + Z

(1)
SCET, i , F

(CFTF )
SCET, i = F

(CFTF , bare)
SCET, i + Z

(CFTF )
SCET, i . (4.35)

The explicit results for the counterterms at one-loop are given by5

Z
(1)
SCET, n(Q,m,Λ, µ, ν)=Z

(1)
SCET, n̄(Q,m,Λ, µ, ν) , (4.36)

=
α

(nl+1)
s (µ)w2(ν)CF

4π

{
1

η

[
−2

ε
+2 ln

(
Λ2

µ2

)]
+

1

ε

[
−3

2
−ln

(
ν2

Q2

)]}
Z

(1)
SCET, s(Q,m,Λ, µ, ν)=

α
(nl+1)
s (µ)w2(ν)CF

4π

{
1

η

[
4

ε
−4 ln

(
Λ2

µ2

)]
− 2

ε2
+

2

ε
ln

(
ν2

−µ2+i0

)}
,

5Although the full ε-dependence in the expression proportional to 1/η should be in principle kept unex-

panded, this is only relevant to ensure that the coefficient of the 1/η pole is explicitly µ-independent, which

is also true order by order in its ε expansion. Therefore we show here only the terms up to O(ε0) which

contain the information we need later for the anomalous dimensions.
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while at two-loop they read

Z
(CFTF )
SCET, n(Q,m,Λ, µ, ν) = Z

(CFTF )
SCET, n̄(Q,m,Λ, µ, ν)

=

[
α

(nl+1)
s (µ)

]2
w2(ν)CFTF

16π2

{
1

η

[
− 4

3ε2
+

20

9ε
+

8

3
Lm ln

(
Λ2

µ2

)
− 4

3
L2
m−

40

9
Lm−

112

27
+O(ε)

]
+

1

ε2

[
−2

3
ln

(
ν2

Q2

)
−1

]
+

1

ε

[
10

9
ln

(
ν2

Q2

)
+

1

6
+

2π2

9

]}
,

Z
(CFTF )
SCET, s(Q,m,Λ, µ, ν)

=

[
α

(nl+1)
s (µ)

]2
w2(ν)CFTF

16π2

{
1

η

[
8

3ε2
− 40

9ε
− 16

3
Lm ln

(
Λ2

µ2

)
+

8

3
L2
m+

80

9
Lm+

224

27
+O(ε)

]
− 2

ε3
+

1

ε2

[
4

3
ln

(
ν2

−µ2+i0

)
+

10

9

]
+

1

ε

[
−20

9
ln

(
ν2

−µ2+i0

)
+

56

27
−π

2

9

]}
. (4.37)

Note that the sum Z
(CFTF )
SCET, n + Z

(CFTF )
SCET, n̄ + Z

(CFTF )
SCET, s reproduces the result for the SCET

current counterterm Z
(CFTF )
SCET in eq. (4.28). These results for the individual collinear and

soft counterterms provide the necessary ingredients for determining the rapidity RGE for

the collinear and soft sectors below in section 5.1.

5 Rapidity evolution and numerical results

5.1 Rapidity renormalization group evolution

In our result for the matching coefficient between bHQET and SCET at O(α2
s), given

above in eq. (3.8), we encountered a large logarithm α2
sCFTF ln(m2/Q2). We discussed the

setup for the resummation of such logarithms above in section 2. As shown in section 4

these rapidity logarithms are only related to contributions of the virtual massive quarks

that appear in the gluon vacuum polarization, and hence are the same as in the threshold

corrections for massless primary quarks in ref. [33]. There it was anticipated that they

can be resummed by exponentiation, as is common for these kinds of logarithms. For

example, for the radiation of a massive gauge boson the rapidity renormalization group

implies that this exponentiation occurs to all orders in perturbation theory [32, 35, 43, 44].

The difference in our case is that the rapidity logarithms start at two-loops, and hence

involve the additional issue of one-loop induced corrections due to the scheme change in

the coupling constant.

Here we will show explicitly how to treat the rapidity logarithms at O(α2
sCFTF ) in a

rapidity renormalization group framework, and subsequently demonstrate that they indeed

exponentiate. We start from eq. (2.24). Up to O(α2
s) we only have a contribution from the

CFTF dependent terms,

γCmν, i (m,µ) = ν
d

dν
lnZSCET,i − ν

d

dν
lnZbHQET,i

= ν
d

dν
Z

(CFTF )
SCET,i −

α
(nl)
s (µ)TF

3π
ln

(
m2

µ2

)
ν

d

dν
Z

(1)
SCET, i +O(α3

s) , (5.1)
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where the second term accounts for coupling conversion from the (nl+1)-flavor to nl-flavor

scheme. As before, in the nl-flavor scheme the bHQET graphs give no contribution. The

results from section 4.4 can now be used to compute this ν-anomalous dimension. Using

eq. (4.36) we can calculate the one-loop correction,

ν
d

dν
Z

(1)
SCET, n = ν

d

dν
Z

(1)
SCET, n̄ = −1

2
ν

d

dν
Z

(1)
SCET, s = −α

(nl+1)
s (µ)CF

2π
ln

(
Λ2

µ2

)
, (5.2)

which exhibits dependence on the infrared gluon-mass regulator Λ. The two-loop term

above can be calculated using eq. (4.37) which gives

ν
d

dν
Z

(CFTF )
SCET, n = ν

d

dν
Z

(CFTF )
SCET, n̄ = −1

2
ν

d

dν
Z

(CFTF )
SCET, s

=
[α

(nl+1)
s (µ)]2CFTF

16π2

{
−8

3
Lm ln

(
Λ2

µ2

)
+

4

3
L2
m +

40

9
Lm +

112

27

}
, (5.3)

where Lm is defined in eq. (3.1). Together these results determine the ν-anomalous dimen-

sions:

γCm, CFTFν, n (m,µ) = γCm, CFTFν, n̄ (m,µ) = −1

2
γCm, CFTFν, s (m,µ)

=
[αs(µ)]2CFTF

16π2

{
4

3
L2
m +

40

9
Lm +

112

27

}
. (5.4)

Note that the IR regulator has canceled out, and that here the coupling [αs(µ)]2 can

be taken in either the nl or (nl + 1)-flavor scheme since the anomalous dimension starts

at O(α2
s) and the difference is higher order. This result suffices for solving the ν-RGE

equations at NNLL order. Using eq. (2.22) and eq. (2.23) we can write an analog of

eq. (2.7) for the ν-evolution of Hm. From eq. (2.22) we have

H(nl)
m

(
m,

Q

m
,µ

)
= H(nl)

m,n

(
m,µ,

ν

Q

)
H

(nl)
m, n̄

(
m,µ,

ν

Q

)
H(nl)
m, s

(
m,µ,

ν

m

)
. (5.5)

With rapidity evolution this becomes

H(nl)
m

(
m,

Q

m
,µ; νQ, νm

)
(5.6)

= H(nl)
m,n

(
m,µ,

νQ
Q

)
H

(nl)
m, n̄

(
m,µ,

νQ
Q

)
VRRG(νQ, νm, µ)H(nl)

m, s

(
m,µ,

νm
m

)
,

where on the l.h.s. the dependence on νQ and νm comes from truncating the resummed

perturbation theory for objects on the r.h.s. . Here the functions H
(nl)
m,n = H

(nl)
m,n̄ and H

(nl)
m,s
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are given up to O(α2
s) by

H(nl)
m,n

(
m,µ,

νQ
Q

)
= 1 +

α
(nl)
s (µ)CF

4π

(
L2
m − Lm + 4 +

π2

6

)
+

(
α

(nl)
s (µ)

4π

)2

C2
F

{
1

2
L4
m − L3

m +

(
9

2
+
π2

6

)
L2
m −

(
11

2
− 11π2

6
+ 24ζ3

)
Lm

+
241

8
+

13π2

3
− 8π2 log 2− 6ζ3 −

163π4

360

}
+

(
α

(nl)
s (µ)

4π

)2

CACF

{
− 11

9
L3
m +

(
167

18
− π2

3

)
L2
m −

(
1165

54
+

28π2

9
− 30ζ3

)
Lm

+
12877

648
+

323π2

108
+ 4π2 log 2 +

89ζ3

9
− 47π4

180

}
+

(
α

(nl)
s (µ)

4π

)2

CFnlTF

{
4

9
L3
m −

26

9
L2
m +

(
154

27
+

8π2

9

)
Lm −

1541

162
− 37π2

27
− 52ζ3

9

}
+

(
α

(nl)
s (µ)

4π

)2

CFTF

{
2L2

m +

(
2

3
+

8π2

9

)
Lm +

3139

162
− 4π2

3
+

8ζ3

3

+

(
4

3
L2
m +

40

9
Lm +

112

27

)
ln

(
ν2
Q

Q2

)}
, (5.7)

H(nl)
m,s

(
m,µ,

νm
m

)
= 1 +

(
α

(nl)
s (µ)

4π

)2

CFTF

{
8

9
L3
m +

40

9
L2
m +

(
448

27
− 4π2

9

)
Lm

+
656

27
− 10π2

27
− 56ζ3

9
−
(

8

3
L2
m +

80

9
Lm +

224

27

)
ln

(
ν2
m

µ2

)}
, (5.8)

and contain no large logarithms for µ ' m, and for νQ ' Q and νm ' m, respectively. The

evolution factor VRRG sums the rapidity logs between νm and νQ, and is defined as follows

VRRG(νf , νi, µ) = exp

{∫ ln νf

ln νi

d ln ν
[
γCmν, s + (γCmν, s )∗

]}
. (5.9)

The general result for VRRG, and the result at NNLL, will be given below.

Similarly to the ν-anomalous dimensions, we can also determine individual µ-anoma-

lous dimensions for the collinear and soft sectors, i = n, s, n̄,

γCmµ, i = µ
d

dµ
lnZSCET, i − µ

d

dµ
lnZbHQET, i . (5.10)

Repeating the steps below eq. (5.1) we find

γCm,CFTFµ, n

(
m,µ,

ν

Q

)
=

[α
(nl)
s (µ)]2CFTF

16π2

{
−
(

8

3
Lm +

40

9

)
ln

(
ν2

Q2

)
− 4Lm −

2

3
− 8π2

9

}
= γ

Cm(CFTF )
µ, n̄

(
m,µ,

ν

Q

)
, (5.11)

γCm,CFTFµ, s

(
m,µ,

ν

m

)
=

[α
(nl)
s (µ)]2CFTF

16π2

{(
16

3
Lm +

80

9

)
ln

(
ν2

−µ2 + i0

)
− 224

27
+

4π2

9

}
,
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whose sum yields the same result for the O(α2
sCFTF ) µ-anomalous dimension of C

(nl)
m as

the difference of eqs. (2.19) and (2.17),

γCm, CFTFµ, n

(
m,µ,

ν

Q

)
+ γCm, CFTFµ, n̄

(
m,µ,

ν

Q

)
+ γCm, CFTFµ, s

(
m,µ,

ν

m

)
=

[
α

(nl)
s (µ)

]2
CFTF

16π2

{(
16

3
Lm +

80

9

)
LQ − 8Lm −

260

27
− 4π2

3

}
=
[
γ

(nl+1)
SCET − γ

(nl)
bHQET

](CFTF )
= γCm,CFTFµ (Q,m, µ) , (5.12)

with Lm and LQ defined in eq. (3.1).

Eqs. (2.7) and (5.6) together include the evolution connected to Hm in the 2-dimensio-

nal µ-ν plane, including that from invariant mass scales µm to µQ, that from invariant mass

scales µm to µfinal, and that from rapidity scales νQ to νm. As demonstrated in ref. [35]

the combined µ-ν evolution can be performed along any path and the path independence

implies the consistency equation:

µ
d

dµ
γCmν, i =

(
∂

∂µ
+ β(g)

∂

∂g

)
γCmν, i = ν

d

dν
γCmµ, i . (5.13)

However, similar to the example of the massive Sudakov form factor considered in ref. [35]

we can see from eq. (5.4) that γCmν, s contains potentially large logarithms ln(µ/m) for an

arbitrary path in µ-ν-space. This is resolved by a prior resummation exploiting the fact

that the derivatives in eq. (5.13) are proportional to the cusp anomalous dimension. Since

Cm is a matching coefficient between a (nl + 1)-flavor and nl-flavor theory, we can express

eq. (5.13) in terms of the difference between the cusp anomalous dimensions Γcusp[αs] in

the (nl + 1) and nl-flavor schemes. So for γCmν,s we obtain

µ
d

dµ
γCmν, s = ν

d

dν
γCmµ, s = −2

(
Γcusp[α(nl+1)

s ]− Γcusp[α(nl)
s ]

)
=
α2
sCFTF
16π2

(
32

3
Lm +

160

9

)
+O(α3

s) , (5.14)

which can be checked using the explicit perturbative expression of Γcusp[αs] up to two

loops,

Γcusp[α
(nf )
s ] =

α
(nf )
s

4π
4CF +

(
α

(nf )
s

4π

)2

4CF

[(
67

9
− π2

3

)
CA −

20nf
9

TF

]
+O(α3

s) . (5.15)

Integrating eq. (5.14) in µ we obtain the resummed result for γCmν, s ,

γCmν, s (m,µ) = −2

∫ lnµ

lnm
d lnµ′

(
Γcusp[α(nl+1)

s (µ′)]− Γcusp[α(nl)
s (µ′)]

)
+ γCmν,s (m,m)

= −
(
ω(nl+1)(µ,m)− ω(nl)(µ,m)

)
+ γCmν,s (m,m) . (5.16)

Here the integration constant γCmν,s (m,m) is the correction in the anomalous dimension γCmν,s
that does not multiply a logarithm ln(µ2/m2). We are now in the position to write down
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a general expression for VRRG. Using eq. (5.9) we find the all orders result

VRRG(νQ, νm, µ) = exp

{[
ω(nl+1)(µ,m)− ω(nl)(µ,m)− γCmν,s (m,m)

]
ln

(
ν2
m

ν2
Q

)}
. (5.17)

At NNLL order with the counting αs(µ)ln(νm/νQ) ∼ 1, we can expand this exponential to

the first non-trivial order. At the order we are working

γCmν,s (m,m) = −
[
α

(nl+1)
s (m)

]2
CFTF

16π2

224

27
+O(α3

s) , (5.18)

as can be seen from eq. (5.4), where we have for definiteness employed the (nl + 1)-flavor

scheme. The evolution function ω at NNLL accuracy reads

ω(nf )(µ, µ0) = −Γ0

β0

{
ln r +

(
Γ1

Γ0
− β1

β0

)
α

(nf )
s (µ0)

4π
(r−1) (5.19)

+

(
Γ2

Γ0
− β1Γ1

β0Γ0
− β2

β0
+
β2

1

β2
0

)[
α

(nf )
s (µ0)

]2
32π2

(r2−1)

}
,

where r = α
(nf )
s (µ)/α

(nf )
s (µ0) and the coefficients βi and Γi are evaluated with nf flavors.

To extend the analysis to N3LL resummation, one needs the result for the ν-anomalous

dimension γCmν,s (m,m) at O(α3
s), which can be inferred from the coefficient of the rapidity

logarithm appearing in a related DIS calculation [47] due to consistency (see ref. [48]).

5.2 Numerical results

In this section we explore the impact of the two-loop correction to the hard function Hm on

the differential cross section and the corresponding improvement to the perturbative uncer-

tainties. To do this we examine the evolved hard function Hevol(Q,m, µfinal;µQ, µm, νQ, νm)

from eq. (2.7). This function fully captures the multiplicative contributions for the differ-

ential cross section factorization theorem in eq. (1.2), including the matching at µQ ' Q

in H
(nl+1)
Q , the RG evolution from µQ down to µm ' m in U

(nl+1)
HQ

, the matching at µm

encoded in Hm, and through U
(nl)
v the RG evolution from µm down to a scale µfinal where

the soft and jet functions are evaluated.6 Since the ingredient that has not been previ-

ously analyzed is Hm we focus our numerical study on the impact of this function and the

associated reduction in the resulting µm dependence. For H
(nl)
m (m,Q/m,µm; νQ, νm) we

employ eq. (5.6), which provides a decomposition of this function into collinear and soft

components, H
(nl)
m,i with i = n, n̄, s, plus a kernel VRRG which carries out the RG evolution

in rapidity from νQ ' Q to νm ' m.

We begin by converting the result for the collinear and soft components H
(nl)
m,i in

eqs. (5.7) and (5.8) from the pole-mass scheme to the MS mass scheme with nl+1 dynamic

6The soft or jet functions also contain an additional evolution which is not purely multiplicative [13].

This evolution affects the shape of the dσ/dstdst̄ distribution and was evaluated up to NNLL′ order in

ref. [16].
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flavors via

mpole = m̄(nl+1)(µ)

(
1− α

(nl+1)
s (µ)CF

4π

(
3Lm − 4

))
+O(α2

s) . (5.20)

The MS scheme is an appropriate renormalon-free short distance mass scheme to be em-

ployed in the hard function Hm. For consistency we also convert the results in eqs. (5.7)

and (5.8) to the (nl + 1)-flavor scheme for the strong coupling. Together this yields up to

O(α2
s)

H
(nl+1)
m̄,n

(
m̄, µ,

νQ
Q

)
= 1+

α
(nl+1)
s (µ)CF

4π

(
L2
m̄−Lm̄+4+

π2

6

)
+

(
α

(nl+1)
s (µ)

4π

)2

C2
F

{
1

2
L4
m̄−L3

m̄−
(

15

2
−π

2

6

)
L2
m̄+

(
33

2
+

11π2

6
−24ζ3

)
Lm̄

+
177

8
+

13π2

3
−8π2 log 2−6ζ3−

163π4

360

}
+

(
α

(nl+1)
s (µ)

4π

)2

CACF

{
− 11

9
L3
m̄+

(
167

18
−π

2

3

)
L2
m̄−

(
1165

54
+

28π2

9
−30ζ3

)
Lm̄

+
12877

648
+

323π2

108
+4π2 log 2+

89ζ3

9
− 47π4

180

}
+

(
α

(nl+1)
s (µ)

4π

)2

CFnlTF

{
4

9
L3
m̄−

26

9
L2
m̄+

(
154

27
+

8π2

9

)
Lm̄−

1541

162
− 37π2

27
− 52ζ3

9

}
+

(
α

(nl+1)
s (µ)

4π

)2

CFTF

{
4

3
L3
m̄+

2

3
L2
m̄+

(
6+

10π2

9

)
Lm̄+

3139

162
− 4π2

3
+

8ζ3

3

+

(
4

3
L2
m̄+

40

9
Lm̄+

112

27

)
ln

(
ν2
Q

Q2

)}
=H

(nl+1)
m̄,n̄

(
m̄, µ,

νQ
Q

)
, (5.21)

H
(nl+1)
m̄,s

(
m̄, µ,

νm
m

)
= 1+

(
α

(nl+1)
s (µ)

4π

)2

CFTF

{
8

9
L3
m̄+

40

9
L2
m̄+

(
448

27
− 4π2

9

)
Lm̄

+
656

27
− 10π2

27
− 56ζ3

9
−
(

8

3
L2
m̄+

80

9
Lm̄+

224

27

)
ln

(
ν2
m

µ2

)}
, (5.22)

where Lm̄ = ln(m̄2/µ2) and m̄ = m̄(nl+1)(µ) is the MS mass for nl + 1 active flavors. For

the bHQET evolution function U
(nl)
v , when using the MS mass scheme, we expand the pole

mass appearing in the anomalous dimension in eq. (2.19) in terms of m̄t(m̄t) to obtain

γbHQET

(Q
m̄
, µ
)

=
α

(nl)
s (µ)CF

4π

[
− 4L+ 4

]
+

(
α

(nl)
s (µ)

4π

)2{
nlCFTF

[
80

9
L̄− 80

9

]
+ CFCA

[
−
(

268

9
− 4π2

3

)
L̄+

196

9
− 4π2

3
+ 8ζ3

]}
+

32α
(nl)
s (µ)α

(nl)
s (m̄)C2

F

(4π)2
+O(α3

s) , (5.23)

where L̄ = ln[(−Q2−i0)/m̄2]. For the ν-anomalous dimensions the MS results are obtained

by the simple replacement m → m̄, since they start at two-loops. For our central results

below we use µm = νm = m̄t and µQ = νQ = Q.
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Figure 3. Upper panels: plots of the residual dependence on the matching scale µm for the

unnormalized (left) and normalized (right) evolved hard function Hevol at three different orders in

the evolution, using the MS mass. Lower left panel: comparison of the scale dependence at NNLL′

for the MS mass and the pole mass. Lower right panel: impact of varying the ratio of rapidity

scales νQ/νm by a factor of two at NNLL′ as a function of µm, with the MS mass.

For our numerical analysis of Hevol we employ scale choices that are appropriate to the

peak region of the differential cross section within bHQET. We fix Q = µQ = 1 TeV, which

is a possible c.m. energy for a future linear collider, and µfinal = 5 GeV corresponding to

the scale of the soft radiation. We do not vary these two scales here since their impact

and associated uncertainties have been analyzed elsewhere [14]. They matter only for the

overall normalization and thus cancel in the normalized spectrum. In addition we use the

MS mass m̄t(m̄t) = 163 GeV or pole mass mt = 171.8 GeV using the two-loop conversion,

and α
(5)
s (mZ) = 0.114 [23, 49] and using two-loop conversion at µ = m̄t to obtain α

(6)
s (µ).

For results with RG evolution that sums large logarithms we use the so called primed

counting, i.e. our results at NLL′ and NNLL′ include NLL and NNLL evolution kernels

together with the hard function boundary conditions at O(αs) and O(α2
s), respectively.7

For the rapidity evolution we use the expression in eq. (5.17), and the default rapidity

scales νQ = Q and νm = mt, where mt is either the MS mass m̄t(m̄t) or the pole mass.

To determine the impact on the normalization we first note that the two-loop fixed

order corrections to H
(nl+1)
m̄ turn out to be small, giving at the central scale µm = m̄t(m̄t)

a 2% correction and the fixed-order series

H
(nl+1)
m̄

(
m̄t,

Q

m̄t
, µm = m̄t

)
= 1 + 0.126(1-loop) + 0.015(2-loop) = 1.141 . (5.24)

7Going from NNLL′ to an even higher order in the resummation, N3LL, does not affect any of the

conclusions in this section, and therefore, for convenience, we carry out our numerical analysis at NNLL′.
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In the top-left panel of figure 3 we display the evolved hard function Hevol at the first three

orders in resummed perturbation theory for values of µm in the range m̄t/2 < µm < 2m̄t.

We use the MS mass scheme and the expressions for H
(nl+1)
m̄,n , H

(nl+1)
m̄,n̄ and H

(nl+1)
m̄,s from

eqs. (5.21) and (5.22). As already observed in ref. [14], there is a significant correction

when going from LL to NLL′ order which more than doubles Hevol. From NLL′ to NNLL′

we observe that the correction is notably smaller, indicating that the series has stabilized.

Although the magnitude of these corrections is not captured by the µm variation, it is of the

size expected from studying the uncertainty associated to the µfinal variation. The complete

study of the µfinal variation requires including the jet and soft functions, which cancel the

µfinal dependence of Hevol to the order one is working. We leave this for future work rather

than taking it up here. We observe that the µm dependence significantly decreases as we

go to higher order. This behavior is shown best in the top-right panel of figure 3, where the

same curves are plotted, but now normalized to Hevol(µm = m̄t) at the respective order.

The two-loop result for the hard function H
(nl+1)
m̄ plays a key role in this reduction of the

scale dependence at NNLL′. Note that the size of the µm variation of the blue dashed

curve at 2% correlates well with the size of the NNLO fixed order correction in eq. (5.24),

which gives a +2% correction. Therefore it is reasonable to take the µm variation of the

solid red curve in this figure as an estimate of the O(α3
s) correction in eq. (5.24), which we

take to be ±0.2%.

In the lower-left panel of figure 3 we compare the dependence on µm at NNLL′ for the

MS mass with the corresponding result for the pole mass. In the pole mass case we employ

eqs. (5.7) and (5.8) for H
(nl)
m,n , H

(nl)
m,n̄ and H

(nl)
m,s . We see that the pole mass exhibits a larger

sensitivity to the renormalization scale µm implying a slightly slower convergence of the

perturbative series, potentially related to IR renormalon effects.

Finally, we can analyze the impact of the terms related to rapidity logarithms. For

µm = m̄t(m̄t), these terms yield a numerical contribution of −0.0014 in the fixed-order

full hard function H
(nl+1)
m̄ (m̄t, Q/m̄t, µm = m̄t) in eq. (5.24). Due to a relatively small

coefficient, they do not give a significant correction in comparison with the remaining two-

loop contributions which give a numerical correction of 0.0166. Therefore, we anticipate

the dependence on the rapidity scales νQ and νm to be rather mild. In the lower-right panel

of figure 3 we plot Hevol at NNLL′ for the MS mass as a function of µm, but now with three

choices for νQ/νm. To obtain these results we varied νQ up and down by a factor of two,

but we note that equivalent results are obtained by instead varying νm by a factor of two.

We see that varying νQ/νm by a factor of 2 gives a negligible effect compared to the residual

µm dependence at this order. Therefore, we conclude that including an uncertainty from

ν-variation is not necessary to obtain an estimate of the overall perturbative uncertainty

of the cross section.

6 Conclusions

In the context of EFT factorization for boosted top quark production, we have extracted the

hard function Hm = |Cm|2 describing virtual fluctuations at the top-mass scale, completely

at two-loop order using earlier results from refs. [30, 31]. This result provides the last
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missing ingredient needed to make N3LL resummed predictions (up to the 4-loop cusp

anomalous dimension) for the invariant mass distribution of top-jets in the peak region

using the factorization theorem of refs. [13, 14] given in eq. (1.2). Particular focus was

given to the contributions to Hm from heavy quark loops, which induce terms with a large

logarithm α2
sCFTF ln(Q2/m2) that can not be treated with standard RG evolution in µ.

These terms were computed once more directly using collinear and soft matrix elements

in SCET, and we have shown how they can be factorized using a rapidity cutoff ν, and

RG evolved using rapidity renormalization group equations. Interestingly, this factorization

and RG evolution occurs within the Wilson coefficient Cm and hence at the amplitude level.

Using our result for Hm we have assessed the remaining perturbative uncertainty associated

to the top-mass scale, µm ' m, and estimate it to be very small, ±0.2%, predicting that

the two-loop result for Hm provides a very accurate result for this function. The total

normalization uncertainty in the differential cross section is expected to now be dominated

by that from O(α3
s) perturbative corrections to the low-scale soft and jet functions, which

could be estimated by a dedicated study of the residual µfinal dependence at NNLL′ order.
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A Direct calculation of Cm in the (nl + 1)-flavor scheme

In section 4 we directly computed the O(α2
sCFTF ) massive quark correction to C

(nl)
m by

using form factors in the nl-flavor scheme. Since this coefficient lives at the border between

the (nl+1) and nl-flavor theories, we could just as well have carried out the calculation for

Cm by using form factors in the (nl + 1)-flavor scheme, and then converted to an nl-flavor

coupling at the very end. Of course the same result is obtained in this approach, but there

are a few subtle differences in the calculation, which we discuss here.

In particular, in section 4 we noted that for the O(α2
sCFTF ) correction in the nl-

flavor scheme, the bHQET graphs give no contribution. However, using the (nl + 1)-flavor

scheme for the strong coupling this is no longer the case. To see this, consider the ratio

in eq. (2.13) and express the denominator in the (nl + 1)-flavor scheme by inverting the

decoupling relation given in eq. (3.4):

α(nl)
s (µ) = α(nl+1)

s (µ)

[
1 +

α
(nl+1)
s (µ)TF

3π
ln

(
m2

µ2

)]
. (A.1)
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Expanding in αs and using the notation in eq. (2.5) we then get

C(CFTF , nl+1)
m

(
m,

Q

m
,µ
)

=

[
F

(CFTF , nl+1)
SCET (Q,m,Λ, µ) (A.2)

− α
(nl+1)
s (µ)TF

3π
ln

(
m2

µ2

)
F

(1,nl)
bHQET

(Q
m
,Λ, µ

)]
α

(nl)
s →α(nl+1)

s

.

Here the second term comes from converting the strong coupling constant to (nl+1)-flavors

in the one-loop bHQET graph. Below we drop the flavors superscript on the form factors.

Here it should be understood that all the terms are now expressed in the (nl + 1)-flavor

scheme. Then combining eq. (A.2) and eq. (4.5), and eq. (2.14) we get

C(CFTF , nl+1)
m

(
m,

Q

m
,µ
)

= F
(OS,CFTF ,bare)
SCET (Q,m) (A.3)

−
(

Π(m2, 0)− α
(nl+1)
s (µ)TF

3π

1

ε

)
F

(1,bare)
SCET

(Q
m
,Λ
)

+ Z
(CFTF )
SCET (Q,µ)− α

(nl+1)
s (µ)TF

3π
ln

(
m2

µ2

)
F

(1)
bHQET

(Q
m
,Λ, µ

)
.

Note that both F
(1,bare)
SCET and F

(1)
bHQET are IR divergent. This result can be simplified by

noting that in any flavor scheme the one-loop C
(1)
m is given by the difference of one-loop

renormalized SCET and bHQET amplitudes:

C(1)
m

(
m,

Q

m
,µ
)

= F
(1)
SCET(Q,m,Λ, µ)− F (1)

bHQET

(Q
m
,Λ, µ

)
. (A.4)

Using eq. (A.4) in eq. (A.3) we can then write down a simpler expression for C
(CFTF ,nl+1)
m :

C(CFTF , nl+1)
m = F

(OS,CFTF ,bare)
SCET (Q,m) + Z

(CFTF )
SCET (Q,µ)

−
(

Π(m2, 0)− α
(nl+1)
s (µ)TF

3π

1

ε

)(
F

(1)
SCET(Q,m,Λ, µ)− Z(1)

SCET(Q,µ)
)

− α
(nl+1)
s (µ)TF

3π
ln

(
m2

µ2

)
F

(1)
bHQET

(Q
m
,Λ, µ

)
= F

(OS,CFTF ,bare)
SCET (Q,m) + Z

(CFTF )
SCET (Q,µ)

+

(
Π(m2, 0)− α

(nl+1)
s (µ)TF

3π

1

ε

)
Z

(1)
SCET(Q,µ)

+
α

(nl+1)
s (µ)TF

3π
ln

(
m2

µ2

)
C(1)
m

(
m,

Q

m
,µ
)
. (A.5)

This result can be used to compute C
(CFTF , nl+1)
m . Comparing it with eq. (4.8) we see that

it can be rewritten as

C(CFTF , nl+1)
m = C(CFTF , nl)

m +
α

(nl+1)
s (µ)TF

3π
ln

(
m2

µ2

)
C(1)
m , (A.6)
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and hence is fully consistent with determining C
(CFTF ,nl+1)
m from eq. (4.8) and then simply

applying the coupling conversion in eq. (A.1) in the result. Note that in this (nl + 1)-flavor

scheme approach the bHQET one-loop amplitude contributes and plays an important role

in obtaining the scheme conversion term involving C
(1)
m in the last line of eq. (A.6).

B bHQET current anomalous dimension at O(α3
s)

To extent the resummation of large logarithms in the factorization theorem in eq. (1.2)

from NNLL to N3LL the only missing ingredient — besides the cusp anomalous dimension

at four-loops — is the O(α3
s) noncusp anomalous dimension of the bHQET jet function

or equivalently of the bHQET current (which are related to each other via eq. (2.18) with

the known three loop result for γS). The latter has not been so far given in the literature,

but can be extracted from a recent result for the three-loop anomalous dimension of a

cusped Wilson loop [41, 42], which is equivalent to the full anomalous dimension in HQET.

Expanding their result in the lightlike limit x ∼ m/Q→ 0, we obtain with the help of the

Mathematica package HPL [50]

γbHQET

(Q
m
,µ
)∣∣∣∣
O(α3

s)

=

(
α

(nl)
s (µ)

4π

)3{
CFC

2
A

[(
− 490

3
+

536π2

27
− 88

3
ζ3−

44π4

45

)
L (B.1)

+
686

9
− 608π2

27
+

1480

9
ζ3+

44π4

45
+

8π2

3
ζ3−72ζ5

]
+ CFCATFnl

[(
1672

27
− 160π2

27
+

224

3
ζ3

)
L− 712

27
+

160π2

27
− 992

9
ζ3

]
+ C2

FTFnl

[(
220

3
−64ζ3

)
L− 220

3
+64ζ3

]
+CF (TFnl)

2

[
64

27
L− 64

27

]}
,

where L = ln[(−Q2− i0)/m2]. The coefficient of this logarithm is proportional to the well-

known lightlike cusp anomalous dimension at three loops, Γ
(3)
cusp, while the non-logarithmic

ingredient of eq. (B.1) represents the noncusp part. Together with the corresponding

anomalous dimension of the SCET current this enables one to predict the logarithmic

structure of Hm at three loops by solving eq. (2.15). Furthermore it allows one to extract

the last missing ingredient to predict the full IR-divergent structure of the three-loop full

QCD form factor for massive quarks for m � Q, which is for example in ref. [31] the

coefficient K(3) in eq. (63).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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