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Abstract

We conducted two AB experiments (treatment vs. control) in a massive open online
course. The first experiment evaluates deliberate practice activities (DPAs) for developing
problem solving expertise as measured by traditional physics problems. We find that a
more interactive drag-and-drop format of DPA generates quicker learning than a
multiple choice format but DPAs do not improve performance on solving traditional
physics problems more than normal homework practice. The second experiment
shows that a different video shooting setting can improve the fluency of the instructor
which in turn improves the engagement of the students although it has no significant
impact on the learning outcomes. These two cases demonstrate the potential of
MOOC AB experiments as an open-ended research tool but also reveal limitations. We
discuss the three most important challenges: wide student distribution, “open-book”
nature of assessments, and large quantity and variety of data. We suggest possible
methods to cope with those.

General background
With tens of thousands of registered students, massive open online courses (MOOCs)

hold great promise for data-driven education research (Ho et al. 2015; Reich 2015;

Williams 2013). Research in MOOC started almost simultaneously with the launch of

the first MOOCs, covering topics from student behavior (Han et al. 2013; Kizilcec

et al. 2013, edX; Koedinger et al. 2015) and instructional strategies (Guo et al. 2014;

Kim et al. 2014; Piech et al. 2013) to learning outcomes (Colvin et al. 2014). An im-

portant recent advance in MOOC-based education research is the capability to con-

duct an “AB experiment” on major MOOC platforms (Anderson et al. 2014; edX, n.d.;

Williams and Williams 2013).

Also called split testing, AB testing, or randomized controlled trial, AB experiments

are a research method that is used by a wide range of disciplines ranging from market-

ing and business intelligence to medical research and social sciences (Chalmers et al.

1981; Kohavi and Longbotham 2015). Simply put, in a MOOC AB experiment, differ-

ent instructional materials are presented to different groups of students, and the effect-

iveness of the materials can be evaluated by measuring the behavior and learning

outcomes of students using various metrics.
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MOOC AB experiments can be a powerful tool to help sort through the enormous

variety of instructional choices. Koedinger et al. (2013) estimated the raw number of

possible instructional choices to be on the order of an impossible 330, which includes

decisions such as more worked examples vs. more tests, immediate vs. delayed feed-

back, and longer vs. shorter videos. With large number of students and automated

group randomization scheme, multiple MOOC AB experiments can be easily imple-

mented in a single course, enabling researchers to accumulate evidence on different in-

structional designs at a much faster rate.

However, the intrinsic “openness” of MOOCs also poses unique challenges on both the

design of AB experiments and the analysis of the result. For example, unlike most clinical

trials in the social sciences where the experimenter has almost complete control over the

behavior of participating subjects, MOOC instructors have little to no control over the

subjects. How the experiment designs and data analysis methods developed for offline ex-

periments can be modified to suit the online environment is still a largely open question.

The RELATE group at MIT is among the first to conduct multiple AB experiments

in MOOCs. In the 2014 run of our introductory physics MOOC 8.MReVx, we per-

formed as many as seven AB experiments, investigating various aspects ranging from

videos to problems to virtual labs. In this paper, we present in detail the design, imple-

mentation, analysis, and result of two of those experiments.

The first experiment evaluated a new type of training activity inspired by research on

“deliberate practice” (Ericsson 2009; Ericsson et al. 1993; Ureña 2004) focusing on find-

ing the best practice activity to develop expertise in solving physics problems. We com-

pared them with “standard practice” as a control—training on solving multiple

traditional physics problems. In addition, we also investigated whether a new interactive

problem format, drag-and-drop problems, might be a more effective form of deliberate

practice, as compared with a more traditionally formatted (and much easier to create)

multiple choice format.

In the second experiment, we studied how different video shooting setups can affect

the performance of the instructor, as well as the behavior and learning of students.

While the first experiment concentrated on assessing performance and skill, the second

experiment also explores the behavioral pattern of MOOC students and instructors. It

is unique in the sense that in this experiment the MOOC instructor becomes the sub-

ject of investigation along with the students.

In addition to presenting the analysis and results of each experiment, we will

emphasize on comparing different experiment designs and data analysis decisions and

how each of them suits the MOOC environments. We will also share the challenges we

face in analyzing exceptionally noisy MOOC data, as well as lessons we learned from

unsuccessful attempts. With these, we hope that this paper can be of broader interest

and value to the general online learning research community.

Implementation of AB experiments on the edX platform

The edX platform has the ability to implement AB experiments (called “content experi-

ments” by edX) (edX, n.d.) in which the user population is partitioned into two or more

groups and each group is given a different version of course material. Some important

aspects of edX AB experiments are as follows:
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� Users are randomly assigned to two or more groups for a given experiment.

� Group assignment takes place when the user’s browser first attempts to access the

experiment material, resulting in equal number of subjects per group despite a high

level of random attrition among the MOOC population.

� All users participate in all experiments or opt out of the course itself.

� For each instance of the experiment, the instructor can choose to either keep using

existing randomized groups or use a new random group assignment.

Structure of 8.MReVx mechanics review MOOC

The experiments described in this paper are conducted in our MOOC 8.MReVx Intro-

ductory Mechanics, which is designed for those with some existing knowledge of New-

tonian mechanics. It concentrates on problem solving and uses a pedagogy called

Modeling Applied to Problem Solving (Pawl et al. 2009).

The course consists of 12 required and 2 optional weekly units. A typical unit con-

tains three sections: instructional e-text pages (with interspersed concept questions),

homework, and quiz. Most graded problems in the course allow for multiple attempts.

In general, three attempts are allowed for numeric and symbolic response problems on

the quiz, and up to 10 attempts are allowed in homework. The number of attempts on

any multiple choice problem equals half of the available choices to discourage guessing.

We had ~11,000 students who registered in the course, with just over 500 receiving

certificates.

Experiment 1: developing physics expertise using deliberate practice in drag-
and-drop format
Background

Developing expertise in physics

Research in educational psychology (Bransford et al. 2000; Chi et al. 1981; DeGroot

1965) has long revealed that domain experts possess a variety of skills that distinguish

them from novices, such as quickly extracting important information from complex

situation (Chase and Simon 1973; DeGroot 1965; Egan and Schwartz 1979; Lesgold

et al. 1988), organizing knowledge around important ideas or concepts (Chi et al. 1981;

Wineburg 1991), and displaying great fluency in retrieval of their knowledge (Lesgold

et al. 1988; Schneider and Shiffrin 1977; Simon et al. 1980).

Yet despite extensive knowledge of expert characteristics, most introductory physics

courses are still largely unsatisfactory in terms of engendering physics expertise in col-

lege physics students. College physics students frequently employ heuristic methods

such as equation hunting during problem solving, rather than using more expert like

strategies (Tuminaro 2004; Walsh et al. 2007).

Careful research shows that a critical factor in the development of expertise in

domains from music to sports to chess is the amount of time spent on so-called

deliberate practice (Ericsson et al. 1993; Ericsson 2006; Ureña 2004). Deliberate

practice has three defining characteristics. First of all, each practice activity must

focus on a single aspect of expertise rather than playing the “full game.” For ex-

ample, tennis players separately practice their serve, backhand, and drop shot. Sec-

ondly, the same practice is repeated multiple times until a certain level of mastery
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is achieved. Finally, during deliberate practice, the practitioner often receives in-

stant, directed feedback on his/her progress.

The standard approach to teaching introductory physics rests largely on having stu-

dents complete lots of traditional “back of the chapter” problems—essentially “full

game” practice. However, solving these problems lacks all three characteristics of delib-

erate practice. First of all, properly solving such a problem often involves multiple (six

to seven) expert skills, yet each skill is practiced only once per problem. Secondly, the

process of solving one such problem is often fairly lengthy, limiting the amount of prac-

tice on any single skill. Finally, in a traditional classroom setting, the feedback on prob-

lem solving is neither instant (often delayed from 1 day to 1 week) nor directed to any

particular skill (often only on the correctness of the final answer). It is known that even

after solving a significant amount of those problems, students’ physics understanding is

still inadequate (Kim and Pak 2002).

Designing deliberate practice activities for the development of physics expertise

Following the principles of deliberate practice, we designed and developed a number of

practice activities named “deliberate practice activities” (DPAs), as an alternative to

practicing on traditional problems. Each DPA is consisted of a sequence of five to six

problems that are designed according to the following design principles:

1. Each sequence of problems is designed to focus on one documented expert skill.

2. Each problem can be solved in a relatively short time, involving few operations

irrelevant to the targeted expert skill. This allows for adequate repetitive practice in

a reasonable amount of time.

3. Each problem is accompanied with detailed feedback.

For example, in one DPA sequence that focuses on training the expert skill of map-

ping between different representations, students are given the general mathematical ex-

pression of a physics situation (such as angular momentum) and required to map each

variable in the expression, such as distance r and angle α, to the corresponding dis-

tances and angles in a specific given physics situation (Fig. 1).

Fig. 1 Comparison of the same problem in two formats. a Multiple choice format requires students to
match between problem and choices. b Drag-and-drop format requires students to drag label to the
important feature
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Using drag-and-drop problems to improve effectiveness of DPA

A critical feature of DPA problems is that they need to be highly focused on the target

skill. A good metric for “focusedness” is a lower amount of extraneous cognitive load

(Gerjets and Scheiter 2004; Paas et al. 2003; Sweller et al. 2011), cognitive activities ir-

relevant to the skill being trained, incurred during problem solving. We observe that

the traditional multiple choice (MC) problem format, including dropdown lists and

checkboxes, inevitably incurs significant cognitive load, especially on DPA problems.

For example, when training students to identify important features in a given situation,

a multiple choice format requires students to switch back and forth between the

choices and the figure, incurring much cognitive load. Previous research on problem

format (Chen and Chen 2009; Gillmor et al. 2015; Huang et al. 2015) showed that stu-

dents perceive higher cognitive load completing traditional multiple choice questions.

To reduce the extraneous cognitive load, we utilized a new problem format provided

by the edX platform: drag-and-drop problems. “Drag-and-drop” (D&D) problems, as

shown in Fig. 1b, allow students to drag a visual icon from a list to a target diagram. In

this example, students indicate the important feature by directly dragging the pointer

to the relevant feature.

We further reduce extraneous cognitive load in the D&D format by following multi-

media design principles outlined in the study by Chen and Gladding (2014) and Schnotz

(2002). In short, the theories predict that extraneous cognitive load can be further reduced

when verbal/symbolic icons are replaced by visual/perceptual icons. For example, as

shown in Fig. 3, angular accelerations in different directions are represented by rotation

icons in different directions, rather than text such as “clockwise” or “counter-clockwise.”

An additional benefit of such a design is that students’ final answer is a figure representing

the physics process, which is more valuable to remember than a selected item such as

item A. Utilizing multiple modes of information coding has also been shown to facilitate

understanding and memorization (Mayer 2001; Schnotz and Kürschner 2008).

Research questions

In summary, this study is designed to answer two related research questions:

1. Can DPA serve as a more effective method in developing physics expertise

compared with solving traditional end-of-chapter physics problems?

2. Is the D&D format more effective in developing individual expert skill compared to

traditional multiple choice format?

Balanced experimental design and sample

Experimental design

The experiments were conducted in the homework and quiz of the last three required

units (10, 11, and 12) of the MOOC (Fig. 2). Students were partitioned into three groups

(A, B, or C). Each group received one of three different homework treatments in each

unit: DPA activities in either D&D format (DPA-D&D), MC format (DPA-MC), or trad-

itional end-of-chapter homework (TRD). The treatments were rotated between the three

groups over three units. A common second homework consisting of traditional home-

work problems followed the experimental treatment, unavoidably covering other topics
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taught in the unit that are not covered in the treatment homework. Physics problem solv-

ing expertise was assessed by a common quiz given to students together with both home-

work assignments. The quizzes also consisted entirely of traditional problems (mostly

numeric/symbolic response).

The DPA treatment for each unit consisted of four to five DPA sequences, where

each sequence consisted of three to seven DPA problems. In each unit, the first three

to four DPA sequences focused on training a single, basic level expert skill. The last

DPA sequence trained higher level solution planning skills by asking students to iden-

tify a number of different errors in a given solution. Each DPA treatment consisted of

~20 problems in total. Among all the DPA sequences created, five of them consisted of

more than four problems each (two in unit 10, two in unit 11, and one in unit 12; these

are suitable for studying students’ development of each individual skill). The TRD treat-

ment consists of a mix of traditional symbolic problems and conceptual problems, with

a total of six to ten problems each unit. Detailed solution for each problem was made

available to students immediately after they have finished the problem (answered cor-

rectly or used up all the attempts). Although the deliberate practice treatment contains

many more problems than the traditional treatment, both treatments cover the target

material and are intended to take roughly the same amount of time.

DPA problems in D&D and MC format

An edX D&D problem (Fig. 3) consists of a target figure and a list of draggable icons

called “draggables.” For each draggable, the author defines a designated target area on

Fig. 2 Experimental design for experiment 1

Fig. 3 Example of drag-and-drop problem in edX. a No external force. b External force F to the left. c External
force F to the right
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the target figure (different target areas can overlap each other). The problem is graded

as correct when all the draggables are dropped onto their designated target areas.

Multiple attempts (5–10) are allowed for each D&D problem. A detailed solution is

provided for each DPA problem involved in this experiment and is made available to

students immediately after they have answered correctly or used up all their attempts.

The MC version of DPA problems involved multiple choice, checkboxes, and drop-

down lists and was designed to mimic their D&D counterparts as closely as possible

by using the same figures, problem text, and solution. Since D&D problems often

have a very large number of possible answers, the corresponding MC version is

broken into two MC sub-questions graded simultaneously, to avoid presenting too

many choices. This difference theoretically gives the MC group a small advantage in

problem solving, as students are informed whether their answer to each sub-

question is correct after each attempt. As a result, fewer attempts are allowed for

MC problems than D&D problems, since the extra feedback quickly reduces the

problem space.

Selecting subject population

In order to guarantee that the users we consider interacted with the treatment home-

work to a significant extent, we restrict our attention to those who completed at least

70 % of the treatment homework and at least 70 % of the common quiz. This cutoff

leaves a total of 219 students for unit 10, 205 students for unit 11, and 280 students for

unit 12 (cf. a total of 614 students accessed at least one of the treatment problems in

all three units). Our results are unlikely to be sensitive to the cutoff, as the majority of stu-

dents (60–70 %) either completed >90 % of both quiz and homework or <10 % of either.

Results

Comparing DPA and TRD format on developing overall problem solving expertise

Time-on-task We analyzed edX log files to estimate the time students spent on the

treatments. The time spent on each problem is estimated by including all the time be-

tween loading a problem to students’ last submission to the problem, with a maximum

cutoff at 30 min. The median time spent on completing the treatment homework is es-

timated to be around 5000 s (1.4 h) following this method, with no statistically signifi-

cant difference among the three different treatments nor among the three different

groups found (data not shown). Note that because timing data is highly non-normal,

we used the nonparametric Mann-Whitney U test to perform pairwise comparison be-

tween groups of time-on-task during the homework.

Performance of groups on quizzes with traditional problems

Students’ physics problem solving expertise was measured by their performance, i.e.,

percentage of first attempt correct, on traditional quiz problems. Percentage of first

attempt correct was chosen because it reflects the initial performance and shows

the largest differences between groups because the majority answered correctly on

the first attempt.

The performance of each treatment group on common quizzes is summarized in

Table 1. Simple one-way ANOVA reveals no significant difference between the three

groups on any of the quizzes. In Table 2, we show the cumulative difference in average
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quiz performance between the three types of treatment: DPA-D&D, DPA-MC, and

TRD. Since we rotate the treatment between the three groups, the overall samples were

the same for the three types of treatment (except that some students did not complete

all three homework assignments). The only significant difference is between the TRD

homework and DPA-MC, while DPA-D&D showed no significant difference with either

of the other two.

Comparing D&D to MC in developing a single skill

The drag-and-drop format did not significantly outperform the MC format when

judged by the subsequent traditional problems. This led us to investigate whether the

D&D format is superior to the MC format in developing an individual expert skill. We

therefore looked at the five DPA sequences that focused on a single basic expert skill,

restricting attention to sequences comprised of more than four DPA problems.

The first attempt correct rate on the 1st one or two problems in all five sequences is

around 70 %, indicating that the majority of students have previously mastered those

skills to some extent. In order to study students who actually need to learn the skills

from the activity, we choose to study the 20–30 % of students who did not correctly

answer the 1st one or two problems in each sequence on their 1st attempt. We used

the 1st two problems for sequences 1 and 2, because they are closely related to each

other by design, and should be treated as a unity. The selected population size for each

sequence varies from 20 to 40 % of the population that answered >70 % of the given se-

quence. An example of the analysis is illustrated in Fig. 4.

We measure the change in individual skills by students’ performance on the subse-

quent three to four problems in each sequence. As shown in Fig. 5, on three out of five

sequences, the D&D group answered significantly more questions correctly on the first

attempt than the MC group, and on sequence 3, the D&D group answered more ques-

tions correct on the second attempt. Since the distributions are highly non-normal, we

used Mann-Whitney U test to measure the significance of the difference. As shown in

Table 3, a highly significant difference at p < 0.01 level is observed for sequence 1 on

both first and second attempt correct. Significant difference at p < 0.05 level is observed

for sequence 2 on first attempt correct and sequences 3 and 4 on second attempt

Table 1 Different groups’ treatment and scores on the quiz in three units

Total score, quiz 10 Total score, quiz 11 Total score, quiz 12

Treatment Group N Mean SD Group N Mean SD Group N Mean SD

DPA-D&D A 78 0.61 0.23 C 72 0.47 0.22 B 87 0.59 0.22

DPA-MC B 71 0.56 0.24 A 64 0.43 0.24 C 103 0.61 0.2

TRD C 70 0.62 0.23 B 69 0.47 0.23 A 90 0.65 0.18

p (ANOVA) 0.23 0.52 0.22

Table 2 Difference in quiz score between the three treatment groups

Comparison Δμ (quiz) (%) SD (%) Z p (z test)

D&D-MC 2.30 2.10 1.11 0.27

MC-TRD −4.70 2.10 −2.22 0.026a

TRD-D&D 2.30 2.10 1.14 0.26
aSignificant at the 0.05 level
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correct. In sequence 2, each MC format question has only three choice items, whereas

most questions in other sequences have five or more choice items. Therefore, the extra

feedback advantage for MC problem is strongest for sequence 2, which is probably why

there is no difference on the second attempt correct. (t tests were also performed on

the same data with very similar results).

Excluding initial selection bias due to different problem format

Since the initial selection of subjects is based on problems in different formats, these

results could arise if students selected in the drag-and-drop groups were stronger but

answered the first problem incorrectly because of its unfamiliar problem format. Their

subsequent performance would then simply indicate their higher intrinsic ability.

We checked for such selection bias using two different measures. First, if the D&D

format selects generally stronger students, then they should have higher physics ability

as measured by item response theory (IRT) (Baker 2001; Burton 2004). Secondly, if

D&D selects additional stronger students due to format unfamiliarity, then the selected

D&D population should be larger than the selected MC population, since random as-

signment assures similar numbers of weak students in each group.

As shown in Table 4, for sequences 1–3, neither IRT ability nor size of population is

significantly different between the two groups at the 0.1 level. For sequences 1 and 2,

Fig. 4 For each DPA sequence containing >4 DPA problems, we used the 1st one or two questions (shown
as 2 in the figure) to select the population that needs practice on the skill

Fig. 5 Comparing the average number of correctly answered DPA problems in each DPA sequence. The
total number of problems (beyond the 1st one or two that were used to select the sample) in each sequence
is shown in Table 3. a Average number of correctly answered problems on first attempt. b Average number of
problems answered correctly on second attempt. **Significant at 0.01 level. *Significant at the 0.05 level.
†Significant at the 0.05 level, but population might be dissimilar
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the D&D population is actually smaller. On sequence 4, the D&D group is somewhat

larger than the MC group, and the difference in population is significant at the 0.1

level, whereas in sequence 5, the trend is reversed. On average, there is no difference

observed between the two selected populations.

Summary and discussion of learning from DPAs

D&D format superior to MC format for DPAs

The drag-and-drop (D&D) format of deliberate practice activities (DPAs) strongly out-

performs the multiple choice (MC) format at teaching students to do more DPAs in

that particular format. In addition, in an end-of-course survey, 47 % of students rated

the D&D format as more intuitive than the MC format, and only 20 % rated the MC

format as more intuitive (Chudzicki 2015).

We interpret this as showing that D&D significantly outperforms the MC format in

facilitating “rapid” learning of a single expert skill. This conclusion is buttressed by our

finding that both the number and the average skill level of the students selected for our

study (on the basis of poor performance on the first DPA homework problems) were

insignificantly different. This rules out the possibility that students were actually learn-

ing to use the D&D format, rather than the desired target skill.

We think that the D&D format is superior mainly because it reduces extraneous cog-

nitive load and increases visual representation. However, there could be other plausible

Table 3 Difference in average number Δ�nð Þ of correct answers on subsequent problems per
student between D&D and MC format

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5

n 3 5 5 5 5

�n(MC, 1st attempt) 0.36 0.94 1.94 2.09 1.08

Δ�nDD‐MC; 1 attempt 0.73a 0.75b 0.64 0.79 0.02

p (U test) 0.007 0.02 0.25 0.07 0.89

�n(MC, 2 attempts) 1.68 2.27 3.54 3.74 2.77

Δ�nDD‐MC; 2 attempts 1.12a −0.15 1.19b 1.1c −0.54

p (U test) <0.001 0.9 0.03 0.02 0.15

n number of problems in each sequence (excluding the 1st one or two problems)
aSignificant at 0.01 level
bSignificant at the 0.05 level
cSignificant at the 0.05 level, but population might be unequal

Table 4 Comparison of selected population size and IRT ability between D&D and MC groups

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 Average

% pop. (D&D) 22 % 26 % 26 % 36 % 30 % 28 %

% pop. (MC) 25 % 35 % 18 % 24 % 41 % 29 %

p (Fisher) 0.87 0.18 0.23 0.07 0.1 0.8

Mean IRT (D&D) −0.65 −0.33 −0.54 −0.43 −0.60 −0.45

Mean IRT (MC) −0.69 −0.66 −0.64 −0.65 −0.18 −0.54

p (t test)a 0.89 0.13 0.82 0.55 0.1 0.43

df 37 53 26 43 46 269

t 0.13 1.54 0.23 0.76 −1.44 0.78
aSince the distribution is also non-normal, Mann-Whitney U test was also performed, with very similar results
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alternative explanations as well. For example, the D&D group has more attempts per

problem and students receive less feedback on each attempt, which might force stu-

dents to “struggle” longer and hence learn more. Also, the new format might simply be

more eye-catching to students, leading to better concentration. Further research is re-

quired to distinguish between these differences. Of particular importance would be to

assess the single skill that the DPAs are supposed to teach using common DPA prob-

lems, for example, by breaking down the problem into a few sub-questions.

DPAs do not outperform traditional problems as practice for doing traditional problems

DPAs, especially in MC format, are slightly less effective preparation for a quiz contain-

ing traditional questions than solving traditional problems for the same amount of

time.

It is difficult to believe that our particular implementation of DPA is less effective at

teaching the targeted expert skill than solving common physics problems. Therefore, it

is likely that there are additional skills involved in overall problem solving expertise;

there are a number of equally plausible alternative explanations for this result:

1. The crucial skills that we elected to write DPAs for may not be those that actually

result in the students failing to answer the quiz problems correctly. Quite likely,

around one fourth of our student population are teachers and might already be

fluent with the fairly basic skills that we trained in DPA.

2. Since MOOC students have access to all the learning resources at all times, the

quizzes are essentially open-book assessments. Therefore, the assessment is insensitive

to any memory benefits of the intervention.

Further work in which the common quiz questions were designed to carefully probe

the mastery of the skills targeted by DPAs would seem important for evaluating the

outcomes of DPAs.

Experiment 2: impact of video shooting format on instructor performance
and student learning
Background

High-quality videos by skillful instructors are a hallmark of many successful MOOCs.

However, there are also many MOOC videos in which it is apparent that the instructor

feels uneasy talking to the camera. While previous studies examined how different

video formats impact student engagement (Guo et al. 2014), in this study, we change

our viewpoint to explore whether a different video production setting can influence the

instructor’s “acting” performance and whether the changes in format together with in-

structor’s performance will result in detectable differences in student viewing behavior.

Our MOOC 8.MReV contains around 10 “office hour” videos of ~10 min each (but

no lecture videos). In each office hour video, the instructor tutors two students on a

challenging problem from either the homework or the quiz of that particular unit. This

tutoring format is inspired by research on tutorial videos (Muldner et al. 2014), show-

ing that in the right condition, the learning outcome from tutorial videos is comparable

to that of live human tutoring. We observed that our tutoring videos often had a rela-

tively slow tempo with frequent pauses while the instructor stops to think or waits for
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student responses. We hypothesized that this results from the high cognitive load in-

curred on the instructor by this tutoring setting, in which the instructor has to control

multiple aspects of the presentation and interaction with the students while explaining

the content at the same time. We call this setup the instructor-dominant (ID) setup. To

remediate the cognitive overload problem, we changed the video shooting setting

and replaced the students in the ID setting with a well-prepared student assistant

who shared a lot of the instructor’s load, allowing the instructor to focus on con-

tent delivery.

In this experiment, we seek to answer the following research questions:

1. Can we design a video shooting setup that enhances instructor performance by

reducing cognitive load?

2. Does the instructor’s performance have a detectable impact on students’ video

watching behavior?

3. Does better instructor performance lead to detectable improvement in students’

learning outcome?

Methods

Video shooting setups

ID video setting The original ID format videos were shot during the 2013 run of

8.MReV. In this setting (Fig. 6), both the instructor and students sit at a table facing

the camera. A tablet computer with stylus input was placed in front of the instructor,

on which the problem was displayed. The instructor tutors the two students on solving

the problem and writes the solution to the problem on the tablet. The tablet capture,

which resembles the Khan Academy-style video, was later integrated into the camera

footage as part of the video.

Fig. 6 ID video shooting setup. a Schematic drawing of the setup. b Screen shot of ID format video.
c Example of tablet capture

Chen et al. Research and Practice in Technology Enhanced Learning  (2016) 11:9 Page 12 of 20



Assisted tutoring (AT) video setting In 2014, we re-shot four of the office hour videos

with the same instructor in AT setting. In this setting (Fig. 7), a student assistant first out-

lines the problem on a whiteboard and invites the instructor to explain it. As the in-

structor enters the scene and starts to explain the problem, the assistant stands beside the

camera (out of the scene) serving as the audience. For emphasizing a key point, or where

the assistant feels the instructor should elaborate his explanation, the assistant will raise

that point by asking the instructor a question. Before the shooting of each video, the as-

sistant prepares a list of potential questions that could be asked during the video shooting.

Experiment setup

The experiment was conducted in the homework section of units 8 and 9 of the 2014

MOOC, 8MReVx (Fig. 8). Each unit contains two videos shot in both settings placed at

the end of the homework sequence. Each video explains one problem in the homework.

Upon accessing one of those two homework problems, students are provided with a link

pointing to the corresponding video, together with a text prompt encouraging them to at-

tempt the problem at least once before watching the video. On the page containing the

videos, there is another link that points students back to the problem, allowing students

to go back and forth between the video and the problems. Separating the videos from the

problems allows us to easily track the order in which students accessed the videos.

The student population was randomly assigned to two groups, A and B. Those

assigned to group A will be presented with two ID videos in unit 8 and two AT videos

in unit 9, whereas the treatments were reversed for group B.

Results

Instructor performance and speech speed

Experientially, the overall presentation of the instructor in the AT setting is noticeably

more fluent than in the ID setting. As a first-order measurement of fluency, we

Fig. 7 AT video shooting setting. a, b A teaching assistant introduces the problem at the beginning of the
video. c, d The instructor comes into the scene, and the assistant retreats beside the camera
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measured words per minute (wpm) for three of the four videos for which verbal tran-

scripts were available (transcript for video 2 ID format was lost due to file corruption).

The wpm is simply estimated by dividing the total length of the transcript by the length

of the video (Guo et al. 2014). As shown in Table 5, in all three videos, the wpm in the

AT setting is higher than that in the ID setting and the difference is larger for vid-

eos 3 and 4. Noticeably, the lengths of the two types of videos were not very

different, which indicates that the instructor conveyed more information in the AT

format than the ID format.

Student population

Around 200–300 students attempted the two homework problems in each unit. Among

those students, less than 30 % accessed the videos before submitting their last attempt

on the problem. Furthermore, as shown in Table 5, while the number of students who

attempted the problem stayed relatively constant within each unit, the fraction of stu-

dents accessing the videos fluctuated much more between problems. This is somewhat

surprising to us as instructors; the videos contain detailed explanation to the problems,

and the first attempt correct rate for non-video viewers ranges from 30 to 70 %. For

the rest of the data analysis, we will concentrate on those students who accessed the

video before their last attempt on the problem.

Fig. 8 Experiment design of experiment 2

Table 5 Comparison between two different formats of videos. Mean total viewing time for each
video is reported as the percentage of total video length, for meaningful comparison between
videos of different lengths

Videos Time (s) wpm N (attempted
problem)

N (watched
video)

Mean total
viewing time

% of students
with long views

% of students with
correct final answer

AT1 1004 125 318 36 75 % 25 % 74 %

ID1 1187 118 308 39 96 % 26 % 66 %

p = 0.02 (U test) p = 0.94 (chi sq.) p = 0.61 (chi sq.)

AT2 659 N/A 294 113 88 % 41 % 93 %

ID2 583 N/A 290 105 108 % 44 % 83 %

p = 0.05 (U test) p = 0.64 (chi sq.) p = 0.04 (chi sq.)

AT3 731 142 223 67 101 % 45 % 82 %

ID3 943 113 206 75 79 % 27 % 84 %

p = 0.006 (U test) p = 0.02 (chi sq.) p = 0.8 (chi sq.)

AT4 377 145 212 39 79 % 46 % 84 %

ID4 423 122 195 46 83 % 28 % 98 %

p = 0.42 (U test) p = 0.09 (chi sq.) p = 0.02 (chi sq.)
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Change in students’ viewing behavior

The total viewing time showed an inconsistent trend between the AT and the ID vid-

eos: for the first two videos, students spent more time watching the ID version, whereas

for the third video, students spent more time watching the AT version. Since the distri-

bution of time data is highly non-normal, we used Mann-Whitney U test as a test of

significance. For continuous random variables such as time-on-task, the Mann-

Whitney U test can be interpreted as testing for a difference in median if the distribu-

tions are similar (Sheskin 2004). Since a significant fraction of students watched close

to 100 % of the video in both cases, the median watch percentages are the same in each

case (100 %). Therefore, we report the mean percentage to better reflect the trend of

differences.

As an indicator of students’ level of engagement with the video, we calculated the

percentage of students with at least one long view event. Using view length as a meas-

ure of engagement has been used by previous MOOC video research (Guo et al. 2014).

We defined a “long view” event as one unstopped play event that is longer than 70 % of

the total video time. The hypothesis is that for less engaging videos, students are more

likely to skip part of the video and search for information that is useful to them, gener-

ating more pause and search events and shorter view events. On the other hand, the

mean viewing time, a measure of total engagement, differed significantly on three of

the four videos; however, the direction varied among the videos so no global conclusion

seems warranted.

While videos 1 and 2 showed little difference, on videos 3 and 4, the AT version

resulted in more students with long views. The difference is statistically significant

for video 3 but not for video 4 due to a smaller sample size. Notably, videos 3 and

4 are also the ones where the speech speed difference between AT and ID is the

largest.

Changes in learning outcome

Students’ learning outcome is measured by their performance on the problem. Notice

that the first attempt is not a valid measurement in this case, because most students

submitted their first attempt before watching the video. Since all subjects watched the

video before their last attempt on the problem, we used their last attempt correct rate

as a measure of learning from the video.

Again, as shown in Table 5, we did not observe any consistent trend favoring one

video format over the other among the four instances. For video 2, students watching

the AT version outperformed students watching the ID version by 10 %, whereas on

video 4, the trend was flipped.

Discussion of video format experiment

Our primary finding was that in the assisted tutoring (AT) format made the instructor

produced more fluent explanations with fewer pauses than in the ID setting, presum-

ably because of reduced cognitive load.

When it comes to students’ video watching behavior, the AT format leads to in-

creased engagement, as measured by the percentage of students with one uninterrupted

long view. This result is in line with the general conclusion from an earlier study (Guo

et al. 2014) that faster speech leads to better engagement. However, their detailed
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findings for the particular range of speech speeds (100–150 wpm) and video length

(9–12 min) indicated a lower engagement level for higher speech speed.

A key factor in video watching is whether students learn from them and whether high

engagement is accompanied by greater learning. Unfortunately, most MOOC video

studies made no attempt to determine whether students learned from the videos. We

did try to measure learning in the current experiment, yet no significant difference was

observed for students’ performance on homework problems, which we suspect is partly

due to the ceiling effect (most got it correct irrespective of watching the video) as well

as the small sample size of those who watched the video. In particular, we did not test

for transfer of learning from the video in this experiment, which could be more sensi-

tive to the difference in engagement.

A noteworthy observation is that, although the videos contain detailed explanation to

the problem, only a small fraction of students chose to watch the video, and this frac-

tion is different for different problems. Furthermore, students who did not watch the

video were far from perfect on their first attempt of the problem. This suggests that

video watching is a deliberate decision made by MOOC students, and most of them

prefer to figure out the problem on their own as much as they can. Upon closer inspec-

tion, we also found that over half of the students who watched the videos followed our

suggestion and made their first attempt before watching the video. These behaviors

suggest that MOOC students are highly motivated learners, whose behavior is not rep-

resentative of typical high school or college students.

General discussion: the strengths and challenges of MOOC AB experiment
The two MOOC AB experiments we report here cover two of the most important topics

in MOOC research in Science, Technology, Engineering, and Math (STEM): developing

effective pedagogies for teaching expert problem solving and learning from videos.

Our first experiment on deliberate practice activities shows that properly designed

drag-and-drop problems seem to develop individual expert skills significantly better

than multiple choice format. However, our deliberate practice activities were no better

than traditional homework practice in improving student performance on solving trad-

itional physics problems. Thus, learning the particular expert skills that we focused in

the DPAs does not transfer to solving the traditional problems. This could have many

explanations including that we did not pick the critical skill for solving the traditional

problems, that our learning format does not induce transfer, or even that our students

use novice heuristic methods to solve the traditional problems so that the possession of

the expert skill is of no relevance.

The second experiment shows that the new video shooting setting improves the in-

structor’s performance by reducing cognitive load and improves student engagement.

However, its impact on learning outcomes was not significant.

Our first attempts at conducting and analyzing learning from AB experiments in a

MOOC environment did not result in eye opening discovery or solid conclusions. This

is not completely unexpected, as the majority of online AB testing shows no effect

(Kohavi and Longbotham 2015). However, in each case, the size of the samples was

sufficient to reveal some significant effect: the more rapid learning occurring from

drag-and-drop DPAs (relative to multiple choice) and the importance of reducing the

cognitive load on the instructor for generating more engagement.
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The strength of MOOC AB experiments is obvious: The flexibility of the online plat-

form allows researchers to easily conduct experiments with multiple repetitions and

large sample size. Rich click stream data provides ample opportunity for in-depth data

mining and analysis, such as students’ video viewing pattern, time spent on solving

problems, or the order in which students access different contents in the course. Not-

ably, the significant results obtained in both experiments were on selected subsamples

of the total population, which resulted in significantly smaller samples than one would

have expected from the large MOOC registration numbers. On the other hand, this se-

lection may eliminate many of the extraneous students in MOOCs, e.g., the teachers of

that subject (who are already experts) and those students who used a second account

to obtain the correct answers to problems.

Finally, we discuss the many challenges that MOOC AB experiments face along three

axes: the student, the assessment, and the data.

On the student axis, the MOOC student population has great difference in back-

ground and objectives and displays typically four times the variance in skill (Colvin

et al. 2014) as students who have been filtered by selection to a particular class in a par-

ticular college. On the one hand, we have a lot of highly self-motivated and highly

skilled students (Ho et al. 2015, 2014). In experiment 1, for example, about 60–70 % of

students come in with good initial knowledge on many of the expert skills that we de-

signed DPAs to train. On the other hand, our group recently detected the existence of

“cheaters” in the course who use a second account to harvest correct answers and input

them into their main account (Alexandron et al. 2015).

The implication is that whatever instructional method (and the level of its content)

we try to evaluate will likely make a difference to only a subset of the entire MOOC

population. Therefore, if we simply look at the entire population without proper selec-

tion, it is likely that we will be overwhelmed by background noise from students for

whom this intervention is ineffective or unwarranted.

A possible solution to this problem is to include some kind of “pre-test” as part of

the experiment, which will allow the researcher to select the populations that are most

likely to be sensitive to the different treatments. For example, the D&D vs. MC com-

parison was only significant after we selected the subpopulations that are initially weak

on the given skill.

On the assessment axis, the validity of MOOC assessments is challenged by the fact

that essentially all MOOC quizzes are open book. Moreover, we have little to no con-

trol over the time and order in which students complete the assessments or if they

complete them at all (particularly since passing in most MOOCs is at the 60 % level).

This poses a significant challenge to the inference of causal relations between students’

learning activity and assessment performance. For example, in both experiments, stu-

dents could have learned how to solve the assessment problems from other parts of the

course or even from a different website or a book. Highly skilled students could even

have completed the assessment and the intervention in reverse order.

One potential strategy for dealing with this challenge is to carefully analyze students’

log data and determine the order of their activities. For example, in experiment 2, we

only selected those students who watched the video before submitting their last at-

tempt on the assessment problem. However, this type of analysis can often be expensive

and time consuming and is powerless to student activities happening outside of the
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MOOC platform, such as reading a book or visiting another website. Another strategy

is to design the learning process itself as the assessment, such as in the D&D vs. MC

study, where students’ change in performance during the learning process is used as

the assessment metric. This is because students are more likely to complete the whole

training process in one setting and have less incentive to search for outside help.

Yet perhaps the best solution to this problem is for future MOOC platforms to pro-

vide more control over students’ behavior, such as requiring students to complete the

intervention before they can “unlock” the assessment or providing the ability to admin-

ister time-limited tests.

Finally, the richness of MOOC data also presents challenges for analysis. For ex-

ample, performance on any assessment problem can be measured by first attempt cor-

rect rate, last attempt correct rate, average number of attempts used, and time spent on

each attempt. On what basis should we choose the most appropriate measurement for

a given analysis? How do we deal with the learning value of a few failed attempts prior

to consulting some instructional resource? For the experiments presented here, most of

those decisions are based more on intuition plus trial and error to find good signal-to-

noise ratios, rather than evidence-based research. Understanding and extracting the in-

formation carried in different types of data is certainly a much needed future direction

in MOOC analytics. In addition, MOOC data—especially time data—have highly non-

normal and unique distribution, which requires new mathematical tools and statistical

models to analyze (Lamb et al. 2015).

In summary, while AB experiments are already a promising research tool in MOOCs,

much effort is needed to address the various challenges that MOOCs present in order

to make it an effective tool for education research.
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